细胞因子(干扰素)的研究进展

细胞因子(干扰素)的研究进展
细胞因子(干扰素)的研究进展

学院:动物科技学院

班级:12级兽医硕士

学号: 2012408012

姓名:高家登

细胞因子(干扰素)的研究进展细胞因子是由活化的淋巴细胞、单核巨噬细胞及一些基质、内皮细胞和成纤维细胞产生的一类非抗体、非补体的可溶性物质。1957年Tsaacs等发现病毒诱导细胞产生一种能干扰病毒复制的可溶性蛋白质,将其命名为干扰素,这是正式命名的第一个(类)细胞因子。此后,人们陆续发现了一系列的细胞因子。20世纪70~80年代是细胞因子研究十分活跃的时期,在此阶段,有关细胞因子的研究有两个重要发展:一是细胞因子命名的统一;二是细胞因子纯化、鉴定技术的发展和基因重组技术的应用。细胞因子具有广泛而重要的功能,但正常情况下机体内产量极微,因此,通过分子生物学手段获得重组细胞因子是临床应用及进一步阐明细胞因子功能的重要一步。到目前为止,至少有7种动物的多种细胞因子被克隆,这些细胞因子包括了IL-1~IL-13、干扰素(IFN)、肿瘤坏死因子(TNF)、粒细胞-巨噬细胞集落刺激因子(GM-CSF)等,在已克隆的细胞因子中,大多数已获得表达,其中以绵羊的表达种类最多,包括IL-1、IL-2、IL-6、IL-8、IL-10、TNF-A、INF-C等。牛、鸡、猪、猫等的IL-2也已获得重组蛋白。细胞因子的分类

细胞因子种类很多,根据细胞因子的基本理化性状和主要生物学活性进行综合分类,主要细胞因子有:

(1)白细胞介素(IL) 为在白细胞之间传递免疫调节信息的生物分子,目前已认定了至少15种IL(IL-1~15),成为免疫学中最庞大、也是最重要的一类细胞因子。

(2)干扰素(IFN) 为能干扰病毒在宿主细胞内复制的一类蛋白质。现已知IFN 可分成不同的类型,有广泛的抗病毒、抗肿瘤和免疫调节作用。

(3)造血生长因子(HGF) 能使造血前体细胞分化增殖的生物分子;主要作用是调节机体的造血功能,包括各种集落刺激因子和红细胞生成素等。

(4)肿瘤坏死因子(TNF) 能使肿瘤组织坏死并能杀伤肿瘤培养细胞的一类细胞因子,其中由巨噬细胞产生的称为TNF-α、由淋巴细胞产生的称为TNF-β。下面具体介绍一下干扰素在畜牧兽医中的研究进展及临床应用:

1、动物干扰素的分类

动物干扰素的分类鉴定工作主要在哺乳动物中展开,目前按国际标准已经得

到三大类干扰素,每一类干扰素有不同型,每一型又可被分成不同的亚型,其中I类干扰素(IFN-I)包括IFN-α、IFN- β、IFN- ω、IFN- τ、IFN-δ、IFN- κ、人IFN-δ 、IFN-τ,其中IFN -τ发现于反刍动物滋养层口,IFN-δ发现于猪孕体的滋养外胚叶;II类干扰素(IFN-II)中只包括IFN- γ,它的主要作用是激活巨噬细胞的杀灭微生物的作用;III类干扰素(IFN-III)指IFN- λ ,分

IFN- λ-l,2和3三个亚型,也称为IL-28A,IL-28B和IL-29,与IFN-I相似,IFN-III 主要在对病毒的自然免疫中在为数不多的几种细胞中起作用。

2、动物干扰素的差异性

动物干扰素在分类上虽然大体上分为三大类,但是与人干扰素不同,动物种类多,而在不同动物中得到的干扰素其在基因序列上有较大差异,例如:(国内夏春、汪明等)研究发现犬IFN-α与猪、猫和鸡干扰素同源性均低于30%,提示我们,对于动物干扰素的研究工作需要具体到种属上,同时也提示我们,动物在不同条件下经过长期的进化,形成了每种动物独特的生理特性,这是导致动物干扰素种间差异较大的一个原因,而随着多种动物类似的饲养管理模式和动物的继续进化,动物干扰素在结构和功能上可能也会有所改变,抓住这种进化规律,打破动物干扰素种间差异也将成为可能。

3、动物千扰素的作用机制

干扰素在动物机体内的表达受基因的调控,动物细胞由于病毒或非病毒性诱生剂作用后,便可解除干扰素基因抑制物的作用,使基因得以表达,合成干扰素。合成的干扰素再与特异的细胞受体结合,通过细胞因子的信号传递从而使细胞相应基因激活,产生的作用主要表现在三个方面:(1)抗病毒作用,主要是通过间接作用诱发多种蛋白因子ADAR、PKR、MX、OAS、RNaseL等发挥抑制病毒翻译、降解病毒RNA、抑制病毒复制和病毒外壳形成来实现抗病毒作用;(2) 抗细胞增殖作用,可调节增加MHC的表达,激活NK细胞和T细胞,抑制肿瘤细胞血管的生成,从而起到抗肿瘤细胞分化增殖的作用;(3)免疫调节作用,可增强免疫球蛋白IgG的受体表达激活并加强巨噬细胞的吞噬作用,及T细胞、B 细胞的激活作用,也可增殖NK细胞,提高动物机体的天然免疫系统的免疫作用。

4、动物干扰素的基因工程研究

基因工程改造和生产干扰素是现在研究的一个重点,由于动物干扰素直接生

产成本高、种间差异大和干扰素在动物体内不能长期稳定存在等原因,需要对其进行基因工程生产和改造,另外,干扰素动物分泌量低,所以研究利用基因工程方法,大批量制备高效高纯的干扰素也是研究方向之一。现在国际上大部分采用酵母等真核生物细胞作为干扰素的表达系统,从理论上说更加接近于实际临床动物中的应用,国内目前还主要采用大肠杆菌、乳酸菌等原核生物细胞作为干扰素的表达系统和生物发酵器。

5、动物干扰素的临床应用

现在动物干扰素在兽医临床上的应用还处于初级阶段,只用于一些常见的难以治愈的病毒性传染病,一般用于紧急应急,当接种某一疫苗后而免疫效力还未产生的一段时间内,辅助接种干扰素会起到紧急防治病毒性传染病的效果。在临床应用性研究方面,国内外主要致力于提高干扰素效率、延长干扰素机体内半衰期和扩大动物干扰素的效力范围。现在应用最多的是猪干扰素制剂,可是有研究表明猪干扰素制剂在对禽类、犬类疾病时效果并不理想,尤其是对犬类疾病时完全无效,而对于犬干扰素,由于专利的申请,限制了犬干扰素医药制剂的研发,而随着犬类动物在人类生活中越来越重要的作用,加速研发犬干扰素医药制剂,更好的防治犬类疾病已经成为研究的重点方向之一,可见动物种间差异对干扰素应用方面带来的影响较大。为了提高干扰素效率、延长半衰期,很多学者尝试通过不同的方法进行研究,除基因工程改造外,还有学者通过设计新的干扰素载体来进行干扰素体内保护,使其作用效力更加稳定持久,其中日本学者研发的长效淋巴细胞样干扰素皮下应用剂型干扰素制剂就得到了很好的效果。为了扩大干扰素的效力范围,科研工作还在向着研究不同种属动物干扰素间结构、功能及调控因素等方面的关系,力求找到所有动物干扰素的共同点,加以利用开发,争取制备出新型的广谱、高效干扰素临床医用制剂。

干扰素的临床应用

(1)疫苗免疫失败后的临床补救治疗。当错误使用毒力较强的疫苗免疫,或免疫时未察觉鸡群有潜在性疾病感染等情况时,导致疫苗免疫后鸡群出现病症,此时可使用干扰素进行紧急补救治疗,减少损失。

(2)家禽家畜各种病毒性疾病,如猪的口蹄疫、蓝耳病、鸡的新城疫、禽流感、传染性支气管炎等疾病的预防和治疗。即当发生上述疾病时,在使用其他抗病毒

的同时配合使用干扰素,可提高疗效,加速康复。

(3)家禽家畜免疫抑制性疾病,如传染性法氏囊病、马立克氏病、淋巴白血病等的预防

注意事项1.本品应在有经验的临床兽医师指导下按规定剂量、疗程和投药途径使用。 2.在使用本品的前后各三天内严禁使用弱毒活疫苗;灭活疫苗不受限制,但不能混合一起注射。3.本品可同其他抗生素、中药制剂、卵黄抗体同时使用,无配伍禁忌。4.本品无免疫抑制性,故长期使用不会有耐药性产生。5.本品饮水给药时,水温不得超过30℃,开瓶一次用完。

6、目前动物干扰素研发存在的问题

动物干扰素的临床使用率和医药制剂的研发工作要远远落后于人干扰素的应用和研究,这可能和几个方面有关系:一是成本问题,高纯高效的干扰素制剂其成本较高,对于基层的畜牧业生产者是较重的经济负担;二是干扰素药效持久性问题,干扰素属公泌蛋白,摄入动物机体后,短时间内易被消化降解,造成干扰素的全部疗效还没有发挥出来就已经失效浪费,达不到预期的效果;三是种间差异的限制,研究表明干扰素在同源性方面,不同的动物种间差异较大,而市场上的动物干扰素制剂种类很少,主要是猪、牛干扰素最常见,从而对动物疾病的对种对症治疗带来了限制;四是目前市场上常用的基因工程干扰素医药制剂,虽然在对病毒效价、药力持久性方面都有所改良,但是有资料显示,基因工程干扰素较天然型干扰素更易引发动物机体的抗干扰素中和抗体,从而使干扰素失效,为今后疾病的防治带来困难。所以,应对这些问题,科研工作者对降低干扰素医用成本、延长干扰素动物体内半衰期、开发更多种动物干扰素医药制剂、减少动物抗干扰素中和抗体产生机率方面的研究应该加大力度。

犬干扰素α的制备及活性测定

目的:

干扰素α是由脊椎动物细胞产生的一类分泌型糖蛋白它具有广谱抗病毒和增强免疫应答的作用。干扰素按理化性质可分为α,β和γ三个型,α干扰素是由能在脊椎动物的各种类型的细胞增殖的病毒诱导白细胞产生的其,主要活性是抗病毒,因此制备干扰素α可治疗犬细小病毒病、犬瘟热等高致死性病毒病。材料和方法:

材料:

pBV220表达载体,pMD18--T载体,限制性内切酶EcoR,连接酶,大肠杆菌,犬肾细胞,水泡性口炎病毒,伴刀豆球蛋白A,RNA提取试剂盒,M--MLV反转录酶,rTaq酶,及其他相关的实验室设备。

方法:

1、根据GenBank中所公布的犬干扰素α的基因序列进行引物设计。

2、犬外周血淋巴细胞的分离培养及总RNA的提取。

3、CaIFN--α cDNA片段的克隆与测序。

4、表达载体的构建。

5、工程菌的诱导表达。

6、表达产物的提取和纯化:包涵体的获得和表达产物的变性复性和纯化。

7、活性的测定:采用细胞病变抑制法进行干扰素α活性的测定

方法:采用犬肾细胞--水泡性口炎病毒体系测定干扰素的活性,设空白对照组阳性对照组和阴性对照组。

空白对照组:将犬肾细胞接种于96 孔板。

阳性对照组:将犬肾细胞接种于96 孔板,每孔再加入含水泡

性口炎病病毒。

阴性对照组:将犬肾细胞接种于96 孔板,加入倍比稀释的干

扰素α作用,每孔再加入含水泡性口炎病病毒。

将以上三组在相同的条件下培养后观察,在阴性对照组的某一孔出现与空白

对照组相同,则证明我们所制备的干扰素α可保护细胞不受水泡性口炎病毒的感染,最后我们可输入稀释倍数经软件分析,以便准品测定其生物活性值。

结果讨论

参考文献

1、王照、夏咸柱等. 动物干扰素的研究进展中国动物检疫2012

2、李群芳、江宁朋. 细胞因子的研究概况山东畜牧兽医2011

3、韩森等. 动物干扰素基因工程的研究进展黑龙江畜牧兽医2007

4、王艳、王海震等. 犬α干扰素基因的高效表达及其活性测定中国病毒学2005

5、殷玉和,李莹莹等. 犬干扰素α制备工艺的优化中国兽医杂志社2012

6、任玉莹, 范泉水等. 基因工程犬干扰素仅的制备及纯化工艺生物技术通讯2009

7,、殷玉和,李莹莹等. 犬α干扰素的原核表达及活性检测畜牧与兽医2012

8、陈忠广. 犬干扰素γ的复性及活力测定东北农业大学硕士论文2007

干扰素的研究进展

干扰素的研究进展 摘要:干扰素是细胞和机体受到病毒感染, 或者受核酸、细菌内毒素和促细胞分裂素等作用后, 由受体细胞分泌的一种广谱抗病毒糖蛋白。它具有广谱抗病毒、抗肿瘤和免疫调节等活性的细胞,能通过多种机制影响肿瘤细胞功能,促进免疫细胞的活性。近半个世纪以来, IFN 一直是病毒学、细胞学、分子生物学、临床医学、免疫学和肿瘤学等相关领域的研究热点。干扰素基因序列研究结果表明, 该序列早在5亿-10亿年前就存在于生命细胞的基因序列中, 是生物体内一种古老的保护因子。 关键词:干扰素;基本性质;作用机制 干扰素是在用灭活的病毒处理鸡胚以后发现的, 即灭活的病毒可以诱导干扰素的产生。能够诱生干扰素的物质很多, 一般称他们为干扰素诱生剂,主要包括:(1)活病毒、灭活的病毒及其产物, 如双链RNA;(2)其他病原微生物及其产物, 如细菌和细菌脂多糖;(3)有丝分裂原等;(4)特异性免疫诱导剂。第一类物质诱生干扰素最有效,后两种主要诱生II型干扰素,即IFN-γ。 IFN-α和IFN-ω主要由白细胞产生,IFN-B主要由成纤维细胞产生,尽管在适宜的诱导情况下,大部分的人类细胞都能够产生这几种干扰素。而IFN-γ主要由活化的T 细胞产生。α、β、ω和γ等几种干扰素主要由诱生剂诱导产生。IFN-κ在静息状态下表皮角化细胞和先天性免疫系统的细胞(如单核细胞和树突状细胞)中有表达, IFN-γ、IFN-β、病毒与双链RNA 诱导会使IFN-κ表达显著增强[1]。IFN-κ表达的这些特点是和角化细胞的防御功能相适应的。IFN-τ不能被病毒等诱生剂诱生, 仅仅在怀孕早期的一个特定时间由滋养层细胞表达, 它们的主 要功能是为怀孕的完成做准备[2,3]。Lin it in主要在骨髓、肾脏表达, 也不需要诱导, 主要活性是抑制淋巴系细胞的生成, 对骨髓系细胞和红细胞前体则没有抑制作用[4]。IFN-K在正常的血液、脑、胰腺等不同的组织中都有低水平的表达, 也可以被病毒或者干扰素等诱导表达[5,6],。

细胞因子风暴研究进展

细胞因子风暴研究进展 细胞因子风暴(英语:Cytokine storm)又称高细胞介质症(Hypercytokinemia),一种不适当的免疫反应,因为细胞因子与免疫细胞间的正回馈循环而产生。这也被认为是1918年流感大流行、2003年SARS事件、2009年H1N1流感大流行,以及H5N1高致病性禽流感中病毒致死的原因不过美国疾病控制与预防中心认为这一症状与H1N1之间的没有充分的证据可以展示其关联性。 症状为高烧、红肿、肿胀、极度疲倦与恶心。在某些情况下可能致命。治疗:当免疫系统对抗病原体时,细胞素会引导免疫细胞前往受感染处。同时,细胞素也会激活这些免疫细胞,被激活的免疫细胞则会产生更多的细胞素。通常来说,人体会检查并控制这个反馈循环。但是在有些情况下,情况会失控,导致一个地方聚集了太多被激活的免疫细胞。目前为止,还没有完全了解这一现象的具体成因,但是有推测认为可能是由于免疫系统对新的、高致病的病原体产生的过激反应。 细胞因子风暴有可能会对身体组织和器官产生严重的损伤,比如当其发生于肺部,过多的免疫细胞和组织液可能会在肺部积聚,阻塞空气进出,并导致死亡。 细胞因子风暴与各种感染性和非感染性疾病有关,甚至是治疗性干预尝试的不幸后果。已有研究证明其在移植物抗宿主病、多发性硬化症、胰腺炎或多器官功能障碍综合征中出现。随着研究的深入,对细胞因子风暴的细胞定位和分子机制有所了解,并有助于病毒性症状尤其是流行性感冒的治疗。 细胞因子是由细胞分泌出来用于细胞间信号传导和通信的多种小蛋白质,具有自分泌、旁分泌和/或内分泌活性,并且通过结合受体引发多种免疫应答。细胞因子的主要功能有控制细胞增殖和分化、血管发生、免疫、炎症反应的调节(表1)。 表一:与细胞因子风暴相关的因子主要类型及功能 类型功能 干扰素调节先天免疫,活化抗病毒性质,抗增殖作用。 白介素白细胞增殖和分化, 趋化因子控制趋向性,募集白细胞,很多是促炎因子 集落刺激因子刺激造血祖细胞增殖和分化 肿瘤坏死因子促炎,激活细胞毒素T细胞 干扰素(IFNs)是一种细胞因子家族,其在病毒和其他微生物病原体的先天免疫中起核

干扰素的研究进展及应用前景

干扰素的研究进展及应用前景高等生物化学中期答辩 作者:ZJJ 学院:化学化工学院 专业:药物化学 学号:

干扰素的研究进展及应用前景 作者: 摘要:干扰素是人体受到病毒或双股RNA刺激物的刺激产生免疫应答,由细胞合成及分泌的一族蛋白质类,具有调节机体免疫功能、抗病毒、抗肿瘤等多种作用,是机体防御系统的重要组成部分。它通过干扰病毒基因转录或病毒蛋白组分的翻译,从而阻止或限制病毒感染,是目前最主要的抗病毒感染和抗肿瘤生物制品。本文就干扰素的分类、分子结构、作用机理、生物学活性、体外重组技术以及临床应用等方面的研究进展进行了综述,并对其应用前景做出预测展望。 关键词:干扰素研究进展应用前景 Research progress and application prospect of interferon Author: ( Tianjin University of Technology, Tianjin 300072,China) Interferon (IFN) is human body gets virus or double stranded the exciting generation immunity of RNA exciter is respondent, by the cell synthesis reaches excretive gens protein kind ,has the function of regulating the immune function, antiviral and antitumor, is an important part of the body's defense system. It can prevent or limit viral infection by interfering with viral gene transcription or translation of the viral proteins,so it is the main antiviral and antitumor biological products.The research of interferon classification, molecular structure,

细胞因子风暴研究进展

细胞因子风暴研究进展 细胞因子风暴(英语:Cytokine storm)又称高细胞介质症(Hypercytokinemia),一种不 适当的免疫反应,因为细胞因子与免疫细胞间的正回馈循环而产生。这也被认为就是1918年流感大流行、2003年SARS事件、2009年H1N1流感大流行,以及H5N1高致病性禽流感中 病毒致死的原因不过美国疾病控制与预防中心认为这一症状与H1N1之间的没有充分的证据 可以展示其关联性。 症状为高烧、红肿、肿胀、极度疲倦与恶心。在某些情况下可能致命。治疗:当免疫系统对抗病原体时,细胞素会引导免疫细胞前往受感染处。同时,细胞素也会激活这些免疫细胞,被激活的免疫细胞则会产生更多的细胞素。通常来说,人体会检查并控制这个反馈循环。但 就是在有些情况下,情况会失控,导致一个地方聚集了太多被激活的免疫细胞。目前为止,还没有完全了解这一现象的具体成因,但就是有推测认为可能就是由于免疫系统对新的、高致 病的病原体产生的过激反应。 细胞因子风暴有可能会对身体组织与器官产生严重的损伤,比如当其发生于肺部,过多的免疫细胞与组织液可能会在肺部积聚,阻塞空气进出,并导致死亡。 细胞因子风暴与各种感染性与非感染性疾病有关,甚至就是治疗性干预尝试的不幸后 果。已有研究证明其在移植物抗宿主病、多发性硬化症、胰腺炎或多器官功能障碍综合征中 出现。随着研究的深入,对细胞因子风暴的细胞定位与分子机制有所了解,并有助于病毒性症 状尤其就是流行性感冒的治疗。 细胞因子就是由细胞分泌出来用于细胞间信号传导与通信的多种小蛋白质,具有自分泌、旁分泌与/或内分泌活性,并且通过结合受体引发多种免疫应答。细胞因子的主要功能有 控制细胞增殖与分化、血管发生、免疫、炎症反应的调节(表1)。 表一:与细胞因子风暴相关的因子主要类型及功能 类型功能 干扰素调节先天免疫,活化抗病毒性质,抗增殖作用。 白介素白细胞增殖与分化, 趋化因子控制趋向性,募集白细胞,很多就是促炎因子 集落刺激因子刺激造血祖细胞增殖与分化 肿瘤坏死因子促炎,激活细胞毒素T细胞 干扰素(IFNs)就是一种细胞因子家族,其在病毒与其她微生物病原体的先天免疫中起核

I型细胞因子及其受体研究进展

I型细胞因子及其受体研究进展 细胞因子一般分子量较小、生物活性高,主要由免疫细胞或非免疫细胞(如血管内皮细胞,表皮细胞和成纤维细胞等)经刺激而产生。细胞因子间可以相互作用形成网络,进而参与免疫应答和炎症反应过程或促进细胞增殖生长。但是细胞因子需要与相应的受体结合才能发挥效应。细胞因子及其受体会对机体免疫应答进行调控,在细胞及分子水平上揭示细胞因子与疾病之间的关系,尤其是对某些自身免疫性疾病、肿瘤、免疫缺陷疾病的发病机理的研究,为临床治疗和诊断提供指导下依据。现在已有近几十个细胞因子及其受体的药物批准上市。 细胞因子受体命名规则比较简单,基本是在相应的细胞因子名称后面加Receptor(R)表示,如IL-2的受体就写成IL-2R。细胞因子受体一般分成四个类型:Ⅰ型细胞因子受体(Type ⅠCytokine Receptor)、Ⅱ型细胞因子受体家族(Type ⅡCytokine Receptor)、TNF超家族受体以及趋化因子受体。 在本文,将主要介绍Ⅰ型细胞因子及其受体的研究进展及其应用。 细胞因子受体(Type ⅠCytokine Receptor),也称红细胞生成素受体家族(hematopoietin receptor family)。这类受体的结构特点:胞外区含有同源区(大概有200个氨基酸构成),膜外区近氨基端有二个保守的半胱氨酸残基(C),其羧基端存在Trp-Ser-X-Trp-Ser(WSXWS,X代表任一氨基酸)残基序列。按照细胞因子家族可以分为如下类型:Ⅰ型白介素(IL-2,IL-3,IL-4,IL-5,IL-7,IL-9)受体,粒细胞巨噬细胞集落刺激因子(GM-CSF)受体,粒细胞集落刺激因子(G-CSF)受体,促红细胞生成素(EPO)受体,生长激素(GH)受体,催乳素(PRL)受体,抑癌蛋白M(OSM)受体,白血病抑制因子(LIF)受体等。 Ⅰ型细胞因子受体大多数由多个亚单位构成,其中有属于结合细胞因子的亚单位或用来进行信号转导的亚单位。信号转导亚单位可以有多种细胞因子受体共用,比如人的IL-3R,IL-5R和CSF2R均由α和β亚单位组成,其中α亚单位就属于细胞因子结合单位,β亚单位就由三种细胞因子共用来转导信号,这也使得IL-3,IL-5和GM-CSF在功能上有很多相似之处,如三者都可以刺激嗜酸性粒细胞增殖和嗜碱性粒细胞脱颗粒,还有IL-3和GM-CSF 均可作用于造血干细胞。还有一种共用信号亚单位——γ亚单位,主要由IL-2,IL-4,IL-7,IL-9和IL-15的受体共用。在X-性连锁中正联合免疫缺陷病患者中,正是由于这五个细因子受体介导的信号转导发生严重障碍造成的,使得细胞和体液免疫缺陷。

细胞因子的免疫应用及研究进展

细胞因子的免疫应用及研究进展 摘要:细胞因子( cytokine) 是一类由各种免疫细胞和非免疫细胞产生的具有生物活性的多肽或糖蛋白。通常所说的细胞因子包括淋巴细胞因子、单核细胞因子及其他细胞产生的细胞因子。细胞因子具有强大的免疫调节和免疫激活作用,有关细胞因子方面的研究已成为当今基础免疫学和临床免疫学研究中十分活跃的领域,并取得了令人瞩目的成绩,特别是近年来由于分子生物学技术的发展,使得细胞因子的研究和应用进入了一个全新的阶段。本文主要对其应用做一个综述。 关键词:细胞因子、免疫、应用 1.细胞因子的特性 尽管细胞因子种类繁多,功能复杂广泛,但其也有一些共同的特点,主要表现为: ①多为糖蛋白,分子质量一般为10~25ku,有的为8~10ku。②通过与受体的特异性结合而发挥其相应的生物学效应。这类结合的细胞因子亲和力较高,在极低浓度下亦显示出生物学活性。③一般在局部发挥效应,这种效应既可针对产生该细胞因子并且具有受体的细胞———即自分泌(autocrine)作用,也可针对邻近的细胞———即旁分泌(paracrine)作用。④分泌期短,一般仅为数天,且其半衰期也很短。⑤一种细胞因子可作用于多种靶细胞,并显示出多种生物学功能,即具有多效性;同时多种细胞因子也可作用于同一种细胞发挥相似的生物学作用。⑥细胞因子之间通过合成分泌的相互调节、受体表达的相互调控、生物学效应的相互影响而组成一个相互协同又相互制约的复杂的免疫反应协调网络,共同维持机体免疫系统的平衡。⑦细胞因子具有强大的免疫调节作用,是机体发挥免疫功能不可缺少的成分。 2.细胞因子的应用 大多数细胞因子是机体免疫应答的产物,对机体免疫系统具有强大的调节作用,是机体发挥免疫功能,清除病原体不可缺少的成分,与疾病的发生、发展有着密切的关系;另一方面,体内分泌的细胞因子过多,亦可引起病理性反应。因此,细胞因子在疾病的诊断、治疗和预防等方面有着极为广阔的应用前景。进入20世纪80年代以来,细胞因子的临床应用已成为医学研究和产品开发的重要领域,进入临床应用的细胞因子逐年增多,它们在人类和动物疾病的诊断、治疗和预防等方面发挥着越来越重要的作用。 2.1在诊断和治疗方面的应用 细胞因子一方面可以治疗某些疾病,如免疫缺陷性疾病、病毒性疾病、细菌性疾病及肿瘤等,另一方面可以导致和/ 或促进某些疾病的发生和发展,如自身免疫性疾病、移植排斥反应等。因此,细胞因子在疾病的诊断和治疗方面发挥着独特作用并取得了较为明显的效果。支气管哮喘患者体内的IL24、IL25、IL210及IL213等Th2型细胞因子浓度显著升高,在其作用下IgE合成增多,IgE与嗜碱性粒细胞和肥大细胞上的高亲和力受体结合,从而引起本病的发生。应用IFN2γ和抗IL24抗体或IL24R可减少Th2型细胞因子产生,从而抑制过敏反应,达到治疗的目的。在多发性硬化症患者的病灶中IL22和IFN2γ产生明显增加,而在恢复

干扰素γ生物学功能及其应用的研究进展

干扰素γ生物学功能及其应用的研究进展 【摘要】 干扰素γ(Interferon gamma,IFNγ)是体内重要的细胞因子,能够通过调控免疫相关基因的转录协调机体的免疫反应。本文对 IFNγ的生物学功能(主要包括诱导机体的抗病毒状态、抑制细胞增殖、诱导细胞凋亡、免疫调节)及其应用的研究进展作一综述。 【关键词】干扰素γ;生物学功能;治疗应用 Progress in Research on Biological Function and Application of Interferon γ TIAN Yuan△,DING Zhuang,YUE Yu-huan(△College of Animal Science and Veterinary Medicine,Jilin Univer-sity,Changchun 130062,China)【Abstract】Interferon γ(IFNγ)is an critical cytokine which coordinates immune response through transcriptional regulation of immunologically relevant genes. This article reviews the progress in research on biological functions , including induction of antiviral state,inhibition of cell proliferation,induction of apoptosis and immunomodulation,as well as application of IFNγ. 【Key words】 Interferon γ(IFNγ);Biological function;Therapeutic effect 干扰素(Interferon,IFN)是最先被发现的细胞因子,根据同源性及受体特异性的不同,迄今为止,发现 3 类干扰素:Ⅰ型、Ⅱ型和Ⅲ型。Ⅰ型 IFN 包括IFNα(包括多个亚型)、IFNβ、IFNω、IFNε、IFNκ、反刍动物中发现的 IFN τ以及在小鼠中发现的ζ等;Ⅱ型 IFN 只有 IFNγ;Ⅲ型 IFN 是 2003 年发现的一种新型干扰素,包括 IFNλ1、IFNλ2 和 IFNλ3。其中,Ⅱ型 IFN 也被称为免疫干扰素,大量研究表明,IFNγ除具有广谱抗病毒功能外,对免疫系统也起着关键的调节作用[1],具有极为重要的临床应用价值,因此成为当今免疫学、遗传学、分子生物学等研究最为活跃的领域之一。 1. IFNγ的生物学功能 1. 1免疫调节功能 IFNγ是体内重要的免疫调节因子,能促进 MHCⅠ类及Ⅱ类抗原的加工提呈:能够从多方面上调细胞表面 MHCⅠ类分子的表达:IFNγ的刺激使组成型蛋白酶体转换成免疫蛋白酶体,后者酶解的特异性使多肽能够更好地结合于Ⅰ类MHC 分子,提高 MHCⅠ类分子中提呈给 CD8+T细胞识别的表位的表达水平和多样性,因此提高机体的免疫监视功能[2]。IFNγ通过上调 MHCⅡ类抗原提呈提升 CD4+T细胞的肽特异性活性。通过上调 MHCⅠ类抗原的提呈途径增加细胞毒性 T 淋巴细胞(Cytotoxic T lym-phocyte,CTL)对病原体的敏感性,使 CTL 更有效地将病原体清除[3]。 1. 2广谱抗病毒作用 IFNγ主要通过与细胞表面受体的结合,诱导病毒感染细胞产生多种抗病毒蛋白,使细胞内产生抗病毒状态而发挥抗病毒作用,其抗病毒作用是非特异性的。在诱导效应因子表达的同时,由于IFNγ能够提高细胞表面MHC分子的表达,增

细胞因子风暴研究进展

细胞因子风暴研究进展标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

细胞因子风暴研究进展 细胞因子风暴(英语:Cytokine storm)又称高细胞介质症(Hypercytokinemia),一种不适当的免疫反应,因为细胞因子与免疫细胞间的正回馈循环而产生。这也被认为是1918年流感大流行、2003年SARS事件、2009年H1N1流感大流行,以及H5N1高致病性禽流感中病毒致死的原因不过美国疾病控制与预防中心认为这一症状与H1N1之间的没有充分的证据可以展示其关联性。 症状为高烧、红肿、肿胀、极度疲倦与恶心。在某些情况下可能致命。治疗:当免疫系统对抗病原体时,细胞素会引导免疫细胞前往受感染处。同时,细胞素也会激活这些免疫细胞,被激活的免疫细胞则会产生更多的细胞素。通常来说,人体会检查并控制这个反馈循环。但是在有些情况下,情况会失控,导致一个地方聚集了太多被激活的免疫细胞。目前为止,还没有完全了解这一现象的具体成因,但是有推测认为可能是由于免疫系统对新的、高致病的病原体产生的过激反应。 细胞因子风暴有可能会对身体组织和器官产生严重的损伤,比如当其发生于肺部,过多的免疫细胞和组织液可能会在肺部积聚,阻塞空气进出,并导致死亡。 细胞因子风暴与各种感染性和非感染性疾病有关,甚至是治疗性干预尝试的不幸后果。已有研究证明其在移植物抗宿主病、多发性硬化症、胰腺炎或多器官功能障碍综合征中出现。随着研究的深入,对细胞因子风暴的细胞定位和分子机制有所了解,并有助于病毒性症状尤其是流行性感冒的治疗。 细胞因子是由细胞分泌出来用于细胞间信号传导和通信的多种小蛋白质,具有自分泌、旁分泌和/或内分泌活性,并且通过结合受体引发多种免疫应答。细胞因子的主要功能有控制细胞增殖和分化、血管发生、免疫、炎症反应的调节(表1)。 表一:与细胞因子风暴相关的因子主要类型及功能

(推荐)II型细胞因子及其受体研究进展

II型细胞因子及其受体研究进展 目前已经发现的细胞因子有200多种,随着基因测序技术的快速发展,相信会有更多的因子被发现,并且随着细胞工程技术和蛋白重组技术的发展,一定会有更多的细胞因子重组蛋白被纯化制备。细胞因子功能多样,不同因子间可以相互作用,同一因子可以有不同的功能,因此,细胞因子构成了一个复杂的网络功能图。而细胞因子想要发挥作用,必须与相应的受体结合行。细胞因子与其受体结合后,会对细胞产生作用,可以刺激细胞生长增殖分化,调控机体免疫应答,为在细胞及分子水平研究某些自身免疫性疾病、肿瘤、免疫缺陷疾病的发病机理提供数据,为临床治疗和诊断提供指导依据。 细胞因子受体一般分成四个类型:Ⅰ型细胞因子受体(Type ⅠCytokine Receptor)、Ⅱ型细胞因子受体家族(Type ⅡCytokine Receptor)、TNF超家族受体以及趋化因子受体。在本文,将主要介绍Ⅱ型细胞因子及其受体的研究进展及其应用。 Ⅱ型细胞因子受体家族(Type ⅡCytokine Receptor ),也称干扰素受体家族(Interferon receptors family)。主要包含Ⅱ型白介素(IL-10,IL-19,IL-20,IL-22等)受体,Ⅰ型干扰素(IFNA,IFNB)受体和Ⅱ型干扰素(IFNG)受体。此类受体的结构特点治是在膜外区近氨基端含有四个保守半胱氨酸残基细无Trp-Ser-X-Trp-Ser序列,一般为具有高亲和力的异二聚体或多聚体。II型细胞因子受体的细胞外结构域由串联Ig样结构域组成,细胞内结构域通常与属于Janus激酶(JAK)家族的酪氨酸激酶相关。

鱼类必需脂肪酸营养研究现状

鱼类必需脂肪酸营养研究现状 摘要:从必需脂肪酸种类、对鱼类的影响、必需脂肪酸需要量、必需脂肪酸缺乏症等几个方面综述了近年来鱼类必需脂肪酸营养的研究状况,以期为脂肪研究和合理饲料配方提供参考。 关键词:必需脂肪酸种类必需脂肪酸需要量必需脂肪酸缺乏症 脂类不仅是生物的能量储存库,而且是构成生物膜的重要物质,与细胞识别和组织免疫有密切关系;此外,脂类物质参与激素和维生素代谢,在机体内具有重要的生物学作用和生理学调控功能。鱼体中含有丰富的脂肪酸,有的脂肪酸鱼体本身可以生物合成,有的则不能或合成量很少,远不能满足鱼类生长发育各阶段的需要,必须由外源供给补充。那些为鱼类生长发育所必需,但鱼体本身不能合成,必须由饲料直接提供的脂肪酸称为必需脂肪酸 (EFA),如亚油酸、亚麻酸、EPA、DHA等。通常认为,必需脂肪酸必须符合下列特定的分子构型:1)在脂肪酸分子结构中的二乙烯基甲烷链结构中,至少有2个或2个以上双键;2)双键必须是顺式构型;3)距离羧基最远的双键,应在由末端-CH3数起的第六与第七碳原子之间。必需脂肪酸对于维持正常的细胞功能是必不可少的,而且大多不能由动物自己合成或合成很少必须由饲料中提供。鱼虾不能合成必需脂肪酸,必须从饲料中吸收,但鱼虾具有将亚油酸和亚麻酸转化为同系列更长链不饱和脂肪酸的能力。 1.鱼类必需脂肪酸的种类 大多动物体内能够合成饱和脂肪酸和单不饱和脂肪酸,但不能合成亚油酸(C18:2)和亚麻酸 (C18:3)。一般鱼体本身只能合成n-7、n-9系列不饱和脂肪酸,而不能合成n-3、n-6系列不饱和脂肪酸,因此,n-3、n-6系列不饱和脂肪酸被认为是鱼类的必需脂肪酸。鱼类生存和生长需要的必需脂肪酸因种类而异。不同脂肪酸对鱼类生长的影响很大程度上与不饱和脂肪酸,尤其与高度不饱和脂肪酸的差异有关。温水性鱼类对必需脂肪酸需求与冷水性鱼类差别很大,冷水性鱼类需要的n-3序列数量>n-6序列的数量。虹鳟饵料中添加C18:3n-6或C18:3n-3,会有明显的促生长效果。而且同时使用这两种脂肪酸比单独使用促生长效果更好。鲤鱼对这两种脂肪酸的需求量均为饲料的1%。鳗鲡与虹鳟和鲤鱼一样需要必需脂肪酸。鳗鱼丽添加C18:3n-3后生长显著改善,这与虹鳟相似。添加C18:3n-6和C18:3n-3有相加效果,这与鲤鱼相似。对这两种脂肪酸的需求量,均为饵料的5%左右[1]。德国柏林淡水生态和内陆渔业研究所[1]对虹鳟幼鱼投喂富含十八碳三烯酸 (1 8:3n-3 )、十八碳四烯酸主要是廿二碳六烯酸 (22:6n-3 )的商品饲料,证实廿二碳六烯酸是虹鳟生长发育必需的脂肪酸。 刘玮等[2]认为团头鲂必需脂肪酸除n-3HUFA之外,还应包括18:2n-6和8:3n-3;团头鲂的18:2n-6的需要量比18:3n-3的量要大;在18:2n-6和 18:3n-3之间还可能存在复杂的相互作用。 2.必需脂肪酸对鱼类生长发育的影响 鱼类不同的生发育阶段,对脂肪酸的需要不同。真鲷等海产鱼仔、稚鱼必须直接摄取含有高度不饱和脂肪酸的饵料才能生长发育[3]。刘镜恪[4]等发现n-3不饱和脂肪酸对黑鲷仔鱼和稚鱼的生长和存活都有重要影响。高淳仁[5]等认为,n-3 HUFA为海水鱼类的必需脂肪酸,而其中 EPA和 DHA对海水鱼类生长、存活、发育的影响尤为重要;同时不同种类的海水鱼类对 n-3 HUFA的需求量略有不同,而饵料中 EPA与 DHA的比例也是影响海水仔、稚、幼鱼生长和存活的重要因素;海水鱼类对不同脂型的脂类的吸收和同化作用不同。在鱼类繁殖期间,鱼类需要n-3系列不饱和脂肪酸数量大于n-6系列的数量,尤其是雌鱼。 3.鱼类对必需脂肪酸的需要量 鱼类对必须脂肪酸的需要量依鱼的种类而不同。温水性的鲤鱼,对必需脂肪酸的需求比冷水性鱼类低,但

细胞因子风暴研究进展精选版

细胞因子风暴研究进展 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

细胞因子风暴研究进展 细胞因子风暴(英语:Cytokinestorm)又称高细胞介质症(Hypercytokinemia),一种不适当的免疫反应,因为细胞因子与免疫细胞间的正回馈循环而产生。这也被认为是1918年流感大流行、2003年SARS事件、2009年H1N1流感大流行,以及H5N1高致病性禽流感中病毒致死的原因不过美国疾病控制与预防中心认为这一症状与H1N1之间的没有充分的证据可以展示其关联性。 症状为高烧、红肿、肿胀、极度疲倦与恶心。在某些情况下可能致命。治疗:当免疫系统对抗病原体时,细胞素会引导免疫细胞前往受感染处。同时,细胞素也会激活这些免疫细胞,被激活的免疫细胞则会产生更多的细胞素。通常来说,人体会检查并控制这个反馈循环。但是在有些情况下,情况会失控,导致一个地方聚集了太多被激活的免疫细胞。目前为止,还没有完全了解这一现象的具体成因,但是有推测认为可能是由于免疫系统对新的、高致病的病原体产生的过激反应。 细胞因子风暴有可能会对身体组织和器官产生严重的损伤,比如当其发生于肺部,过多的免疫细胞和组织液可能会在肺部积聚,阻塞空气进出,并导致死亡。 细胞因子风暴与各种感染性和非感染性疾病有关,甚至是治疗性干预尝试的不幸后果。已有研究证明其在移植物抗宿主病、多发性硬化症、胰腺炎或多器官功能障碍综合征中出现。随着研究的深入,对细胞因子风暴的细胞定位和分子机制有所了解,并有助于病毒性症状尤其是流行性感冒的治疗。 细胞因子是由细胞分泌出来用于细胞间信号传导和通信的多种小蛋白质,具有自分泌、旁分泌和/或内分泌活性,并且通过结合受体引发多种免疫应答。细胞因子的主要功能有控制细胞增殖和分化、血管发生、免疫、炎症反应的调节(表1)。 表一:与细胞因子风暴相关的因子主要类型及功能 类型功能 干扰素调节先天免疫,活化抗病毒性质,抗增殖作用。

国内动物干扰素的研究进展

近年来,随着病原菌新毒株、变异株的不断出现,我国动物疾病的防制面临严峻的挑战,目前的预防和治疗措施已经不能经济而有效地控制疫病的发展,尤其是病毒性疾病的危害日益严重,因此迫切需要一种有效的防治措施。 自1957年Isaacs和Lindenmann发现干扰素以来,干扰素已经显示出了极强的抗病毒、抗肿瘤以及免疫调节活性和应用前景。因而,干扰素的研究越来越受到人们的广泛关注。目前动物干扰素主要停留在基础研究和临床试验阶段,且大多数集中于猪、鸡、鱼等少数动物,但近年来也取得了不小的进步,目前已有商品化的猪、犬、鸡等重组干扰素产品面市。本文就近年来国内动物干扰素的研究进展综述如下。 一、概况 干扰素 IFN 是一类具有广泛生物学活性的蛋白质,具有调节机体免疫功能、抗病毒、抗肿瘤等多种作用,是机体防御系统的重要组成部分。IFN的抗病毒活性是通过宿主细胞而间接完成的,并具有严格的种属特异性及选择性。根据其来源和结构,IFN可分为α、β、γ三种类型,近年来,还发现了ω、τ等类型的干扰素。IFN—α主要由单核细胞产生;IFN—β主要由纤维母细胞产生,血管内皮细胞也可产生;IFN—γ由抗原及PHA等有丝分裂原刺激T细胞后产生,此外,NK细胞也可产生。IFN—τ是反刍动物孕体附植时滋养层细胞分泌的特有的妊娠识别信号因子,在妊娠识别中发挥着重要的作用。 IFN—α、IFN—β尽管结构不同,但有许多相似之处,它们来自同一个祖先基因,结合相同的细胞表面受体,并发挥相似的生物学效应,因而将它们一起划归为Ⅰ型干扰素。其中IFN—α是20个结构相关的分子量约为18kDa的多肽家族,每个由独立的基因编码;IFN—β是个单基因产物,是分子量20kDa的糖蛋白。IFN—γ属Ⅱ型干扰素,由大约21~24kDa的亚基组成的以同源双体形式存在的糖蛋白。IFN一γ对56℃、pH2和0.1%SDS敏感。 二、干扰素的生物学活性 干扰素在1957年被发现时,抗病毒活性被认为是其唯一特性,但随后研究发现干扰素除具有抗病毒增殖作用外,还有一系列其他生物学活性,如抗肿瘤、免疫调节作用等。大量研究表明,干扰素的生物学活性的发挥有赖于其诱导的多种效应蛋白质的合成。干扰素并不直接作为反式作用因子对其效应分子的基因组进行调控,而是通过受体介导的信号转导系统引发一系列特定的生化反应,最终达到效应分子的表达目的。此外,干扰素活性很高,并且其活性呈明显的多样性。现将其主要活性分述如下。 (一)Ⅰ型干扰素的主要生物学活性 抑制病毒复制,主要是通过诱导细胞合成多种酶 2’—5’寡聚腺苷酸合成酶等 和旁分泌作用。 抑制细胞的增殖 如肿瘤细胞等)。 加强NK细胞杀伤病毒感染细胞的能力(NK细胞具有干扰素受体 。 改变MHC分子的表达,增强MHCⅠ类分子的表达而抑制MHCⅡ类分子的表达。(二)Ⅱ型干扰素的主要生物学活性 IFN—γ抗病毒活性较Ⅰ型低,但它的免疫调节和抗细胞增殖的作用较强,所以又称免疫干扰素,它是一种强的巨噬细胞、NK细胞、血管内皮细胞活化剂,能激活巨噬细胞并促进其活性;能直接作用于T和B淋巴细胞,促进分化;能增强MHCⅠ类分子和MHCⅡ类分子的表达。

草鱼的营养需求研究进展(一).

草鱼的营养需求研究进展(一 艾春香 厦门大学海洋与环境学院福建省水产那料研究会 草鱼(Ctenopharyngodon idella Cuvieret Valenciennes是一种典型的草食性鱼类,食物链 短,为我国最主要的淡水养殖鱼类之一,其自然分布区主要是中国的内陆河流,北起东南亚 黑龙江,南至海南岛,延伸至泰国、越南。草鱼己被引种到世界各地,如日本、东南亚、东 欧、美国等国,以其营养丰富、肉味鲜美、生长快、饵料来源广、低成本的饲料消耗、销路 好等优点受到广泛欢迎。随着草鱼综合健康养殖技术的完善,单位产量有很大的提高,其中 最主要原因之一就是广泛使用了配合饲料。 关注草鱼饲料营养需求和营养生理,对缓释偏向养殖肉食性鱼类、动物性蛋白饲源吃紧 的窘况或许有所裨益。本文就草鱼营养需求研究进行简要综述,以期为完善草鱼配合饲料, 推进其无公害养殖生产健康发展提供基础资料。 1草鱼的营养需求 1.1蛋白质和氨基酸营养需求

蛋白质是维持草鱼新陈代谢、正常生长发育和繁殖的结构物质和主要的能源物质之一, 同时作为酶、激素、抗体等的组分参与机体的生理调节功能,也是饲料成本中花费最大的部 分,是配合饲料中首要考虑的因素。饲料中的蛋白质首先用于维持饲养动物的基础代谢,其 次才用于养殖动物的生长。有关草鱼蛋白质营养需求开展了较多的研究(见表1,结果表明, 草鱼对蛋白质的需要主要由蛋白质的品质决定,同时也受到其它因素,如鱼体大小、生理状 况、水温、池塘中天然食物的多少、养殖密度、日投饲量、饲料中非蛋白能量的数量等因素 的影响。 表1. 不同阶段草鱼对蛋白质的需求量 鱼体重(g 投饲率(% 蛋白质需求量(%饲料资料来源 7-15 2.0 41.7 陈茂松和刘辉男(1976 0.14~0.2 - 41~43 Dabrowski(1977 2.4~8.0 7.0 22.8~27.7 林鼎等(1980 1.9 3~4 48.26 廖朝兴等(1987 3.7 3~4 29.64 廖朝兴等(1987 10.0 3~4 28.20 廖朝兴等(1987

IL-12家族细胞因子研究进展

IL-12家族细胞因子研究进展 在广泛的细胞因子中,白介素IL-12家族具有独特的结构、功能和免疫学特征,在免疫学研究中具有重要作用。白介素IL-12家族成员由IL-12、IL-23、IL-27和IL-35组成。IL-12细胞因子主要以异二聚体形式存在,在微生物感染、自身免疫性疾病和癌症中发挥作用,本文对IL-12家族成员的一般特征、细胞因子与病原微生物之间的相互作用、相关受体及其选择不同信号通路的研究进展作了简短概述。尽管IL-12家族因子及其受体和下游信号成分具有许多结构相似性,但是它们的生物活性却不尽相同。IL-12家族成员之间有一些相似和不相似之处,使之成为先天免疫系统和适应性免疫系统之间独一无二的桥梁。白介素IL-12和IL-23在p40亚基中相似,是促炎细胞因子和前列腺细胞因子,分别在辅助T细胞的TH1和TH17亚型的发育中起关键作用。IL-27最初被认为是促炎细胞因子,但现在的共识是IL-27是免疫调节细胞因子。IL-35是该家族最近确定的成员,由胸腺来源的天然调节性T细胞(nTreg细胞)群体产生,属于有效的抑制性细胞因子。这就使得IL-12家族因子分成了两类:IL-12和IL-23是阳性调节因子,IL-27和IL-35是负调节因子。IL-12家族的生物活性表明它们在不同医学领域的应用具有辉煌的前景。IL-12家族的成员是几种治疗方法的候选者,包括基因治疗、癌症治疗、肿瘤治疗和疫苗接种。 白介素IL-12家族因子介导T细胞发育,属于异源二聚体糖蛋白,其中一个亚基是IL-6样蛋白,另一个是IL-6可溶性受体样蛋白,因此这类细胞因子也被称为IL-6/IL-12家族细胞因子。IL-12、IL-23和IL-27主要由活性的抗原呈递细胞(APC)产生,IL-35由活化和静止的调节T(Treg)细胞产生,包括胸腺起始的Treg(天然Treg细胞)和外周诱导的Treg (iTreg)细胞,调节B(Breg)细胞也可以低水平的产生IL-35。白介素IL-12家族因子都参与与CD4+Th细胞相关的细胞学和生理活动。IL-12和IL-23是Th1和Th17细胞活性的必需细胞因子。 白介素IL-12家族因子是由异源二聚体构成,即a链(p19、p28或p35)和b-链(p40或Ebi3)。a链具有IL-6家族所属的IL-6超家族的四螺旋束结构特征。相比之下,b链与细胞因子的I类受体链(如IL-6Ra)具有同源性。p40链可以与p35或p19配对以分别形成IL-12或IL-23,而Ebi3可以与p28或p35配对形成IL-27或IL-35,详见上图。受体链也被多种细胞因子使用(图1)。IL-12信号通过IL-12Rb1和IL-12Rb2,而IL-23信号通过IL-12Rb1和IL-23R。相比之下,IL-27使用IL6ST(GP130)和IL-27R,而IL-35通过

干扰素生物学特性及应用研究进展

干扰素生物学特性及应用研究进展 王斌斌1,2,王贵平2,李春玲2,莫内1 (1.内蒙古农业大学动物科学与医学学院,内蒙古呼和浩特010018;2.广东省农业科学院 兽医研究所,广东广州510640) 收稿日期:2007-01-22 干扰素(interferons,IFNs)是在一定的干扰素诱导剂作用下,由特定细胞的基因控制所产生 的,具有抗病毒、抗肿瘤和调节免疫等作用的一类高活性、多功能诱生糖蛋白[1]。由Isaacs和Lin-denmann于1957年在利用鸡胚绒毛尿囊研究流感病毒的干扰现象时发现并命名的。IFN的作用机制研究表明,它并非直接作为反式作用因子对其效应分子的基因组进行调控,而是借助受体介导的信号转导系统,引发一系列特异的生化反应而调控效应分子[2]。IFN通过诱生多种抗病毒蛋白,抑制病毒在细胞内的复制,以增强NK细胞活性及其他免疫调节作用,有效地遏制病毒侵袭和感染的发生,抑制肿瘤细胞生长,清除早期恶变细胞。由于IFN具有广谱、高效抗病毒功能,且对免疫系统起关键调节作用,因此成为当今免疫学、遗传学和分子生物学研究最为活跃的领域之一。在兽医临床上,IFN已广泛应用于多种疾病的预防和治疗。 1干扰素的分类 国际最新分类标准,按IFN与受体结合的原则 将其分为TypeⅠ、TypeⅡ、TypeⅢ三大类型[3]。TypeⅠ干扰素按其与抗体结合的抗原性不同又可分为α、β、γ、τ、ω等。与TypeI受体相结合的IFN中,IFN-β、γ、τ、ω等的抗原性与IFN-α不同,且本身只有一种,没有亚型或亚亚型。IFN-α又分13种以上亚型,如IFNα-1、2、3等,还有亚亚型,如IFNα-la、1b、1c、1d以及IFNα-2a、IF-Nα-2b、IFNα-2c等。TypeⅡ干扰素只有一种,即IFN-γ。TypeⅢ干扰素目前有三种亚型,分别为IFN-λ1、IFN-λ2和IFN-λ3。根据制备方法的不 同分为天然干扰素和基因工程重组干扰素。目前对IFN-α、β、γ生物学功能和作用机理的研究报道较多。IFN的来源因哺乳动物种类、细胞类型、诱生剂的性质及诱生条件而异。人IFN-α来自白细胞,人IFN-β来自纤维细胞,均具有抗酸特性,主要参与抗病毒、抗肿瘤作用。其中,IFN-α抗病毒作用最强。IFN-γ来自人淋巴细胞,对酸性敏感,具有抑制病毒复制调节作用,但其抗病毒作用比TypeⅠ干扰素弱,主要参与诱导主要组织相容性抗原(MHC)的表达和免疫调节效应,也称为免疫干扰素。 2干扰素的生物学特性 2.1免疫调节作用IFN在临床上,常作为免疫调节剂使用[1]。IFN可增强IgG的Fc受体表达,从而有利于巨噬细胞(MΦ)对抗原的吞噬,有利于K细胞、NK细胞对靶细胞的杀伤及对T、B淋巴细胞的激活。因此,IFN可提高机体的免疫应答能力。TypeⅠ干扰素是天然免疫和获得性免疫的桥梁,可激活NK细胞的细胞毒性并促进其增殖调节机体免疫。TypeⅡ干扰素不但有激活NK细胞的功能,而且能抑制B细胞分泌IgE,从而避免因IgE水平过高而发生Ⅰ型超敏反应,还能恢复抑制性T细胞的功能,减少免疫复合物的局部沉积,抑制Ⅲ型超敏反应的发生[4]。 在促进免疫调节方面,研究最多的是IFN-γ。IFN-γ主要通过参与辅助性T淋巴细胞(Th细胞)向Th1型分化来调节免疫应答。Kim[5]以IFN-γ质粒分别与人类免疫缺陷病毒(HIV)env/rev、猪流感病毒(SIV)gag/polDNA疫苗共同免疫猕猴,结 摘要:干扰素(IFN)是一类具有广泛生物学活性的糖蛋白,它具有调节机体免疫功能、抗病毒、抗寄生虫、抗肿瘤以及对妊娠的识别和维持作用等多种作用,是机体防御系统的重要组成部分。本文概述了 IFN的分类与命名、生物学特性及其在兽医临床上的应用进展。 关键词:干扰素;生物学特性;进展 中图分类号:S814.8 文献标识码:A 文章编号:1005-8567(2007)03-0013-03 广东畜牧兽医科技2007年(第32卷)第3期专题综述 13??

脂肪细胞因子的研究进展综述

脂肪细胞因子的研究进展综述 【摘要】脂肪组织不仅仅是一个储存能量的场所.而且也是一个重要的内分泌组织。脂肪组织细胞能分泌具有活性的激素和因子,如脂联素(Adiponectin)、网膜素(Omentin)、内脂素(Visfatin)等。【Abstract】Adipose tissue is not just a place to store energy. It is also an important endocrinetissue. Adipose tissue cells can secrete hormones and bioactive factors, such asadiponectin (Adiponectin), retinal pigment (Oment in), visfatin (Visfatin), etc. 【关键词】脂肪组织细胞因子生理作用相关性 【前言】长期以来.人们认为脂肪组织仅仅是一个储存脂质的“仓库”,在外界的刺激下被动地贮存和释放能量。1994年,脂肪瘦素(Leptin)的发现使人们认识到脂肪组织是一个主动参与能量代谢平衡的组织。越来越多的研究结果表明,脂肪组织不仅仅是一个储存能量的场所.而且也是一个重要的内分泌组织。脂肪组织细胞能分泌具有活性

的激素和因子,如脂联素(Adiponectin)、网膜素(Omentin)、内脂素(Visfatin)等。 本文对脂肪细胞因子的种类和某些脂肪因子的生物作用做一综述。 【正文】 一.脂肪细胞因子Omentin1【1】 网膜素(omentin) 最新发现的一种由网膜脂肪组织分泌的蛋白质,即特异性表达于网膜脂肪组织的细胞因子,其基因位于染色体lq22—23。它可以促进脂肪细胞胰岛素介导的葡萄糖摄取作用,并促进胰岛素受体后信号通路中的Akt磷酸化,从而提高脂肪细胞的胰岛素敏感性。 Omentin具有如下生理作用: 1.1 促进葡萄糖的转运 Omentin促进人类脂肪细胞葡萄糖转运,用人类离体的脂肪细胞以检测Omentin对胰岛素刺激的葡萄糖转运作用。结果300mg/L 的Omentin对基础状态下皮下脂肪细胞的葡萄糖转运没有影响,却显著提高了胰岛素刺激下的葡萄糖转运。

鱼类饲料适宜蛋白能量比研究进展

饲料博览2018年第10期Research Advances on the Optimal Dietary Protein-energy Ratio of Fish GAO Liuling,PAN Qing * (School of Marine Science,South China Agricultural University,Guangzhou 510642,China ) Abstract:The appropriate protein to energy ratio in fish feed is an important content of nutrition and feed,which is helpful for utilizing energy and protein,improving feed efficiency,saving feed cost as well as enhancing immune function,and meat quality in fish.In this paper,the research methods of dietary protein-energy ratio,its effects on physiology and growth of fish and the influence factors on protien to energy ratio were reviewed,and the development of suitable dietary protein to energy ratio was prospected.Key words:fish;dietary;protein-energy ratio;influence factors 鱼类饲料适宜蛋白能量比研究进展 高柳玲,潘庆* (华南农业大学海洋学院,广州510642) 收稿日期:2018-08-09 作者简介:高柳玲(1990-),女,广西梧州人,硕士研究生,研究方向为水产经济动物营养与饲料。*通讯作者 摘要:鱼类饲料中适宜的蛋白能量比是营养与饲料研究的重要内容,适宜的蛋白能量比既有利于鱼类对 饲料中能量与蛋白质的利用,提高饲料的效率,节约饲料成本,又利于增强免疫机能和抗病力,提高肉质品质。文章综述了饲料蛋白能量比的研究方法、对鱼类生理生长的影响及影响饲料蛋能比的因素等,并对鱼类饲料蛋能比发展作以展望。 关键词:鱼类;饲料;蛋白能量比;影响因素 中图分类号:S963;S963.3文献标志码:A 文章编号:1001-0084(2018)10-0016-06 饲料中蛋白质和能量的比例影响鱼类的摄食、 生长性能、体成分组成、饲料效率、成活率及肉品 质等。蛋白质因其在饲料成本中占比最大,常作为 第一重要的营养素被关注。能量是鱼类生长、发 育、繁殖、活动的第一需要,也是鱼类饲料定量的 基础。饲料蛋白能量水平不适宜,会抑制鱼类生 长,降低生存和繁殖能力,还会增加养殖成本,污 染养殖水体环境。当饲料能量相对蛋白含量不足 时,饲料蛋白质会被转化为能量维持鱼的生存而不是用于生长,浪费了宝贵的饲料蛋白质;反之,饲料能量过高会降低鱼的摄食量,减少最佳生长所必需的蛋白质和其他营养物质的摄入,影响生长或造成体脂大量积累,导致过度肥胖,影响食用价值[1]。当能量需求满足时,过高的蛋白质会抑制鱼类生长,限制其他营养素的消化吸收,增加氨氮排放,加剧养殖水环境污染[2]。保持平衡的饲料蛋白能量比,常需要配合适量的脂肪和糖类,以提高蛋白质的利用率,起到蛋白质节约效应[3-5]。饲料中蛋白能量比的优化,是开发环保、高效配合饲料的重要考量因素。本文综述了鱼类 动物营养Animal Nutrition 16

相关文档
最新文档