安徽中考数学专题复习(二):几何图形动点问题(34张PPT)
中考数学总复习课件(专题3:动点型问题)

MN 1 x2 S 16 2( 1 x2
8. 8)
1
x2
8.
2
2
根据二次函数的图形和性质,这个函数的图形是开口向下,
对称轴是y轴,顶点是(0,8),自变量的取值范围是0<x
<4.
故答案选C.
(三)面动问题 【例题 4】(2014·玉林市)如图,边长分别为1和2的两个等边 三角形,开始它们在左边重合,大三角形固定不动,然后把 小三角形自左向右平移直至移出大三角形外停止.设小三角形 移动的距离为x,两个三角形重叠的面积为y,则y关于x的函 数图象是( )
解:(1)①当△BPQ∽△BAC时,
∵ BP BQ , BP=5t,QC=4t,
BA BC
AB=10 cm,BC=8 cm,
∴ 5t 8 4t ,∴t=1.
10 8
②当△BPQ∽△BCA时,
∵
BP BC
BQ , BA
∴
5t 8 4t , 8 10
∴
t 32 . 41
∴t=1或 t 32 时,△BPQ与△ABC类似.
41
(2)如图a,过点P作PM⊥BC于点M,AQ,CP相交于点N.
则有PB=5t,PM=3t,CM=8-4t,
∵∠NAC+∠NCA=90°,
∠PCM+∠NCA=90°,
∴∠NAC=∠PCM且∠ACQ=∠PMC=90°.
∴△ACQ∽△CMP.
∴ AC QC .
CM PM
∴ 6 4t , 解得 t 7 ,
题型一 建立动点问题的函数关系式(或函数图象)
【例题 1】(2014·黑龙江省)如图,在平面直角坐标系中,边 长为1的正方形ABCD中,AD边的中点处有一动点P,动点P 沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走
中考数学总复习 专题3 动点(面)问题课件

1
S△APQ=2AP·AQ=2·t·2t=t2,故选项 C、D 不正确;
②当 4<t≤6 时,Q 在边 BC 上,P 在边 AD 上,如图 2,
1
1
S△APQ=2AP·AB=2t·8=4t,故选项
B 不正确;故选 A.
12/9/2021
第十七页,共二十四页。
素养训练提高
1
2
3
4
3.(2018·四川攀枝花)如图,在矩形(jǔxíng)ABCD中,AB=4,AD=3,矩形内部有
数量特征(如线段的长度或图形面积),再利用函数性质或方程进行求解.
12/9/2021
第三页,共二十四页。
题型分类突破
类型
类型
类型
(lèixíng)
(lèixíng)
(lèixíng)
一
二
三
考查类型
1.有特殊
位置点的
动点问题
2.图形中
动点问题
年份、题
考 查 点
号
与 AB 平行且到 AB 距离为 x 的直线上,在此
EP=E'P,AF=AE',∴AP+EP=AP+E'P,∴AP+EP最小值是AE',即AP+EP最小
值是AF.故选D.
12/9/2021
第十五页,共二十四页。
素养训练提高
1
2
3
4
2.(2018·山东烟台)如图,矩形(jǔxíng)ABCD中,AB=8 cm,BC=6 cm,点P从点A
出发,以1 cm/s的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2
专题
(zhuāntí)
三
2020年安徽中考备考复习课件:选择压轴之几何最值问题(共33张PPT)

类型5 “胡不归”问题
典例分析
例6、如图,菱形ABCD中,∠ABC=60°,边长为3,P是对角线BD上的一个动点,则 1 BP+PC的
2
最小值是( )
A. 3
C. 3
B. 3 3
大,即四边形 MANB 的面积最大
类型4 “几何图形面积最值”问题
举一反三
练4-1、如图,点E为边长为8的等边△ABC的BC边上一动点(点E不与B、C重合),以AE为边作等边
△AEF,则△AEF面积的最小值是( )
A.4
B. 8
C.2 3
D. 6 3
类型4 “几何图形面积最值”问题
举一反三
练4-2、如图,以AB为直径的⊙O的圆心O到直线l的距离OE=3,⊙O的半径r=2,直线AB不垂直于直线l, 过点A,B分别作直线l的垂线,垂足分别为点D、C,则四边形ABCD的面积的最大值为( )
▶见定角→找对边(定长)→想“周”角→转“心”角→现“圆”形
【解析】根据已知条件分析得到点 P 在以 AB 为直径的圆上,根据圆的相关性质即可求得 CP 的长的 最小值.故选 B
类型2 “定角对定边”问题
举一反三
练2-1、△ABC中,∠ACB=90°,AC=2,BC=1.点A、C分别在x轴和y轴的正半轴上,当点A在x轴上 运动时,点C也随之在y轴上运动.在整个运动过程中,则点B到原点的最大距离是( )
A.0
B.4
C.6
D.8
【解析】利用轴对称可求出PE+PF的最小值,再分别求出点P与点C、点P与点D重合时PE+PF的值,将其 与9进行比较,根据正方形的对称性即可找出满足条件的点P的个数.所以选D.
中考数学复习专题-动点问题(市优质课).ppt

•
(2)若点P从点A沿射线AB运动,速度仍是1cm/s。
当t为何值时,△PBC为等腰三角形?
D
C
D
C
4 P
A
7
B
当BP=BC时
D(钝角)
C
4
A
7
B
P
当BP=BC时
(锐角)
D
C
4
∟
30°
A
7
B 23 E
P
E4
A
7
B
P
当CB=CP时 当t=3或11或 7 4 3
或
74 3 3
当PB=PC时 时, PBC是等腰三角形。
连接PQ,若设运动时间为t(s) (0<t ≤3)
(1)当t为何值时,PQ∥BC? A
D
P
Q
B
C
在Rt△ABC中,∠C=90°,AC=6cm, BC=8cm, • 点P由点A出发 ,沿AC向C运动,速度为2cm/s,同时 • 点Q由AB中点D出发,沿DB向B运动,速度为1cm/s, • 连接PQ,若设运动时间为t(s) (0<t ≤3)
y 4 t 2 4t 5
五、小结:
• 本节课你学到了什么?
积累就是知识
收获一:化动为静 收获二:分类讨论 收获三:数形结合 收获四:构建函数模型、方程模型
• 六.作业
• 如图,已知抛物线对称轴为直线x=4,且与x轴交于A、B 两点(A在B左侧),B点坐标为(6,0),过点B的直线与 抛物线交于点C(3,2.25).
中考数学复习专题——动点问题课件

①∠MB′C=90° ②∠B′MC=90°
45 °
2 1
【2017· 河南T15】如图,在Rt△ABC中,∠A=90°, AB=AC,BC= √2 +1 ,点M,N分别是边BC,AB上的 动点,沿MN所在直线折叠∠B,使点B的对应点B′始终落 在边AC上.若△MB′C为直角三角形,则BM的长为_____ .
3 与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个
单位的速度沿AO方向向点O匀速运动,同时动点Q从B点出发 ,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停 止运动,另一个点也随之停止运动,连接PQ,设运动时间为t (s)(0<t≤3)
(2014年 新疆)如图,直线y 4 x 8
7
当BP=BC时
D
4
30°
当
4
P
A
7
B
2 3
E
当CB=CP时
∴t=3或11或7+ 4 3 或 4 3 /3 +7 时 △PBC为等腰三角形
探究动点关键:化动为静,分类讨论,数形结合
∟
P
A
7
B
当PB=PC时
合作探究
1::如图.△ABC中AB=6cm,BC=4cm, ∠B=60°,动点P、Q分别从A、B两点同时出发. 分别沿AB、BC方向匀速移动;它们的速度分别为 2cm/s和1cm/s.当点P到达点B时.P、Q两点停止 运动.设点P的运动时间为t(s).当t为 ______时 ,△PBQ为直角三角形.
(1)写出A,B两点的坐标; (2)设△AQP的面积为S,试求出S与t之间的函 数关系式;并求出当t为何值时,△AQP的面积最 大? (3)当t为何值时,以点A,P,Q为顶点的三角 形与△ABO相似,并直接写出此时点Q的坐标.
中考数学复习动点问题2[人教版](新编201910)
](https://img.taocdn.com/s3/m/658b06585727a5e9846a612b.png)
1、如图1,E、F、G、H按照AE=CG,
BF=DH,BF=nAE(n是正整数)是关系,
分别在两邻边长a,na的矩形ABCD各
边上运动,设AE=x,四边形EFGH的
面积为S。 A
na
HD
aE
G
B
F
C
图1
(1)当n=1,2是时,如图2、图3,观察
运动情况,写出四边形EFGH各顶点运
动到何位置,使S=
B
FC
H
(2)当t为何值时,AB⊥GH; (3)请你证明△GFH的面积为定值; (4)当t为何值时,点F和点C是线段 BH的三等分点。
GA
DO E
B
FC
H
3、平面直角坐标系中,矩形ABCD,
A(3,0),B (3,4),动点M、N分别从
O、B同时出发,以每秒1个单位的速度
运动,其中M沿OA向终点A运动,N沿
(2)当n=3时,如图4,求S与x之间的函
数关系式(写出自变量x的取值范围),
探索S随x增大而变化的规律,猜想四
边形EFGH各顶点运动到何位置,使
S=
1 2
S矩形ABCD?
A
H
3a
D
aE
G
BCຫໍສະໝຸດ F图4(3)、当n=k(k≥1)时,你所得到的规律 和猜想是否成立?请说明理由。
2、已知等边△ABC的边长为6,点D、E分
别在边AB、AC上,且AD=AE=2。若点F从
点B开始以每秒1个单位长的速度沿射线BC
方向运动,设点F运动的时间为t秒。当t>0
时,直线FD与过点A且平行于BC的直线交
于点G,GE的延长线与BC的延长线交于点
H,AB与GH交于点O。G A
安徽省2024年中考数学试卷(解析版)
2024年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2024•安徽)(﹣2)×3的结果是()A.﹣5 B.1C.﹣6 D.6考点:有理数的乘法.分析:依据两数相乘同号得正,异号得负,再把肯定值相乘,可得答案.解答:解:原式=﹣2×3=﹣6.故选:C.点评:本题考查了有理数的乘法,先确定积的符号,再进行肯定值的运算.2.(4分)(2024•安徽)x2•x3=()A.x5B.x6C.x8D.x9考点:同底数幂的乘法.分析:依据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.解答:解:x2•x3=x2+3=x5.故选A.点评:主要考查同底数幂的乘法的性质,娴熟驾驭性质是解题的关键.3.(4分)(2024•安徽)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.考点:简洁几何体的三视图.分析:俯视图是从物体上面看所得到的图形.解答:解:从几何体的上面看俯视图是,故选:D.点评:本题考查了几何体的三种视图,驾驭定义是关键.留意全部的看到的棱都应表现在三视图中.4.(4分)(2024•安徽)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y考点:因式分解的意义.分析:依据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.点评:本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.5.(4分)(2024•安徽)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D.0.2考点:频数(率)分布表.分析:求得在8≤x<32这个范围的频数,依据频率的计算公式即可求解.解答:解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是:=0.8.故选A.点评:本题考查了频数分布表,用到的学问点是:频率=频数÷总数.6.(4分)(2024•安徽)设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8考点:估算无理数的大小.分析:首先得出<<,进而求出的取值范围,即可得出n的值.解答:解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.点评:此题主要考查了估算无理数,得出<<是解题关键.7.(4分)(2024•安徽)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6C.﹣2或6 D.﹣2或30考点:代数式求值.分析:方程两边同时乘以2,再化出2x2﹣4x求值.解答:解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.点评:本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.(4分)(2024•安徽)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A 点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.5考点:翻折变换(折叠问题).分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,依据中点的定义可得BD=3,在Rt△ABC 中,依据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2++32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.9.(4分)(2024•安徽)如图,矩形ABCD中,AB=3,BC=4,动点P从A点动身,按A→B→C的方向在AB和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,依据同角的余角相等求出∠APB=∠P AD,再利用相像三角形的列出比例式整理得到y与x的关系式,从而得解.解答:解:①点P在AB上时,0≤x≤3,点D 到AP 的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠P AD+∠BAP=90°,∴∠APB=∠P AD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.点评:本题考查了动点问题函数图象,主要利用了相像三角形的判定与性质,难点在于依据点P的位置分两种状况探讨.10.(4分)(2024•安徽)如图,正方形ABCD的对角线BD长为2,若直线l满意:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A.1B.2C.3D.4考点:正方形的性质.分析:连接AC与BD相交于O,依据正方形的性质求出OD=,然后依据点到直线的距离和平行线间的距离相等解答.解答:解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满意条件,故共有2条直线l.故选B.点评:本题考查了正方形的性质,主要利用了正方形的对角线相互垂直平分,点D到O的距离小于是本题的关键.czsx二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2024•安徽)据报载,2024年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 2.5×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.解答:解:将25000000用科学记数法表示为2.5×107户.故答案为:2.5×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(5分)(2024•安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=a(1+x)2.考点:依据实际问题列二次函数关系式.分析:由一月份新产品的研发资金为a元,依据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.解答:解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.点评:此题主要考查了依据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.13.(5分)(2024•安徽)方程=3的解是x=6.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:4x﹣12=3x﹣6,解得:x=6,经检验x=6是分式方程的解.故答案为:6.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程肯定留意要验根.14.(5分)(2024•安徽)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中肯定成立的是①②④.(把全部正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.考点:平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.分析:分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF (ASA),得出对应线段之间关系进而得出答案.解答:解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDE,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等学问,得出△AEF≌△DME是解题关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2024•安徽)计算:﹣|﹣3|﹣(﹣π)0+2024.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用平方根定义化简,其次项利用肯定值的代数意义化简,第三项利用零指数幂法则计算,计算即可得到结果.解答:解:原式=5﹣3﹣1+2024=2024.点评:此题考查了实数的运算,娴熟驾驭运算法则是解本题的关键.16.(8分)(2024•安徽)视察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…依据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的改变类;完全平方公式.分析:由①②③三个等式可得,被减数是从3起先连续奇数的平方,减数是从1起先连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的改变规律,找出数字之间的运算规律,利用规律解决问题.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2024•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相像比不为1.考点:作图—相像变换;作图-平移变换.分析:(1)利用平移的性质得出对应点位置,进而得出答案;(2)利用相像图形的性质,将各边扩大2倍,进而得出答案.解答:解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求.点评:此题主要考查了相像变换和平移变换,得出变换后图形对应点位置是解题关键.18.(8分)(2024•安徽)如图,在同一平面内,两条平行高速马路l1和l2间有一条“Z”型道路连通,其中AB段与高速马路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速马路间的距离(结果保留根号).考点:解直角三角形的应用.分析:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,依据三角函数求得BE,在Rt△BCF中,依据三角函数求得BF,在Rt△DFG中,依据三角函数求得FG,再依据EG=BE+BF+FG即可求解.解答:解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20×=10km,在Rt△BCF中,BF=BC÷cos30°=10÷=km,CF=BF•sin30°=×=km,DF=CD﹣CF=(30﹣)km,在Rt△DFG中,FG=DF•sin30°=(30﹣)×=(15﹣)km,∴EG=BE+BF+FG=(25+5)km.故两高速马路间的距离为(25+5)km.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2024•安徽)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.考点:垂径定理;勾股定理;圆周角定理;相像三角形的判定与性质.专题:计算题.分析:由OE⊥AB得到∠OEF=90°,再依据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相像比可计算出⊙O的半径OC=9;接着在Rt△OCF中,依据勾股定理可计算出C=3,由于OF⊥CD,依据垂径定理得CF=DF,所以CD=2CF=6.解答:解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理和相像三角形的判定与性质.20.(10分)(2024•安徽)2024年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2024年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2024年处理的这两种垃圾数量与2024年相比没有改变,就要多支付垃圾处理费8800元.(1)该企业2024年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业安排2024年将上述两种垃圾处理总量削减到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2024年该企业最少须要支付这两种垃圾处理费共多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,依据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,须要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.解答:解:(1)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,依据题意,得,解得.答:该企业2024年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,须要支付这两种垃圾处理费共a元,依据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2024年该企业最少须要支付这两种垃圾处理费共11400元.点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;六、(本题满分12分)21.(12分)(2024•安徽)如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.考点:列表法与树状图法.专题:计算题.分析:(1)三根绳子选择一根,求出所求概率即可;(2)列表得出全部等可能的状况数,找出这三根绳子能连结成一根长绳的状况数,即可求出所求概率.解答:解:(1)三种等可能的状况数,则恰好选中绳子AA1的概率是;(2)列表如下:A B CA1(A,A1)(B,A1)(C,A1)B1(A,B1)(B,B1)(C,B1)C1(A,C1)(B,C1)(C,C1)全部等可能的状况有9种,其中这三根绳子能连结成一根长绳的状况有6种,则P==.点评:此题考查了列表法与树状图法,用到的学问点为:概率=所求状况数与总状况数之比.七、(本题满分12分)22.(12分)(2024•安徽)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.考点:二次函数的性质;二次函数的最值.专题:新定义.分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后依据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.解答:解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=(a+2)x2+(b﹣4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x﹣1)2+1=(a+2)x2﹣2(a+2)x+(a+2)+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5(x﹣1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0﹣1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3﹣1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.点评:本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类探讨的思想,考查了阅读理解实力.而对新定义的正确理解和分类探讨是解决其次小题的关键.八、(本题满分14分)23.(14分)(2024•安徽)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN=60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,推断四边形OMGN是否为特别四边形?并说明理由.考点:四边形综合题.分析:(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,解答:解:(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN 于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HL=BP,PL=PM,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3a.(2)如图2,连接OE,∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,又∵∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GON=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.点评:本题主要考查了四边形的综合题,解题的关键是恰当的作出协助线,依据三角形全等找出相等的线段.- 21 -。
安徽中考数学专题复习二:几何图形动点问题34张
AB长为半径的圆上(如图①).
图①
图②
推广:如图②,点E为定点,点F为线段BD上的动点(不与点B重合),将△BEF沿
EF折叠得到△B′EF,则点B′的运动轨迹为以E为圆心,线段BE为半径的半圆
弧.
类型1 点圆最值 【模型分析】 平面内一定点D和⊙O上动点E的连线中,当连线过圆心O时,线段DE有最大值 和最小值.具体分以下三种情况讨论(规定OD=d,⊙O半径为r): (i) 若D点在⊙O外时,d>r,如图①、②:当D、E、O三点共线时,线段DE出现 最值,DE的最大值为___d_+__r__,DE的最小值为___d_-__r__;
-3),∴E(-3,1),F(1,-3),∴AB= 312132=2 2 , EF= 312132=4 2 ,即四边形ABCD的周长的最小值为AB+
BC+CD+AD=AB+EF=6 2 .
提分要点
三、利用圆的相关性质求线段最值
定点定长作圆
平面内,点A为定点,点B为动点,且AB长度固定,则点B的轨迹在以点A为圆心,
例5题解图
模型三 “两点两线”型(两动点+两定点)
【问题】点P、Q是∠AOB的内部两定点,在OA上找点M,在OB上找点N,使 得四边形PQNM周长最小. 【解决思路】要使四边形PQNM周长最小,PQ为定值,即求得PM+MN+NQ 的最小值即可,需将线段PM,MN,NQ三条线段尽可能转化在一条直线上, 因此想到作点P关于OA的对称点,点Q关于OB的对称点.
A. 4
B. 5
C. 6
D. 7
例5题图
【解析】如解图,分别作点P关于OA、OB的对称点C、D,连接 CM、OC、DN、OD,∵点P关于OA的对称点为C,∴PM=CM, OP=OC,∠COA=∠POA,∵点P关于OB的对称点为D,∴PN =DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=6, ∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+ 2∠POB=2∠AOB=60°,△PMN的周长为PM+PN+MN= CM+DN+MN,连接CD分别交OA,OB于点M′,N′,∵CM+ DN+MN≥CM′+DN′+M′N′,当M与M′,N与N′重合时, △PMN的周长最小,即为线段CD的长度,∵∠COD=60°, OC=OD,∴△COD是等边三角形,∴CD=OC=OD= 6.∴△PMN的周长的最小值为6.
初中数学中考复习:动点问题
∴(m+3)2-4×9=0,解得m=3或m=-9,
又抛物线对称轴大于0,即m+3>0,∴m=3
12
考向一:动点问题——单动点问题
【练】如图,已知抛物线y=x2-(m+3)x+9的顶点C在x轴正半轴上,一次函数y=x+3与 抛物线交于A,B两点,与x,y轴交于D,E两点.
(2)抛物线上一点P横坐标为a(-3<a<1),当△PAB的面积是△ABC面积的2倍时,求a值.
15
解析:
【解析】首先根据正方形的边长与动点P,Q的速度可知动点Q始终在AB边上,
而动点P可以在BC边、CD边、AD边上,再分三种情况进行讨论:
①0≤x≤1;②1<x≤2;③2<x≤3;
分别求出y关于x的函数解析式,然后根据函数的图象与性质即可求解.
【答案】C
16
考向二:动点问题——双动点问题
25
解析:
【解析】有.依题意,得四边形PCFE是平行四边形.设BP=x,则PC=2-x,
平行四边形PEFC的面积为S,如图,过P点PH⊥EF作于点H,
∵四边形PCFE是平行四边形,∴EF∥BC.∴∠E=∠BPE.
∠E.
又∵线段PA绕点P逆时针旋转90°得到线段PE,∴∠BPE=∠BAP.∴∠BAP=
(2)P,Q两点在运动过程中,是否存在时间t,使得△PQC为等腰三角形?若存在,求出此 时的t值;若不存在,请说明理由.
19
解析: 20
考向二:动点问题——双动点问题
【练】如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交 于点C(0,3),抛物线的对称轴与x轴交于点D.
中考数学复习课件:动点与函数图像(共26张PPT)
一、点动
• 1、点在三角形边上动 • 2、点在四边形边上动
答案:B
答案A
2、点在四边形边上动
AB与F,可得DF=BC=4,所以 解析:作DF1 AF=3,FB=CD=2,先看特殊点, 1 当t=2时S= 2x3x4=6,当t=5时,S= 2 x2x5=5,所以A,C错误;B、D的区 别就是第一段不同,所以需要求出第一段的函数关系式,选AP为底, 4t 1 4t AP=1+t,可根据相似求出高为 3 ,S= 2 (1+t) 3 ,可看出是抛物线应开口向上,所以选C
答案:A
答案:A
• 2.如图1,已知A、B是反比例函数(k>0,x>0)图象 上的两点,BC//x轴,交y轴于点C.动点P从坐标原 点O出发,沿O→A→B→C (图中“→”所示路线) 匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴, 垂足分别为M、N.设四边形OMPN的面积为S,P 点运动时间为t,则S关于t的函数图象大致为
B 60 ,动点p以1cm/s的 1、如图,菱形ABCD的边长是4cm,
0
速度自A点出发沿AB方向运动至B点停止,动点Q以2cm/s的速 度自B点出发沿折线BCD运动到D点停止,若P,Q同时出发运动 了t秒,记 BPQ 的面积为S cm2 ,下面图像中能表示S与t之间 函数关系式的是 ( )
3
答案:D
O 图1 图2
x
五、点在一些特殊情况下运动与函数的图像
• 1.如图,菱形 ABCD 中,∠BAD:∠ADC=1:2, 对角线 AC=20cm,点 O 沿 A 点以 1cm/s 的速度 运动到 C 点(不与 C 重合),以点 O 为圆心的 圆始终与菱形的两边相切,设圆 O 的面积为 S, 则 S 与点 O 运动的时 间 t 的函数图像大致是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12,∴AB= 12 =2 3 ,又∵△ABE是等边三角形,∴BE=AB=2 3 ,即PD+
PE的最小值为2 3 .
类型3 同侧差最大值问题
【问题】两定点A、B位于直线l同侧,在直线l上找一点P,使得|PA-PB|的值 最大. 【解决思路】根据三角形任意两边之差小于第三边,|PA-PB|≤AB,当A,B, P三点共线时,等号成立,即|PA-PB|的最大值为线段AB的长.连接AB并延 长,与直线l的交点即为点P.
类型一 最值问题
[2017、2016.10,2015.20,2011.22(3)]
一、利用垂线段最短求线段最值
【问题】A为直线m外一点,求点A到直线m的最短距离. 【解决思路】过点A作AP⊥m,此时点A到直线m的距离最短,即AP的长.
例 如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,点P是边BC上一动点, PE⊥AB,PF⊥AC,垂足分别为点E、F,连接EF,若点M为EF的中点,连接MP, 则PM的最小值是( A )
例3 如图,在矩形ABCD中,AB=3,AD=4,连接AC,O是AC的中点,M是
AD上一点,且MD=1,P是BC上一动点,则PM-PO的最大值为( A )
13
A.
2
B. 13
C. 7
D. 3
【解析】如解图,连接MO并延长,与BC交于点P′,∵PM-
PO≤MO,当P与P′重合时,此时PM-PO有最大值,且最大值为
为线段CE的长.∵AB=4,AE=2,由等边
三角形性质可知CE⊥AB,∴CE=AC 2 AE 2
例1题图
例1题解图
= 42 22 =2.即EF+CF的最小值为2 3 .
类型2 同侧线段和最小值问题
【问题】两定点A、B位于直线l同侧,在直线l上找一点P,使得PA+PB值最小. 【解决思路】将两定点同侧问题转化为两定点异侧问题,同类型1即可解决.可 作点B关于直线l的对称点B′,连接AB′交直线l于点P,点P即为所求.
MP′=
13 2
.∴PM-PO的最大值为
13 2
.
例3题解图
类型4 异侧差最大值问题 【问题】两定点A、B位于直线l异侧,在直线l上找一点P,使得|PA-PB|的值最 大. 【解决思路】将异侧点转化为同侧点,同类型3即可解决.
优秀ppt公开课ppt免费课件下载免费 课件20 20安 徽中考 数学专 题复习 (二) :几何 图形动 点问题 (34张PPT)
专题二 几何图形动点问题
专题解读:几何图形动点问题是安徽中考近10年的高频考点,2019、2017、2016年 均在选择压轴题考查,其中2019年考查带有限定条件的动点问题,2017年考查利 用对称性求线段和的最小值;2016年考查利用隐形圆求线段的最小值;2015年在 20题结合圆的基本性质涉及考查线段最值问题;2011年在22(3)题结合几何图形综 合题考查线段最值问题.
例2 如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为( B )
A. 3
B.2 3
C.2 6
D. 6
例2题图
例2题解图
【解析】如解图,易知点B与点D关于AC对称,当点P在AC与BE的交点时,PD+
PE取得最小值,∵PD=PB,∴PD+PE=PB+PE=BE,∵正方形ABCD面积为
例1 如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,
ห้องสมุดไป่ตู้
E是AB边上一点,且AE=2,则线段EF+CF的最小值为( B )
A. 3 B2. 3 C. 2
D. 2 【解析】如解图,连接CE交AD于点F′,
∵EF+CF≥EF′+CF′=CE,∴当点F与F′
重合时,此时EF+CF有最小值,且最小值
A. 6
B. 8
5
5
C. 12
D. 5
5
4
例题图
【解析】∵∠BAC=90°,PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,如解
图,∵点M为EF的中点,∴连接AP必过点M,且AP=EF=2PM,∴当AP最小
时,PM取得最小值,根据直线外一点到直线上任意一点的连线中,垂线段最短,
可知当AP⊥BC时,AP最短,PM取得最小值.在Rt△ABC中,由勾股定理得
MO的长度,过点M作MN⊥BC于点N,在△AOM和△COP′中,
例3题图
∠AOM=∠COP′,OA=OC,∠OAM=∠OCP′,
∴△AOM≌△COP′,∴OM=OP′= 1 MP′,∴CP′=AM=4-1
2
=3,BP′=1,∴P′N=4-1-1=2,∴MP′= 22 +32 = 13 ,
1 ∴OM=2
例4题图
P′M,∴当点P运动到P′时,即点M′、N、P′共线时,M′N=P′M′
-P′N=2,∴PM-PN的最大值为2.
例4题解图
优秀ppt公开课ppt免费课件下载免费 课件20 20安 徽中考 数学专 题复习 (二) :几何 图形动 点问题 (34张PPT)
优秀ppt公开课ppt免费课件下载免费 课件20 20安 徽中考 数学专 题复习 (二) :几何 图形动 点问题 (34张PPT)
BC= AB2
小值为6
.
AC
2
=5,S△ABC=12
AB·AC=1 BC·AP,解得AP=12
2
5
,∴PM的最
5
例题解图
二、利用“将军饮马”求线段最值
模型一 “一线两点”型(一动点+两定点) 类型1 异侧线段和最小值问题
【问题】两定点A、B位于直线l异侧,在直线l上找一点P,使PA+PB值最小. 【解决思路】根据两点之间线段最短,PA+PB的最小值即为线段AB长.连接AB 交直线l 于点P,点P即为所求.
例4 (2019陕西)如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的
中点,点M在BC边上,且BM=6,P为对角线BD上一点,则PM-PN的最大值为
___2_____.
【解析】如解图,∵四边形ABCD为正方形,∴AB和CB关于对角
线BD对称,作点M关于BD对称的点M′,则点M′在AB上,连接
PM′、M′N,根据对称可得BM′=BM=6,又∵AB=8,∴AC=
82 82 =8 2,AM′=2,AN=1 AO=1 ×1 AC=2,∵cos∠M′AN
=cos45°=2
=AM
2
22
,∴∠AM′N=90°,∴M′N=AM′=2,
2 AN
∵PM-PN=PM′-PN≤M′N=2,延长M′N交BD于点P′,连接