3z型行星齿轮减速器设计说明书

合集下载

行星齿轮传动设计详解

行星齿轮传动设计详解

1 绪论行星齿轮传动与普通定轴齿轮传动相比较,具有质量小、体积小、传动比大、承载能力大以及传动平稳和传动效率高等优点,这些已被我国越来越多的机械工程技术人员所了解和重视。

由于在各种类型的行星齿轮传动中均有效的利用了功率分流性和输入、输出的同轴性以及合理地采用了内啮合,才使得其具有了上述的许多独特的优点。

行星齿轮传动不仅适用于高速、大功率而且可用于低速、大转矩的机械传动装置上。

它可以用作减速、增速和变速传动,运动的合成和分解,以及其特殊的应用中;这些功用对于现代机械传动发展有着重要意义。

因此,行星齿轮传动在起重运输、工程机械、冶金矿山、石油化工、建筑机械、轻工纺织、医疗器械、仪器仪表、汽车、船舶、兵器、和航空航天等工业部门均获得了广泛的应用[1-2]。

1.1 发展概况世界上一些工业发达国家,如日本、德国、英国、美国和俄罗斯等,对行星齿轮传动的应用、生产和研究都十分重视,在结构优化、传动性能,传动功率、转矩和速度等方面均处于领先地位,并出现一些新型的行星传动技术,如封闭行星齿轮传动、行星齿轮变速传动和微型行星齿轮传动等早已在现代化的机械传动设备中获得了成功的应用。

行星齿轮传动在我国已有了许多年的发展史,很早就有了应用。

然而,自20世纪60年代以来,我国才开始对行星齿轮传动进行了较深入、系统的研究和试制工作。

无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就,并获得了许多的研究成果。

近20多年来,尤其是我国改革开放以来,随着我国科学技术水平的进步和发展,我国已从世界上许多工业发达国家引进了大量先进的机械设备和技术,经过我国机械科技人员不断积极的吸收和消化,与时俱进,开拓创新地努力奋进,使我国的行星传动技术有了迅速的发展[1-8]。

1.2 3K型行星齿轮传动在图4所示的3K型行星齿轮传动中,其基本构件是三个中心轮a、b和e,故其传动类型代号为3K[10]。

在3K型行星传动中,由于其转臂H不承受外力矩的作用,所以,它不是基本构件,而只是用于支承行星轮心轴所必需的结构元件,因而,该转臂H又可称为行星轮支架(简称为行星架)。

级齿轮减速器说明书

级齿轮减速器说明书

重庆机电职业技术学院课程设计说明书设计名称:机械设计基础题目:带式输送机传动装置学生姓名:专业:机械设计与制造班级:学号:指导教师:日期:年月日目录一、电动机的选择 (3)二、齿轮的设计 (4)三、轴的设计 (7)四、轴上其它零件的设计 (8)五、输出轴的校核 (9)六、键的选择 (10)七、箱体的选择和尺寸确定 (11)一、电机的选择(1)选择电动机类型按工作要求选用Y 系列全封闭自扇冷式笼型三相异步电动机,电压380V 。

(2)选择电动机的容量 电动机所需工作功率为Wd P P η=nw=60×1000V/πD=(60×1000×1.7)/(π×400)=81.21 r/min其中联轴器效率η4=0.99,滚动轴承效率(2对) η2=0.99,闭式齿轮传动效率η3=0.97,V 带效率η1=0.96,滚筒效率η3=0.96代入得传动装装置总效率:=122345=0.867工作机所需功率为:P W =F ·V/1000=3000×1.7/1000=5.1 kW则所需电动机所需功率P d = P W /=5.1/0.867=5.88kw因载荷平稳,电动机额定功率ed p 略大于d p 即可由《机械设计基础实训指导》附录5查得Y 系列电动机数据,选电动机的额定功率为7.5kw.(3)确定电动机转速卷筒轴工作转速:由nw=81.21 r/min,v 带传动的传动比i 1=2~4;闭式齿轮单级传动比常用范围为i 2=3~10,则一级圆柱齿轮减速器传动比选择范围为:I 总= i 1×i 2=6~40 故电动机的转速可选范围为n d = n w ×I 总=81.21×(6~40)= 487.26 r/min ~3248.4r/min 符合这一范围的同步转速有750 r/min 、1000 r/min 、1500 r/min 、3000 r/min 。

主减速器设计说明书

主减速器设计说明书

摘要汽车主减速器是汽车传动中的最重要的部件之一。

它能够将万向传动装置产来的发动机转矩传给驱动车轮,以实现降速增扭。

本次设计的是有关十米高一级客车后桥主减速器设计总成。

并要使其具有通过性。

本次设计的内容包括有:方案选择,结构的优化与改进。

齿轮与齿轮轴的设计与校核,以及轴承的选用与校核。

并且在设计过程中,描述了主减速器的组成和差速器的差速原理和差速过程。

方案确定主要依据原始设计参数,对比同类型的减速器及差速器,确定此轮的传动比,并对其中重要的齿轮进行齿面接触和齿轮弯曲疲劳强度的校核。

而对轴的设计过程中着重齿轮的布置,并对其受最大载荷的危险截面进行强度校核,轴承的选用力求结构简单且满足要求。

主减速器及差速器对提高汽车行驶平稳性和其通过性有着独特的作用,是汽车设计的重点之一。

关键词:主减速器;差速器;转速;行星齿轮;传动比AbstractAutomobil reduction final drive is one of the best impossible parts in automobile gearing. It can chang speed and driving tuist within a big scope .The problem of this design is ten meters passager car reduction final unit ,it’ s properlyin common use . The design of scheme, the better design and improvement of structure ,the design and calibration of gear and gear shiftes , and the select of bearings , and also the design explain the construction of differential action .The ting of the scheme desierment main deside. The drive ratio of gear , according to orginal design parameter and constrasting the same type reduction final drive ang differential assay . It realize planet gear in the design of structure . It put to use alteration better gears transmission in the design of gear , and compare the root contact tired strength of some important gears and the face twirl tired strength . It eraphaize pay attention to the place of gears. Compare the strength of the biggest load dangraes section. It require structure simple and accord with demand in select of bearings .Key words : Reduction final , Differential , Rotational speed ,Plantet gear , Drive ratio目录摘要 (I)Abstract (II)目录 (III)第1章绪论 (1)第2章主减速器的结构形式 (2)2.1主减速器的齿轮类型 (2)2.2主减速器的减速形式 (2)2.3主减速器主、从动锥齿轮的支承方案 (2)2.3.1主动锥齿轮的支承 (2)2.3.2从动锥齿轮的支承 (3)2.3.3主减速器的轴承预紧及齿轮啮合调整 (4)第3章主减速器基本参数选择与计算载荷的确定 (5)3.1主减速器齿轮计算载荷的确定 (5)3.1.1按发动机最大转矩和最大抵挡传动比确定从动锥齿轮的计算转矩Tce .. 5T (5)3.1.2按驱动轮打滑转矩确定从动锥齿轮的计算转矩cs3.1.3按汽车日常行驶平均转矩确定从动锥齿轮的计算转矩T (6)Cf3.2锥齿轮主要参数的选择 (6)3.2.1主、从动锥齿轮齿数Z1和Z2 (6)3.2.2从动锥齿轮大端分度圆直径D2和端面模数m s (7)3.2.3主、从动锥齿轮齿面宽b1和b2 (7)3.2.4双曲面齿轮副偏移距E (8)3.2.5中点螺旋角 (8)3.2.6螺旋方向 (9)3.2.7法向压力角α (10)第4章主减速器锥齿轮的几何尺寸计算 (11)4.1锥齿轮轮齿形状的选择 (11)4.2锥齿轮的几何尺寸计算 (11)第5章主减速器锥齿轮的强度计算 (14)5.1单位齿长圆周力 (14)5.2轮齿弯曲强度 (14)5.3轮齿接触强度 (16)第6章主减速器锥齿轮轴承的载荷计算 (18)6.1锥齿轮齿面上的作用力 (18)6.1.1齿宽中点处的圆周力 (18)6.1.2锥齿轮的轴向力和径向力 (18)6.2锥齿轮轴承的载荷计算 (19)6.3锥齿轮轴承的寿命计算 (20)6.3.1 A轴承的寿命计算 (20)6.3.2 B轴承的寿命计算 (20)6.3.3 C、D轴承的寿命计算 (21)第7章齿轮材料 (22)第8章对称式圆锥行星齿轮差速器设计 (23)8.1差速器齿轮主要参数选择 (23)8.1.1行星齿轮数n (23)8.1.2行星齿轮球面半径R b (23)8.1.3行星齿轮和半轴齿轮齿数Z1和Z2 (23)8.1.4行星齿轮和半轴齿轮节锥角、模数及半轴齿轮节圆直径的初步确定 (24)8.1.5压力角α (24)8.1.6行星齿轮轴直径d及支承长度L (24)8.2差速器轮齿的几何计算 (25)8.3差速器齿轮强度计算 (26)第9章驱动桥半轴设计 (26)9.1全浮式半轴计算 (27)9.2半轴的结构设计 (27)9.2.1全浮式半轴杆部直径设计 (27)9.2.2半轴杆部设计其他要求 (27)9.3半轴的强度校核 (28)9.3.1半轴的扭转应力 (28)9.3.2半轴花键的剪切应力 (28)9.3.3半轴花键的挤压应力 (29)结论 (30)致谢 (31)参考文献 (32)第1章绪论驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理的分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直立、纵向力和横向力。

二级行星齿轮课程设计说明书

二级行星齿轮课程设计说明书

目录1.课程设计任务书 (2)2.电动机选择 (3)3.传动比及其分配 (3)4.前减速器设计 (3)5.行星齿轮减速器齿轮设计 (7)6.行星齿轮传动轴及键的设计 (12)7.轴承寿命计算 (21)8.齿轮加工工艺 (23)9.箱体结构尺寸 (23)10.附录1 (25)11.参考文献 (28)12.感想 (29)课程设计说明书1.课程设计任务书设计题目:NGW(2K-H负号机构)行星减速装置设计一.设计要求与安排1、学习行星传动运动学原理,掌握2K-H机构的传动比计算、受力分析、传动件浮动原理。

2、参考有关书籍、刊物、手册、图册了解2K-H行星传动装置(减速器)的基本结构及技术组成的关键点。

3、按所给有关设计参数进行该传动装置(减速器)的设计。

1)、齿数的选择:传动比及装配条件、同心条件、邻界条件的满足。

2)、了解各构件的作用力及力矩的分析,进行“浮动”机构的选择。

3)、参考设计手册根据齿轮、轴、轴承的设计要点进行有关设计计算。

4)、按有关制图标准,绘制完成教师指定的行星传动装置(减速器)总图、部件图、零件图。

书写、整理完成设计计算说明书。

4、对于所设计的典型零件结合所学有关加工工艺知识编写该零件加工工艺5、行星传动装置(减速器)总图选择合适比例采用A0号图面绘制,主要技术参数(特征)、技术要求应表达清楚,在指导教师讲授、指导下标注、完成总图所需的尺寸、明细及图纸的编号等各类要求。

按零件图要求完成零图纸的绘制,提出技术要求,上述图纸总量不应少于:A0+ A01/2。

二.设计条件1.机器功用减速装置用于绞车卷筒传动2.使用寿命预期寿命10 年,平均每天工作12~16小时2课程设计说明书三.原始数据1.电机功率:150kw2.输入转速:n=960r.p.m 输出转速:43—45r.p.m3.前减速器传动比 5.62i 4.2K-H行星传动输出转速43—45r.p.m2.电动机的选择电机功率150kw,输入转速为960r.p.m,查表选用Y200L—4型。

机械设计减速器说明书

机械设计减速器说明书

减速器设计说明书 系 别: 专业班级: 姓 名: 学 号: 指导教师: 职 称: 目 录 一设计任务书 ................................................................................................................................... 1 1.1设计题目............................................................................................................................. 1 1.2设计步骤............................................................................................................................. 1 二传动装置总体设计方案 ............................................................................................................... 1 2.1传动方案............................................................................................................................. 1 2.2该方案的优缺点 ................................................................................................................. 1 三选择电动机 ................................................................................................................................... 2 3.1电动机类型的选择 ............................................................................................................. 2 3.2确定传动装置的效率 ......................................................................................................... 2 3.3选择电动机容量 ................................................................................................................. 2 3.4确定传动装置的总传动比和分配传动比 ......................................................................... 3 四计算传动装置运动学和动力学参数 ........................................................................................... 4 4.1电动机输出参数 ................................................................................................................. 4 4.2高速轴的参数 ..................................................................................................................... 4 4.3低速轴的参数 ..................................................................................................................... 4 4.4工作机的参数 ..................................................................................................................... 4 五链传动设计计算 ........................................................................................................................... 5 六减速器齿轮传动设计计算 ........................................................................................................... 6 6.1选定齿轮类型、精度等级、材料及齿数 ......................................................................... 6 6.2按齿轮弯曲疲劳强度设计 ................................................................................................. 6 6.3确定传动尺寸 ..................................................................................................................... 7 6.4校核齿面接触疲劳强度设计 ............................................................................................. 8 6.5齿轮参数和几何尺寸总结 ................................................................................................. 8 七轴的设计....................................................................................................................................... 9 7.1高速轴设计计算 ................................................................................................................. 9 7.2低速轴设计计算 ............................................................................................................... 14 八滚动轴承寿命校核 ..................................................................................................................... 19 8.1高速轴上的轴承校核 ....................................................................................................... 19 8.2低速轴上的轴承校核 ....................................................................................................... 20 九键联接设计计算 ......................................................................................................................... 21 9.1高速轴与联轴器键连接校核 ........................................................................................... 21 9.2低速轴与大齿轮键连接校核 ........................................................................................... 22 9.3低速轴与链轮键连接校核 ............................................................................................... 22 十联轴器的选择 ............................................................................................................................. 22 10.1高速轴上联轴器 ............................................................................................................. 22 十一减速器的密封与润滑 ............................................................................................................. 23 11.1减速器的密封 ................................................................................................................. 23 11.2齿轮的润滑..................................................................................................................... 23 11.3轴承的润滑..................................................................................................................... 23 十二减速器附件 ............................................................................................................................. 23 12.1油面指示器..................................................................................................................... 23 12.2通气器 ............................................................................................................................ 24

齿轮减速箱说明书

齿轮减速箱说明书

机械设计课程设计A说明书设计题目铸钢车间型砂传送带传动装置设计汽车工程院(系)汽车工程专业班级 0611062 学号 061106212设计人夏元峰指导老师刘平完成日期 2008 年 1 月 24 日上海工程技术大学设计任务要求:1.题目:铸钢车间型砂传送带传动装置设计。

2.任务:1)减速箱装配图(A0)…………………………………1张2)低速轴工作图(A3)…………………………………1张3)大齿轮工作图(A3)…………………………………1张4)设计计算说明书………………………………………1份3.时间:2009年1月5日至2009年2月13日4.传动方案:其中:1--电动机2--V带传动3--展开式两圆级柱齿轮减速器4--联轴器5--底座6--传送带鼓轮7--传送带5.设计参数:1)传送速度V=0.71/s2)鼓轮直径D=340mm3)鼓轮轴所需扭矩T=950N.m6.其他条件:工作环境通风不良、单向运转、2班制工作、使用期限为8年、小批量生产、底座(为传动装置的独立底座)用型钢焊接。

传送速度:V=0.71m/s鼓轮直径:D=340mm鼓轮轴所需扭矩:T=950N.m传动方案:展开式而二级圆柱斜齿轮传动一、传动装置总体设计方案:1.1传动方案介绍其中:1--电动机2--V带传动3--展开式两圆级柱齿轮减速器4--联轴器5--底座6--传送带鼓轮7--传送带传动装置平面布置简图本装置使用V带传动和两级齿轮传动减速,V带传动设置在高速级,齿轮传动设置在低速级。

将V带传动设置在高速级是因为:a)主要由于V带传动能力小,把它布置在高速级,速度快,转矩小,有利于结构紧凑;b)V带在高速级有利于发挥其传动平稳,吸震缓冲,减少噪声的作用;c)V带在高速级更能起到过载保护的作用;d)V带结构工艺简单,精度容易保证。

选用两级齿轮传动减速是因为根据工作要求,采用双级闭式软齿面斜齿圆柱齿轮转动。

双级传动工艺简单,效率高,精度容易保证。

行星齿轮传动的设计计算

行星齿轮传动的设计计算

眠击 一 兰



由减 速机 的基本 参数 可得 :
输 扭 性9 9 = 4 =・N 入 矩 9 9 47 ’ 5 斋 46 m 4 5
即 Ma4 .6N・ = 47 m
对于行星传动中的轴承 ,有些位置在理论上 由 于不受力 、只受扭矩而寿命很长 ,选择时只要满足
普遍 式
b + : b 0 … … … … … … … … … … () 8
加零 件 也很 多 ,结 构又 较 复杂 ,I MT机 构在 行 星轮 内设 置 介轮 ,使齿 轮 和介 轮之 间形成 油膜 ,结 构简 单 ,很值 得参 考 ,但油 膜 间隙加 工工 艺要求 较高 。 对 于 油 膜 机 构 的作 用 原 理 ,本 文 不做 详 细介 绍 ,在应 用 中 ,根 据设 计统计 结 果表 明 ,行 星轮 与 中间浮 环 的间隙取 行星 轴直 径 的 01%~ . %,当 . 5 04 5 速度 较高 、直 径较 小 、负荷较 大 时取 大值 ,反之 取
则 该减 速机 的输 出扭矩 为 2 174N・I 4 . 1。 0 T
力相对于太阳轮都不是很大 ,但由于行星轮体积较 小 ,受空 间 的限制无 法选 择较 大 的轴承 ,所 以此轴
承一 般是 行星 减速 机 中寿命较 短 的 ,需 要认 真计算
校核
3 行 星齿轮载荷均衡化机 构
在 多行 星齿 轮传 动 中 ,行 星齿 轮 的均 衡化 是个
CFHI
很 重要 的问题 ,解决不 好 ,将产 生 载荷集 中 ,或运
5 结 语
以 上 是 对 行 星 齿 轮 传 动 中基 本 参 数 的设 计 计
算 ,这是 后面 进行行 星 减速机 详 细设计 的基 础和关

机械设计减速器设计说明文书

机械设计减速器设计说明文书

•幷O冷•孑大摩
东海科学技术学院
课程设计成果说明书
题目:机械设计减速器设计说明书院系:机电工程系
专业:机械制造及其自动化
班级:C15机械一班
指导教师:
_________________________________________________
东海科学技术学院教学科研部
海洋大学东海科学技术学院课程设计成绩考核表
2017 —2018 学年第一学期
班级专业
学生(学
号)题目课程设计
名称
指导教师评语
指导教师签名:
年月日
答辩评语及成绩评定
答辩小组教师签名:
年月日
设计任务书
一、初始数据
设计一级直齿圆柱齿轮减速器,初始数据T = 1500Nm ,n = 33r/m,设计年限(寿命):10 年,每天工作班制(8 小时/班):3 班制,每年工作天数:250 天,三相交流电源,电压380/220V 。

二. 设计步骤
1. 传动装置总体设计方案
2. 电动机的选择
3. 确定传动装置的总传动比和分配传动比
4. 计算传动装置的运动和动力参数
5. 设计V 带和带轮
6. 齿轮的设计
7. 滚动轴承和传动轴的设计
8. 键联接设计
9. 箱体结构设计
10. 润滑密封设计
11. 联轴器设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3Z型行星齿轮减速器设计学生姓名:江威班级:0781051指导老师:吴晖摘要:这次毕业设计的内容是根据课题做一个行星齿轮减速器。

通过比较,选用3Z(II)型行星齿轮减速器。

本次设计要完成的主要内容:1.确定传动方案传动方案的确定包括传动比的确定和传动类型的确定。

2.设计计算每级传动结构的设计计算,大致包括:传动比的分配、传动系统运动学和动力学计算、传动零件的设计、轴的设计计算与校核、轴的选择与计算、键连接的选择与计算、箱体的设计、润滑与密封的选择和传动装置的附件说明等。

3.装配图以及各零件图的设计。

通过本次设计,可知行星齿轮减速器有着体积小、质量小、结构紧凑和传动效率高等特点,但由于行星齿轮减速器传动比大,力矩就比其它减速器结构小,行星齿轮减速器自锁角大止退性差而不适合启动用。

关键词:行星齿轮减速器设计计算传动方案指导老师签名:The design of 3Z planetary gear reducerStudent name:Jiang Wei Class:0781051Supervisor:Wu HuiAbstract: The content is based on graduate design to be a subject of planetary gear reducer.By comparing,3(II)Planetary gear reducer is selected .The design of the main elements to be completed:1. Determine the transmission scheme Transmission scheme for the transmissionratio, including the identification and determination of transmission type.2. Design calculations Transmission structure of each level of design andcalculation, generally include: transmission ratio of the distribution, kinematics anddynamics calculation of transmission, transmission parts of the design, calculationand check of the design axis, the axis of the selection and calculation, andcalculation of key connectivity options , cabinet design, lubrication and sealingselection and transmission of attachment descriptions.3. Assembly drawing and the design of the part drawing.Through this design, known planetary gear reducer has a compact, small, compact andfeature transmission efficiency, but because of planetary gear reducer transmission ratio,torque to gear structure than other small, self-locking planetary gear reducer Great angleand poor only retreat is not suitable for starting.Keywords:Planetary Gear Reducer Design calculations TransmissionschemeSignature of Supervisor:目录摘要 (I)ABSTRACT (II)1 绪论1.1 课题研究的背景和意义 (1)1.2 行星齿轮减速器研究现状及发展动态 (1)1.3 本文研究的主要内容 (4)2 3Z(II)型行星齿轮减速器装置设计2.1 已知条件 (5)2.2 设计计算 (5)2.2.1选取行星齿轮传动的传动类型和传动简图 (5)2.2.2 配齿计算 (5)2.2.3 初步计算齿轮的主要参数 (6)2.2.4 啮合参数的计算 (7)2.2.5 几何尺寸计算 (9)2.2.6 装配条件的验算 (12)2.2.7 传动效率的计算 (13)2.2.8 结构设计 (14)2.2.9 齿轮强度验算 (22)3 总结 (29)参考文献 (30)致谢 (31)附录 (32)1.绪论1.1课题研究的背景和意义“十一五”期间我国将按照国家储备与企业储备相结合,以国家储备为主的方针,统一规划,分批建设国家战略石油储备基地。

为了快速建立起我国独立的石油储备基地,根据我国国情石油储备形式以大型工业油罐为主。

在使用大型油罐进行原油储备的过程中,遇到最关键的问题就是油泥的问题,储运重未经提炼制的原油重平均约含2.2%的油泥,即对一个10万立方的储罐来说,灌满原油后其中约有2200立方的油泥成点在油罐底部。

如不及时清除,再次加入原油是油泥将继续累积在一起,形成硬块,为油罐的检查及清洗增加困难。

而且数量如此巨大的油泥存在于油罐底部,不经减小油罐的有效储存空间,降低储存周期寿命,造成进出阀的阻塞,而且较厚的油泥层使浮顶灌的浮顶不能不下降到底而引起浮顶倾斜,对储油安全造成威胁。

因此大型原油储罐在建立时就必须增设油泥防止和消除系统,以增加油罐的储油效率,提高储油安全性,减小清灌难度。

大型原油储罐灌底油泥的防止和消除方法主要是在灌内增加油泥的混合搅拌系统,使油泥破碎细化,便于通过管线输出,我们选用了旋转喷射搅拌器。

但是,其喷嘴口径相对于大型储罐的直径而言是很小的,喷嘴固定是射流束的搅拌范围是有限的,于是,在旋转喷射器入口处设置轴流涡轮,考循环油泵加压后的原油流动带动轴流涡轮高速旋转,旋转的涡轮通过主轴带动结构上完全隔绝的传动箱内一系列的减速传动使喷嘴缓慢旋转,而且通过传动箱内有关参数的选择来调节喷嘴旋转的速度,是从喷嘴喷出的射流也随之缓慢旋转,射流可打击到油罐底周向任一位置的油泥,实现彻底清除油泥,不留死角的功能。

可见,旋转喷射器中减速箱是工业油罐底油泥旋转喷射混合系统中重要的一部分。

高速旋转的涡轮带动喷水嘴低速的转动,中间需要一个传动比很大的减速器连接。

1.2行星齿轮减速器研究现状及发展动态行星齿轮传动与普通定州齿轮传动相比较,具有质量小,体积小,传动比大,承载能力大以及传动平稳和传动效率高等优点,这些已经被我过越来越多的机械工程技术人员所了解和重视。

由于在各种类型的行星齿轮传动种均有效地利用了功率分流性和输入,输出地同轴性以及合理的采用了内啮合,才使得其具有了上述的许多独特的优点。

行星齿轮传动不仅适用于高速,大功率而且可用于低速,大转矩的机械传动装置上。

它可以用作减速,增速和变速传动,运动的合成和分解,以及其特殊的应用中:这些功用对于现代机械传动发展有着重要意义。

因此,行星齿轮传动在起重运输,工程机械,冶金矿山,石油化工,建筑机械,轻工纺织,医疗器械,仪器仪表,汽车,船舶,兵和航空航天等工业部门获得了广泛的应用。

由于齿轮,轴,轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用,在现代机械中应用极为广泛。

20世纪末的20多年,世界齿轮技术有了很大的发展,铲平发展的总趋势是小型化,高速化,低噪声,高可靠度。

技术发展中最引人注目的是应吃面技术,功率分支技术和模块化设计技术。

硬面齿轮技术到20世纪80年代在国外日趋成熟。

采用优质合金钢锻件神探淬火磨齿的硬齿面齿轮,精度不低于IS01328-1975的6级,综合承载能力为中硬齿面调质齿轮的4倍,为软齿面齿轮的5-6倍。

一个中等规格的硬齿面齿轮减速器的重量仅为软吃面齿轮减速器的1/3左右。

功率分支技术主要指行星及大功率齿轮箱的功率双份及多分支装置,如中心传动的水泥磨主减速器,其核心技术是均载。

模块化设计技术队通用和标准减速器旨在追求高性能和满足用户多样化大覆盖面需求的同时,尽量减少零部件及毛坯的品种规格,以便于组织生产,使零部件产生形成批量,降低成本,取得规模效益。

其他技术的发展还表现在理论研究(如强度计算,修形技术,现代设计方法的应用,新齿形,新结构的应用等)更完善,更接近实际;普通采用各种优质合金钢锻件;材料和热处理质量控制水平的提高;结构设计更合理;加工精度普遍提高到ISO的4-6级;轴承质量和寿命的提高;润滑油质量的提高;加工装备和检测手段的提高等方面。

这些技术的应用和日趋成熟,使齿轮产品的性能价格比大大提高,产品越来越完美。

如非常粗略地估计一下,输出100N m转矩的齿轮装置,如果在1950年时重10kg,到80年代就可做到仅为1kg。

20世纪70年代至90年代初,我国的高速齿轮技术经历了测绘仿制,技术引进到独立设计制造3个阶段。

现在我国的设计制造能力基本可满足国内生产需要,设计制造的最高参数:最大功率44MW,最高线速度168m/s,最高转速67000r/min。

我国的低速重载齿轮技术,特别是硬齿面齿轮技术也经历了测绘仿制等阶段,从无到有逐步发展起来。

除了摸索掌握制造技术外,在20世纪80年代末至90年代初步推广硬齿面技术过程中,我们还做了解决“断轴”,“选用”等一系列有意义的工作。

在20世纪70-80年代一直认为是国内重齿轮两大难题的“水泥磨减速器”和“轧钢机械减速器”可以说已完全解决。

20世界80年代至90年代初,我国相继制定了一批减速器标准,如ZBJ19004—88《圆柱齿轮减速器》,ZBJ19026—90《运输机械用减速器》和YB/T050—93《冶金设备用YNK齿轮减速器》等几个硬齿面减速器标准,我国有自己只是产权的标准,如YB/T079—95《三环减速器》。

按这些标准生产的许多产品的主要技术指标均可达到或接近国外同类产品的水平,其中YNK减速器较完整地吸取了德国FLENDER公司同类产品的特点,并结合国情做了血多改进与创新。

世界上一些工业发达国家,如日本,德国,英国,美国和俄罗斯等,对行星齿轮传动的应用,生产和研究都十分重视,在结构优化,传动性能,传动效率,转矩和速度等方面均处于领先地位,并出现一些新型的行星齿轮传动技术,如封闭行星齿轮传动,行星齿轮变速传动和微型行星齿轮传动等早已在现代化的机械传动设备中获得了成功的应用。

相关文档
最新文档