碳纳米管纳米复合材料的研究现状及问题

合集下载

碳纳米材料 国家相关政策

碳纳米材料 国家相关政策

碳纳米材料国家相关政策碳纳米材料国家相关政策应由本人根据自身实际情况书写,以下仅供参考,请您根据自身实际情况撰写。

碳纳米材料是一种新型的先进材料,具有高强度、轻质化、高导电性等特点,被广泛应用于能源、交通、生物医学等多个领域。

为了推动碳纳米材料产业的发展,我国政府制定了一系列相关的政策和措施。

本文将从以下几个方面进行详细分析:一、碳纳米材料的定义和特点碳纳米材料是指由碳原子组成的纳米级材料,具有独特的物理化学性质和力学性能。

与传统材料相比,碳纳米材料具有更高的比表面积、更强的吸附能力和导电性等优点,可以应用于多个领域。

二、碳纳米材料的应用领域1. 能源领域:碳纳米材料具有高热导率和低密度等特点,可以用于制造高效能电池、燃料电池等新能源产品。

此外,碳纳米管还可以作为电极材料,提高电池的能量密度和稳定性。

2. 交通领域:碳纳米材料具有轻质化和耐腐蚀等特点,可以用于制造汽车部件、飞机零部件等产品。

例如,碳纳米管复合材料可以用于制造汽车的车身、车顶等部位,减轻重量并提高强度。

3. 生物医学领域:碳纳米材料具有良好的生物相容性和抗菌性能,可以用于制造医疗器械和生物医药产品。

例如,碳纳米管可以被用作药物缓释剂或手术缝合线等医疗用品的材料,具有更好的治疗效果。

三、碳纳米材料的产业发展现状及趋势近年来,随着全球对环保和可持续发展的重视,以及新能源汽车等行业的发展,碳纳米材料产业得到了迅猛发展。

我国政府也加大了对碳纳米材料的支持力度,出台了一系列政策和措施来促进其发展和应用。

目前,国内已经有多家企业涉足碳纳米材料行业,并且取得了不错的进展。

未来,随着技术的不断进步和应用领域的不断拓展,碳纳米材料产业将迎来更加广阔的市场前景和发展空间。

四、总结和建议总之,碳纳米材料作为一种新型的先进材料,具有广泛的应用前景和巨大的市场潜力。

为了推动其产业的发展和应用,建议政府部门和企业加强合作,共同推进技术研发和创新应用。

同时,政府部门还应加强对碳纳米材料的监管和管理,确保其在生产和使用过程中的安全和环保问题。

纳米复合材料的发展现状及展望

纳米复合材料的发展现状及展望

纳米复合材料的开展现状及展望纳米材料是物质以纳米构造按一定方式组装成的体系,以下是的一篇探究纳米复合材料开展现状的,供大家阅读参考。

:从纳米技术的角度论述了非金属粘土矿物——蒙脱石制备聚合物基纳米复合材料的开展现状和开展前景,并预测了聚苯乙烯纳米复合材料可能开展的新领域。

纳米是长度单位(Nanometer,nm),原称“毫微米”,1 nm=10-9 m,即十亿分之一米,一只乒乓球放在地球上就相当于将一纳米直径的小球放在一只乒乓球上。

纳米粒子通常是指尺寸在1 nm~100 nm之间的粒子。

纳米效应为实际应用开拓了广泛的新领域。

利用纳米粒子的熔点低,可采取粉末冶金的新工艺。

调节颗粒的尺寸,可制造具有一定频宽的微波吸收纳米材料,用于电磁波屏蔽、隐形飞机等。

纳米银与普通银的性质完全不同,普通银为导体,而粒径小于20 nm的纳米银却是绝缘体。

金属铂是银白色金属,俗称白金;而纳米级金属铂是黑色的,俗称为铂黑。

纳米粒子具有很高的活性,例如木屑、面粉、纤维等粒子假设小到纳米级的范围时,一遇火种极易引起爆炸。

纳米粒子是热力学不稳定系统,易于自发地凝聚以降低其外表能,因此对已制备好的纳米粒子,如果久置那么需设法保护,例如保存在惰性空气中或其他稳定的介质中以防止凝聚。

纳米材料是物质以纳米构造按一定方式组装成的体系。

它是纳米科技开展的重要根底,也是纳米科技最为重要的研究对象。

纳米技术被公认为21世纪最具有开展前途的科学之一,纳米材料也被人们誉为21世纪最有前途的材料。

由于纳米材料本身所具有的特殊性能,使其能够广泛应用于化工、纺织、军事、医学等各个领域。

本文阐述了蒙脱石/高聚物纳米复合材料的研究进展,并对其开展前景加以展望,期望对其深层次的加工应用有所帮助。

纳米材料有多种分类方式,按其维数可分为:零维的纳米颗粒和原子团簇,一维的纳米线、纳米棒和纳米管,二维的纳米膜、纳米涂层和超晶格等;按化学成分可分为:纳米金属,纳米晶体,纳米陶瓷,纳米玻璃以及纳米高分子等;按材料物性可分为:纳米半导体材料,纳米磁性材料,纳米非线性光学材料,纳米铁磁体材料,纳米超导体材料,以及纳米热电材料等;按应用可分为:纳米电子材料,纳米光电子材料,纳米生物医用材料,纳米敏感材料,以及纳米储能材料等;按照材料的几何形状特征,可以把纳米材料分为:①纳米颗粒与粉体;②碳纳米管与一维纳米线;③纳米带材;④纳米薄膜;⑤中孔材料(如多孔碳、分子筛);⑥纳米构造材料;⑦有机分子材料。

钛基体上碳纳米管的原位合成及其复合材料的制备与性能研究

钛基体上碳纳米管的原位合成及其复合材料的制备与性能研究

钛基体上碳纳米管的原位合成及其复合材料的制备与性能研究Preparation and Properties Research of Titanium matrix composite reinforced with in-situ synthesized CNTs学科专业:材料学研究生:雷红指导教师:赵乃勤教授天津大学材料科学与工程学院二零一三年十二月独创性声明本人声明所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究成果,除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得天津大学或其他教育机构的学位或证书而使用过的材料。

与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

学位论文作者签名:签字日期:年月日学位论文版权使用授权书本学位论文作者完全了解天津大学有关保留、使用学位论文的规定。

特授权天津大学可以将学位论文的全部或部分内容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。

同意学校向国家有关部门或机构送交论文的复印件和磁盘。

(保密的学位论文在解密后适用本授权说明)学位论文作者签名:导师签名:签字日期:年月日签字日期:年月日摘要钛基复合材料具有低密度、高比强度、良好耐蚀性以及高温性能等优点,成为最具潜力的新一代航空航天用结构材料之一。

碳纳米管(CNTs)具有高比强度、高比模量以及优异的综合性能,被认为是金属基复合材料最理想的增强相。

要使CNTs的优异性能在复合材料中得到充分发挥,关键要实现其在金属基体上的均匀分散,与基体形成良好的界面结合,并避免材料成形过程中CNTs与基体的反应。

因此,探索CNTs/Ti复合材料新的制备方法,对于发展钛基复合材料在航空航天领域的应用具有重要的理论意义和实用价值。

本论文采用化学气相沉积法在钛基体表面原位合成均匀分散的CNTs,研究了催化剂与碳源种类、合成温度、合成时间、碳源气体与载气比例对合成的CNTs 结构、分布以及产率的影响,并探讨了CNTs的生长机理。

碳纳米管的力学性能研究

碳纳米管的力学性能研究

碳纳米管的力学性能研究碳纳米管是石墨烯卷曲而成的空心圆柱体,具有许多优异的力学性能,因此在纳米科技领域备受关注。

本文将就碳纳米管的力学性能进行研究和讨论。

第一部分:碳纳米管的力学性质1. 碳纳米管的弯曲强度:研究表明,碳纳米管的弯曲强度非常高,可以承受较大的外力而不易断裂。

这得益于其高度结晶的晶格结构以及碳原子之间的强键结合。

2. 碳纳米管的拉伸强度:碳纳米管的拉伸强度也是其重要的力学性能之一。

实验研究发现,碳纳米管的拉伸强度可以达到数百至数千GPa,高于大多数其他材料的强度值。

3. 碳纳米管的弹性模量:碳纳米管的弹性模量决定了其在变形时的回复能力。

理论计算表明,碳纳米管的弹性模量可以超过1 TPa,远高于传统材料如钢铁和铝。

第二部分:碳纳米管的应用1. 碳纳米管在纳米机械领域的应用:碳纳米管的优异力学性能使其成为纳米机械领域中的理想候选材料。

例如,在纳米机器人的制造中,碳纳米管可以用作结构支撑,以确保纳米机器人的强度和稳定性。

2. 碳纳米管在强化复合材料中的应用:由于碳纳米管具有优异的强度和刚度,它可以用来增强传统的复合材料,如玻璃纤维和聚合物基复合材料。

这样的复合材料在航空航天和汽车制造等领域有广泛的应用。

3. 碳纳米管在生物医学领域的应用:碳纳米管还可以用于生物医学领域。

其高度结晶的结构和生物相容性使其成为药物传输和组织工程等方面的理想材料。

第三部分:碳纳米管的挑战和未来发展1. 残余应力:在制备碳纳米管过程中,由于温度和压力的影响,碳纳米管内部常常存在残余应力。

这种残余应力可能导致碳纳米管的力学性能下降,因此需要进一步研究和解决。

2. 大规模制备:目前,碳纳米管的大规模制备仍然面临挑战。

高成本和制备工艺的复杂性限制了碳纳米管的广泛应用。

随着技术的进步和研究的深入,相信碳纳米管在未来的应用领域中将会有更大的突破和发展。

我们可以期待碳纳米管的力学性能研究为纳米科技和材料科学领域带来更多的创新和应用。

碳纳米管毒性与安全研究

碳纳米管毒性与安全研究

碳纳米管毒性与安全研究近年来,碳纳米管作为一种新型材料,因其特殊的物理、化学、电学和机械性能,广受科学家们的关注。

碳纳米管具有优异的机械强度、导电性和导热性等优良特性,广泛被应用于材料、生物、能源等领域。

然而,碳纳米管毒性和安全问题一直备受关注。

例如,在药物输送和生物医学领域,随着越来越多的研究表明,碳纳米管具有潜在的毒性和发展可能。

碳纳米管内在的毒性与生物学效应的机制一直是科学家们难以解决的问题。

与其他纳米材料不同,碳纳米管的特殊结构和表面性质导致其与生物系统的相互作用非常复杂。

因此,需要深入研究其毒性和安全性,以促进其应用的可持续和安全发展。

一、碳纳米管的种类及其应用碳纳米管是由碳原子组成的纳米管状结构体,分为单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs)两种,其直径分别约为1~2 nm和5~30 nm,而长度可达数百微米至数厘米。

碳纳米管具有优良的电、热、机械性能和表面化学反应活性,是一种非常有应用前景的材料。

碳纳米管在材料科学和纳米科技方面具有潜在的应用。

其使用领域包括电子、机械、生物、医学、环境、能源等多个方面。

例如,碳纳米管可以用于高强度、高刚度、低密度的复合材料中,这些复合材料可用于航空、运载和微型机器人等领域。

此外,碳纳米管还可以进行化学修饰,并与药物分子或生物分子结合,以用于药物输送和生物医学应用。

二、碳纳米管毒性的评价方法毒性评价是研究碳纳米管毒性和安全性的基础。

毒性评价是在低浓度下测试的方法,该方法可以通过实验、建模或聚合方法确定材料和生物体之间的相互作用。

特别是在生物医学领域,毒性评价非常重要,因为健康风险可能存在于短期或长期的曝露中。

现有的毒性评价方法可以分为体内和体外方法。

体外方法可以帮助了解材料与细胞和生物分子的相互作用,但缺乏对整个机体反应的理解。

体内评价方法可以模拟整个机体中的生物作用和代谢途径,包括动物模型、体育试验和临床研究。

然而,由于其局限性,没有一种单一的方法可以完全解决毒性评价的问题。

碳纳米管在复合材料中的应用

碳纳米管在复合材料中的应用

碳纳米管在复合材料中的应用碳纳米管,听起来是不是像个高大上的科技名词?其实它的用途可真不少,而且在复合材料中,它简直就是个“神奇的小帮手”。

要是你了解了它的“背景”,你会觉得它根本不是个什么遥不可及的东西,反而是“未来科技”的一个贴心小伙伴。

简单来说,碳纳米管是一种由碳原子按特定方式排列成的管状结构,直径只有几纳米,但强度却高得惊人,甚至比钢铁还要强大。

你可别小看它这么细小的身材,正是这种“袖珍”让它能在复合材料中展现出不一样的魔力。

先说说碳纳米管是如何在复合材料中大显身手的吧。

大家都知道,复合材料就是把两种或两种以上的材料“结婚”在一起,目的就是取长补短,达到1+1大于2的效果。

而碳纳米管作为一种“超级增强剂”,正好能填补传统材料的不足,让复合材料变得更加坚固、更耐用,甚至能让它们更轻便。

你想象一下,一个轻得像羽毛的材料,里面藏着像钢铁一样坚硬的成分,拿在手上,不仅结实,而且让人觉得轻松又不费劲,这就是碳纳米管在复合材料中能做出的贡献。

不仅如此,碳纳米管的“火力”还不仅限于提升强度,它还能改善材料的电导性和热导性。

想象一下,如果你把它加入到复合材料中,材料的电导性和热导性就像打了鸡血一样,瞬间变得更强。

这对于一些电子设备来说,那可是天大的好事。

比如,电池、导电线材、甚至一些特殊的传感器,靠碳纳米管的加入,不仅提高了性能,还能让这些设备变得更加耐用。

别看它个头小,作用可大着呢!说到这里,可能你会问了:“那是不是碳纳米管就万能了?”答案当然是“不是”。

虽然它很强大,但在复合材料中的应用也有一定的挑战。

比如说,碳纳米管在复合材料中分散不均匀的话,可能就不能发挥它该有的效果。

想象一下,碳纳米管就像是一个个小小的精英士兵,如果它们没有被很好地安排到每个角落,那材料的整体性能就会大打折扣。

碳纳米管的制造过程也不简单,它们得在精密的条件下生产出来,不然质量差的碳纳米管可能还会给复合材料“添乱”,甚至影响材料的稳定性。

碳纳米管增强复合材料的研究进展

碳纳米管增强复合材料的研究进展

为定 向和 非 定 向 两 类 。根 据 C s截 面 的边 缘 形 状 , 壁 NT 单
C Ts 分 为 单 臂 C s锯 齿 形 C s 手性 形 C T,如 图 1 N 又 NT 、 NT 和 N  ̄ ,
所示 。这些类型 C s的形成取决于 由六边形 碳环 构成 的石墨 NT 片是如何卷起形成 圆筒 。不 同的卷 曲方向和角度将 会得 到不 同 类型 的 C NTs t 。
Ke r s y wo d
CNTs sr c u e p o e t ,o o i s ,tu tr , r p ry c mp st e
1 8 , oo和 S l y1发 现 了一 种 直径 仅 为 0 7 m 9 5年 Krt mal  ̄ e = .n 的球状分子 , 被称 为 C 0 亦称富 勒烯 (ul ee 。这 是继 石墨 6, fl rn ) e 和金刚石之后 , 的另一 种同素异 形体 。随后 , 碳 日本 NE C公 司 的 S mi Ii C 在合成 C O中, 次利 用 电子显 微镜 发现 了 u o ima ] .j 6 首 C Ts C r n n n tb s , N ( ab aou e ) 又称 巴 基 管 ( uku e 。1 9 o B c tb ) 9 2年
关 键 词 C T 结构 性 能 复合材料 N s 文献标识码 : A 中 图 分 类 号 : B 2 T 33
Re e r h a d De eo me to r o n t b sRen o c d Co o ie s a c n v lp n fCa b n Na o u e i f r e mp sts
E bs b en等[ 提 出了实 验 室规 模 合成 C 3 NTs的方 法 , 进 了对 促 C Ts N 的进一步研究 。C Ts N 凭借其独特 的拓扑结构 , 以及 比强

碳纳米管技术的应用前景

碳纳米管技术的应用前景

碳纳米管技术的应用前景碳纳米管(CNTs)是由碳原子以六角形排列构成的管状结构,具有强度高、导电性好、导热性好等特点。

近年来,碳纳米管技术在众多领域中迅速发展,成为各个行业的研究热点。

本文将分别从电子信息领域、材料学、生物医学领域、环保等方面论述碳纳米管技术的应用前景。

电子信息领域碳纳米管的导电和导热性能优异,因此将其应用于电子信息领域具有广泛的前景。

在电子显示器材料方面,碳纳米管与传统材料相比有许多优点,如尺寸小、自发发光、低成本、优异的穿透性能等,可以应用于柔性显示器、照明等。

在微处理器方面,碳纳米管的输电性能优异,可以提高微处理器的工作速度。

此外,由于碳纳米管的晶体结构完整、表面光洁度高,可用于高速电路和高灵敏度探测器制造中。

材料学领域碳纳米管的强度高、导电性好、导热性好等特性使其成为理想的增强材料。

与金属材料相比,碳纳米管具有很高的强度和韧性,这些特点使得它可以被用于增强复合材料中。

在材料强化方面,碳纳米管能够使纳米复合材料的强度和硬度增加3-5倍。

在纤维强化方面,碳纳米管的高强度和轻质化使得其成为理想的材料用于制造坦克、机器人等。

生物医学领域碳纳米管在生物医学领域中的应用具有广泛的前景。

首先,碳纳米管可以作为载药系统,将药物包装在管内,在经过单一的SWCNT进口与出口后释放药物。

其次,碳纳米管可以被用于制造生物传感器,它能够快速准确地检测DNA、蛋白质等生物分子。

此外,碳纳米管还显示出很高的生物相容性,可以用于人体放射性分层检测、X光治疗以及水分子传输等。

环保领域碳纳米管在环保领域中的应用前景也十分广泛。

碳纳米管可以被用于制造高效催化剂,在水净化和空气净化方面具有广泛的应用前景。

另外,碳纳米管还可以被用于制造高活性炭,用于水处理和处理废气,维持生态平衡。

结语总之,碳纳米管技术的应用前景正在不断扩大,且其具有广泛的研究价值。

虽然我们在使用碳纳米管技术时还需要克服一些困难,如制备成本、稳定性和生产规模等问题,但相信在未来,随着更多研究的进行,这些问题将会得到解决,碳纳米管将成为未来众多领域的科技主导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

——文章来源网,仅供分享学习参考 1 碳纳米管纳米复合材料的研究现状及问题 [摘 要]文章介绍了碳纳米管的结构和性能,综述了碳纳米管/聚合物复合材料的制备方法及其聚合物结构复合材料和聚合物功能复合材料中的应用研究情况,在此基础上,分析了碳纳米管在复合材料制备过程中的纯化、分散、损伤和界面等问题,并展望了今后碳纳米管/聚合物复合材料的发展趋势。

[关键词]碳纳米管;复合材料;结构;性能 自从 1991 年日本筑波 NEC 实验室的物理学家饭岛澄男(Sumio Iijima)[1]首次报道了碳纳米管以来,其独特的原子结构与性能引起了科学工作者的极大兴趣。按石墨层数的不同碳纳米管可以 分 为单壁碳 纳 米管(SWNTs) 和多壁碳 纳 米管(MWNTs)。碳纳米管具有极高的比表面积、力学性能(碳纳米管理论上的轴向弹性模量与抗张强度分别为 1~2 TPa 和 200Gpa)、卓越的热性能与电性能(碳纳米管在真空下的耐热温度可达 2800 ℃,导热率是金刚石的 2 倍,电子载流容量是铜导线的 1000 倍)[2-7]。碳纳米管的这些特性使其在复合材料领域成为理想的填料。聚合物容易加工并可制造成结构复杂的构件,采用传统的加工方法即可将聚合物/碳纳米管复合材料加工及制造成结构复杂的构件,并且在加工过程中不会破坏碳纳米管的结构,从而降低生产成本。因此,聚合物/碳纳米管复合材料被广泛地研究。

根据不同的应用目的,聚合物/碳纳米管复合材料可相应地分为结构复合材料和功能复合材料两大类。近几年,人们已经制备了各种各样的聚合物/碳纳米管复合材料,并对所制备的复合材料的力学性能、电性能、热性能、光性能等其它各种性能进行了广泛地研究,对这些研究结果分析表明:聚合物/碳纳米管复合材料的性能取决于多种因素,如碳纳米管的类型(单壁碳纳米管或多壁碳纳米管),形态和结构(直径、长度和手性)等。文章主要对聚合物/碳纳米管复合材料的研究现状进行综述,并对其所面临的挑战进行讨论。 ——文章来源网,仅供分享学习参考 2

1 聚合物/碳纳米管复合材料的制备 聚合物/碳纳米管复合材料的制备方法主要有三种:液相共混、固相共融和原位聚合方法,其中以共混法较为普遍。

1.1 溶液共混复合法 溶液法是利用机械搅拌、磁力搅拌或高能超声将团聚的碳纳米管剥离开来,均匀分散在聚合物溶液中,再将多余的溶剂除去后即可获得聚合物/碳纳米管复合材料。这种方法的优点是操作简单、方便快捷,主要用来制备膜材料。Xu et al[8]和Lau et al.[9]采用这种方法制备了CNT/环氧树脂复合材料,并报道了复合材料的性能。除了环氧树脂,其它聚合物(如聚苯乙烯、聚乙烯醇和聚氯乙烯等)也可采用这种方法制备复合材料。

1.2 熔融共混复合法 熔融共混法是通过转子施加的剪切力将碳纳米管分散在聚合物熔体中。这种方法尤其适用于制备热塑性聚合物/碳纳米管复合材料。该方法的优点主要是可以避免溶剂或表面活性剂对复合材料的污染,复合物没有发现断裂和破损,但仅适用于耐高温、不易分解的聚合物中。Jin et al.[10]采用这种方法制备了 PMMA/ MWNT 复合材料,并研究其性能。结果表明碳纳米管均匀分散在聚合物基体中,没有明显的损坏。复合材料的储能模量显著提高。

1.3 原位复合法 将碳纳米管分散在聚合物单体,加入引发剂,引发单体原位聚合生成高分子,得到聚合物/碳纳米管复合材料。这种方法被认为是提高碳纳米管分散及加强其与聚合物基体相互作用的最行之有效的方法。Jia et al.[11]采用原位聚合法制备 ——文章来源网,仅供分享学习参考 3

了PMMA/SWNT 复合材料。结果表明碳纳米管与聚合物基体间存在强烈代写论文的黏结作用。这主要是因为 AIBN 在引发过程中打开碳纳米管的 π 键使之参与到 PMMA 的聚合反应中。采用经表面修饰的碳纳米管制备 PMMA/碳纳米管复合材料,不但可以提高碳纳米管在聚合物基体中的分散比例,复合材料的机械力学性能也可得到巨大的提高。

2 聚合物/碳纳米管复合材料的研究现状 2.1 聚合物/碳纳米管结构复合材料 碳纳米管因其超乎寻常的强度和刚度而被认为是制备新一代高性能结构复合材料的理想填料。近几年,科研人员针对聚合物/碳纳米管复合材料的机械力学性能展开了多方面的研究,其中,最令人印象深刻的是随着碳纳米管的加入,复合材料的弹性模量、抗张强度及断裂韧性的提高。

提高聚合物机械性能的主要问题是它们在聚合物基体内必须有良好的分散和分布,并增加它们与聚合物链的相互作用。通过优化加工条件和碳纳米管的表面化学性质,少许的添加量已经能够使性能获得显著的提升。预计在定向结构(如薄膜和纤维)中的效率最高,足以让其轴向性能发挥到极致。在连续纤维中的添加量,单壁碳纳米管已经达到 60 %以上,而且测定出的韧度相当突出。另外,只添加了少量多壁或单壁纳米管的工程纤维,其强度呈现出了较大的提升。普通纤维的直径仅有几微米,因此只能用纳米尺度的添加剂来对其进行增强。孙艳妮等[12]将碳纳米管羧化处理后再与高密度聚乙烯(HDPE)复合,采用熔融共混法制备了碳纳米管/高密度聚乙烯复合材料,并对其力学性能进行了研究。结果表明:碳纳米管的加入,提高了复合材料的屈服强度和拉伸模量,但同时却降低了材料的断裂强度和断裂伸长率。Liu 等[13]采用熔融混合法制得了 MWNT/PA6(尼龙 6)复合材料,结果表明,CNTs 在 PA6基体中得到了非常均匀的分散,且 CNTs 和聚合物基体间有非常强的界面粘接作用,加入 2 wt%(质量分数)的 MWNTs 时,PA6 的弹性模量和屈服强度分别提高了 214 %和 162 %。总之,碳纳米管对复合 ——文章来源网,仅供分享学习参考 4

材料的机械性能的影响,在很大程度上取决于其质量分数、分散状况以及碳纳米管与基质之间的相互作用。其他因素,比如碳纳米管在复合材料中的取向,纤维在片层中的取向,以及官能团对碳纳米管表面改性的不均匀性,也可能有助于改善复合材料的最终机械性能。

2.2 聚合物/碳纳米管功能复合材料 2.2.1 导电复合材料 聚合物/碳纳米管导电复合材料是静电喷涂、静电消除、磁盘制造及洁净空间等领域的理想材料。GE 公司[14]用碳纳米管制备导电复合材料,碳纳米管质量分数为 10 %的各种工程塑料如聚碳酸酯、聚酰胺和聚苯醚等的导电率均比用炭黑和金属纤维作填料时高,这种导电复合材料既有抗冲击的韧性,又方便操作,在汽车车体上得到广泛应用。LNP 公司成功制备了静电消散材料,即在 PEEK 和 PEI 中添加碳纳米管,用以生产晶片盒和磁盘驱动元件。它的离子污染比碳纤维材料要低65 %~90 %。日本三菱化学公司也成功地用直接分散法生产出了含少量碳纳米管的 PC 复合材料,其表面极光洁,物理性能优异,是理想的抗静电材料[15]。另外,聚合物/碳纳米管导电复合材料的电阻可以随外力的变化而实现通-断动作,可用于压力传感器以及触摸控制开关[16];利用该材料的电阻对各种化学气体的性质和浓度的敏感性,可制成各种气敏探测器,对各种气体及其混合物进行分类,或定量化检测和监控[17];利用该材料的正温度效应,即当温度升至结晶聚合物熔点附近时,电阻迅速增大几个数量级,而当温度降回室温后,电阻值又回复至初始值,可应用于电路中自动调节输出功率,实现温度自控开关[18]。

2.2.2 导热复合材料 许多研究工作证明,碳纳米管是迄今为止人们所知的最好的导热材料。科学工作者预测,单壁碳纳米管在室温下的导热系数可高达 6600 W/mK[19],而经分离后 ——文章来源网,仅供分享学习参考 5

的多壁碳纳米管在室温下的导热系数是 3000~6600 W/mK。由此可以想象,碳纳米管可显著提高复合材料的导热系数及在高温下的热稳定性[20]。Wu 等[21]制 备 了 多 壁 碳 纳 米 管 / 高 密 度 聚 乙 烯(MWNTs/HDPE)复合材料,并对其热性能进行了深入的研究,实验结果表明:导热系数随着 MWNTs 含量的增加而升高。当MWNTs 的质量分数达到 38 h,混合材料的导热系数比纯HDPE 的高三倍多。徐化明等[22]采用原位聚合法制备的阵列碳纳米管/聚甲基丙烯酸甲酯纳米复合材料,在氮气和空气气氛下,复合材料的热分解温度比基体材料分别提高了约 100 和60 ℃。在导热性能上,阵列碳纳米管的加人使得复合材料的导热系数达到 3.0 W/mK,比纯 PMMA 提高了将近 13 倍。

2.2.3 其它功能复合材料 在碳纳米管/聚合物功能复合材料方面最近有南昌大学纳米技术工程研究中心[23]研制的一种多壁碳纳米管/环氧树脂吸波隐身复合材料。通过对多壁碳纳米管进行高温 NaOH 处理,使碳管在其表面产生较多的孔洞,提高碳纳米管的表面活性;制备的吸波隐身复合材料具有良好的雷达吸波效果和可控吸收频段,这种吸波复合材料的体积电阻率在 106~107 ·cm 数量级,具有优良的抗静电能力,这对于调整雷达吸波材料的吸波频段和拓宽吸波频宽有着重要意义。美国克莱姆森大学Rajoriat[24]用多壁碳纳米管对环氧树脂的阻尼性能进行了研究,发现碳纳米管树脂基复合材料比纯环氧树脂的阻尼比增加了大约 140 %。

3 制备碳纳米管聚合物复合材料中存在的问题 3.1 碳纳米管在基体中的分散问题 碳纳米管的长径比大,表面能高,容易发生团聚,使它在聚合物中难以均匀分散。如何让碳纳米管在聚合物基体中实现均匀分散是当前需要解决的首要难题。经表面改性的碳纳米管可均匀分散在聚合物基体中,可以利用化学试剂或高能量放电、紫外线照射等方法处理碳纳米管,引入某些特定的官能团。Liu J 等[25]首先采

相关文档
最新文档