二阶常系数线性微分方程
高数第4章第5节——二阶常系数线性微分方程

例3 已知 y = x 及 y = sinx 为某二阶齐次线性 微分 方程的解 , 求该方程 .
解
例4
解
(1)
由题设可得:
2 2
p( x)2x
0, 1
x3
p( x)( ) x2
f ( x),
解此方程组,得
p( x) 1 , x
线性相关
存在不全为 0 的
使
线性无关
常数
思考:
中有一个恒为 0, 则 必线性 相关
例如 y y 0, 有解 y1 cos x, y2 sin x,
复习: 一阶线性方程 通解:
齐次方程通解Y 非齐次方程特解
2.二阶非齐次线性微分方程解的结构
定理 4.5.3
是二阶非齐次方程 ①
的一个特解, Y (x) 是相应齐次方程的通解,则 ②
的方程称为二阶常系数齐次线性微分方程.
二阶常系数齐次线性方程解法
-----特征方程法
设 y erx , 将其代入上方程, 得
(r 2 pr q)erx 0
erx 0,
故有
特征方程
特征根
r1,2 p
p2 4q , 2
特征根
(1) 特征方程有两个不相等的实根
特征根为r1 p
6Ax 2B x,
A 1,B0, 6
原方程通解为
例13
解 对应齐次方程为 特征方程为 r 2 2r 1 0,
特征根为 r1 r2 1, 故对应齐次方程的通解为 Y (C1 C2 x)e x . 1 是特征方程二重根, 可设 y x2( Ax B)e x ,
代入原方程, 得 6Ax 2B x 1, A 1 , B 1 ,
10.5 二阶常系数线性微分方程

= C1e r1x + C2 e r2 x y
+ xC 2 )e rx y = (C 1
= eαx ( Acos βx + B sin βx) y
小结:求二阶常系数齐次线性方程 小结 求二阶常系数齐次线性方程y′′+py′+qy=0的通解 的步骤: 写出方程的特征方程: 的步骤:1、写出方程的特征方程: r2+r+q=0; 2、求出特征方程的两个根r1,r2; 按上表写出方程⑵的通解. 3、根据r1,r2,按上表写出方程⑵的通解.
2
⇒ y2 = xy1 = xe rx 故通解为: 故通解为: y = C1 y1 + C2 y2 = (C1 + xC2 )e .
rx
0的最简单形式) 的最简单形式
微积分九 微积分九③
2011-122011-12-16
8/17
⑶当△=p2-4q<0时,特征根 r1, 2 = α ±β i = e (α +iβ ) x , y2 = e (α −iβ ) x 是方程⑵的两个解 是方程⑵ 则 y1 y1 e = (α −iβ ) x = e 2 iβx ≠ 常数 ∴y 与y 线性无关 且 1 2 y2 e 现将复值函数化为实值函数形式 利用欧拉公式: 利用欧拉公式:eiθ =cosθ+isinθ,将y1与y2写为 = eαx (cos βx + i sin βx) y2 = eαx (cos βx − i sin βx) y1 作线性组合,得 作线性组合 得 i 1 αx = ( y2 − y1 ) = eαx sin β x Y1 = ( y1 + y2 ) = e cos βx Y2 2eαx cos βx 2 Y1 = cot βx ≠ 常数 也是方程⑵的解, 则Y1与Y2也是方程⑵的解, 且 = αx Y2 e sin βx 故方程的通解为: 故方程的通解为:y=C1Y1+C2Y2
二阶常系数线性微分方程

第八章 8.4讲第四节 二阶常系数线性微分方程一、二阶常系数线形微分方程的概念形如 )(x f qy y p y =+'+'' (1)的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数.如果0)(≡x f ,则方程式 (1)变成0=+'+''qy y p y (2)我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法.二、二阶常系数齐次线性微分方程1.解的叠加性定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数.证明 因为1y 与2y 是方程(2)的解,所以有0111=+'+''qy y p y 0222=+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得)()()(221122112211y C y C q y C y C p y C y C ++'+'+''+'' =0)()(22221111=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解.定理1说明齐次线性方程的解具有叠加性.叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解.2.线性相关、线性无关的概念设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n个函数在区间I 内线性相关,否则称线性无关.例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为0sin cos 122≡--x x又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k必须0321===k k k .对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠21y y 常数, 则1y ,2y 线性无关.3.二阶常系数齐次微分方程的解法定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则212211,(C C y C y C y +=为任意常数)是方程式(2)的通解.例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且≠=x y y tan 21常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+=( 21,C C 是任意常数)是方程0=+''y y 的通解.由于指数函数rxe y =(r 为常数)和它的各阶导数都只差一个常数因子,根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r ,使rx e y =满足方程(2).将rx e y =求导,得rx rx e r y re y 2,=''='把y y y ''',,代入方程(2),得0)(2=++rx e q pr r因为0≠rx e , 所以只有 02=++q pr r (3)只要r 满足方程式(3),rx e y =就是方程式(2)的解.我们把方程式(3)叫做方程式(2)的特征方程,特征方程是一个代数方程,其中r r ,2的系数及常数项恰好依次是方程(2)y y y ,,'''的系数.特征方程(3)的两个根为 2422,1q p p r -±-=, 因此方程式(2)的通解有下列三种不同的情形. (1) 当042>-q p 时,21,r r 是两个不相等的实根.2421q p p r -+-=,2422q p p r ---= x r x r e y e y 2121,==是方程(2)的两个特解,并且≠=-x r r e y y )(2121常数,即1y 与2y 线性无关.根据定理2,得方程(2)的通解为 x r x r e C e C y 2121+=(2) 当042=-q p 时, 21,r r 是两个相等的实根.221p r r -==,这时只能得到方程(2)的一个特解x r e y 11=,还需求出另一个解2y ,且≠12y y 常数,设)(12x u y y =, 即 )(12x u e y x r =)2(),(21121211u r u r u e y u r u e y x r x r +'+''=''+'='. 将222,,y y y '''代入方程(2), 得 []0)()2(12111=++'++'+''qu u r u p u r u r u e x r 整理,得0])()2([12111=+++'++''u q pr r u p r u e x r由于01≠x r e , 所以 0)()2(1211=+++'++''u q pr r u p r u因为1r 是特征方程(3)的二重根, 所以 02,01121=+=++p r q pr r 从而有 0=''u因为我们只需一个不为常数的解,不妨取x u =,可得到方程(2)的另一个解 x r xe y 12=.那么,方程(2)的通解为x r x r xe C e C y 1121+=即 xr e x C C y 1)(21+=.(3) 当042<-q p 时,特征方程(3)有一对共轭复根 βαβαi r i r -=+=21, (0≠β)于是 x i x i e y e y )(2)(1,βαβα-+==利用欧拉公式 x i x e ix sin cos +=把21,y y 改写为 )sin (cos )(1x i x e e e e y x x i x x i ββαβαβα+=⋅==+)sin (cos )(2x i x e e e e y x x i x xi ββαβαβα-=⋅==-- 21,y y 之间成共轭关系,取-1y =x e y y x βαcos )(2121=+, x e y y i y x βαsin )(2121_2=-= 方程(2)的解具有叠加性,所以-1y ,-2y 还是方程(2)的解,并且≠==--x x e x e y y x x βββααtan cos sin 12常数,所以方程(2)的通解为 )sin cos (21x C x C e y x ββα+=综上所述,求二阶常系数线性齐次方程通解的步骤如下:(1)写出方程(2)的特征方程02=++q pr r(2)求特征方程的两个根21,r r(3)根据21,r r 的不同情形,按下表写出方程(2)的通解.例1求方程052=+'+''y y y 的通解.解: 所给方程的特征方程为0522=++r ri r i r 21,2121--=+-=所求通解为 )2sin 2cos (21x C x C e y x +=-.例 2 求方程0222=++S dt dS dtS d 满足初始条件2,400-='===t t S S 的特解.解 所给方程的特征方程为0122=++r r121-==r r通解为 t e t C C S -+=)(21 将初始条件40==t S 代入,得 41=C ,于是t e t C S -+=)4(2,对其求导得t e t C C S ---=')4(22 将初始条件20-='=t S 代入上式,得22=C所求特解为t e t S -+=)24(例3求方程032=-'+''y y y 的通解.解 所给方程的特征方程为 0322=-+r r其根为 1,321=-=r r所以原方程的通解为 x x e C e C y 231+=-二、二阶常系数非齐次方程的解法1.解的结构定理3 设*y 是方程(1)的一个特解,Y 是式(1)所对应的齐次方程式(2)的通解,则*+=y Y y 是方程式(1)的通解.证明 把*+=y Y y 代入方程(1)的左端:)()()(*++*'+'+*''+''y Y q y Y p y Y=)()(*+*'+*''++'+''qy py y qY Y p Y=)()(0x f x f =+*+=y Y y 使方程(1)的两端恒等,所以*+=y Y y 是方程(1)的解. 定理4 设二阶非齐次线性方程(1)的右端)(x f 是几个函数之和,如 )()(21x f x f qy y p y +=+'+'' (4)而*1y 与*2y 分别是方程 )(1x f qy y p y =+'+''与 )(2x f qy y p y =+'+''的特解,那么**+21y y 就是方程(4)的特解, 非齐次线性方程(1)的特解有时可用上述定理来帮助求出.2.)()(x P e x f m x λ=型的解法)()(x P e x f m x λ=,其中λ为常数,)(x P m 是关于x 的一个m 次多项式. 方程(1)的右端)(x f 是多项式)(x P m 与指数函数x e λ乘积的导数仍为同一类型函数,因此方程(1)的特解可能为x e x Q y λ)(=*,其中)(x Q 是某个多项式函数.把 x e x Q y λ)(=*x e x Q x Q y λλ)]()(['+=*'x e x Q x Q x Q y λλλ)]()(2)([2''+'+=*''代入方程(1)并消去xe λ,得)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ (5)以下分三种不同的情形,分别讨论函数)(x Q 的确定方法:(1) 若λ不是方程式(2)的特征方程02=++q pr r 的根, 即02≠++q p λλ,要使式(5)的两端恒等,可令)(x Q 为另一个m 次多项式)(x Q m :m m m x b x b x b b x Q ++++= 2210)(代入(5)式,并比较两端关于x 同次幂的系数,就得到关于未知数m b b b ,,,10 的1+m 个方程.联立解方程组可以确定出),,1,0(m i b i =.从而得到所求方程的特解为x m e x Q y λ)(=*(2) 若λ是特征方程02=++q pr r 的单根, 即02,02≠+=++p q p λλλ,要使式(5)成立, 则)(x Q '必须要是m 次多项式函数,于是令)()(x xQ x Q m =用同样的方法来确定)(x Q m 的系数),,1,0(m i b i =.(3) 若λ是特征方程02=++q pr r 的重根,即,02=++q p λλ 02=+p λ.要使(5)式成立,则)(x Q ''必须是一个m 次多项式,可令)()(2x Q x x Q m =用同样的方法来确定)(x Q m 的系数.综上所述,若方程式(1)中的x m e x P x f λ)()(=,则式(1)的特解为xm k e x Q x y λ)(=*其中)(x Q m 是与)(x P m 同次多项式,k 按λ不是特征方程的根,是特征方程的单根或是特征方程的重根依次取0,1或2.例4 求方程x e y y 232-='+''的一个特解.解 )(x f 是x m e x p λ)(型, 且2,3)(-==λx P m对应齐次方程的特征方程为 022=+r r ,特征根根为2,021-==r r . =-2是特征方程的单根, 令xe xb y 20-=*,代入原方程解得230-=b故所求特解为 xxe y 223--=* .例5 求方程x e x y y )1(2-='-''的通解.解 先求对应齐次方程02=+'-''y y y 的通解.特征方程为 0122=+-r r , 121==r r齐次方程的通解为 x e x C C Y )(21+=.再求所给方程的特解1)(,1-==x x P m λ由于1=λ是特征方程的二重根,所以x e b ax x y )(2+=*把它代入所给方程,并约去x e 得126-=+x b ax比较系数,得61=a 21-=b于是 xe x x y )216(2-=*所给方程的通解为 x e x x x C C y y y )6121(3221+-+=+=* 3.x B x A x f ϖϖsin cos )(+=型的解法 ,sin cos )(x B x A x f ωω+=其中A 、B 、ω均为常数.此时,方程式(1)成为x B x A q y p y ωωsin cos +=+'+'' (7)这种类型的三角函数的导数,仍属同一类型,因此方程式(7)的特解*y 也应属同一类型,可以证明式(7)的特解形式为)sin cos (x b x a x y k ωω+=*其中b a ,为待定常数.k 为一个整数.当ω±i 不是特征方程02=++q pr r 的根, k 取0;当ω±i 不是特征方程02=++q pr r 的根, k 取1;例6 求方程x y y y sin 432=-'+''的一个特解.解 1=ω,ω±i i ±=不是特征方程为0322=-+r r 的根,0=k .因此原方程的特解形式为x b x a y sin cos +=*于是 x b x a y cos sin +-=*'x b x a y sin cos --=*''将*''*'*y y y ,,代入原方程,得⎩⎨⎧=--=+-442024b a b a 解得 54,52-=-=b a原方程的特解为: x x y sin 54cos 52--=* 例7 求方程x e y y y x sin 32+=-'-''的通解.解 先求对应的齐次方程的通解Y .对应的齐次方程的特征方程为0322=--r r3,121=-=r rx x e C e C Y 321+=-再求非齐次方程的一个特解*y .由于x e x x f -+=2cos 5)(,根据定理4,分别求出方程对应的右端项为,)(1x e x f =x x f sin )(2=的特解*1y 、*2y ,则 **+=*21y y y 是原方程的一个特解.由于1=λ,ω±i i ±=均不是特征方程的根,故特解为)sin cos (21x c x b ae y y y x ++=+=***代入原方程,得 x e x c b x c b ae x x sin sin )42(cos )24(4=-++--比较系数,得14=-a 024=+c b 142=-c b解之得 51,101,41-==-=c b a . 于是所给方程的一个特解为 x x e y x sin 51cos 10141-+-=* 所以所求方程的通解为x x e e C e C y Y y x x x sin 51cos 10141321-+-+=+=-*.。
二阶线性常系数微分方程

令zu
0
y 1 z ( 2 y 1 P y 1 ) z f (一阶线性方程)
设其通解为 zC 2Z (x)z(x)
积分得
u C 1 C 2 U (x ) u (x )
由此得原方程③的通解: y C 1 y 1 ( x ) C 2 U ( x ) y 1 ( x ) u ( x ) y 1 ( x )
因此特y 原征 方p 方程y y 程的 e 通q r 2y 解x ( C 为p0 1 rc (qp o ,x q 0为 C s 2 s常 )ix ) n 数
目录 上页 下页 返回 结束
小结: ypyqy0(p ,q 为常 ) 数
特征方程: r2prq0, 特征:r根 1,r2
第五节
第八章
二阶常系数线性微分方程
y p y q y f( x )( p ,q 是常数)
一、二阶常系数齐次线性微分方程 二、二阶常系数非齐次线性微分方程
目录 上页 下页 返回 结束
一、二阶线性常系数齐次微分方程
ypyqy0(p ,q 为常 ) 数
基本思路: 求解常系数线性齐次微分方程
目录 上页 下页 返回 结束
例5. 求 x 2 y 方 ( x 2 ) ( 程 x y y ) x 4 的通解. 解: 对应齐次方程为 x 2 y (x 2 )(xy y ) 0
由观察可知它有特解: y1x, 令 yxu(x),代入非齐次方程后化简得
uux 解上述可降阶微分方程,可得通解:
y * e x [Q (x ) Q (x )]
y * e x [2 Q ( x ) 2 Q ( x ) Q ( x ) ]
代入原方程 , 得
第三节_二阶常系数线性微分方程的解法

通解的表达式
y = C1e r1 x + C 2e r2 x
y = (C1 + C 2 x ) e
r1 x
y = eαx (C 1 cos β x + C 2 sin β x )
8
例1 解
的通解. 求微分方程 y′′ − 2 y′ − 3 y = 0 的通解.
特征方程为 λ 2 − 2λ − 3 = 0 特征根为 λ1 = −1, λ2 = 3 故所求通解为
y = C 1e − x + C 2 e 3 x
例2 解
求方程 y′′ + 2 y′ + 5 y = 0的通解 .
特征方程为 λ2 + 2λ + 5 = 0
解得
λ1, = −1± 2i , 2
y = e (C1 cos 2 x + C 2 sin 2 x )
9
故所求通解为
−x
ds ds 例3 求微分方程 2 + 2 + s = 0 满足初始条件 dt dt
∗
′′ = Q′′( x )e r x + 2λ Q′( x )e r x + λ2Q( x )e r x (y )
∗
代入方程 y′′ + ay′ + by = f ( x ) ,
整理并约去 e
rx
,得
Q′′ + (2r + a)Q′ + (r 2 + ar + b)Q = Pm ( x)
(*)
13
(1)
1、方程(1)的任意两个解的和仍是(1)的解; 方程(1)的任意两个解的和仍是(1)的解; (1)的任意两个解 (1)的解 2、方程(1)的任意一个解的常数倍仍是(1)的解; 方程(1)的任意一个解的常数倍仍是(1)的解; (1)的任意一个解的常数倍仍是(1)的解
. 二阶常系数线性微分方程

§7.4 二阶常系数线性微分方程二阶常系数线性微分方程的一般形式为)(x f qy y p y =+'+''.这里p 、q 是常数,)(x f 是x 的已知函数.当()f x 恒等于零时,称为二阶常系数齐次线性微分方程,否则称为二阶常系数非齐次线性微分方程.1.二阶常系数齐次线性微分方程定理1 设)(1x y y =与)(2x y y =为二阶常系数齐次线性微分方程0=+'+''qy y p y(1)的相互独立的两个特解(即)()(12x y x y 不恒等于常数),则2211y C y C y +=为方程(1)的通解,这里1C 与2C 为任意常数.证 按假设)(1x y 与)(2x y 为方程(1)的解,所以有下式成立0111=+'+''qy y p y ,0222=+'+''qy y p y . 又 2211y C y C y +=, 2211y C y C y '+'=', 2211y C y C y ''+''=''. 代入(1)式左端,得()()()221122112211y C y C q y C y C p y C y C qy y p y ++'+'+''+''=+'+'' 0)()(22221111=+'+''++'+''=qy y p y C qy y p y C . 即2211y C y C y +=为方程(1)的解. 在)()(12x y x y 不恒等于常数的条件下,2211y C y C y +=中含有两个相互独立的任意常数1C 和2C ,所以2211y C y C y +=是方程(1)的通解.由此定理可知,求方程(1)的通解问题,归结为求(1)的两个相互独立的特解.为了寻找这两个特解,注意到当r 为常数时,指数函数rx y e =和它的各阶导数只相差一个常数因子,因此不妨用rx y e =来尝试.设rx y e =为方程(1)的解,则rx r y e =',rx r y e 2='',代入方程(1)得.0)(2=++rx e q pr r由于0e ≠rx ,所以有.02=++q pr r (2) 只要r 满足(2)式,函数rx y e =就是微分方程(1)的解.我们把代数方程(2)称为微分方程(1)的特征方程,特征方程的根称为特征根.由于特征方程是一元二次方程,故其特征根有三种不同的情况,相应地可得到微分方程(1)的三种不同形式的通解.(ⅰ) 当042>-q p 时,特征方程(8-23)有两个不相等的实根1r 和2r ,此时可得方程(1)的两个特解:x r y 1e 1=, x r y 2e 2=,且≠=-x r r y y )(1212e /常数,故x r x r C C y 21e e 21+=是方程(1)的通解.(ⅱ) 当042=-q p 时,特征方程(8-23)有两个相等的实根21r r =,此时得微分方程(1)的一个特解x r y 1e 1=.为求(1)的通解,还需求出与x r 1e 相互独立的另一解2y .不妨设)(/12x u y y =,则)(e 12x u y x r =, )(e 121u r u y x r +'=', )2(21121u r u r u e y x r +'+''=''. 将22,y y '及2y ''代入方程(1),得 0])()2[(e 12111=++'++'+''qu u r u p u r u r u x r .将上式约去x r 1e 并合并同类项,得0)()2(1211=+++'++''u q pr r u p r u .由于1r 是特征方程(2)的二重根,因此,0121=++q pr r ,且021=+p r ,于是得0=''u .不妨取x u =,由此得到微分方程(1)的另一个特解x r x y 1e 2=,且≠=x y y 12/常数,从而得到微分方程(1)的通解为x r x r x C C y 11e e 21+=,即)(e 211x C C y x r +=.(ⅲ) 当042<-q p 时,特征方程(2)有一对共轭复根βαi r +=1,βαi r -=2.于是得到微分方程(1)的两个特解x i y )(1e βα+=,x i y )(2e βα-=.但它们是复数形式,为应用方便,利用欧拉公式θθθsin cos e i i +=将1y 和2y 改写成)sin (cos e 1x i x y x ββα+=,)sin (cos e 2x i x y x ββα-=.于是得到两个新的实函数x y y y x βαcos e )(21211=+=, x y y iy x βαsin e )(21212=-=. 可以验证它们仍是(1)的解,且≠=x y y βtan /12常数,故微分方程(1)的通解为)sin cos (e 21x C x C y x ββα+=.综上所述,求微分方程(1)通解的步骤可归纳如下:第一步 写出微分方程(1)的特征方程02=++q pr r ,求出特征根; 第二步 根据特征根的不同形式,按照下表写出微分方程(1)的通解: 表1特征方程02=++q pr r 的根21,r r 微分方程0'''=++qy py y 的通解两个不等实根21r r ≠ x r x r C C y 21e e 21+=两个相等实根21r r = x r x C C y 1e )(21+=一对共轭复根βαi r ±=2,1 )s i n c o s (e 21x C x C y x ββα+=例 1 求微分方程043=-'+''y y y 的通解.解 所给微分方程的特征方程为0432=-+r r .特征根为121, 4.r r ==- 于是,所求微分方程的通解为x x C C y 421e e -+=.例 2 求微分方程044=+'-''y y y 的满足初始条件1|,1|00='===x x y y 的特解.解 所给微分方程的特征方程为0442=+-r r .特征根221==r r .故所求微分方程的通解为)(e 212x C C y x +=.求导得x x C x C C y 22212e )(e 2++='.将初始条件1|0==x y 及1|0='=x y 代入以上两式求得.1,121-==C C 故所求特解为)1(e 2x y x -=.例 3 设函数)(x f 可导,且满足⎰⎰-++=xx t t f x t t tf x x f 00d )(d )(21)(. 试求函数)(x f .解 由上述方程知(0)1f =.方程两边对x 求导得⎰-='xt t f x f 0d )(2)(. 由此可得(0)2f '=.上式两边再对x 求导得)()(x f x f -=''.这是二阶常系数齐次线性方程,其特征方程为,012=+r特征根.,21i r i r =-= 于是,所求微分方程的通解为12()cos sin .f x C x C x =+由此得.cos sin )(21x C x C x f +-='由(0)1f =,(0)2f '=得.2,121==C C 所以.sin 2cos )(x x x f +=本节介绍的求二阶常系数齐次线性微分方程通解的原理和方法,也可以用于求解更高阶的常系数齐次线性方程.例 4 求四阶微分方程08)4(='+y y 的通解.解 所给微分方程的特征方程为084=+r r ,即,0)42)(2(2=+-+r r r r 其特征根为.31,2,04,321i r r r ±=-= 于是得方程的通解).3sin 3cos (e e 43221x C x C C C y x x +++=-2.二阶常系数非齐次线性微分方程从第二节的讨论知,一阶非齐次线性微分方程的通解等于对应的齐次线性方程的通解与非齐次线性方程的一个特解之和.而二阶常系数非齐次线性微分方程具有相类似的性质.定理2 设()y y x **=是二阶常系数非齐次线性微分方程)(x f qy y p y =+'+''(3)的一个特解,而Y 为对应于方程(3)的齐次线性微分方程的通解,则y Y y *=+为方程(3)的通解.由此结论可知,二阶常系数非齐次线性微分方程的通解,可按下面三个步骤来求:错误!未找到引用源。
2.2-二阶常系数线性微分方程的解法

∴对应的齐次方程的通解为Y e x (C1 C2 x) 。 ∵ f ( x) xe x ,属 f ( x) Pm ( x)e x 型( m 1, 1 ),
而 1是特征方程的重根,
∴设
y x2 ( A x A1 )e x
,A
ቤተ መጻሕፍቲ ባይዱ
1 6
,
A1
0
。
∴ y 1 x3ex ,
取 u( x) 0 的一个解 u( x) x ,则 y2 xerx 。
∴方程①的通解为 y C1erx C2 xerx , 即 y erx (C1 C2 x) 。
3 . 特 征 方 程 的 根 是 一 对 共 轭 复 数 的 情 形 。
∵ y1 e( i ) x 、 y2 e( i ) x 是方程①的特解,
将 y , ( y ) A , ( y ) 0 ,代入原方程后得
5A 6( A x A1 ) 6A x (6A1 5A ) 2x 3 ,有
6A 2
6
A1
5
A
3
A A1
1 3 7 9
. 故原方程的特解为 y
∴设 Qm ( x) A0 x m A1 x m1 Am1 x Am 。
把 Qm ( x) 代入 ④ 式,比较等式两端 x 同次幂的系数, 就得到以 A0 , A1 ,, Am1 , Am 作为未知数的 m 1 个方程 的联立方程组,从而可以定出这些 Ai (i 0, 1, , m) ,
且
y1 y2
e( i ) x e( i ) x
e2 i x 不为常数,它们是线性无关的,
二阶常系数线性微分方程

§6 二阶常系数线性微分方程
高阶线性微分方程在实际问题中应用比较多, 本节以讨论二阶线性微分方程为主,所得的结果 可以推广到二阶以上的线性微分方程。 定义 形如
d2y dy P( x) Q( x) y f ( x) 2 dx dx 的方程,称为二阶线性微分方程。
E-mail: xuxin@
(ii) 当 是单实根, 即2 + p1 + p2 = 0 , 但2 + p2 0. Q(x)是 m+1次多项式, 取常数项为零. Q(x) = x Qm(x)
y* xe Qm ( x)
x
E-mail: xuxin@
y (C1 C 2 x)e x .
因=1是特征方程的重根,Pm(x)=x+1,故特解形 式为: 2 x y* x e (ax b).
E-mail: xuxin@
代入原方程中得
6ax 2b x 1.
所以 从而有一特解为
1 1 a ,b . 6 2 1 1 y* x e ( x ). 6 2
上述结论可推广到n阶常系数非齐次线性微分方程.
E-mail: xuxin@
例6 求方程 y''+y=xcos2x 的通解. 解: 特征方程为 r2+1=0, 其根为r1,2= i, 所以对应齐次线性方程的通解为 y = C1cosx + C2sinx. 因 i =2i不是特征方程的根, P1(x)=x, Qn(x)0, 故可设特解为 y* = (ax+b)cos2x+(cx+d)sin2x y*'' = (–4ax+4c–4b)cos2x+(–4cx–4a–4d)sin2x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y P( x) y Q( x) y f k ( x)
k 1
n
的特解. (非齐次方程解的叠加原理) x 1 y y 0,( x 1) 满足初值条件 例 1 求方程 y x 1 x 1 y x0 3, y ' x0 2 的特解.
Q( x) [ C1 y1 C2 y2 ]
P( x) y1 Q( x) y1 ] C1 [ y1
P( x) y2 Q( x) y2 ] 0 证毕 C2 [ y 2
8
说明:
y C1 y1 ( x) C2 y2 ( x) 不一定是所给二阶方程的通解.
① 的一个特解, Y (x) 是相应齐次方程的通解, 则
y Y ( x) y * ( x)
②
是非齐次方程的通解 . 证: 将 y Y ( x) y * ( x) 代入方程①左端, 得
( Y y * ) P( x) ( Y y * ) Q( x) ( Y y * ) ( Y P( x) Y Q( x) Y )
是方程
的解, 则
与 y2 ( x) 分别是方程
y P( x) y Q( x) y f1 ( x)
y P( x) y Q( x) y f 2 ( x)
的解.
15
定理 5.
分别是方程
y P( x) y ,, n )
y P( x) y Q( x) y 0
的两个解, 则 y C1 y1 ( x) C2 y2 ( x) 也是该方程的解. (叠加原理) 证: 将 y C1 y1 ( x) C2 y2 ( x) 代入方程左边, 得
] P( x)[ C1 y1 C2 y2 C2 y 2 ] [ C1 y1
例如, 是某二阶齐次方程的解, 则
也是齐次方程的解 但是
并不是通解
为解决通解的判别问题, 下面引入函数的线性相关与
线性无关概念.
9
定义: 设 y1 ( x), y2 ( x),, yn ( x) 是定义在区间 I 上的
n 个函数, 若存在不全为 0 的常数 使得
则称这 n个函数在 I 上线性相关, 否则称为线性无关. 例如, 在( , )上都有
5
例 2 求解 解 代入方程得 两端积分得 ln p ln y ln C1 , 即 p C1 y, (一阶线性齐次方程) 故所求通解为
d p d p dy dp 则 y p dx d y dx dy
6
§5.3.2 二阶线性微分方程
如果一个二阶微分方程中出现的未知函数及未 知函数的一阶、二阶导数都是一次的,这个方程称 为二阶线性微分方程. 它的一般形式为
这种类型方程右端不显含未知函数 y,可先把 y ' 看作未知函数.
2
设 y p ( x) ,
设其通解为 则得
原方程化为一阶方程
p ( x, C1 ) y ( x, C1 )
再一次积分, 得原方程的通解
y ( x, C1 ) d x C2
例 1. 求方程 y '' y ' e 的通解.
y p( x) y q( x) y f ( x) ,
f ( x) 0 时, 称为非齐次方程 ; f ( x) 0 时, 称为齐次方程.
现在我们讨论二阶线性微分方程具有的一些性
质. 事实上,这些性质对 n 阶微分方程也成立.
7
定理1. 若函数 y1 ( x), y2 ( x) 是二阶线性齐次方程
x
3
补例. 求解 解
(1 x 2 ) y 2x y
y
x0
1 , y
x0
3
代入方程得
(1 x 2 ) p 2x p 分离变量
积分得 ln p ln (1 x 2 ) ln C1 ,
利用 y
x0
3 , 得 C1 3, 于是有 y 3 (1 x 2 )
(证明略)
思考:
中有一个恒为 0, 则
必线性 相关
11
定理 2.
是二阶线性齐次方程的两个线
性无关特解, 则 y C1 y1 ( x) C2 y2 ( x) 数) 是该方程的通解. 例如, 方程 有特解 常数, 故方程的通解为 且
y2 tan x y1
12
定理 3. 设 y * ( x) 是二阶非齐次方程
两端再积分得 利用 y
x0
y x 3 3 x C2
1 , 得 C2 1, 因此所求特解为
y x3 3 x 1
4
3. y f ( y, y) 型
d p d y d p 令 y p ( y ), 则 y dx d y dx
故方程化为 设其通解为 p ( y, C1 ), 即得 分离变量后积分, 得原方程的通解
第三节 二阶微分方程
§5.3.1 特殊二阶微分方程 §5.3.2 二阶线性微分方程 §5.3.3 二阶常系数线性微分方程
1
§5.3.1 特殊二阶微分方程
1. y '' f ( x) 型
可由初始条件确定这两个任意常数.
积分2次就可以得到通解.通解中包含两个任意常数,
2. y '' f ( x, y ')型
故它们在任何区间 I 上都线性相关;
又如,
必需全为 0 ,
若在某区间 I 上
则根据二次多项式至多只有两个零点 , 可见
在任何区间 I 上都 线性无关.
10
两个函数在区间 I 上线性相关与线性无关的充要条件: 使 存在不全为 0 的 线性相关
线性无关
线性无关
y1 ( x) k2 ( 无妨设 y2 ( x) k1 k1 0 ) y1 ( x) 常数 y2 ( x)
f ( x) 0 f ( x)
13
故 y Y ( x) y * ( x) 是非齐次方程的解, 又Y 中含有
两个独立任意常数, 因而 ② 也是通解 .
证毕
例如, 方程
对应齐次方程
有特解 有通解
Y C1 cos x C2 sin x
因此该方程的通解为
14
定理 4.
如果
y P( x) y Q( x) y f1 ( x) if 2 ( x)