分数的意义和性质知识点
分数的意义和性质知识点

分数的意义和性质知识点分数的基本性质知识点1.一个物体或是几个物体组成的一个整体都可以用自然数1来表示,我们通常把它叫做单位“1”。
2.把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
例如3/7表示把单位“1”平均分成7份,取其中的3份。
3.5/8米按分数的意义,表示:把1米平均分成8份,取其中的5份。
按分数与除法的关系,表示:把5米平均分成8份,取其中的1份。
4.把单位“1”平均分成若干份,表示其中一份的数叫分数单位。
5.分数和除法的关系是:分数的分子相当于除法中的被除数,分数的分数线相当于除法中的除号,分数的分母相当于除法中的除数,分数的分数值相当于除法中的商。
6.把一个整体平均分成若干份,求每份是多少,用除法。
总数÷份数=每份数。
7.求一个数量是另一个数量的几分之几,用除法。
一个数量÷另一个数量=几分之几(几倍)。
8.分子比分母小的分数叫真分数。
真分数小于1。
9.分子比分母大或分子和分母相等的分数叫做假分数。
假分数大于1或等于1。
10.带分数包括整数部分和分数部分,分数部分应当是真分数。
带分数大于1。
11.把假分数化成带分数的方法是用分子除以分母,商是整数部分,余数是分子,分母不变。
把带分数化成假分数的方法是用整数部分乘分母的积加原来的分子作分子,分母不变。
12.整数可以看成分母是1的假分数。
例如5可以看成是5/1。
13.分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
这叫做分数的基本性质。
14.几个数公有的因数叫做它们的公因数,其中最大的公因数叫作它们的最大公因数。
最小公因数一定是1。
15.几个数公有的倍数叫做它们的公倍数,其中最小的公倍数叫作它们的最小公倍数。
没有最大的公倍数。
26.两个数的公因数,都是这两个数的最大公因数的因数;两个数的公倍数,都是这两个数的最小公倍数的倍数。
27.比较分数的大小。
先看分子或分母是不是相同,①分母相同的两个分数,分子大的分数比较大。
五年级数学下册分数的意义和性质(一)知识点梳理与思维导图

( 一 )
分数的产生 分数的意义
实际生活中,在进行测量、分物或计算时,往往不能正好得到整数的结果,在这种情况下
就产生了另一种数——分数。
单位1
一个物体、一个计量单位或是一些物体等都可以看作一个整体,这个整体可以用 自然数1表示,通常把它叫做单位“1”。
分数单位
把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。 一个分数的分母是几,它的分数单位就是几分之一,分子是几,它就有几个这样
的分数单位。
商的表示
分数与除法 字母表示
(除数不为0)。
反向思考 反之,分数也可以看作两个数相除,分数的分子相当于被除数,分母相当于除
数,分数线相当于除号。
真分数
真分数和假分数 假分数
带分数
定义:分子比分母小的分数。 特征:真分数小于1。 定义:分子比分母大或分子等于分母的分数。 特征:假分数大于1或等于1。 分母的分数。
能化成带分数。 定义:由整数(0除外)和真分数合成的数叫做带分数。 特征:带分数大于1。 读法:先读带分数的整数部分,再读分数部分,两者之间加一个“又”字。 写法:先写整数部分,再写分数部分。
定义: 分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。
分数的基本性质
作用: 可以把一个分数化成分母不同而大小不变的分数,也可以把一个分数化成指
五年级数学下册《分数的意义和性质》知识点

五年级数学下册《分数的意义和性质》知识点(一)分数的意义第一时分数的产生、分数的意义、在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。
2、单位“1”的含义:一个物体、一个计量单位或是一些物体等都可以看作一个整体,这个整体可以用自然数1来表示,通常把它叫做单位“1”,也叫整体“1”。
3、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数。
4、把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。
、一个分数的分母是几,它的分数单位就是几分之一;分子是几,它就有几个这样的分数单位。
6、一个分数的分母是几,它的分数单位就是几分之;分子是几,它就有几个这样的分数单位。
第二时分数与除法、分数与除法的关系:被除数÷除数=被除数/除数,用字母表示为a÷b=a/b2、“求一个数是另一个数的几分之几”和“求一个数是另一个数的几倍”,计算方法相同,都可以用除法计算,即一个数÷另一个数=一个数是另一个数的几分之几(或几倍)。
(二)真分数和假分数、真分数的意义;分子比分母小的分数叫做真分数。
2、真分数的特征:真分数小于1。
3、假分数的意义:分子比分母大或分子和分母相等的分数叫做假分数。
4、假分数的特征:假分数大于1或等于。
、带分数的意义:由整数(不包括0)和真分数合成的数叫做带分数。
带分数的读法:先读整数部分,再读分数部分,中间加上一个“又”字。
带分数的写法:先写整数部分,再写分数部分,分数部分的分数与整数的中间对齐。
6、把假分数化成整数或带分数,根据分数与除法的关系,用分子除以分母:(1)如果能整除,那么商就是所要化成的整数。
(2)如果能整除,那么商就是带分数的整数部分,余数是带分数的分数部分的分子,分母不变。
(三)分数的基本性质、分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
2、利用分数的基本性质,可以把分母不同的分数化成分母相同的分数,还可以把一个分数化为指定分母的分数。
分数的意义和性质知识点和单元测试题

知识的回顾—、分数的意义1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或儿份的数,叫做分数。
2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相当于分母。
被除数3 用字母表示:a4-b= (b^O)o被除数*除数二----------------- 除数b4、分数未带单位表示两个量之间的倍数关系;分数带有单位表示一个具体的数量。
二、真分数和假分数1、真分数和假分数:①分子比分母小的分数叫做真分数,真分数小于1。
②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于lo③由整数部分和分数部分组成的分数叫做带分数。
2、假分数与带分数的互化:①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。
②把带分数化成假分数,用整数部分乘分母加上分子作分子,分母不变。
三、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
四、约分1、最大公因数:儿个数公有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。
2、两个数的公因数和它们最大公因数之间的关系:所有的公因数都是最大公因数的因数,最大公因数是它们的倍数。
3、互质数:公因数只有1的两个数叫做互质数。
4、两个数互质的特殊判断方法:①1和任何大于1的自然数互质。
②2和任何奇数都是互质数。
③相邻的两个自然数是互质数。
④相邻的两个奇数互质。
⑤ 不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
、求最大公因数的方法:5.① 倍数关系:最大公因数就是较小数。
② 互质关系:最大公因数就是lo6、最简分数:分子和分母只有公因数1的分数叫做最简分数。
7、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
五、通分1、最小公倍数:儿个数公有的倍数叫做它们的公倍数,其中最小的一个叫最小公倍数O2、两个数的公倍数和它们的最小公倍数之间的关系:儿个数的公倍数是它们最小公倍数的倍数。
分数的意义 知识点

分数的意义知识点摘要:1.分数的概念与意义2.分数的分类与应用3.分数的基本性质4.分数的运算规律5.分数在实际生活中的应用正文:在我们日常生活和学术领域中,分数是一个广泛涉及的概念,它既有理论意义,也有实际应用价值。
掌握分数的知识点,有助于我们更好地理解现实世界中的数量关系,解决各种实际问题。
1.分数的概念与意义分数是用来表示一个整体中被分割成的若干份之一的大小。
它由两部分组成:分子和分母。
分子表示被分割的部分数量,分母表示整体被分割成的份数。
例如,一个蛋糕分给两个人,如果一个人分到1/2,那么他分到的蛋糕份额就是1/2。
2.分数的分类与应用根据分数的大小关系,我们可以将分数分为三类:真分数、假分数和带分数。
真分数指分子小于分母的分数,其值小于1;假分数指分子大于或等于分母的分数,其值大于或等于1;带分数是一个整数与一个真分数的和,如1又1/2,它表示1加上1/2的大小。
分数在实际生活中有许多应用,如购物时计算价格、分配资源、衡量时间等。
例如,如果一个水果摊上的苹果每斤售价为5元,那么买1/2斤苹果就需要支付2.5元。
3.分数的基本性质分数有以下几个基本性质:(1)分数的分子和分母同时乘或除以一个非零整数,分数的值不变。
(2)分数的分子和分母同时加或减一个非零整数,分数的值会发生改变。
(3)两个分数相加或相减,需要先通分,然后按照同分母分数加减法的规则进行计算。
4.分数的运算规律分数的运算主要包括加、减、乘、除四种。
运算时,需要遵循以下规律:(1)分数加减法:同分母分数相加减,分子相加减,分母保持不变。
(2)分数乘法:分子乘以分子,分母乘以分母,最后约分得到最简分数。
(3)分数除法:将除法转化为乘法,即求被除数与除数的倒数的乘积。
5.分数在实际生活中的应用分数在实际生活中有许多应用,如购物、分配资源、衡量时间等。
掌握分数的知识点,可以帮助我们更好地解决这些问题,提高生活和工作中的计算能力。
总之,分数作为一个重要的数学概念,既有理论意义,也有实际应用价值。
五年级数学下册分数的意义和性质知识点整理

五年级数学下册分数的意义和性质知识点整理在五年级数学下册中,我们需要掌握分数的意义和性质知识点。
首先,分数的意义是把单位“1”平均分成若干份,表示这样的一份或几份的数。
其次,分数单位是把单位“1”平均分成若干份,表示这样的一份的数。
我们还需要了解分数与除法的关系,其中被除数相当于分数的分子,除数相等于分母,用字母表示为a÷b=(b≠0)。
在分数的基本性质方面,我们需要知道分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
此外,我们需要了解最简分数、约分、最小公倍数和通分等概念。
关于分数的大小比较,我们需要知道同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大。
我们还需要了解真分数和假分数的概念。
分子比分母小的分数叫做真分数,真分数小于1.分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1.由整数部分和分数部分组成的分数叫做带分数。
我们需要掌握假分数与带分数的互化方法,即把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。
把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
最后,我们需要了解最大公因数和互质数的概念。
几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。
公因数只有1的两个数叫做互质数。
在特殊情况下,成倍数关系的两个数,最大公因数就是较小的数,最小公倍数就是较大的数;互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积。
我们还需要掌握互质数的特殊判断方法,如1和任何大于1的自然数互质,2和任何奇数都是互质数,相邻的两个自然数是互质数等。
五年级数学分数知识点总结

五年级数学分数知识点总结五年级数学《分数》知识点总结 11、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分母:表示平均分的份数。
分子:表示取出的份数。
3、分数单位:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
表示其中的一份的数,叫做这个分数的分数单位。
4、真分数:分子小于分母的分数叫做真分数。
真分数小于1。
5、假分数:分子大于或等于分母的分数,叫做假分数。
假分数都大于或等于1。
6、带分数:由整数和真分数组成的分数叫做带分数。
7、假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变。
8、整数化成假分数:用指定的分母做分母,用整数与分母的积做分子。
9、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。
10、质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。
11把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
如12=2×2×312、几个数公有的因数叫做这几个数的公因数。
其中最大的一个,叫做它们的最大公因数。
13互质:两个数的公因数只有1,这两个数叫做互质。
互质的规律:(1)相邻的自然数互质;(2)相邻的奇数都是互质数;(3)1和任何数互质;(4)两个不同的质数互质(5)2和任何奇数互质。
质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.14、几个数公有的`倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
15、求最大公因数,最小公倍数的方法关系最大公因数最小公倍数倍数关系16、分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的分数是最简分数。
17、约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过程叫做约分。
小学五年级数学下册分数的意义和性质的知识点

小学五年级数学下册分数的意义和性质的知识点小学五年级数学下册分数的意义和性质的知识点在我们的学习时代,说到知识点,大家是不是都习惯性的重视?知识点就是学习的重点。
相信很多人都在为知识点发愁,下面是店铺为大家收集的小学五年级数学下册分数的意义和性质的知识点,欢迎大家借鉴与参考,希望对大家有所帮助。
小学五年级数学下册分数的意义和性质的知识点1分数的产生和意义1.单位“1”的意义:一个物体、一些物体都可以看作一个整体,可以用自然数1来表示,通常把它叫做单位“1”。
2.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
3.分数单位意义:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
4.分数与除法的关系:被除数÷除数=被除数除数,反来,分数也可以看作两个数相除,分数的分子相等于被除数,分母相等于除数,分数相等于除号。
5.“求一个数是(占)另一个数的几分之几”的问题的解题办法:用一个数除以另一个数。
真分数和假分数1.真分数的意义:分子比分母小的分数叫做真分数。
2.真分数的特征:真分数<1。
3.假分数的意义:分子比分母大或等于分母的分数叫做假分数。
4.假分数的特征:假分数≦1。
5.带分数的意义:由整数(不包括0)和真分数合成的数叫做真分数。
6.带分数的读法:先读整数部分,再读分数部分,中间加“又”字。
7.带分数的写法:先写整数部分,再写分数部分,分数部分的分数线与整数的'中间对齐。
8.假分数化成整数或带分数的方法:用分子除以分母。
当分子是分母倍数时,能化成整数;当分子不是分母的倍数时,能化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变。
小学五年级数学下册分数的意义和性质的知识点2一、分数的意义。
1.单位“1”的意义:一些物体可以看作一个整体,这个整体我们把它称为单位“1”。
2.分数的意义:A.把单位一平均分成若干份,表示其中的一份或几份。
B.分数的书写形式:n/m(m不等于0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数的意义和性质知识点第一篇:分数的意义和性质知识点分数的意义和性质知识点及配套练习题一、分数的意义1.单位1:我们可以把一个物体、一个计量单位、一些物体看作一个整体,可以用自然数1来表示,通常我们把它叫做单位“1”.2.分数的意义:把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数.3.分数单位:把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。
分母是几,它的分数单位就是几分之一,分子是几,它就有几个这样的分数单位。
4.单位“1”和自然数1的区别:自然数1是一个数,只表示一个具体事物;单位“1”不仅可以表示一个具体的事物,还可以表示一堆,一群,它表示被平均分的事物的整体。
二、分数与除法的关系(每份数=总数量÷总份数)1.分数与除法的关系:被除数÷ 除数 =a被除数。
也可以用字母表示为:a÷b=(b≠0)。
b除数被除数相当于分子,除数相当于分母,除号相当于分数线。
2.求一个数是另一个数的几倍和求一个数是另一个数的几分之几,都用除法计算,一个数是另一个数的几分之几:“一个数”是比较量;“另一个数”是标准量一个数比较量解题方法:一个数÷另一个数=,比较量÷标准量=,得到的商是两个数另一个数标准量的关系,没有单位。
3.把低级单位化成高级单位,除以进率,得不到整数时,用分数或小数表示。
三、真分数和假分数1.真分数:分子比分母小的分数叫做真分数.真分数小于1。
2.假分数:分子比分母大或者分子和分母相等的分数,叫做假分数.假分数等于或大于1.3.带分数:当假分数的分子不是分母的倍数时,可以写成整数和真分数合成的数,通常叫做带分数.4.当分子是分母的倍数时,假分数可以化成整数。
5.当分子不是分母的倍数时,假分数可以化成带分数,用分子除以分母,得到的商作带分数的整数部分,余数作带分数分数部分的分子,分母不变。
三、分数的基本性质分数的基本性质:分数的分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变.根据分数与除法的关系,分数的基本性质相当于商不变性质。
四、约分1、公因数和最大公因数(公因数的个数是有限的)几个数公有的因数叫做这几个数的公因数。
其中最大的一个,叫做这几个数的最大公因数。
最大公因数是其他公因数的倍数,其他公因数是最大公因数的因数。
2、互质数A、公因数只有1的两个数叫做互质数。
B、互质数不是只有两个质数才叫互质数,合数与合数也可能成为互质数。
如15,16C、1和任意大于1的自然数互质D、2和任何奇数都是互质数E、相邻的两个自然数是互质数F、不相同的两个质数是互质数3、求最大公因数的方法:列举法、筛选法、短除法、分解质因数法:18=3×3×2,27=3×3×3, 27和18的最大公因数是3×3=94、当两个数成倍数关系时,较小的数就是这两个数的最大公因数互质的两个数的最大公因数是15、约分最简分数:分子和分母只有公因数1的分数约分:把一个分数化成和他大小相等,但分子与分母都比较小的分数约分时通常约成最简分数约分的方法:逐步约分:分子和分母同时逐步除以他们的公因数一次约分:分子和分母同时除以他们的最大公因数五、通分1、最小公倍数(公倍数是无限的)几个数公有的倍数,叫做这几个数的公倍数。
其中,最小的一个,叫做这个数的最小公倍数。
最小公倍数是其他公倍数的因数,其他公倍数是最小公倍数的倍数。
2、求两个数最小公倍数的方法:分解质因数法:如6=2×3,8=2×2×2 则6和8的最小公倍数是2×3×2×2=24 短除法:3、两个数是倍数关系时,那么较大数就是这两个数的最小公倍数两个数是互质数,那么这两个数的积就是他们的最小公倍数4、通分(1)分数比较大小分母相同,分子越大分数越大分子相同,分母越大分数越小分子分母都不相同时,先通分。
(2)通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分通分的方法:用原分母的公倍数做公分母(常选用最小公倍数)例:通分时,只能选用分母的最小公倍数做公分母(3)通分和约分的依据:分数的基本性质(4)通分和约分后,分数大小不变六、分数和小数的互化 1.小数化成分数去掉小数点做分子一位小数分母是10,两位小数分母是100....不是最简分数的要化成最简分数。
2.分数化成小数用分子除以分母,除不尽的保留两位小数带分数化成小数,整数部分作为小数的整数部分,分数部分化成小数的小数部分3.判断一个最简分数能否化成有限小数的方法:如果分母中只含有质因数2或5,这个分数就能化成有限小数。
第二篇:分数的意义和性质知识点总结第四单元《分数的意义和性质》知识点一、分数的意义1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。
被除数÷除数 =用字母表示:a÷b=(b≠0)。
4、分数未带单位表示两个量之间的倍数关系;分数带有单位表示一个具体的数量。
二、真分数和假分数1、真分数和假分数:① 分子比分母小的分数叫做真分数,真分数小于1。
② 分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。
③ 由整数部分和分数部分组成的分数叫做带分数。
2、假分数与带分数的互化:① 把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。
② 把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
三、分数的基本性质1、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
四、约分1、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。
2、两个数的公因数和它们最大公因数之间的关系:所有的公因数都是最大公因数的因数,最大公因数是它们的倍数。
3、互质数:公因数只有1的两个数叫做互质数。
4、两个数互质的特殊判断方法:① 1和任何大于1的自然数互质。
② 2和任何奇数都是互质数。
③ 相邻的两个自然数是互质数。
④ 相邻的两个奇数互质。
⑤ 不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
5、求最大公因数的方法:① 倍数关系:最大公因数就是较小数。
② 互质关系:最大公因数就是1 ③ 一般关系:从大到小看较小数的因数是否是较大数的因数。
6、最简分数:分子和分母只有公因数1的分数叫做最简分数。
7、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
(并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)五、通分1、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫最小公倍数。
2、两个数的公倍数和它们的最小公倍数之间的关系:几个数的公倍数是它们最小公倍数的倍数。
3、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(通分时,公分母一般为几个数的最小公倍数)。
4、求最小公倍数的方法:① 倍数关系:最小公倍数就是较大数。
② 互质关系:最小公倍数就是它们的乘积。
③ 一般关系:大数翻倍(从小到大看较大数的倍数是否是较小数的倍数)。
5、分数的大小比较:① 同分母分数,分子大的分数就大,分子小的分数就小;② 同分子分数,分母大的分数反而小,分母小的分数反而大。
③ 异分母分数,先化成同分母分数(分数单位相同),再进行比较。
6、约分和通分的依据都是分数的基本性质。
六、分数和小数的互化:1、小数化分数:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。
(一般保留两位小数。
)3、判断分数是否能化成有限小数的方法:① 判断分数是否是最简分数;如果不是最简分数,先把它化成最简分数;② 把分数的分母分解质因数:如果分母中除了2和5以外,不含有其他质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。
第三篇:分数的意义和性质知识点总结分数的意义和性质1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b=(b≠0)。
4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。
分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。
由整数部分和分数部分组成的分数叫做带分数。
5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。
把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
7、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。
8、互质数:公因数只有1的两个数叫做互质数。
两个数互质的特殊判断方法:①1和任何大于1的自然数互质。
②2和任何奇数都是互质数。
③相邻的两个自然数是互质数。
④相邻的两个奇数互质。
⑤不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
9、最简分数:分子和分母只有公因数1的分数叫做最简分数。
10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。
12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
13、特殊情况下的最大公因数和最小公倍数:①两个数成倍数关系,最大公因数就是较小的数,最小公倍数就是较大的数。
②互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积。
14、分数的大小比较:同分母的分数,分子大的分数大,分子小的分数小;同分子的分数,分母大的分数小,分母小的分数大。
15、分数和小数的互化:小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;分数化小数,用分子除以分母,除不尽的按要求保留几位小数。
第四篇:分数的意义和性质说课稿4、分数的意义和性质说课稿单元内容:分数的意义;分数与除法的关系;真分数、假分数、带分数的认识;分数的基本性质等。