二阶常微分方程的解法
二阶常系数线性微分方程的解法word版

第八章 讲第四节 二阶常系数线性微分方程一、二阶常系数线形微分方程的概念形如 )(x f qy y p y =+'+'' 1的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数.如果0)(≡x f ,则方程式 1变成0=+'+''qy y p y 2我们把方程2叫做二阶常系数齐次线性方程,把方程式1叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法.二、二阶常系数齐次线性微分方程1.解的叠加性定理1 如果函数1y 与2y 是式2的两个解, 则2211y C y C y +=也是式2的解,其中21,C C 是任意常数.证明 因为1y 与2y 是方程2的解,所以有0111=+'+''qy y p y 0222=+'+''qy y p y 将2211y C y C y +=代入方程2的左边,得)()()(221122112211y C y C q y C y C p y C y C ++'+'+''+'' =0)()(22221111=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程2的解.定理1说明齐次线性方程的解具有叠加性.叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式2的通解.2.线性相关、线性无关的概念设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n个函数在区间I 内线性相关,否则称线性无关.例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为0sin cos 122≡--x x又如2,,1x x 在任何区间a,b 内是线性无关的,因为在该区间内要使 02321≡++x k x k k必须0321===k k k .对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠21y y 常数, 则1y ,2y 线性无关.3.二阶常系数齐次微分方程的解法定理 2 如果1y 与2y 是方程式2的两个线性无关的特解,则212211,(C C y C y C y +=为任意常数是方程式2的通解.例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且≠=x y y tan 21常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+=21,C C 是任意常数是方程0=+''y y 的通解.由于指数函数rxe y =r 为常数和它的各阶导数都只差一个常数因子,根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r ,使rxe y =满足方程2.将rx e y =求导,得 rx rx e r y re y 2,=''='把y y y ''',,代入方程2,得0)(2=++rx eq pr r 因为0≠rx e , 所以只有 02=++q pr r 3只要r 满足方程式3,rx e y =就是方程式2的解.我们把方程式3叫做方程式2的特征方程,特征方程是一个代数方程,其中r r ,2的系数及常数项恰好依次是方程2y y y ,,'''的系数. 特征方程3的两个根为 2422,1q p p r -±-=, 因此方程式2的通解有下列三种不同的情形. (1) 当042>-q p 时,21,r r 是两个不相等的实根. 2421q p p r -+-=,2422q p p r ---= x r x r e y e y 2121,==是方程2的两个特解,并且≠=-x r r e y y )(2121常数,即1y 与2y 线性无关.根据定理2,得方程2的通解为 x r x r e C e C y 2121+=(2) 当042=-q p 时, 21,r r 是两个相等的实根. 221p r r -==,这时只能得到方程2的一个特解x r e y 11=,还需求出另一个解2y ,且≠12y y 常数,设)(12x u y y =, 即 )(12x u e y x r =)2(),(21121211u r u r u e y u r u e y x r x r +'+''=''+'='. 将222,,y y y '''代入方程2, 得 []0)()2(12111=++'++'+''qu u r u p u r u r u e x r 整理,得0])()2([12111=+++'++''u q pr r u p r u e x r由于01≠x r e , 所以 0)()2(1211=+++'++''u q pr r u p r u 因为1r 是特征方程3的二重根, 所以02,01121=+=++p r q pr r从而有 0=''u因为我们只需一个不为常数的解,不妨取x u =,可得到方程2的另一个解 x r xe y 12=.那么,方程2的通解为x r x r xe C e C y 1121+=即 xr e x C C y 1)(21+=.(3) 当042<-q p 时,特征方程3有一对共轭复根 βαβαi r i r -=+=21, 0≠β于是 x i x i e y ey )(2)(1,βαβα-+== 利用欧拉公式 x i x e ix sin cos +=把21,y y 改写为)sin (cos )(1x i x e e e e y x x i x x i ββαβαβα+=⋅==+)sin (cos )(2x i x e e e e y x x i x xi ββαβαβα-=⋅==-- 21,y y 之间成共轭关系,取-1y =x e y y x βαcos )(2121=+, x e y y i y x βαsin )(2121_2=-= 方程2的解具有叠加性,所以-1y ,-2y 还是方程2的解,并且≠==--x x e x e y y x x βββααtan cos sin 12常数,所以方程2的通解为 )sin cos (21x C x C e y x ββα+=综上所述,求二阶常系数线性齐次方程通解的步骤如下:1写出方程2的特征方程02=++q pr r2求特征方程的两个根21,r r3根据21,r r 的不同情形,按下表写出方程2的通解.例1求方程052=+'+''y y y 的通解.解: 所给方程的特征方程为0522=++r ri r i r 21,2121--=+-=所求通解为 )2sin 2cos (21x C x C e y x +=-.例 2 求方程0222=++S dt dS dtS d 满足初始条件2,400-='===t t S S 的特解.解 所给方程的特征方程为0122=++r r121-==r r通解为 te t C C S -+=)(21 将初始条件40==t S 代入,得 41=C ,于是 t e t C S -+=)4(2,对其求导得te t C C S ---=')4(22 将初始条件20-='=t S 代入上式,得 22=C所求特解为t e t S -+=)24(例3求方程032=-'+''y y y 的通解.解 所给方程的特征方程为 0322=-+r r其根为 1,321=-=r r所以原方程的通解为 x x e C e C y 231+=-二、二阶常系数非齐次方程的解法1.解的结构定理3 设*y 是方程1的一个特解,Y 是式1所对应的齐次方程式2的通解,则*+=y Y y 是方程式1的通解.证明 把*+=y Y y 代入方程1的左端:)()()(*++*'+'+*''+''y Y q y Y p y Y=)()(*+*'+*''++'+''qy py y qY Y p Y=)()(0x f x f =+*+=y Y y 使方程1的两端恒等,所以*+=y Y y 是方程1的解. 定理4 设二阶非齐次线性方程1的右端)(x f 是几个函数之和,如 )()(21x f x f qy y p y +=+'+'' 4 而*1y 与*2y 分别是方程 )(1x f qy y p y =+'+''与 )(2x f qy y p y =+'+''的特解,那么**+21y y 就是方程4的特解, 非齐次线性方程1的特解有时可用上述定理来帮助求出.2.)()(x P e x f m x λ=型的解法 )()(x P e x f m x λ=,其中λ为常数,)(x P m 是关于x 的一个m 次多项式. 方程1的右端)(x f 是多项式)(x P m 与指数函数x e λ乘积的导数仍为同一类型函数,因此方程1的特解可能为x e x Q y λ)(=*,其中)(x Q 是某个多项式函数.把 x e x Q y λ)(=*x e x Q x Q y λλ)]()(['+=*'x e x Q x Q x Q y λλλ)]()(2)([2''+'+=*''代入方程1并消去xe λ,得)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ 5以下分三种不同的情形,分别讨论函数)(x Q 的确定方法:1 若λ不是方程式2的特征方程02=++q pr r 的根, 即02≠++q p λλ,要使式5的两端恒等,可令)(x Q 为另一个m 次多项式)(x Q m :m m m x b x b x b b x Q ++++= 2210)(代入5式,并比较两端关于x 同次幂的系数,就得到关于未知数m b b b ,,,10 的1+m 个方程.联立解方程组可以确定出),,1,0(m i b i =.从而得到所求方程的特解为x m e x Q y λ)(=*2 若λ是特征方程02=++q pr r 的单根, 即02,02≠+=++p q p λλλ,要使式5成立, 则)(x Q '必须要是m 次多项式函数,于是令)()(x xQ x Q m =用同样的方法来确定)(x Q m 的系数),,1,0(m i b i =.3 若λ是特征方程02=++q pr r 的重根,即,02=++q p λλ 02=+p λ.要使5式成立,则)(x Q ''必须是一个m 次多项式,可令)()(2x Q x x Q m =用同样的方法来确定)(x Q m 的系数.综上所述,若方程式1中的x m e x P x f λ)()(=,则式1的特解为x m k e x Q x y λ)(=*其中)(x Q m 是与)(x P m 同次多项式,k 按λ不是特征方程的根,是特征方程的单根或是特征方程的重根依次取0,1或2.例4 求方程x e y y 232-='+''的一个特解.解 )(x f 是x m e x p λ)(型, 且2,3)(-==λx P m对应齐次方程的特征方程为 022=+r r ,特征根根为2,021-==r r . λ=-2是特征方程的单根, 令xe xb y 20-=*,代入原方程解得230-=b故所求特解为 xxe y 223--=* .例5 求方程x e x y y )1(2-='-''的通解.解 先求对应齐次方程02=+'-''y y y 的通解.特征方程为 0122=+-r r , 121==r r齐次方程的通解为 xe x C C Y )(21+=.再求所给方程的特解1)(,1-==x x P m λ由于1=λ是特征方程的二重根,所以x e b ax x y )(2+=*把它代入所给方程,并约去x e 得126-=+x b ax比较系数,得61=a 21-=b于是 xe x x y )216(2-=*所给方程的通解为 x e x x x C C y y y )6121(3221+-+=+=* 3.x B x A x f ϖϖsin cos )(+=型的解法 ,sin cos )(x B x A x f ωω+=其中A 、B 、ω均为常数.此时,方程式1成为x B x A q y p y ωωsin cos +=+'+'' 7这种类型的三角函数的导数,仍属同一类型,因此方程式7的特解*y 也应属同一类型,可以证明式7的特解形式为)sin cos (x b x a x y k ωω+=*其中b a ,为待定常数.k 为一个整数.当ω±i 不是特征方程02=++q pr r 的根, k 取0;当ω±i 不是特征方程02=++q pr r 的根, k 取1;例6 求方程x y y y sin 432=-'+''的一个特解.解 1=ω,ω±i i ±=不是特征方程为0322=-+r r 的根,0=k .因此原方程的特解形式为x b x a y sin cos +=* 于是 x b x a y cos sin +-=*'x b x a y sin cos --=*''将*''*'*y y y ,,代入原方程,得⎩⎨⎧=--=+-442024b a b a 解得 54,52-=-=b a原方程的特解为: x x y sin 54cos 52--=* 例7 求方程x e y y y x sin 32+=-'-''的通解.解 先求对应的齐次方程的通解Y .对应的齐次方程的特征方程为0322=--r r3,121=-=r rx x e C e C Y 321+=-再求非齐次方程的一个特解*y .由于x e x x f -+=2cos 5)(,根据定理4,分别求出方程对应的右端项为,)(1x e x f =x x f sin )(2=的特解*1y 、*2y ,则 **+=*21y y y 是原方程的一个特解.由于1=λ,ω±i i ±=均不是特征方程的根,故特解为)sin cos (21x c x b ae y y y x ++=+=*** 代入原方程,得x e x c b x c b ae x x sin sin )42(cos )24(4=-++--比较系数,得14=-a 024=+c b 142=-c b解之得 51,101,41-==-=c b a . 于是所给方程的一个特解为 x x e y x sin 51cos 10141-+-=* 所以所求方程的通解为x x e e C e C y Y y x x x sin 51cos 10141321-+-+=+=-*.。
二阶常微分方程的解法

二阶常微分方程的解法二阶常微分方程是微积分中的一个重要概念,涉及到求解具有两个未知函数的微分方程。
本文将介绍二阶常微分方程的一些解法方法。
一、可分离变量法对于形如f''(x) = g(x)的二阶常微分方程,可以通过分离变量的方法求解。
首先将方程进行变形,得到f''(x)-g(x) = 0。
然后令y=f'(x),将方程转化为一阶方程y'-g(x)=0,再次进行变形得到dy/dx=g(x)。
接下来,对方程两边进行积分,得到y的表达式,再次积分即可得到f(x)的解。
二、特征方程法对于形如f''(x) + a1f'(x) + a0f(x) = 0的二阶常微分方程,可以通过特征方程法求解。
首先假设f(x)的解为f(x) = e^(rx),其中r为待求解的常数。
代入原方程,得到特征方程r^2 + a1r + a0 = 0。
解特征方程,可以得到两个根r1和r2,然后f(x)的解可以表示为f(x) = C1e^(r1x) +C2e^(r2x),其中C1和C2为待定常数。
三、常系数齐次线性微分方程法对于形如f''(x) + af'(x) + bf(x) = 0的二阶常微分方程,可以通过常系数齐次线性微分方程法求解。
首先假设f(x)的解为f(x) = e^(rx),代入原方程,得到特征方程r^2 + ar + b = 0。
解特征方程,可以得到两个根r1和r2。
根据根的不同情况,可以得到不同的解形式。
1)当r1和r2是不相等的实根时,f(x)的解可以表示为f(x) =C1e^(r1x) + C2e^(r2x),其中C1和C2为待定常数。
2)当r1和r2是相等的实根时,f(x)的解可以表示为f(x) = (C1x +C2)e^(r1x),其中C1和C2为待定常数。
3)当r1和r2是共轭复数根时,f(x)的解可以表示为f(x) =e^(ax)[C1cos(bx) + C2sin(bx)],其中C1和C2为待定常数。
二阶常系数微分方程解法

二阶常系数微分方程解法微分方程是数学中一个非常重要的部分,它描述了很多现实生活和科学问题。
其中,二阶常系数微分方程是应用广泛的一种类型的微分方程,其解法也相对较为简单,下面将详细介绍解这类微分方程的方法。
一、二阶常系数微分方程的定义和形式二阶常系数微分方程指的是形如 y''+ay'+by=f(x) 的微分方程,其中 y、f(x)均为函数,a和b均为常数。
这类微分方程中,y”表示 y 对自变量 x 的二次导数,y'表示 y 对 x 的一次导数。
二、特征方程法解二阶常系数微分方程最常用的方法是特征方程法。
根据 y=Ae^{mx} 这种形式,我们可以将 y" 和 y' 带入 y 中,得到以下等式:(Ae^{mx})''+a(Ae^{mx})'+bAe^{mx}=0化简后可得:m^2+am+b=0以上所得到的方程式称为特征方程,解特征方程的根 m_{1}, m_{2} 就可以得到二阶常系数微分方程的通解。
1、特征方程有两个不相等的实根如果特征方程有两个不相等的实根 m_{1} 和 m_{2},那么通解为:y=C_{1}e^{m_{1}x}+C_{2}e^{m_{2}x}其中,C_1、C_2 为任意常数,分别由初始值条件所决定。
2、特征方程有两个相等的实根如果特征方程有两个相等的实根 m,那么通解为:y=(C_1+C_2x)e^{mx}其中,C_1、C_2 为任意常数。
3、特征方程有两个共轭复根如果特征方程有两个共轭复根α+iβ 和α-iβ,那么通解为:y=e^{αx}(C_1\cos βx+C_2\sin βx)其中,C_1、C_2为任意常数。
三、拉普拉斯变换法除了特征方程法外,拉普拉斯变换法也可以用来求解二阶常系数微分方程。
我们将 y、y' 和 y" 进行拉普拉斯变换,得到:L\{y''\}=s^2Y(s)-sy(0)-y'(0)L\{y'\}=sY(s)-y(0)L\{y\}=Y(s)将以上三个式子带入二阶常系数微分方程中,消去 Y(s),就可以得到:s^2Y(s)-sy(0)-y'(0)+a(sY(s)-y(0))+bY(s)=F(s)其中 F(s) 为右侧函数的拉普拉斯变换。
二阶常微分方程的求解方法和应用

二阶常微分方程的求解方法和应用二阶常微分方程是指包含了二阶导数或者二次项的一类微分方程。
解决这类微分方程是理应掌握的技能,因为它们在许多自然科学和工程学科中都有着广泛的应用。
在本文中,我们将讨论二阶常微分方程的求解方法以及它们的常见应用。
一、二阶常微分方程的基本形式二阶微分方程的一般形式是:$f''(x)+p(x)f'(x)+q(x)f(x)=g(x)$其中,函数f是要求解的未知函数,x是自变量,p(x)和q(x)是已知函数,g(x)是已知的函数或常数。
通常,二阶微分方程左侧的三项可以看作是二阶导数f''(x)、一阶导数f'(x)和f(x)对自变量x的线性组合。
这个线性组合中的系数p(x)和q(x)通常是自变量x的函数。
二、二阶微分方程的解法1.特解法特解法适用于在右侧有特殊类型函数的情况下,比如方程右侧是常数、指数函数、三角函数等。
因为这种情况下函数在取微分后与自身的形式变化不大,因此我们可以借助类似的解来猜测:如果右侧的g(x)是Acos(ax)+Bsin(ax),那么我们可以尝试将函数f(x)猜测为Ccos(ax)+Dsin(ax)的形式,其中C和D是待求解的常数。
特解法的主要优点是简单易懂,特别是对于初学者而言。
但是,它有一个缺点:并不能解决更复杂的情况,比如右侧是分段函数的情况,因此需要用到其他解法。
2.变量分离法变量分离法是二阶微分方程求解的一种另类方法,它将原方程转换成一个含有单个未知函数但双变量的方程。
比如:$y''+y=0$方程左边的两项y''和y可以看作是函数y和y'的函数。
将方程拆开成两个修正的一阶方程,使用变量分离法来解决,得到:$\frac{dy}{dx}=u$$\frac{du}{dx}=-y$求解上述方程后,我们可以得到原始二阶微分方程的一般解:$y=Acos(x)+Bsin(x)$在实际应用中,变量分离法非常实用,例如在电工电子工程学里,它被用于模拟LC振荡器、无源滤波器等等。
二阶常微分方程解法

二阶常微分方程解法二阶常微分方程是数学中常见的方程形式,可以通过不同的方法来求解。
本文将介绍二阶常微分方程的解法,并通过例题来说明具体步骤。
一、齐次二阶常微分方程的解法齐次二阶常微分方程的一般形式为:y'' + P(x)y' + Q(x)y = 0齐次二阶常微分方程的解法步骤如下:1. 首先,设y=e^(λx)为方程的解,其中λ为待定常数。
2. 求解特征方程λ^2 + P(x)λ + Q(x) = 0的根。
设该方程的根为λ1和λ2。
3. 根据特征根λ1和λ2的值,分别列出对应的解y1=e^(λ1x)和y2=e^(λ2x)。
4. 则原方程的通解为y=C1y1 + C2y2,其中C1和C2为任意常数。
例题1:求解二阶常微分方程y'' - 4y' + 4y = 0。
解题步骤:1. 特征方程为λ^2 - 4λ + 4 = 0,解得λ=2。
2. 因此,对应的特解为y1=e^(2x)。
3. 原方程的通解为y=C1e^(2x) + C2xe^(2x),其中C1和C2为任意常数。
二、非齐次二阶常微分方程的解法非齐次二阶常微分方程的一般形式为:y'' + P(x)y' + Q(x)y = f(x)非齐次二阶常微分方程的解法步骤如下:1. 首先,求解对应的齐次方程y'' + P(x)y' + Q(x)y = 0的通解,假设为y=C1y1 + C2y2。
2. 再根据待定系数法,设非齐次方程的特解为y*,代入原方程得到特解的形式。
3. 求解特解形式中的待定系数,并将特解形式代入原方程进行验证。
4. 特解形式正确且验证通过后,非齐次方程的通解为y=C1y1 +C2y2 + y*。
例题2:求解二阶常微分方程y'' - 4y' + 4y = x^2 + 3x + 2。
解题步骤:1. 对应的齐次方程的通解为y=C1e^(2x) + C2xe^(2x),其中C1和C2为任意常数。
二阶常系数线性微分方程的解法

二阶常系数齐次线性方程解的性质 回顾
一阶齐次线性方程 y P( x) y 0 (1)
1、方程(1)的任意两个解的和仍是(1)的解; 2、方程(1)的任意一个解的常数倍仍是(1)的解;
2
二阶常系数齐次线性方程解的性质 y ay by 0 (2)
1、方程(2)的任意两个解的和仍是(2)的解; 2、方程(2)的任意一个解的常数倍仍是(2)的解;
Q( x) Qm ( x) , 即 y Qm ( x) erx 情形2 若 r 是特征方程的单根, 即 r2 ar b 0 ,
而 2r a 0 , 则令 Q( x) xQm ( x) , 即
y xQm ( x)erx
14
Q (2r a)Q (r 2 ar b)Q Pm ( x) (*) 情形3 若 r 是特征方程的二重根, 即 r2 ar b 0 ,
2
2
此时原方程的通解为
y
(C1
C 2 x)e2x
1 2
x 2e2x
;
Q( x) Ax2 , Q Pm ( x) , 2 A 1
21
y 4 yAe x ,
代入原方程,得
A
(
1 2)2
,
即特解为
y
(
1 2)2
e
x
,
此时原方程的通解为
于是 y x( 1 x 1)e2x ,
2
2
原方程通解为
y
C1e x
C 2e2 x
x(1 2
x
1) e2 x
.
18
例6 求微分方程 y 6 y 9 y x e3x 的通解.
解 特征方程 2 6 9 0 , 特征根 1,2 3 ,
对应齐次方程通解 Y (C1 C2 x)e3x . 因为 r 3 是二重特征根,
二阶常微分方程的几种解法

二阶常系数非齐次线性微分方程的几种解法一 公式解法目前,国内采用的高等数学科书中, 求二阶常系数线性非奇次微分方程[1]:'''()y ay by f x ++=通解的一般方法是将其转化为对应的齐次方程的通阶与它本身的特解之和。
微分方程阶数越高, 相对于低阶的解法越难。
那么二阶常系数齐次微分方程是否可以降价求解呢? 事实上, 经过适当的变量代换可将二阶常系数非齐次微分方程降为一阶微分方程求解。
而由此产生的通解公式给出了该方程通解的更一般的形式。
设二阶常系数线性非齐次方程为'''()y ay by f x ++= (1) 这里b a 、都是常数。
为了使上述方程能降阶, 考察相应的特征方程20k ak b ++= (2) 对特征方程的根分三种情况来讨论。
1 若特征方程有两个相异实根12k 、k 。
则方程(1) 可以写成'''1212()()y k k y k k y f x --+=即 '''212()()()y k y k y k y f x ---=记'2z y k y =- , 则(1) 可降为一阶方程'1()z k z f x -=由一阶线性方程的通解公()()[()]p x dx p x dx y e Q x e dx c -⎰⎰=+⎰[5] (3) 知其通解为1130[()]x k x k t z e f t e dt c -=+⎰这里0()xh t dt ⎰表示积分之后的函数是以x 为自变量的。
再由11230[()]x k x k t dy k y z e f t e dt c dx--==+⎰ 解得12212()()340012[(())]k k x x u k x k k u e y e e f t dt du c c k k --=++-⎰⎰ 应用分部积分法, 上式即为1212212()()34001212121[()()]k k xk k x x x k x k t k t e e y e f t e dt f t e dt c c k k k k k k ----=-++---⎰⎰ 1122121200121[()()]x x k x k t k x k t k k x e f t e dt e f t e dt c e c e k k --=-++-⎰⎰ (4) 2 若特征方程有重根k , 这时方程为'''22()y ky k y f x -+=或'''()()()y ky k y ky f x ---=由公式(3) 得到'10[()]xkx kt y ky e e f t dt c --=+⎰再改写为'10()xkx kx kt e y ke y e f t dt c ----=+⎰ 即10()()xkx kt de y ef t dt c dx --=+⎰故120()()xkx kt kx kx y e x t e f t dt c xe c e -=-++⎰(5)例1 求解方程'''256x y y y xe -+=解 这里2560k k -+= 的两个实根是2 , 32()x f x xe =.由公式(4) 得到方程的解是332222321200x x x t t x t t xxy e e te dt e e te dt c e c e --=-++⎰⎰32321200x xx t x x x e te dt e tdt c e c e -=-++⎰⎰2232132x x xx x e c e c e ⎡⎤=--++⎢⎥⎣⎦这里321c c =-.例2 求解方程'''2ln x y y y e x -+=解 特征方程2210k k -+= 有重根1 , ()ln x f x e x =.由公式(5) 得到方程的解是 120()ln x x t t x x y ex t e e tdt c xe c e -=-++⎰120()ln x x x x e x t tdt c xe c e =-++⎰ 1200[ln ln ]x xxx x e x tdt t tdt c xe c e =-++⎰⎰ 21213ln 24x x x x e x c xe c e ⎡⎤=-++⎢⎥⎣⎦ 二 常数变易法二阶常系数非齐次线性微分方程的一般形式是'''()y py qy f x ++=, (6) '''0y py qy ++= , (7) 其中p q 、 为常数,根构造方程(7) 的两个线性无关的解,再由这两个解构造出方程(7) 的通解。
二阶线性常微分方程求解

二阶线性常微分方程求解
二阶线性常微分方程是一种重要的微分方程,它是一个双重阶的微分方程,包含一个高阶导数和一个一阶导数,可以用来描述物理过程中特定变量之间的变化。
它可以用来描述复杂系统的行为,从而为我们提供一种有效的解决方法。
二阶线性常微分方程的一般形式为:y''+P(x)y'+Q(x)y=f(x),其中y是一个未知函数,P(x)和Q(x)是确定的函数,f(x)是给
定的函数。
二阶线性常微分方程的解法有多种,但是最常用的是牛顿迭代法。
牛顿迭代法是一种迭代法,它可以解决二阶线性常微分方程。
牛顿迭代法的基本思想是:将二阶线性常微分方程分解为两个一阶线性常微分方程,然后采用牛顿迭代法迭代求解。
牛顿迭代法的步骤如下:(1)确定初值,即设定y(x0)和
y'(x0)的初始值;(2)求解y'(x0)的值,即求解一阶线性常微
分方程;(3)求解y(x0)的值,即求解二阶线性常微分方程;(4)将求得的y(x0)和y'(x0)作为下一次迭代的初始值,重复
步骤(2)和(3),直到满足给定精度要求为止。
二阶线性常微分方程在工程学和物理学中都有着广泛的应用,例如,可以用它来模拟物理系统的运动,从而获得精确的解决方案;也可以用它来解决水利工程中的洪水问题,从而获得最优的解决方案。
总之,二阶线性常微分方程可以用来模拟各种复杂物理过程,牛顿迭代法是一种有效的解决方法,它可以帮助我们获得更准确的解决方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京师范大学泰州学院毕业论文(设计)(一六届)题目:二阶常微分方程的解法院(系、部):数学科学与应用学院专业:数学与应用数学姓名:潘陆学号08120146指导教师:刘陆军南京师范大学泰州学院教务处制摘要:本文主要是介绍了二阶常微分方程众多解法中的三种,分别为特征方程法,拉普拉斯变换法和常数变易法,研究并讨论了二阶常微分方程在特征方程法中特征方程根为实根,复根和重根的情形。
我们选用了弹簧振子系统的振子运动,用这三种不同的方法来解决该问题。
关键词:二阶常微分方程;特征根法;常数变易法;拉普拉斯变换Abstract:The main purpose of this paper is the second-order ordinary many differential equation solution of three, respectively as the characteristic equation method, Laplace transform method and variation of constants method, study and discuss the second-order often differential equation in the characteristic equation of the roots of the characteristic equation for real roots, complex roots and root weight. We choose the spring oscillator the oscillator motion, these three different methods to solve the problem.Keywords: second order ordinary differential equation; Characteristic analysis; constant variation method; Laplasse transform目录1 绪论 (3)1.1 二阶常微分方程的起源和发展史 (3)1.2 二阶常微分方程的介绍 (3)1.3 研究二阶常微分方程的目的与意义 (4)2 二阶常系数常微分方程的几种解法 (5)2.1 特征方程法 (5)2.1.1 特征根是两个实根的情形 (5)2.1.2 特征根有重根的情形 (6)2.2 常数变易法 (7)2.3 拉普拉斯变换法 (9)3 二阶常微分方程解法的应用(分析例题) (11)3.1 特征方程法 (11)3.2 常数变易法 (13)3.3 拉普拉斯变换法 (14)4 结论和启示 (16)谢辞 (18)参考文献 (19)1 绪论1.1 二阶常微分方程的起源和发展史既然说到了微分方程,就不能不提到海王星的故事,它的发现是人类智慧的硕果,微分方程在其中扮演了重要的角色,并且在其中也包含数学演绎法的作用。
在发现了天王星之后,进行天文观测的人们发现它所处的位置总是和万有引力计算出的位置有些许不同,于是有人质疑万有引力定律的正确性。
但也有一部分人认为,这也可能是天王星在受到一颗尚未发现的行星的吸引力才会造成的改变。
不少人坚信这种假设是正确的,但却很少有人找到了正确的方法并付诸实践。
而英国的一个学生亚当斯显然不是其中之一,他勇敢接受了这项任务,运用手头仅有的资料建立起微分方程,成功求出了海王星的位置与下次出现的时间。
1843年10月21日,满怀信心的亚当斯把结果寄给了天文台长艾利,但换来的却是质疑,艾利并不相信籍籍无名的他。
然而在两年后,另一名青年勒威耶也计算出了同样的数据,并把计算的结果给予了位于柏林天文台的助理员卡勒,在那个值得铭记的夜晚,卡勒在计算出的位置上发现了第七颗行星海王星。
从二十世纪三十年代以来,常微分方程的研究像是走上了快车道,迅速发展并建立起了多个分支。
1927-1945年期间定性理论的主要研究是与无线电技术紧密联系在一起的。
在第二次世界大战期间由于对通讯等方面的需求越来越高,极大地激发了对无线电技术的研究进展,尤其是对非线性振动理论的研究取得了迅速的发展。
在四十年代之后各国大部分数学家们主要在研究对抽象动力系统的拓扑特征, 例如闭轨的存在性、结构的稳定性等, 对于二维系统来说,我们可以通过一些方法证明他的结构稳定性;而对于一般的系统来说这个问题依旧困扰着我们。
在动力系统的研究方面, 目前采用的办法是从典范方程组到阻碍集有详尽的理论指导,成功解决了一系列困扰人类多年的问题, 其中最为突出的是C ’封闭引理的证明, 以及对结构稳定性的充要条件等方面都作出了杰出贡献。
在当今社会,由于信息技术的飞速发展,大量的领域需要用到常微分方程组进行描述。
前赴后继的杰出的学者们,为了各种稳定性及专业问题,终其一生都在研究常微分方程,也取得了不朽的成就,但依然有很大的疑问等着我们去解开。
1.2 二阶常微分方程的介绍 二阶微分方程在时间上大致与微积分同时产生 。
对于初学者来说,)(x f y ='这样的问题就是最简单的微分方程了。
二阶常系数线性微分方程是形如)(x f qy y p y =+'+''的微分方程。
与其对应的二阶常系数齐次线性微分方程为0=+'+''qy y p y ,其中q p ,是实常数。
若函数1y 和2y 之比为常数,称1y 和2y 是线性相关的;若函数1y 和2y 之比不为常数,称1y 和2y 是线性无关的。
1.3 研究二阶常微分方程的目的和意义就如上文所说,研究二阶常微分方程已经取得了不少成就,尤其是在对方程的求解方面。
与此同时应用常微分方程的理论也经过大家的不懈努力,取得了丰硕的成果。
但是对于进一步的发展所需,还是小巫见大巫,所以我们要更加努力的钻研,努力地完善这门学科的理论系统。
在数学的发展历史中,数学分析占有非常重要的地位,我们大学学习的课程也都是以数学分析作为基础,而微分方程正是数学分析的关键所在。
同时它也发展出了数学分析中大部分思想以及理论。
众所周知的,常微分方程自始至终都是人类用来探索自然变换,研究自身社会结构,工程问题以及大自然的生态结构的便利的道具。
常微分方程由于与现实生活息息相关,所以对其的研究一直没有停止过,而且表现出欣欣向荣的活力。
并且在多个学术领域中,常微分方程都占着决定性的作用,可以说常微分方程带领着人类的进步。
而二阶常微分方程同样在常微分方程的整套理论中有着弥足轻重的地位,在各个研究领域中都有十分广泛的应用。
2 二阶常系数常微分方程的几种解法2.1 特征方程法特征方程法中的特征方程,是为了对相对应的数学对象进行深入的研究而人为引入的一些等式,当研究的对象改变时,它也会改变,这其中包括数列特征方程,微分方程特征方程和积分方程特征方程等等。
求微分方程022=++qx dtdx p dt x d 的通解。
解: 特征方程02=++q p λλ的根21λλ,,(1)若21λλ,是两个不相等的实根,那么上面这个微分方程就拥有两个实值解t t e e 21,λλ,于是我们可以求得其通解为t t e c e c x 2121λλ+=(21,c c 为常数).(2)若21λλ,相等,则该方程有二重根,因此方程的通解具有形状如t t e c e c x 1121λλ+=(21,c c 为常数).(3)若21λλ,为共轭复根bi a z ±=的情况,则该方程的通解具有形状)cos sin (21bt c bt c e x at +=(21,c c 为常数).在数学中,许多公式与定理都需要进行证明,下面本文给出前两个解答的理论依据及证明过程。
2.1.1 特征根是两个实根的情形设21λλ,为该特征方程的两个不等实根,那么我们可以得出与之对应的方程的两个解为t t e e 21,λλ,我们确定这两个解在b t a ≤≤上线性无关,所以它们能够组成该方程的基本解组。
事实上,这时21)(2111)(212121λλλλλλλλλλt t t tt e e e e e t w +== ,而上面最后一个行列式是著名的范德蒙德(Vandermonde )行列式,该行列式与 )(12-λλ相等。
由于在之前假设了12λλ≠,所以此行列式不等于零,从而0)(≠t w ,于是得到t t e e 21,λλ 线性无关,这就是要证明的结论。
而该方程的通解即可表示为t t e c e c x 2121λλ+=(其中21,c c 为任意数).2.1.2 特征根为复根时讨论这个特征方程含有复根的情况,首先这个方程的系数为实数,同时也是常数,所以复根成对共轭出现。
设βαλi +=1是特征根之一,则βαλi -2=就是第二个特征根,根据这两个特征根我们就可以得到原方程的两个不同的实值解:)sin (cos )(t i t e e i t i ββαβα+=+,)sin (cos )(t i t e e ai t i βββα-=-.根据定理,我们得到的复值解的实部和虚部与方程的解相同。
那么由于这一对共轭复根βαλi ±=对应于特征方程,可以求得方程022=++qx dtdx p dt x d 的两个实值解 t e t e ai ai ββsin ,cos .2.1.3 特征根有重根的情形设特征方程有k 重根1λλ=则易得0)(,0)()()(1)(1)1(11≠====-λλλλk k F F F F ,先设01=λ,表示特征方程有因子k λ,于是011====+--k n n n a a a ,也就是该特征方程的形状为011=+++--k k n n n a a λλλ ,而与其对应的方程[]01111=++++≡---x a a dtx d a dt x d x L n n n n n n 则变为 0111=+++---k k k n n n n n dxy d a dx y d a dx y d . 易得它有k 个解,12,,,-k t t t ,而它们是线性无关的。
于是我们可以得出,特征方程中的k 重零根对应方程的k 个彼此线性无关的解,12,,,-k t t t 。
当这个k 重根0≠λ,我们作变量变换t ye x 1λ=,可注意到()()()()()()()⎥⎦⎤⎢⎣⎡++-++==--y y m m y m y e ye x m m m m t m t m 122111!2111λλλλλ , 可得 [][]t t n n n n n t e y L e y b dt y d b dt y d ye L 1111111λλλ=⎪⎪⎭⎫ ⎝⎛+++=-- , 于是可将对应方程化为[]01111111=+++++=----y b dty d b dt y d b dt y d y L n n n n n n n , 而其中n b b b b ,,,,321 仍为常数,其相应的特征方程为()0111=++++≡--n n n n b b b G μμμμ ,直接进行计算易得()()()[][]()()t t t t t e G e e L e L e F 111111λμλμλμλμμλμ+++===+,因此 ()()μλμG F =+1,从而()k j G F j ,,2,1,)(1 ==+μλμ.通过这样转化,问题就化为前面所讨论过的情况了。