2019年高考秘籍-破解导数压轴题策略:3.导数不等式的证明-切线法

2019年高考秘籍-破解导数压轴题策略:3.导数不等式的证明-切线法
2019年高考秘籍-破解导数压轴题策略:3.导数不等式的证明-切线法

导数中的不等式证明

【考点点睛】 放缩法证明不等式在历年高考数学中是永恒的话题,但它常考常新,学生却常考常怕。不等式的应用体现了一定的综合性,灵活多样性,多出现在压轴题的位置。数学的基本特点是应用的广泛性、理论的抽象性和逻辑的严谨性,而不等关系是深刻体现数学的基本特点。即使如此,只要我们深入去探索,总有方法规律可循,总会有“拨得云开见日出”的时刻! 放缩法的合理使用,往往能起到事半功倍的效果,有时能令人拍案叫绝;但其缺点也是显而易见,如果使用放缩法证题时没有注意放和缩的“度”,容易造成不能同向传递,即放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及,所以要熟练地驾驭它是件不容易的事。

命题角度1 构造函数

命题角度2 放缩法

命题角度3 切线法

命题角度4 二元或多元不等式的证明思路

命题角度5 函数凹凸性的应用

在求解过程中,力求“脑中有‘形’,心中有‘数’”.依托端点效应,缩小范围,借助数形结合,寻找临界.

命题角度3 切线法

【典例5】(2019届安徽省太和中学三模)已知函数()2

x f x e x =-. (1)求曲线()f x 在1x =处的切线方程;

(2)求证:当0x >时,()21ln 1x e e x x x

+--≥+.

【解析】(1)()2x f x e x =-,()2x f x e x '=-, 由题设得()()12,11f e f e '=-=-, ………﹝导数的几何意义的应用﹞ 所以曲线()f x 在1x =处的切线方程为()()211y e x e =--+-,即()21y e x =-+;

(2)令()()g x f x '=,则()2x

g x e '=-, 当ln 2x <时,()0g x '<,当ln 2x >时,()0g x '>,

所以函数()()g x f x '=在(),ln 2-∞上单调递减,在()ln 2,+∞上单调递增,

()()()min ln2ln222ln20g x g f '===->,

所以函数()2x f x e x =-在()0,+∞上单调递增,

因为曲线()f x 在1x =处的切线方程为()21y e x =-+,()11f e =-,可猜测函数()f x 的图象恒在切线()21y e x =-+的上方. ………﹝多步设问,层层递进,上问结果,用于下问﹞

先证明当0x >时,()()21f x e x ≥-+.

设()()()()210h x f x e x x =--->,则()()()22,2x x h x e x e h x e '''=---=-,

当ln 2x <时,()0h x ''<,当ln 2x >时,()0h x ''>,

所以()h x '在()0,ln 2上单调递减,在()ln 2,+∞上单调递增,

由()()030,10,0ln 21h e h ''=->=<<,所以()ln 20h '<,

所以存有()00,ln 2x ∈,使得()00h x '=,

所以当()()00,1,x x ∈+∞U 时,()0h x '>,当()0,1x x ∈时,()0h x '<,

所以()h x 在()00,x 上单调递增,在()0,1x 上单调递减,在()1,+∞上单调递增.

因为()()010h h ==,所以()0h x ≥,即()()21f x e x ≥-+,当且仅当1x =时取等号,

所以当0x >时,()2

21x e x e x -≥-+, ………﹝切线放缩法是一种崭新的放缩途径﹞ 变形可得()21x e e x x x

+--≥, 又因为ln 1x x ≥+,当且仅当1x =时取等号(证明略),……﹝灵活借助于ln 1x x ≥+放缩﹞

所以()21ln 1x e e x x x

+--≥+,当且仅当1x =时取等号. 【审题点津】切线放缩法值得认真探究,若第一小题是求曲线的切线方程,就要注意是否使用切线放缩法实行放缩解决问题.

高考数学导数的解题技巧

2019年高考数学导数的解题技巧高考导数题主要是考查与函数的综合,考查不等式、导数的应用等知识,难度属于中等难度。 都有什么题型呢? ①应用导数求函数的单调区间,或判定函数的单调性; ②应用导数求函数的极值与最值; ③应用导数解决有关不等式问题。 有没有什么解题技巧啦? 导数的解题技巧还是比较固定的,一般思路为 ①确定函数f(x)的定义域(最容易忽略的,请牢记); ②求方程f′(x)=0的解,这些解和f(x)的间断点把定义域分成若干区间; ③研究各小区间上f′(x)的符号,f′(x)>0时,该区间为增区间,反之则为减区间。 从这两步开始有分类讨论,函数的最值可能会出现极值点处或者端点处,多项式求导一般结合不等式求参数的取值范围,根据题目会有一定的变化,那接下来具体总结一些做题技巧。 技巧破解+例题拆解 1.若题目考察的是导数的概念,则主要考察的是对导数在一点处的定义和导数的几何意义,注意区分导数与△y/△x 之间的区别。

观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。

导数证明不等式

利用导数证明不等式的两种通法 利用导数证明不等式是高考中的一个热点问题,利用导数证明不等式主要有两种通法,即函数类不等式证明和常数类不等式证明。下面就有关的两种通法用列举的方式归纳和总结。 一、函数类不等式证明 函数类不等式证明的通法可概括为:证明不等式()()f x g x >(()()f x g x <)的问题转化为证明()()0f x g x ->(()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-,然后利用导数证明函数()h x 的单调性或证明函数()h x 的最小值(最大值)大于或等于零(小于或等于零)。 例1 已知(0,)2x π ∈,求证:sin tan x x x << 证明这个变式题可采用两种方法: 第一种证法:运用本例完全相同的方法证明每个不等式以后再放缩或放大,即证明不等式 sin x x <以后,根据sin 1sin x x x -<<来证明不等式sin 1x x -<; 第二种证法:直接构造辅助函数()sin 1f x x x =--和()tan 1g x x x =--,其中(0, )2x π∈ 然后证明各自的单调性后再放缩或放大(如:()sin 1(0)10f x x x f =--<=-<) 例2 求证:ln(1)x x +< 技巧 一、利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点。 二、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 1、利用题目所给函数证明 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时, 恒有x x x ≤+≤+- )1ln(1 11

高考数学解题技巧大揭秘专题函数导数不等式的综合问题

专题五 函数、导数、不等式的综合问题 1.已知函数f (x )=ln x +k e x (k 为常数,e = 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值; (2)求f (x )的单调区间; (3)设g (x )=xf ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2 . 解 (1)由f (x )= ln x +k e x , 得f ′(x )=1-k x -xln x xe x ,x ∈(0,+∞), 由于曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. 所以f ′(1)=0,因此k =1. (2)由(1)得f ′(x )= 1 xe x (1-x -xln x ),x ∈(0,+∞), 令h(x )=1-x -xln x ,x ∈(0,+∞), 当x ∈(0,1)时,h(x )>0;当x ∈(1,+∞)时,h(x )<0. 又e x >0,所以x ∈(0,1)时,f ′(x )>0; x ∈(1,+∞)时,f ′(x )<0. 因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)因为g(x )=xf ′(x ), 所以g(x )=1 e x (1-x -xln x ),x ∈(0,+∞), 由(2)得,h(x )=1-x -xln x , 求导得h′(x )=-ln x -2=-(ln x -ln e -2 ). 所以当x ∈(0,e -2 )时,h′(x )>0,函数h(x )单调递增; 当x ∈(e -2 ,+∞)时,h′(x )<0,函数h(x )单调递减. 所以当x ∈(0,+∞)时,h(x )≤h(e -2 )=1+e -2 . 又当x ∈(0,+∞)时,0<1 e x <1, 所以当x ∈(0,+∞)时,1e x h(x )<1+e -2,即g(x )<1+e -2 . 综上所述结论成立.

导数不等式证明

1.函数2ln 2)(x x x f -=,求函数)(x f y =在]2,2 [上的最大值 2.. 已知f(x)=e x -ax- (1)求f(x)的单调增区间; (2)若f(x )在定义域R 内单调递增,求a 的取值范围; (3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,说明理由. 3. 已知函数f(x)=x 2e -ax (a >0),求函数在[1,2]上的最大值. 4.已知x =3是函数f(x)=aln(1+x)+x2-10x 的一个极值点. (1)求a 的值; (2)求函数f(x)的单调区间; (3)若直线y =b 与函数y =f(x)的图象有3个交点,求b 的取值范围. 5. (2010年全国)已知函数 f(x)=x3-3ax2+3x +1. (1)设a =2,求 f(x)的单调区间; (2)设 f(x)在区间(2,3)中至少有一个极值点,求a 的取值范围. 不等式的证明: 一、函数类不等式证明 函数类不等式证明的通法可概括为:证明不等式 ()()f x g x >(()()f x g x <) 的问题转化为证明 ()()0f x g x ->(()()0f x g x -<),进而构造辅助函数 ()()()h x f x g x =-,然后利用导数证明函数()h x 的单调性或证明函数()h x 的最小 值(最大值)大于或等于零(小于或等于零)。 一、利用题目所给函数证明 【例1】 已知函数 x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+- )1ln(1 1 1 【绿色通道】1 111)(+- =-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(m a x ==f x f ,因此,当1->x 时, 0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证) , 现证左令11 1 )1ln()(-+++=x x x g , 2 2)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1 )1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1 ,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证. 2、直接作差构造函数证明 【例2】已知函数 .ln 2 1)(2 x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数3 3 2)(x x g = 的图象的下方; 【绿色通道】设)()() (x f x g x F -=,即x x x x F ln 2 132)(2 3--= ,

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

利用导数证明不等式的两种通法

利用导数证明不等式的两种通法 吉林省长春市东北师范大学附属实验学校 金钟植 岳海学 利用导数证明不等式是高考中的一个热点问题,利用导数证明不等式主要有两种通法,即函数类不等式证明和常数类不等式证明。下面就有关的两种通法用列举的方式归纳和总结。 一、函数类不等式证明 函数类不等式证明的通法可概括为:证明不等式()()f x g x >(()()f x g x <)的问 题转化为证明()()0f x g x ->(()()0f x g x -<),进而构造辅助函数 ()()()h x f x g x =-,然后利用导数证明函数()h x 的单调性或证明函数()h x 的最小值(最 大值)大于或等于零(小于或等于零)。 例1 已知(0, )2 x π ∈,求证:sin tan x x x << 分析:欲证sin tan x x x <<,只需证函数()sin f x x x =-和()tan g x x x =-在(0,)2 π 上 单调递减即可。 证明: 令()sin f x x x =- ,其中(0,)2 x π ∈ 则/ ()cos 1f x x =-,而(0,)cos 1cos 102 x x x π ∈?

【高考数学】构造函数法证明导数不等式的八种方法

第 1 页 共 6 页 构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22) 1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

高考导数题的解题技巧绝版

高考导数题的解题技巧 绝版 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

导数题的解题技巧 导数命题趋势: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值,证明不等式, 函数单调性,应用题,与三角函数或向量结合. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是31 ()213 f x x x =++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2()2,(1)12 3.f x x f ''=+∴-=-+= 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若 M P,则实数a 的取值范围是 ( )

A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力. [解答过程]由0,,1;, 1. 1 x a x a a x x -<∴<<<<-当a>1时当a<1时 综上可得M P 时, 1.a ∴> 考点2 曲线的切线 (1)关于曲线在某一点的切线 求曲线y=f(x)在某一点P (x,y )的切线,即求出函数y=f(x)在P 点的导数就是曲线在该点的切线的斜率. (2)关于两曲线的公切线 若一直线同时与两曲线相切,则称该直线为两曲线的公切线. 典型例题 例3.(2007年湖南文)已知函数3211 ()32 f x x ax bx =++在区间[11)-,,(13],内各 有一个极值点. (I )求24a b -的最大值; (II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点 A 时,从l 的一侧进入另一侧),求函数()f x 的表达式. 思路启迪:用求导来求得切线斜率. 解答过程:(I )因为函数3211 ()32 f x x ax bx =++在区间[11)-,,(13],内分别有一 个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根, 设两实根为12x x ,(12x x <),则2214x x a b -=-,且2104x x <-≤.于是 2044a b <-,20416a b <-≤,且当11x =-, 23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.

用导数证明不等式

用导数证明不等式 最基本的方法就是将不等式的的一边移到另一边,然后将这个式子令为一个函数f(x). 对这个函数求导,判断这个函数这各个区间的单调性,然后证明其最大值(或者是最小值)大于 0. 这样就能说明原不等式了成立了! 1.当x>1时,证明不等式x>ln(x+1) 设函数f(x)=x-ln(x+1) 求导,f(x)\'=1-1/(1+x)=x/(x+1)>0 所以f(x)在(1,+无穷大)上为增函数 f(x)>f(1)=1-ln2>o 所以x>ln(x+1 2..证明:a-a^2>0 其中0 F(a)=a-a^2 F\'(a)=1-2a 当00;当1/2 因此,F(a)min=F(1/2)=1/4>0 即有当00 3.x>0,证明:不等式x-x^3/6 先证明sinx 因为当x=0时,sinx-x=0 如果当函数sinx-x在x>0是减函数,那么它一定<在0点的值0, 求导数有sinx-x的导数是cosx-1 因为cosx-1≤0 所以sinx-x是减函数,它在0点有最大值0, 知sinx 再证x-x3/6

对于函数x-x3/6-sinx 当x=0时,它的值为0 对它求导数得 1-x2/2-cosx如果它<0那么这个函数就是减函数,它在0点的值是最大值了。 要证x2/2+cosx-1>0 x>0 再次用到函数关系,令x=0时,x2/2+cosx-1值为0 再次对它求导数得x-sinx 根据刚才证明的当x>0 sinx x2/2-cosx-1是减函数,在0点有最大值0 x2/2-cosx-1<0 x>0 所以x-x3/6-sinx是减函数,在0点有最大值0 得x-x3/6 利用函数导数单调性证明不等式X-X2>0,X∈(0,1)成立 令f(x)=x-x2 x∈[0,1] 则f\'(x)=1-2x 当x∈[0,1/2]时,f\'(x)>0,f(x)单调递增 当x∈[1/2,1]时,f\'(x)<0,f(x)单调递减 故f(x)的最大值在x=1/2处取得,最小值在x=0或1处取得 f(0)=0,f(1)=0 故f(x)的最小值为零 故当x∈(0,1)f(x)=x-x2>0。 i、m、n为正整数,且1 求证(1+m)^n > (1+n)^m 方法一:利用均值不等式 对于m+1个数,其中m个(2+m),1个1,它们的算术平均数大于几何平均数,即

(word完整版)高考导数解答题中常见的放缩大法

(高手必备)高考导数大题中最常用的放缩大法 相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论 ⑴sin ,(0,)x x x π<∈,变形即为 sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>. 将这些不等式简单变形如下: ex x ex e x e x x x x x 1ln ,,1,1ln 11-≥≥+≥-≤≤-那么很多问题将迎刃而解。 例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(?≤>++=若对任意的设恒成立,求a 的取值范围。 放缩法:由可得:1+≥x e x 2)1(ln 1ln 2)1(ln )1(ln 1ln ln 22=+-++≥+-=+-=+-+x x x x x x e x x xe x x e x x x x 高考中最常见的放缩法可总结如下,供大家参考。 第一组:对数放缩 (放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ??<-> ???,()11ln 012x x x x ??>-<< ??? , ) ln 1x x <>,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102 x x x x +≤--<<,()()21ln 102 x x x x +≥-> (放缩成类反比例函数)1ln 1x x ≥-,()()21ln 11x x x x ->>+,()()21ln 011x x x x -<<<+, ()ln 11x x x +≥+,()()2ln 101x x x x +>>+,()()2ln 101x x x x +<<+ 第二组:指数放缩

【高中数学】利用导数证明不等式

第四节利用导数证明不等式 考点1作差法构造函数证明不等式 (1)欲证函数不等式f(x)>g(x)(x>a),只需证明f(x)-g(x)>0(x>a),设h(x)=f(x)-g(x),即证h(x)>0(x>a).若h(a)=0,h(x)>h(a)(x>a).接下来往往用导数证得函数h(x)是增函数即可. (2)欲证函数不等式f(x)>g(x)(x∈I,I是区间),只需证明f(x)-g(x)>0(x∈I). 设h(x)=f(x)-g(x)(x∈I),即证h(x)>0(x∈I),也即证h(x)min>0(x∈I)(若h(x)min不存在,则须求函数h(x)的下确界),而这用导数往往容易解决. 已知函数f(x)=ax+x ln x在x=e-2(e为自然对数的底数)处取得极小值. (1)求实数a的值; (2)当x>1时,求证:f(x)>3(x-1). [解](1)因为f(x)定义域为(0,+∞),f(x)=ax+x ln x, 所以f′(x)=a+ln x+1, 因为函数f(x)在x=e-2处取得极小值, 所以f′(e-2)=0,即a+ln e-2+1=0, 所以a=1,所以f′(x)=ln x+2. 当f′(x)>0时,x>e-2;当f′(x)<0时,0<x<e-2, 所以f(x)在(0,e-2)上单调递减,在(e-2,+∞)上单调递增, 所以f(x)在x=e-2处取得极小值,符合题意,所以a=1. (2)证明:由(1)知a=1,所以f(x)=x+x ln x. 令g(x)=f(x)-3(x-1), 即g(x)=x ln x-2x+3(x>0). g′(x)=ln x-1,由g′(x)=0,得x=e. 由g′(x)>0,得x>e;由g′(x)<0,得0<x<e. 所以g(x)在(0,e)上单调递减,在(e,+∞)上单调递增,

导数与不等式证明

导数与不等式证明 作差证明不等式 1. (优质试题湖南,最值、作差构造函数) 已知函数. (1)求函数的单调递减区间; (2)若,求证:≤≤x . 解:(1)函数f (x )的定义域为(-1,+∞),, 由 得:,∴x >0,∴f (x )的单调递减区间 为(0,+∞). (2)证明:由(1)得x ∈(-1,0)时,, 当x ∈(0,+∞)时,,且 ∴x >-1时,f (x )≤f (0),∴≤0,≤x 令 ,则 , ∴-1<x <0时,,x >0时,,且 ∴x >-1时,g (x )≥g (0),即≥0 ∴≥ ,∴x >-1时, ≤≤x . 2. (优质试题湖北20,转换变量,作差构造函数,较容易) 已知定义在正实数集上的函数 ,x x x f -+=)1ln()()(x f 1->x 11 1+-x )1ln(+x 1 111)(+-=-+= 'x x x x f 0)(<'x f ????? -><+- 1 01x x x 0)(>'x f 0)(<'x f (0)0f '=x x -+)1ln()1ln(+x 111 )1ln()(-++ +=x x x g 2 2)1()1(111)(+=+-+= 'x x x x x g 0)(<'x g 0)(>'x g 0)0(='g 11 1 )1ln(-+++x x ) 1ln(+x 1 11+- x 1 11+- x )1ln(+x 2 1()22 f x x ax = +

,其中.设两曲线,有公 共点,且在该点处的切线相同. ⑴用表示,并求的最大值; ⑵求证:当时,. 解:⑴设与在公共点处的切线相 同. ,,由题意,. 即由得:,或(舍 去). 即有. 令,则.于是 当,即时,; 当,即 时,. 故在为增函数,在为减函数, 于是在的最大值为. ⑵设, 则. 2()3ln g x a x b =+0a >()y f x =()y g x =a b b 0x >()()f x g x ≥()y f x =()(0)y g x x =>0 ()x y ,()2f x x a '=+∵23()a g x x '=0 ()()f x g x =0 ()()f x g x ''=2 2000200123ln 2 32x ax a x b a x a x ?+=+????+=?? ,, 20032a x a x +=0 x a =03x a =-2222215 23ln 3ln 22 b a a a a a a a = +-=-2 25()3ln (0)2 h t t t t t =->()2(13ln )h t t t '=-(13ln )0t t ->13 0t e <<()0h t '>(13ln )0t t -<1 3 t e >()0h t '<()h t 1 3(0)e ,1 3()e ∞,+()h t (0)+, ∞123 33()2 h e e =2 21()()()23ln (0)2 F x f x g x x ax a x b x =-= +-->()F x '23()(3)2(0)a x a x a x a x x x -+=+-=>

导数常见题型与解题方法总结

导数题型总结 1、分离变量-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 2、变更主元-----已知谁的范围就把谁作为主元 3、根分布 4、判别式法-----结合图像分析 5、二次函数区间最值求法-----(1)对称轴(重视单调区间)与定义域的关系 (2)端点处和顶点是最值所在 一、基础题型:函数的单调区间、极值、最值;不等式恒成立 此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 第三种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元)。 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332x mx f x x '=- - 2()3g x x mx ∴=-- (1) ()y f x =Q 在区间[]0,3上为“凸函数”, 则 2()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x <

高中数学导数题型分析及解题方法

导数题型分析及解题方法 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析 题型一:利用导数研究函数的极值、最值。 1. 32 ()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2 =-==x c x x x f y 在处有极大值,则常数c = 6 ; 3.函数3 31x x y -+=有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程 1.曲线3 4y x x =-在点 ()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4 )(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0) 3.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --= 4.求下列直线的方程: (1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2 x y =过点P(3,5)的切线; 解:(1) 123|y k 23 1)1,1(1x /2/2 3===∴+=∴++=-=-上,在曲线点-x x y x x y P 所以切线方程为02 11=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则2 00x y =①又函数的导数为x y 2/=, 所以过 ) ,(00y x A 点的切线的斜率为 /2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有 3 5 2000--= x y x ②,由①②联立方程组得,??????====25 5 110 000y x y x 或,即切点为(1,1)时,切线斜率为 ; 2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分 别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即, 或 题型三:利用导数研究函数的单调性,极值、最值 1.已知函数 ))1(,1()(,)(2 3f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1

导数证明和不等式综合典型

用导数证明和式不等式-典型 (1)若护(工)=『J 上再減睛It求宾畫以杓取恒范 寵 (町证明车等式t 2n 1 L 1 I lii J J 1H^ In 4 hi(” +1) n , 1 1 1 < —+ l + - + —— 2 2 3 n 解析: :郭问圖利斛出 来看第二问? 1. 读者朋友们一起来思考这样一个命题逻辑:第二问单独出一道证明题行不行? 当然行? 2. 为什么不那样出呢? 因为那样出的话,难度太大. 3. 为什么出在本题的第二问的位置? 因为这样命题使得学生解题相对容易一些. 4. 为什么会容易一些呢? 因为题干和第一问,为我们顺利解决第二问提供帮助.这些内容可作为梯子,为我们搭桥、铺路. 5. 从第1问能得到什么结论呢? '"|加 < 数特(打=—■—luz 在[人炖)上対城函

6. 这个结论对解决第 2问有什么帮助呢? 第2问是证明不等式,我们希望能够通过第 1问得到不等式? 通过函数的单调性,我们可以得到什么样的不等式呢? di 沿-1) 小如取= 2,则鸭(.工)= -- - Inx 凶为卩(工)在仏是内诚函数, 所以貯(1)=山 即——-hi^ 0, £ > 0 ' * 建+】 不芳式网边同时戕讨数得: i i + i Qr I 1 1 .1】』2(r — I j lui 2 f - J 下面对x 进行赋值,以便于进一步靠近所证不等式 ?同时注意到, 需要采用累加的办法? 令雷■ n + 1. —」—r < - + - Itifn + 1J 2 T 将上述所右不等式相加御: 111 I hi2 Ind Ini UnZl 所证不等式的右半部分得证了,下面来看左半部分 观察这个不等式,不等号右边为和式的形式, 左边不是,为了有利于证明,我们把左边也变 为和式? 不等式为求和型的不等式 ,

高考导数题型及解题方法总结

高考压轴题:导数题型及解题方法 一.切线问题 题型1求曲线)(x f y =在0x x =处的切线方程。 方法:)(0x f '为在0x x =处的切线的斜率。 题型2过点),(b a 的直线与曲线)(x f y =的相切问题。 方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。 注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。 例已知函数f(x)=x 3 ﹣3x.(1)求曲线y=f(x)在点x=2处的切线方程;(答案:0169=--y x ) (2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。将问题转化为关于m x ,0的方程有三个不同实数根问题。(答案:m 的范围是()2,3--) 题型3求两个曲线)(x f y =、)(x g y =的公切线。 方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。()(,22x f x ); 建立21,x x 的等式关系,12112)()(y y x f x x -='-,12212)()(y y x f x x -='-;求出21,x x ,进而求出切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。 例求曲线2 x y =与曲线x e y ln 2=的公切线方程。(答案02=--e y x e )二.单调性问题 题型1求函数的单调区间。 求含参函数的单调区间的关键是确定分类标准。分类的方法有:(1)在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);(3)在求极值点的过程中,极值点的大小关系不定而引起的分类;(4)在求极值点的过程中,极值点与区间的关系不定而引起分类等。注意分类时必须从同一标准出发,做到不重复,不遗漏。 例已知函数x a x x a x f )1(2 1ln )(2+-+=(1)求函数)(x f 的单调区间。(利用极值点的大小关系分类)

(完整版)导数与不等式证明(绝对精华)

二轮专题 (十一) 导数与不等式证明 【学习目标】 1. 会利用导数证明不等式. 2. 掌握常用的证明方法. 【知识回顾】 一级排查:应知应会 1.利用导数证明不等式要考虑构造新的函数,利用新函数的单调性或最值解决不等式的证明问题.比如要证明对任意∈x [b a ,]都有)()(x g x f ≤,可设)()()(x g x f x h -=,只要利用导数说明)(x h 在[b a ,]上的最小值为0即可. 二级排查:知识积累 利用导数证明不等式,解题技巧总结如下: (1)利用给定函数的某些性质(一般第一问先让解决出来),如函数的单调性、最值等,服务于第二问要证明的不等式. (2)多用分析法思考. (3)对于给出的不等式直接证明无法下手,可考虑对不等式进行必要的等价变形后,再去证明.例如采用两边取对数(指数),移项通分等等.要注意变形的方向:因为要利用函数的性质,力求变形后不等式一边需要出现函数关系式. (4)常用方法还有隔离函数法,max min )()(x g x f ≥,放缩法(常与数列和基本不等式一起考查),换元法,主元法,消元法,数学归纳法等等,但无论何种方法,问题的精髓还是构造辅助函数,将不等式问题转化为利用导数研究函数的单调性和最值问题. (5)建议有能力同学可以了解一下罗必塔法则和泰勒展开式,有许多题都是利用泰勒展开式放缩得来. 三极排查:易错易混 用导数证明数列时注意定义域.

【课堂探究】 一、作差(商)法 例1、证明下列不等式: ①1+≥x e x ②1ln -≤x x ③x x 1-1ln ≥ ④1x 1)-2(x ln +≥ x )1(≥x ⑤)2 ,0(,2sin ππ∈>x x x 二、利用max min )()(x g x f ≥证明不等式 例2、已知函数.2 2)(),,(,ln )1(1)(e x e x g R b a x a b x ax x f +-=∈+-+-= (1)若函数2)(=x x f 在处取得极小值0,求b a ,的值; (2)在(1)的条件下,求证:对任意的],[,221e e x x ∈,总有)()(21x g x f >.

(完整版)高考数学专题导数题的解题技巧

第十讲导数题的解题技巧 【命题趋向】导数命题趋势: 综观 2007 年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1 )多项式求导(结合不等式求参数取值范围) ,和求斜率(切线方程结合函数求最值)问 题. (2 )求极值 , 函数单调性 ,应用题 ,与三角函数或向量结合 . 分值在 12---17 分之间,一般为 1 个选择题或 1 个填空题, 1个解答题 . 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌 握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导 法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点 1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念 . 1 3 例 1.( 2007 年北京卷) f (x) 是f (x) x32x 1 的导函数,则f ( 1) 的值是. [ 考查目的 ] 本题主要考查函数的导数和计算等基础知识和能力 . 22 [ 解答过程 ] Q f (x) x22, f ( 1) 1 2 3. 故填 3. 例2. ( 2006 年湖南卷)设函数f(x) x a,集合 M={x|f(x) 0} ,P={ x| f '(x) 0},若 M P, 则实x1 数 a 的取值范围是 ( )

导数证明不等式的问题(练习答案)

“导数证明不等式问题”练习题答案 1.设L 为曲线C:ln x y x =在点(1,0)处的切线. (I)求L 的方程; (II)证明:除切点(1,0)之外,曲线C 在直线L 的下方. 解: (I)设ln ()x f x x =,则21ln ()x f x x -'=.所以(1)1f '=.所以L 的方程为1y x =-. (II)令()1()g x x f x =--,则除切点之外,曲线C 在直线l 的下方等价于()0 g x >(0,1)x x >≠. ()g x 满足(1)0g =,且221ln ()1()x x g x f x x -+''=-=. 当01x <<时,210x -<,ln 0x <,所以()0g x '<,故()g x 单调递减; 当1x >时,210x ->,ln 0x >,所以()0g x '>,故()g x 单调递增. 所以,()(1)0g x g >=(0,1x x >≠). 所以除切点之外,曲线C 在直线L 的下方. 又解:()0g x >即ln 10x x x -->变形为2ln 0x x x -->,记2()ln h x x x x =--,则2121(21)(1)()21x x x x h x x x x x --+-'=--==, 所以当01x <<时,()0h x '<,()h x 在(0,1)上单调递减; 当1x >时,()0h x '>,()h x 在(1,+∞)上单调递增. 所以()(1)0h x h >=.)

2.Ⅰ)讨论函数的单调性,并证明当时,; (Ⅱ)证明:当时,函数有最小值.设的最小值为,求函数的值域. 解⑴证明:()2e 2 x x f x x -=+ ()()()22224e e 222x x x x f x x x x ??-' ?=+= ?+++?? ∵当x ∈()()22,-∞--+∞,时,()0f x '> ∴()f x 在()()22,-∞--+∞,和上单调递增 ∴0x >时, ()2e 0=12x x f x ->-+, ∴()2e 20x x x -++> ⑵ ()()()24e 2e x x a x x ax a g x x ----'= () 4e 2e 2x x x x ax a x -++= ()322e 2x x x a x x -??+?+ ?+??= [)01a ∈, 由(1)知,当0x >时,()2e 2x x f x x -= ?+的值域为()1-+∞,,只有一解. 使得2e 2 t t a t -?=-+,(]02t ∈, 当(0,)x t ∈时()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增 ()()()222e 1e e 1e 22 t t t t t t a t t h a t t t -++?-++===+ 记()e 2t k t t =+,在(]0,2t ∈时,()()() 2e 102t t k t t +'=>+,∴()k t 单调递增 ∴()()21e 24h a k t ??=∈ ??? ,. 3.设函数. x x 2f (x)x 2 -=+e 0x >(2)20x x e x -++>[0,1)a ∈2x =(0)x e ax a g x x -->()()g x ()h a ()h a ()1x f x e -=-

相关文档
最新文档