大地水准面、参考椭球体、基准面、地图投影之关系

大地水准面、参考椭球体、基准面、地图投影之关系
大地水准面、参考椭球体、基准面、地图投影之关系

1 地图投影:

大地水准面:指平均海平面通过大陆延伸勾画出的一个连续的封闭曲面。大地水准面包围的球体称为大地球体。从大地水准面起算的陆地高度,称为绝对高度或海拔。

地球椭球体(拟地球椭球体、似地球椭球体):近似的代表地球大小和形状的数学曲面,一般采用旋转椭球。其大小和形状常用长半径a 和扁率α表示。1980年中国国家大地坐标系采用国际大地测量学与地球物理学联合会第十六届大会推荐的1975年椭球参考值:a=6378140,α=1∶298257。

参考椭球体:形状、大小一定,且经过定位,定向的地球椭球体称为参考椭球。是与某个区域如一个国家大地水准面最为密和的椭球面。

参考椭球面是测量计算的基准面,法线是测量计算的基准线。我国的大地原点,即椭球定位做最佳拟合的参考点位于陕西省泾阳县永乐镇。

大地基准面:用于尽可能与大地水准面密合的一个椭球曲面,是人为确定的。椭球面和地球肯定不是完全贴合的,因而,即使用同一个椭

球面,不同的地区由于关心的位置不同,需要最大限度的贴合自己的那一部分,因而大地基准面就会不同。椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky椭球体,但它们的大地基准面显然是不同的。

每个国家或地区均有各自的基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的1975地球椭球体(IAG75)建立了我国新的大地坐标系--西安80坐标系,目前大地测量基本上仍以北京54坐标系作为参照,北京54与西安80坐标之间的转换可查阅国家测绘局公布的对照表。WGS1984基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心,目前GPS测量数据多以WGS1984为基准。因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。

地图投影:

将地球球面坐标转化为平面坐标的过程便是投影过程;投影所需要的必要条件是:

第一、任何一种投影都必须基于一个椭球(地球椭球体);

第二、将球面坐标转换为平面坐标的过程(投影算法)。

简单的说投影坐标系是地理坐标系+投影过程。

参考椭球体表面

地理(大地)坐标系

地球上任意一点通常用经度和纬度来决定。经线和纬线是地球表面上两组正交(相交为90度)的曲线,这两组正交的曲线构成的坐标,称为地理坐标系。

(三)GIS中常用的地图投影

1.高斯--克吕格投影(Gauss-Kruger),横轴等角切椭圆柱投影。

又称横轴墨卡托投影(TM),我国基本比例尺地形图1:5000,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万都采用该投影。

2. 墨卡托投影(M,Mecator):等角正切圆柱投影,航海图

3. 通用墨卡托投影(UTM):横轴等角割圆柱投影,改进的高斯投影

4. 兰勃特投影(Lambert):等角正轴割圆锥投影,1:100万和省图

5. 阿尔伯斯投影(Albers):正轴等面积割圆锥投影,省图

中国常用的地图投影

中国常用的地图投影举例 第三节中国常用的地图投影举例 科学事业的发展同社会制度和经济基础是密切相联系的,旧中国是一个半封建半殖民地的国家,测绘事业也濒于停顿,编制出版的少量地图质量也很差,更少考虑到采用自己设计及计算的地图投影。在解放前出版的几种地图中曾采用过的几种地图投影,也多半是因循国外陈旧的地图投影,很少自行设计新投影。解放后,在党和政府的领导下,非常重视测绘科学事业的发展,我国测绘工作者不仅在地图投影的理论上有了研究,同时结合我国具体情况,设计了一些适合于我国情况的新的地图投影。下面介绍我国出版的地图中常用的一些地图投影。 世界地图的投影 等差分纬线多圆锥投影 正切差分纬线多圆锥投影(1976年方案) 任意伪圆柱投影:a=0.87740,6=0.85 当φ=65°时P=1.20 正轴等角割圆柱投影 半球地图的投影 东半球图 横轴等面积方位投影φ0=0°,λ0=+70° 横轴等角方位投影φ0=0°,λ0=+70° 西半球图 横轴等面积方位投影φ0=0°,λ0=-110° 横轴等角方位投影φ0=0°,λ0=-110° 南、北半球地图 正轴等距离方位投影 正轴等角方位投影

正轴等面积方位投影 亚洲地图的投影斜轴等面积方位投影φ0=+40°,λ0=+90° φ0=+40°,λ0=+90° 彭纳投影标准纬线φ0=+40°,中央经线λ0=+80°标准纬线φ0=+40°,中央经线λ0=+80° 欧洲地图的投影斜轴等面积方位投影φ0=52°30′,λ0=20° 正轴等角圆锥投影φ1=40°30′,λ0=65°30′ 北美洲地图的投影斜轴等面积方位投影φ0=+45°,λ0=-100° 彭纳投影 南美洲地图的投影斜轴等面积方位投影φ0=0°,λ0=+20° 桑逊投影λ0=+20° 澳洲地图的投影斜轴等面积方位投影φ0=-25°,λ0=+135° 正轴等角圆锥投影φ1=34°30′,φ2=-15°20′ 拉丁美洲地图的投影斜轴等面积方位投影φ0=-10°,λ0=-60° 中国地图的投影中国全图 斜轴等面积方位投影

地图投影的基本问题

3.地图投影的基本问题 3.1地图投影的概念 在数学中,投影(Project)的含义是指建立两个点集间一一对应的映射关系。同样,在地图学中,地图投影就是指建立地球表面上的点与投影平面上点之间的一一对应关系。地图投影的基本问题就是利用一定的数学法则把地球表面上的经纬线网表示到平面上。凡是地理信息系统就必然要考虑到地图投影,地图投影的使用保证了空间信息在地域上的联系和完整性,在各类地理信息系统的建立过程中,选择适当的地图投影系统是首先要考虑的问题。由于地球椭球体表面是曲面,而地图通常是要绘制在平面图纸上,因此制图时首先要把曲面展为平面,然而球面是个不可展的曲面,即把它直接展为平面时,不可能不发生破裂或褶皱。若用这种具有破裂或褶皱的平面绘制地图,显然是不实际的,所以必须采用特殊的方法将曲面展开,使其成为没有破裂或褶皱的平面。 3.2地图投影的变形 3.2.1变形的种类 地图投影的方法很多,用不同的投影方法得到的经纬线网形式不同。用地图投影的方法将球面展为平面,虽然可以保持图形的完整和连续,但它们与球面上的经纬线网形状并不完全相似。这表明投影之后,地图上的经纬线网发生了变形,因而根据地理坐标展绘在地图上的各种地面事物,也必然随之发生变形。这种变形使地面事物的几何特性(长度、方向、面积)受到破坏。把地图上的经纬线网与地球仪上的经纬线网进行比较,可以发现变形表现在长度、面积和角度三个方面,分别用长度比、面积比的变化显示投影中长度变形和面积变形。如果长度变形或面积变形为零,则没有长度变形或没有面积变形。角度变形即某一角度投影后角值与它在地球表面上固有角值之差。 1)长度变形 即地图上的经纬线长度与地球仪上的经纬线长度特点并不完全相同,地图上的经纬线长度并非都是按照同一比例缩小的,这表明地图上具有长度变形。 在地球仪上经纬线的长度具有下列特点:第一,纬线长度不等,其中赤道最长,纬度越高,纬线越短,极地的纬线长度为零;第二,在同一条纬线上,经差相同的纬线弧长相等;第三,所有的经线长度都相等。长度变形的情况因投影而异。在同一投影上,长度变形不仅随地点而改变,在同一点上还因方向不同而不同。 2)面积变形 即由于地图上经纬线网格面积与地球仪经纬线网格面积的特点不同,在地图上经纬线网格面积不是按照同一比例缩小的,这表明地图上具有面积变形。 在地球仪上经纬线网格的面积具有下列特点:第一,在同一纬度带内,经差相同的网络面积相等。第二,在同一经度带内,纬线越高,网络面积越小。然而地图上却并非完全如此。如在图4-9-a上,同一纬度带内,纬差相等的网格面积相等,这些面积不是按照同一比例缩

几种常见地图投影各自的特点及其分带方法

高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。 一、只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM 投影”、“兰勃特等角投影” 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种" 等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal

第四节 圆锥投影、多圆锥投影、伪圆锥投影

第四节圆锥投影、多圆锥投影、伪圆锥投影 一、圆锥投影 (一)圆锥投影构成的一般公式 圆锥投影是假定以圆锥面作为投影面,使圆锥面与地球相切或相割,将球面上的经纬线投影到圆锥面上,然后把圆锥面沿一条母线剪开展为平面而成。当圆锥面与地球相切时,称为切圆锥投影;当圆锥面与地球相割时,称为割圆锥投影。 按圆锥与地球相对位置的不同,也有正轴、横轴和斜轴圆锥投影。但横轴和斜轴圆锥投影实际上很少应用,所以凡在地图上注明是圆锥投影的,一般都是正轴圆锥投影。 图2-39是正轴切圆锥投影示意图,视点在地球中心,纬线投影在圆锥面上仍为圆,不同的纬线投影为不同的圆,这些圆都互相平行,经线投影为相交于圆锥顶点的一束直线。如果将圆锥沿一条母线剪开展为平面,则成扇形,其顶角小于360°,在平面上纬线不再是圆,而是以圆锥顶点为圆心的同心圆弧,经线成为由圆锥顶点向外放射的直线束,经线间的夹角与相应的经度差成正比。 设球面上两条经线间的夹角为λ(图2-40),其投影在平面上为δ,δ与λ成正比,即δ=Cλ(C为常数)。纬线投影为同心圆弧,设其半径为ρ,它随纬度的变化而变化,即ρ是纬度j 的函数,ρ=f(j )。所以圆锥投影的平面极坐标一般公式为: 如以圆锥顶点S’为原点,中央经线为X轴,通过S’点垂直于X轴的直线为Y轴,则圆锥投影的直角坐标公式为: x=-r cosd y=r sind 通常在绘制圆锥投影时,以制图区域最南边的纬j S与中央经线的交点为坐标原点,则其直角坐标公式为:

x=r S-r cosd y=r sind 式中r S为投影区域最南边纬线j S的投影半径。 根据(2-22)式可知,圆锥投影需要决定ρ的函数形式,由于P的函数形式不同,圆锥投影有很多种。c称为圆锥系数(圆锥常数),它与圆锥的切、割位置等条件有关,对于不同的圆锥投影,它是不同的。但对于某一个具体的圆锥投影,C值是固定的。总的来说,C值小于1,大于0,即0<c<1。当c=1时为方位投影,c=0时为圆柱投影,所以可以说方位投影和圆柱投影都是圆锥投影的特例。 (二)圆锥投影的变形分布规律 圆锥投影的纬线是同心圆弧,经线是同心圆弧的半径。经纬线是直交的,所以经纬线的长度比就是最大、最小长度比。 由图2-41可以看出,球面上经线微分弧长AB=Rdj ,纬线微分弧长 AD=rdl =Rcosj dl ; 在投影平面上,经线微分线段A’B’=-dρ(dρ带负号,是因为变量A’B’与动径SA’的方向相反),纬线微分线段A’D’=ρdδ。根据长度比定义,可得 由上面几式可以看出,圆锥投影的各种变形都是纬度j 的函数,与经度λ无关。也就是说,圆锥投影的各种变形是随纬度的变化而变化,在同一条纬线上各种变形的数值各自相等,因此,等变形线与纬线平行,呈同心圆弧状分布。在切圆锥投影上,相切的纬线是一条没有变形的线,称为标准纬线,从标准纬线向南、北方向变形逐渐增大(图2-42)。

地图投影的选择、设计和变换

一、地图的用途和性质 这是最重要的因素。一旦确定,便可确定投影的性质。 等积投影:适用于经济、政治和自然地图 等角投影:适用于航行、军事和地形图 等距离投影:普通地图等各种变形具有同等重要意义的地图 任意投影:教学地图和各种科学一览图。 特种地图对投影有特殊的要求,如球心投影,等距离方位投影,时区图等等。 二、制图区域的形状和地理位置 可以确定投影的类型 圆形地区:方位投影 中纬度东西延伸地区:圆锥投影 赤道附近或沿赤道两侧东西延伸地区:正轴圆柱投影 南北延伸地区:横轴圆柱投影或多圆锥投影 斜向延伸地区:斜轴圆柱或圆锥投影 在小区域内,各种投影的影响均不大,此时可考虑用计算方便,格网简单的投影。 三、制图区域的大小 其影响表现在由于面积的增大,使投影的选择更为复杂化,要考虑的因素更多。 如大比例尺地图就不需要更多考虑区域的形状和地理位置。 实际工作中,凡面积不超过5-6百平方公里的区域,选择投影的变形为0.5%即可;面积在3.5-4.0千平方公里的区域,长度变形在2-3%即可;若是更大的区域,其长度变形往往超过3%。对于中等或不大的区域,投影选择一般只考虑几何因素,不必考虑地图的用途和性质。 ? 1.世界地图的投影 世界地图的投影主要考虑要保证全球整体变形不大,根据不同的要求,需要具有等角或等积性质,主要包括:等差分纬线多圆锥投影、正切差分纬线多圆锥投影(1976年方案)、任意伪圆柱投影、正轴等角割圆柱投影。 2.半球地图的投影 东、西半球有横轴等面积方位投影、横轴等角方位投影;南、北半球有正轴等面积方位投影、正轴等角方位投影、正轴等距离方位投影。 3.各大洲地图投影 1)亚洲地图的投影:斜轴等面积方位投影、彭纳投影。 2)欧洲地图的投影:斜轴等面积方位投影、正轴等角圆锥投影。 3)北美洲地图的投影:斜轴等面积方位投影、彭纳投影。 4)南美洲地图的投影:斜轴等面积方位投影、桑逊投影。 5)澳洲地图的投影:斜轴等面积方位投影、正轴等角圆锥投影。 6)拉丁美洲地图的投影:斜轴等面积方位投影。 4.中国各种地图投影 1)中国全国地图投影:斜轴等面积方位投影、斜轴等角方位投影、彭纳投影、伪方位投影、正轴等面积割圆锥投影、正轴等角割圆锥投影。 2)中国分省(区)地图的投影:正轴等角割圆锥投影、正轴等面积割圆锥投影、正轴等角圆柱投影、高斯-克吕格投影(宽带)。 3)中国大比例尺地图的投影:多面体投影(北洋军阀时期)、等角割圆锥投影(兰勃特投影)(解放前)、高斯-克吕格投影(解放以后)。

几种常用地图投影

一:等角正切方位投影(球面极地投影) 概念:以极为投影中心,纬线为同心圆,经线为辐射的 直线,纬距由中心向外扩大。 变形:投影中央部分的长度和面积变形小,向外变形逐渐增 大。 用途:主要用于编绘两极地区,国际1∶100万地形图。 二:等距正割圆锥投影 概念:圆锥体面割于球面两条纬线。 变形:纬线呈同心圆弧,经线呈辐射的直线束。 各经线和两标纬无长度变形,即其它纬线均有 长度变形,在两标纬间角度、长度和面积变形 为负,在两标纬外侧变形为正。离开标纬愈远, 变形的绝对值则愈大。 用途:用于编绘东西方向长,南北方向稍宽地区 的地图,如前苏联全图等。 三:等积正割圆锥投影 概念:满足mn=1条件,即在两标纬间经线长度放 大,纬线等倍缩小,两标纬外情况相反。 变形:在标纬上无变形,两标纬间经线长度变形为正, 纬线长度变形为负;在两标纬外侧情况相反。角度 变形在标纬附近很小,离标纬愈远,变形则愈大。 用途:编绘东西南北近乎等大的地区,以及要求面积 正确的各种自然和社会经济地图。

四:等角正割圆锥投影 概念:满足m=n条件,两标纬间经线长度与纬线长度 同程度的缩小,两标纬外同程度的放大。 变形:在标纬上无变形,两标纬间变形为负,标纬外变 形为正,离标纬愈远,变形绝对值则愈大。 用途:用于要求方向正确的自然地图、风向图、洋流图、 航空图,以及要求形状相似的区域地图;并广泛用于制 作各种比例尺的地形图的数学基础。 如我国在1949年前测制的1∶5万地形图,法国、比利 时、西班牙等国家亦曾用它作地形图数学基础,二次大 战后美国用它编制1∶100万航空图。 五:等角正切圆柱投影——墨卡托投影 概念:圆柱体面切于赤道,按等角条件,将经 纬线投影到圆柱体面上,沿某一母线将圆柱体 面剖开,展成平面而形成的投影。是由荷兰制 图学家墨卡托(生于今比利时)于1569年创拟 的,故又称(墨卡托投影)。 变形:经线为等间距的平行直线,纬线为非等 间距垂直于经线的平行直线。离赤道愈远,纬 线的间距愈大。纬度60°以上变形急剧增大, 极点处为无穷大,面积亦随之增大,且与纬线 长度增大倍数的平方成正比,致使原来只有南 美洲面积1/9的位于高纬度的格陵兰岛,在图 上比南美洲大。 用途:等角航线表现为直线,用于编制海图、印度尼西亚和赤道非洲等赤道附近国家和地区的地图、世界时区图和卫星轨迹图等。

地图投影

世界地图常用地图投影知识大全 在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。 一、世界地图常用投影 1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval on Same Parallel Decrease Away From Central Meridian by Equal Difference) 普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。 等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。 通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。我国绝大部分地区的面积变形在10%以内。中央经线和±44o纬线的交点处没有角度变形,随远离该点变形愈大。全国大部分地区的最大角度变形在10o以内。等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。

人教版地理高二选修7第二章第一节地图和地图投影A卷

人教版地理高二选修7第二章第一节地图和地图投影A卷 姓名:________ 班级:________ 成绩:________ 一、单选题 (共15题;共36分) 1. (2分) GIS中,不同类型的地理空间信息储存在不同的图层上。叠加不同的图层可以分析不同要素间的相互关系。 城市交通图层与城市人口分布图层的叠加,可以()。 A . 为商业网点选址 B . 分析建筑设计的合理性 C . 计算城市水域面积 D . 估算工农业生产总值 【考点】 2. (2分)湖水、长江水、黄河水三种含沙量水体反射光谱曲线图,关于图示信息的叙述,正确的是()。 A . 分析使用的地理信息技术是GIS B . ①②曲线对应的是湖水、黄河水 C . 0.7波长λ/μm的反射率区分度最大 D . 含沙量与反射率呈正相关 【考点】 3. (2分)两颗卫星同时运行,每隔九天可以覆盖地球一遍,说明遥感技术 A . 受地面限制条件少 B . 测量范围小、距离远 C . 手段多,获得信息量大 D . 获得资料速度快、周期短 【考点】 4. (2分)有关遥感技术的叙述,不正确的是()。

A . 遥感的关键装置是传感器 B . 遥感技术的主要环节是目标物→传感器→成果 C . 飞机遥感图像分辨率比卫星对地物的分辨率高 D . 遥感技术能在短时间内获得全面资料,以便及时安全安排防灾、救灾工作 【考点】 5. (2分)下列说法不正确的是否()。 A . GIS技术是地图的延伸 B . RS技术是地图的延伸 C . GPS技术可为用户提供精确的三维坐标 D . GIS技术可分析、处理GPS技术及GPS技术提供的图像和数据 【考点】 6. (2分) GIS是用于空间分析的计算机系统,某中学地理小组将它作于课题研究。据此回答: 华北平原地势平坦开阔,土壤深厚肥沃,夏季高温多雨,适宜冬小麦和玉米轮作。若该结论是通过GIS而得到的,那么这属于下列GIS能解决的哪一类问题() A . 趋势分析 B . 模式分析 C . 与分布、位置有关的基本问题 D . 模拟问题 【考点】 7. (2分)下列关于电子地图的说法,正确的是() A . 制作所有地图都需要电子地图作底图 B . 外出学习或旅行,可以先在电子地图上查找出行路线 C . 电子地图可以完全代替纸质地图 D . 电子地图就是分层设色地形图 【考点】 8. (4分)在遥感技术中,可以根据植物的反射波谱特征判断植物的生长状况。

地图投影的基本理论

第一节地图投影的概念与若干定义 一、地图投影的产生 我们了解地球上的各种信息并加以分析研究,最理想的方法是将庞大的地球缩小,制成地球仪,直接进行观察研究。这样,其上各点的几何关系——距离、方位、各种特性曲线以及面积等可以保持不变。 一个直径30厘米的地球仪,相当于地球的五千万分之一;即使直径1米的地球仪,也只有相当于地球的一千三百万分之一。在这一小的球面上是无法表示庞大地球上的复杂事物。并且,地球仪难于制作,成本高,也不便于量测使用和携带保管。 通过测量的方法获得地形图,这一过程,可以理解为将测图地区按一定比例缩小成一个地形模型,然后将其上的一些特征点(测量控制点、地形点、地物点)用垂直投影的方法投影到图纸(图4-1)。因为测量的可观测范围是个很小的区域,此范围内的地表面可视为平面,所以投影没有变形;但对于较大区域范围,甚至是半球、全球,这种投影就不适合了。 由于地球(或地球仪)面是不可展的曲面,而地图是连续的平面。因此,用地图表示地球的一部分或全部,这就产生了一种不可克服的矛盾——球面与平面的矛盾,如强行将地球表面展成平面,那就如同将桔子皮剥下铺成平面一样,不可避免地要产生不规则的裂口和褶皱,而且其分布又是毫无规律可循。为了解决将不可展球面上的图形变换到一个连续的地图平面上,就诞生了“地图投影”这一学科。 二、地图投影的定义 鉴于球面上任意一点的位置是用地理坐标()表示,而平面上点的位置是用直角坐标(X,Y)或极坐标()表示,因此要想将地球表面上的点转移到平面上去,则必须采用一定的数学方法来确定其地理坐标与平面直角坐标或极坐标之间的关系。这种在球面与平面之间建立点与点之间对应函数关系的数学方法,称为地图投影。 三、地图投影的实质 球面上任一点的位置均是由它的经纬度所确定的,因此实施投影时,是先将球面上一些经纬线的交点展绘在平面上,并将相同经度、纬度的点分别连成经线和纬线,构成经纬网;然后再将球面上的点,按其经纬度转绘在平面上相应位置处。由此可见,地图投影的实质就是将地球椭球体面上的经纬网按照一定的数学法则转移到平面上,建立球面上点()与平面上对应点之间的函数关系。 这是地图投影的一般方程式,当给定不同的具体条件时,就可得到不同种类的投影公式,依据各自公式将一系列的经纬线交点()计算成平面直角坐标系(X,Y),并展绘在平面上,连各点得经纬线得平面表象(图4-2)。经纬网是绘制地图的“基础”,是地图的主要数学要素。 四、地图投影的基本方法 (一)几何透视法 系利用透视关系,将地球表面上的点投影到投影面上的一种投影方法。例如,我们假设地球按比例缩小成一个透明的地球仪般球体,在其球心、球面或球外安置光源,将透明球体上的经纬线、地物和地貌投影到球外的一个平面上,所形成的图形,即为地图。 图4-3即是将地球体面分别投影在平面和圆柱体面上的透视投影示意图。几何透视法只能解决一些简单的变换问题,具有很大的局限性,例如,往往不能将全球投影下来。随着数学分析这一学科的出现,人们就普遍采用数学分析方法来解决地图投影问题了。(二)数学解析法 在球面与投影平面之间建立点与点的函数关系(数学投影公式),已知球面上点位的地理坐标,根据坐标转换公式确定在平面上的对应坐标的一种投影方法。

世界地图常用地图投影知识大全

世界地图常用地图投影知识大全 2009-09-30 13:20 在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等 角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。 一、世界地图常用投影 1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval o nSame Parallel Decrease AwayFrom Central Meridian by E qual Difference) 普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。 等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。 通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。我国绝大部分地区的面积变形在10%以内。中央经线和±44o纬线的交点处没有角度变形,随远离该点变形愈大。全国大部分地区的最大角度变形在10o以内。等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。

坐标系统与地图投影--基础知识

空间参照系统和地图投影 导读:正如上一章所描述的,一个要素要进行定位,必须嵌入到一个空间参照系中,因为GIS所描述是位于地球表面的信息,所以根据地球椭球体建立的地理坐标(经 纬网)可以作为所有要素的参照系统。因为地球是一个不规则的球体,为了能够将 其表面的内容显示在平面的显示器或纸面上,必须进行坐标变换。 本章讲述了地球椭球体参数、常见的投影类型。考虑到目前使用的1:100万以上地 形图都是采用高斯——克吕格投影,本章最后又对该种投影类型和相关的地形图分 幅标准做了简单介绍。 1.地球椭球体基本要素 1.1地球椭球体 1.1.1地球的形状 为了从数学上定义地球,必须建立一个地球表面的几何模型。这个模型由地球的形状决定的。它是一个较为接近地球形状的几何模型,即椭球体,是由一个椭圆绕着其短轴旋转而成。 地球自然表面是一个起伏不平、十分不规则的表面,有高山、丘陵和平原,又有江河湖海。地球表面约有71%的面积为海洋所占用,29%的面积是大陆与岛屿。陆地上最高点与海洋中最深处相差近20公里。这个高低不平的表面无法用数学公式表达,也无法进行运算。所以在量测与制图时,必须找一个规则的曲面来代替地球的自然表面。当海洋静止时,它的自由水面必定与该面上各点的重力方向(铅垂线方向)成正交,我们把这个面叫做水准面。但水准面有无数多个,其中有一个与静止的平均海水面相重合。可以设想这个静止的平均海水面穿过大陆和岛屿形成一个闭合的曲面,这就是大地水准面(图4-1)。 图4-1:大地水准面 大地水准面所包围的形体,叫大地球体。由于地球体内部质量分布的不均匀,引起重力方向的变化,导致处处和重力方向成正交的大地水准面成为一个不规则的,仍然是不能用数学表达的曲面。大地水准面形状虽然十分复杂,但从整体来看,起伏是微小的。它是一个很接近于绕自转轴(短轴)旋转的椭球体。所以在测量和制图中就用旋转椭球来代替大地球体,这个旋转球体通常称地球椭球体,简称椭球体。

浅谈地图投影及其选择与应用

浅谈地图投影及其选择与应用 信息科学技术的进步,为现代地图学带来了全新的发展,数字化技术大大缩短了测绘地图周期,使快速成图变为现实,由4D 产品衍生的复合型地图成果也随之出现,但在地图投影选择、投影参数确定、地图数据叠加等方面凸显问题,从而使地图投影作为地图学的重要组成部分和建立地图的数学基础,再次引起广大科技工作者的重视。笔者就复合型地图以及运用多数据编制较小比例尺区域地图、专题地图、地图集等所涉及的地图投影谈谈自己的一点认识,供大家参考。 ?地图与地图投影概念 一幅现代地图必须是具备严密的数学基础,运用科学的制图综合方法,采用特定的地图符号、注记,表达出地面的三维信息和信息动态的图件。地图由此而产生的特性不同于地面写景图、照片或风景画,它是建立在一定数学基础之上的。 地图投影学正是研究建立地图数学基础的一门学科,即研究如何将地球椭球面(或圆球面)无裂隙、无重叠、平整地转换到平面(或可展曲面)上的理论与方法。因此,地图投影的实质就是建立地球椭球面地理坐标点(φ,λ)和平面直角坐标点(X ,Y )的函数对应关系,其数学表达式为: X =F 1 (φ,λ) Y =F 2 (φ,λ) 这种函数关系式必须是单值、有限而连续的。 众所周知,地球体面是一个不可展的曲面,无论采用何种地图投影法都不可能将地球体表面表示在平面上保持原样,都将产生变形或误差,其变形包括长度变形、面积变形和角度变形。一般情况下,三种变形同时存在,但在特殊情况下,或可保持角度无变形,或可保持面积无变形,或可保持某个特定方向上的长度无变形。相应地我们根据变形性质把投影分为等角投影、等面积投影和任意投影(包括等距离投影)三类,它们之间是相互联系相互影响的,其关系是: ?在等面积投影中,不能保持等角特性。 ?在任意投影中,不能保持等面积和等角特性。 ?在等面积投影中,形状变形比其它投影大;在等角投影中,面积变形比其它投影大。 根据投影的经纬线形状,我们也可把地图投影分为方位投影、圆锥投影、圆柱投影、伪方位投影、伪圆锥投影、伪圆柱投影、多圆锥投影和组合投影等。下面简要地介绍部分常用地图投影。 ?方位投影——假设将一平面相切(或相割)于地球体表面,将地球体曲面上的经纬线投影到平面上。此时的纬线为同心圆,经线为同心圆半径,两经线间夹角保持不变。例如联合国徽标就是典型的方位投影世界地图。 ?圆柱投影——假设将圆柱内侧相切(或相割)于地球体表面,将地球体曲面上的经纬线投影到圆柱面上,然后沿一母线切开并展成一矩形平面。此时纬线为平行直线,经线为垂直于纬线的另一组等距离直线,两经线距离与相应经差成正比。例如世界时区图。 ?圆锥投影——假设将一圆锥相切(或相割)于地球体表面,将地球体曲面上的经纬线投影到圆锥面上,然后将圆锥面沿一母线切开并展成一扇形平面。此时纬线为同心圆弧,经线为同心圆弧半径,两经线间的夹角与相应经差成正比。例如中华人民共和国全图。 当然还有其它种类繁多的投影,在此不一一赘述。 ?地图投影选择与应用 在设计编制任何性质的地图或地图集时,选择一个适当的地图投影,不但能保证最适合于地图用途的要求,而且可根据需要选定其变形性质并限定变形大小,提高地图的使用精度。在此笔者仅就在实际工作中选择地图投影应考虑的几点作一浅述。

地图学——投影类型的特点

第四节方位投影 一、方位投影的概念和种类: a)概念:方位投影是以平面作为投影面,使平面与地球表面相切或相割, 将球面上的经纬线投影到平面上所得到的图形。 b)分类:正轴、横轴、斜轴方位投影 c)投影平面上,由投影中心(平面与球面相切的点,或平面与球面相割 的割线圆心点)向各个方向的方位角与实地相等,等变形线是以投影 中心为圆心的y同心圆,切点或相割的割线无变形。适合制作形状大 致为圆形区域的地图。 1.方位投影分类 根据投影面和地球球相切位置不同 d)当投影面切于地球极点时,为正轴投影。 e)当投影面切于赤道时,为横轴方位投影。 f)当投影面切于既不在极点也不在赤道时,斜轴方位投影。 ●二、正轴方位投影 ●投影中心为极点,纬线为同心圆,经线为同心圆的半径,两条经线间的夹 角与实地相等。 ●等变形线都是以投影中心为圆心的同心圆。包括等角、等积、等距三种 变形性质,主要用于制作两极地区图

1.正轴等角方位投影 投影条件:视点位于球面上,投影面切于极点。 纬线投影为以极点为圆心的同心圆,纬线方向上的长度比大于1。赤道上的长度变形比原来扩大1倍。 经线投影为以极点为圆心的放射性直线束,经线夹角等于相应的经差,沿经线方向上的长度比大于1,赤道上各点沿经线方向上的长度变形比原来扩大1倍。 投影的误差分布规律:由投影中心向外逐渐增大。 经纬线投影后,仍保持正交,所以经纬线方向就是主方向,又因为m = n,即主方向长度比相等, 无角度变形,但面积变形较大,边缘面积变形是中心的四倍。 正轴等角方位投影正轴等距方位投影

2.正轴等距方位投影 等距方位投影属于任意投影,它既不等积也不等角。投影后经线保持正长,经线上纬距保持相等。 纬线投影后为同心圆,经线投影为交于纬线圆心的直线束,经线投影后保持正长,所以投影后的纬线间距相等。经纬线投影后正交,经纬线方向为主方向。 角度、面积等变形线为以投影中心为圆线的同心圆。 球面上的微圆投影为椭圆,且误差椭圆的 长半径和纬线方向一致,短半径与经线方 向一致,且等于微圆半径r,又因自投影中 心,纬线扩大程度越来越大,所以变形 椭圆的长半径也越来越长,椭圆越来越扁。 常用来做两极的投影。 三、横轴方位投影 ●平面与球面相切,其切点位于赤道上的任意点。特点:通过投影中心的中 央经线和赤道投影为直线,其他经纬线都是对称于中央经线和赤道的曲线。 横轴方位投影斜轴方位投影 ●横轴等距方位投影:中央经线上从中心向南北,纬线间隔相等;赤道上,自 投影中心向东西,经线间隔逐渐扩大。 ●横轴等积方位投影:中央经线上从中心向南北,纬线间隔逐渐缩小;赤道上, 自投影中心向东西,经线间隔也是逐渐缩小的。

几种地图投影的特点及分带方法

一、只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”、“兰勃特等角投影。 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(GerhardusMercator1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(UniversalTransverseMercator)投影 2.1 高斯-克吕格投影简介 高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(CarlFriedrichGauss,1777一1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(JohannesKruger,1857~1928)于1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。 高斯一克吕格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。高斯-克吕格投影没有角度变形,在长度和面积上变形也很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大处在投影带内赤道的两端。由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,并能在图上进行精确的量测计算。 按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。通常按经差6度或3度分为六度带或三度带。六度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第1、2…60带。三度带是在六度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自1.5度子午线起每隔经差3度自西向东分带,带号

介绍几种常用的地图投影

介绍几种常用的,其它的投影方式请了解的朋友跟帖补充|) 一、地图投影(比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”) 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影 2.1 高斯-克吕格投影简介 高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777~1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的两条母线剪开展平,即得到高斯-克吕格投影平面。 高斯-克吕格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。

地图投影的判别与选择

第五节地图投影的判别与选择 一、地图投影的判别 地图投影是地图的数学基础,它直接影响地图的使用。地图是地理工作者不可缺少的工具,有很多地理知识是从图上获得的。如果在使用地图时,不了解投影的特性,往往会得出错误的结论。例如在小比例尺等角或等积投影图上量算距离,在等角投影图上对比不同地区的面积,以及在等积投影图上观察各地区的形状特征等。目前,国内外出版的地图上大多数都注明地图投影名称,这对于使用地图,当然是很方便的。但是,也有一些地图不注明投影名称和有关说明,因此,我们必须运用地图投影的知识,根据不同投影的特征——经纬线形状,结合制图区域所在的地理位置、轮廓形状及地图的内容和用途等,综合进行分析、判断和进行必要的量算来判别它们。文档来自于网络搜索 地图投影的判别,主要是对小比例尺地图而言。大比例尺地图往往是属于国家地形图系列,投影资料一般易于查知。另外由于大比例尺地图包括的地区范围小,不管采用什么投影,变形都是很小的,在使用时可以忽略不计。文档来自于网络搜索 判别地图投影一般是先根据经纬线网形状确定投影种类,如方位、圆柱、圆锥等,其次是判定投影的变形性质,如等角、等积或任意投影。文档来自于网络搜索 (一)确定投影种类 对于常见的地图投影,一般还是比较容易确定它的种类的,表2-16列出一些常见投影,供判别时参考。 判别经纬线形状的方法如下:直线只要用直尺量度,便可确定。判断曲线是否为圆弧,可以将透明纸覆盖在曲线之上,在透明纸上沿曲线按一定间隔定出三个以上的点,然后沿曲线移动透明纸,使这些点位于曲线的不同位置,如这些点处处都与曲线吻合,则证明曲线是圆弧,否则就是其他曲线。判别同心圆弧与同轴圆弧,则可以量测相邻圆弧间的垂线距离,若处处相等则为同心圆弧,否则是同轴圆弧。文档来自于网络搜索 (二)确定投影的变形性质 当已确定投影的种类后,对有些投影的变形性质是比较容易判定的。例如已确定为圆锥投影,那么只须量任一条经线上纬线间隔从投影中心向南、北方向的变化就可以判别

实验指导四 空间数据处理与地图投影

实验四空间数据处理与地图投影 一、实验目的 1.掌握空间数据处理(融合、拼接、剪切、交叉、合并)的基本方法,原理。 2.掌握地图投影变换的基本原理与方法。 3.掌握ArcGIS中投影的应用及投影变换的方法、技术,同时了解地图投影及其变换在实际中的应用。 二、实验准备 1.软件准备:ArcGIS 10.2 2.数据准备: (1)stationsll.shp(美国爱达荷州轮廓图) (2)idll.shp(美国爱达荷州滑雪场资料) 以上两个数据是以十进制表示经纬度数值的shapefile (3)snow.txt(美国爱达荷州40个滑雪场的经纬度值) (4)stations.shp,一个已投影的shapefile,用于检验习作2的投影结果 (5)idoutl.shp,基于爱达荷横轴墨卡托坐标系的爱达荷州轮廓图,用于检验习作3投影的正确性 三、实验内容与步骤 1. 空间数据处理 1.1 裁剪要素 在ArcMap中,添加数据“云南县界.shp”、“Clip.shp”(Clip 中有四个实体) 开始编辑,激活Clip图层。选中Clip图层中的一个实体(注意不要选中“云南县界”中的实体!)

图4-1 编辑Clip 点击按钮,打开ArcToolBox; 选择“Analysis Tools->Extract”,双击“Clip”,弹出窗口剪切窗口,指定输入实体为“云南县界”,剪切实体为“Clip”(必须为多边形实体),并指定输出实体类路径及名称,这里请命名为“云南 县界_Clip1”如图4-5; 图4-2 工具箱

图4-3 剪切窗口 依次选中Clip主题中其它三个实体,重复以上的操作步骤,完成操作后将得到共四个图层——“云南县界_Clip1”,“云南县界_Clip2”,“云南县界_Clip3”,“云南县界_Clip4”); 操作完成后,一定要“Save Editors”。 图4-4 生成四个剪切图层

《地图投影》考前复习

《地图投影》考前复习 第一章投影概论 地图的数学基础 是指使地图上各种地理要素与相应的地面景物之间保持一定对应关系的数学基础。包括:地图投影、经纬网、坐标网、大地控制点、比例尺等。 两个矛盾:球面与平面之间的矛盾; 大与小的矛盾. 可见,地球椭球面是不可展开的面.无论如何展开都会产生褶皱,拉伸或断裂等无规律变形,无法绘制科学,准确的地图.因此解决 球面与平面之间的矛盾——地图投影(将地球椭球面上的点转换成平面上的点) 大与小的矛盾——比例尺 地图投影: 就是建立平面上的点(用平面直角坐标或极坐标表示)和地球表面上的点(用纬度φ和经度λ表示) 之间的函数关系,用数学式表达这种关系,就是: 地图投影的实质:球面上的经纬网按照一定的数学法则转移到平面图纸上。 地图投影的基本任务:研究将地理坐标描写到平面上建立地图数学基础的各种可能的方法;讨论这些方法的理论、变形规律、实用价值以及不同投影坐标的互相换算等问题。 地图制图的基本要求 地球椭球面是曲面,但地图是平面,需要用一定的数学方法把大地坐标系转化为某投影面上的平面直角坐标系。GIS用各种平面坐标系统去描绘地球,而每种平面坐标均基于特殊的地图投影。地图投影之后的结果记录是以地图作为保存形式的。地图投影的使用保证了空间信息从地理坐标变换为平面坐标后能够保持在地域上的联系和完整性。 进行空间操作和空间分析的基本前提 虽然由于地球表面形态发生了变化,但在一定的空间范围内却提供了很好的近似,可以帮助人们对地理空间建立一个良好的视觉感,进行各种量算以及进一步的空间数据处理和分析。 地图精度的基本要求 随着GIS不断普及,应用层次多样化、应用人员复杂化,很多人因为不懂投影,而一筹莫展;而一部分人在似懂非懂中,不管什么来源的数据,只管数字化建库或者强行配准迭加。 关于数据精度只注意数字化和编辑过程中的偶然误差和外围设备的系统误差,而忽视了地图投影的所产生的变形误差。其后果是:显示或输出的图形文件发生变形或扭曲,有些变形在视觉上不易直接观察。这一方面严重影响到地图的精度,属性数据空间顺序和空间联系分析结果的准确性;另一方面严重的影响到GPS的应用效果。 长度比: 投影面上一微小线段(变形椭圆半径)和球面上相应微小线段(球面上微小圆半径,已按规定的比例缩小)之比。长度比是变量,随位置和方向的变化而变化。 长度变形:

相关文档
最新文档