(完整版)高考导数题型分析及解题方法

(完整版)高考导数题型分析及解题方法
(完整版)高考导数题型分析及解题方法

高考导数题型分析及解题方法

本知识单元考查题型与方法:

※※与切线相关问题(一设切点,二求导数=斜率=21

21

y y x x --,三代切点入切线、曲线联立方程求解);

※※其它问题(一求导数,二解)('x f =0的根—若含字母分类讨论,三列3行n 列的表判单调区间和极值。结合以上所得解题。)

特别强调:恒成立问题转化为求新函数的最值。导函数中证明数列型不等式注意与原函数联系构造,一对多涉及到求和转化。 关注几点:

恒成立:(1)定义域任意x 有()f x >k,则min ()f x >常数k ;

(2)定义域任意x 有()f x

恰成立:(1)对定义域内任意x 有()()f x g x >恒成立,则min ()-()0,f x g x >【】 (2)若对定义域内任意x 有()()f x g x <:恒成立,则max ()-()0f x g x <【】

能成立:(1)分别定义在[a,b]和[c,d]上的函数()()f x g x 和,对任意的1[,],x a b ∈存在

2[,],x c d ∈使得12()()f x g x <,则max max ()()f x g x <

(2)分别定义在[a,b]和[c,d]上的函数()()f x g x 和,对任意的1[,],x a b ∈存在2[,],x c d ∈使得12()()f x g x >,则min min ()()f x g x >

一、考纲解读

考查知识题型:导数的概念,导数的几何意义,几种常见函数的导数;

两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值;证明不等式、求参数范围等

二、热点题型分析

题型一:利用导数研究函数的极值、最值。

1.

32

()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2

=-==x c x x x f y 在处有极大值,则常数c = 6 ;

3.函数3

31x x y -+=有极小值 -1 ,极大值 3

题型二:利用导数几何意义求切线方程

1.曲线3

4y x x =-在点

()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4

)(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0)

3.若曲线4

y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --=

4.求下列直线的方程:

(1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2

x y =过点P(3,5)的切线;

解:(1)

123|y k 23 1)1,1(1x /2/2

3===∴+=∴++=-=-上,在曲线点-x x y x x y P Θ

所以切线方程为02

11=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则2

00x y =①又函数的导数为x y 2/

=,

所以过),(00y x A 点的切线的斜率为

/

2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有

3

52000--=

x y x ②,由①②联

立方程组得,??????====25

5 110

000y x y x 或,即切点为(1,1)时,切线斜率为;2201==x k ;当切点为(5,25)时,切线斜

率为10202==x k ;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即,

或 题型三:利用导数研究函数的单调性,极值、最值

1.已知函数

))1(,1()(,)(2

3f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式;

(Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围

解:(1)由

.23)(,)(2

23b ax x x f c bx ax x x f ++='+++=求导数得 过))1(,1()(f P x f y 上点=的切线方程为: ).1)(23()1(),1)(1()1(-++=+++--'=-x b a c b a y x f f y 即

而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上

故??

?-=-=+??

?-=-=++30233

23c a b a c a b a 即

∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在 ③

由①②③得 a=2,b=-4,c=5 ∴.542)(2

3+-+=x x x x f (2)).2)(23(443)(2+-=-+='x x x x x f

当;

0)(,32

2;0)(,23<'<≤->'-<≤-x f x x f x 时当时

① ②

13)2()(.0)(,132

=-=∴>'≤

(3)y=f(x)在[-2,1]上单调递增,又

,23)(2

b ax x x f ++='由①知2a+b=0。 依题意)(x f '在[-2,1]上恒有)(x f '≥0,即.032≥+-b bx x

①当

6,03)1()(,16min ≥∴>+-='='≥=

b b b f x f b

x 时; ②当

φ∈∴≥++=-'='-≤=

b b b f x f b

x ,0212)2()(,26min 时;

③当.

60,01212)(,1622min ≤≤≥-='≤≤-b b b x f b 则时

综上所述,参数b 的取值范围是),0[+∞

2.已知三次函数

32

()f x x ax bx c =+++在1x =和1x =-时取极值,且(2)4f -=-. (1) 求函数()y f x =的表达式; (2) 求函数()y f x =的单调区间和极值;

(3) 若函数()()4(0)g x f x m m m =-+>在区间[3,]m n -上的值域为[4,16]-,试求m 、n 应满足的条件.

解:(1) 2

()32f x x ax b '

=++,

由题意得,1,1-是2

320x ax b ++=的两个根,解得,0,3a b ==-.

再由(2)4f -=-可得2c =-.∴3

()32f x x x =--. (2) 2()333(1)(1)f x x x x '=-=+-,

当1x <-时,()0f x '>;当1x =-时,()0f x '=;当11x -<<时,()0f x '<;当1x =时,()0f x '

=; 当1x >时,()0f x '

>.∴函数()f x 在区间(,1]-∞-上是增函数;

在区间[1,]-1

上是减函数;在区间[1,)+∞上是增函数。函数()f x 的极大值是(1)0f -=,极小值是(1)4f =-. (3) 函数()g x 的图象是由()f x 的图象向右平移m 个单位,向上平移4m 个单位得到的, 所以,函数()f x 在区间[3,]n m --上的值域为[44,164]m m ---(0m >). 而(3)20f -=-,∴4420m --=-,即4m =.

于是,函数()f x 在区间[3,4]n --上的值域为[20,0]-.

令()0f x =得1x =-或2x =.由()f x 的单调性知,142n --剟,即36n 剟.

综上所述,m 、n 应满足的条件是:4m =,且36n 剟.

3.设函数()()()f x x x a x b =--.

(1)若()f x 的图象与直线580x y --=相切,切点横坐标为2,且()f x 在1x =处取极值,求实数,a b 的值;

(2)当b=1时,试证明:不论a 取何实数,函数()f x 总有两个不同的极值点.

解:(1)2

()32().f x x a b x ab '=-++ 由题意(2)5,(1)0f f ''==,代入上式,解之得:a=1,b=1. (2)当b=1时,()0f x '=令得方程232(1)0.x a x a -++= 因

,0)1(42

>+-=?a a 故方程有两个不同实根21,x x . 不妨设21x x <,由))((3)(21'x x x x x f --=可判断)('

x f 的符号如下: 当时,1x x <)('x f >0;当时,21x x x <<)('x f <0;当

时,2x x >)('

x f >0 因此1x 是极大值点,2x 是极小值点.,当b=1时,不论a 取何实数,函数()f x 总有两个不同的极值点。 题型四:利用导数研究函数的图象

1.如右图:是f (x )的导函数, )(/

x f 的图象如右图所示,则f (x )的图象只可能是( D )

(A ) (B ) (C ) (D ) 2.函数的图像为14313

+-=

x x y ( A )

3.方程内根的个数为在)2,0(07622

3=+-x x ( B )

A 、0

B 、1

C 、2

D 、3 题型五:利用单调性、极值、最值情况,求参数取值范围

1.设函数.

10,3231

)(223<<+-+-=a b x a ax x x f

(1)求函数)(x f 的单调区间、极值.(2)若当]2,1[++∈a a x 时,恒有a x f ≤'|)(|,试确定a 的取值范围.

解:(1)22

()43f x x ax a '=-+-=(3)()x a x a ---,令()0f x '=得12,3x a x a ==

列表如下:

x (-∞,a ) a

(a ,3a ) 3a (3a ,+∞) ()f x '

- 0

+

-

x

y

o 4 -4 2 4 -4

2 -2 -2

x y

o 4 -4 2 4 -4

2 -2 -2

x

y

y 4 -4 2 4 -4

2

-2 -2

6 6 6 6 y

x

-4

-2 o

4 2 2

4

()f x

]

极小

Z

极大

]

∴()f x 在(a ,3a )上单调递增,在(-∞,a )和(3a ,+∞)上单调递减

x a =时,3

4

()3f x b a =-极小,3x a =时,()f x b =极小

(2)22

()43f x x ax a '=-+-∵01a <<,∴对称轴21x a a =<+,∴()f x '在[a+1,a+2]上单调递减

22(1)4(1)321Max

f a a a a a '=-+++-=-,

22min

(2)4(2)344f a a a a a '=-+++-=-

依题|()|f x a '≤?||Max f a '≤,min ||f a '≤ 即|21|,|44|a a a a -≤-≤

解得415a ≤≤,又01a << ∴a 的取值范围是4[,1)5

2.已知函数f (x )=x3+ax2+bx +c 在x =-2

3与x =1时都取得极值(1)求a 、b 的值与函数f (x )的单调

区间(2)若对x ∈〔-1,2〕,不等式f (x )

由f '(

23-

)=124a b 093-+=,f '(1)=3+2a +b =0得a =1

2-

,b =-2

f '(x

所以函数f (x )的递增区间是(-∞,-23)与(1,+∞),递减区间是(-2

3,1) (2)f (x )=x3-12x2-2x +c ,x ∈〔-1,2〕,当x =-23时,f (x )=2227+c

为极大值,而f (2)=2+c ,则f (2)=2+c 为最大值。 要使f (x )f (2)=2+c ,解得c <-1或c >2 题型六:利用导数研究方程的根

1.已知平面向量a v =(3,-1). b v

=(21

,23).

(1)若存在不同时为零的实数k 和t ,使x v =a v +(t2-3)b v ,y u v =-k a v +t b v ,x v ⊥y u

v ,

试求函数关系式k=f(t) ;

(2) 据(1)的结论,讨论关于t 的方程f(t)-k=0的解的情况.

解:(1)∵x v ⊥y u v ,∴x y ?v u v =0 即[a v +(t2-3) b v ]·(-k a v +t b v )=0. 整理后得-k 2a v +[t-k(t2-3)] a b ?v v + (t2-3)·2b v =0

∵a b ?v v

=0,2a v =4,2b v =1,∴上式化为-4k+t(t2-3)=0,即k=41t(t2-3)

(2)讨论方程41t(t2-3)-k=0的解的情况,可以看作曲线f(t)= 41

t(t2-3)与直线y=k 的交点个数. 于是f ′(t)= 43(t2-1)= 43

(t+1)(t-1).

令f ′t (-∞,-1) -1 (-1,1) 1 (1,+ ∞) f ′(t) + 0 - 0 + F(t)

极大值

极小值

当t=-1时,f(t)有极大值,f(t)极大值=21

. 当t=1时,f(t)有极小值,f(t)极小值=-21

函数f(t)=41

t(t2-3)的图象如图13-2-1所示,

可观察出:

(1)当k >21或k <-21

时,方程f(t)-k=0有且只有一解; (2)当k=21或k=-21

时,方程f(t)-k=0有两解; (3) 当-21<k <21

时,方程f(t)-k=0有三解.

题型七:导数与不等式的综合

1.设

ax x x f a -=>3

)(,0函数在),1[+∞上是单调函数. (1)求实数a 的取值范围;(2)设

x ≥1,)(x f ≥1,且0

0))((x x f f =,求证:00)(x x f =.

解:(1) ,3)(2a x x f y -='='若)(x f 在[)+∞,1上是单调递减函数,则须

,3,02

x a y ><'即这样的实数a 不存

在.故)(x f 在[)+∞,1上不可能是单调递减函数.

若)(x f 在[)+∞,1上是单调递增函数,则a ≤2

3x , 由于

[)33,,12

≥+∞∈x x 故.从而0

))(()(000矛盾x x f f x f =< 若

1≤

)

(),())((,)(000000x f x x f x f f x x f <<<即则矛盾,故只有

0)(x x f =成立.

方法2:设

0)(,)(x u f u x f ==则,

,

,0303

0x au u u ax x =-=-∴两式相减得0

033

0)()(x u u x a u x -=---

202

00,0)1)((x a u u x x u x Θ=-+++-∴≥1,u ≥1,

30,32020≤<≥++∴a u u x x 又,

12020>-+++∴a u u x x

2.已知a 为实数,函数23

()()()

2f x x x a =++(1)若函数()f x 的图象上有与x 轴平行的切线,求a 的取值范

围(2)若'(1)0f -=,(Ⅰ)求函数()f x 的单调区间

(Ⅱ)证明对任意的

12(1,0)

x x ∈-、,不等式

125

|()()|16f x f x -<

恒成立

解:

3233()22f x x ax x a =++

+Q ,23'()322f x x ax ∴=++

Q 函数()f x 的图象有与x 轴平行的切线,'()0f x ∴=有实数解

2344302a ∴?=-??≥,292a ≥,所以a

的取值范围是-∞+∞U ()

'(1)0f -=Q ,

33202a ∴-+

=,94a =,2931

'()33()(1)222f x x x x x ∴=++=++ 由'()0,1f x x ><-或

12x >-

;由1

'()0,12f x x <-<<-

()f x ∴的单调递增区间是1(,1),(,)2-∞--+∞;单调减区间为

1(1,)

2-- 易知()f x 的最大值为

25(1)8f -=

,()f x 的极小值为149()216f -=,又27

(0)8f =

()f x ∴在[10]-,上的最大值

278M =

,最小值49

16m =

∴对任意12,(1,0)x x ∈-,恒有

1227495|()()|81616f x f x M m -<-=

-=

题型八:导数在实际中的应用

1.请您设计一个帐篷。它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥(如右图所示)。试问当帐篷的顶点O 到底面中心1o 的距离为多少时,帐篷的体积最大? 解:设OO1为x m ,则41<

由题设可得正六棱锥底面边长为:2

2228)1(3x x x -+=--,(单位:m )

故底面正六边形的面积为:

(436??

22)28x x -+=)28(2332x x -+?,(单位:2

m )

帐篷的体积为:

)(V 22823

3x x x -+=

)(]1)1(31[+-x )1216(233x x -+=(单位:3

m )

求导得

)312(23

V '2x x -=

)(。令0V'=)(x ,解得2-=x (不合题意,舍去),2=x ,

当21<)(x ,)(x V 为增函数;当42<

∴当2=x 时,)(x V 最大。

答:当OO1为2m 时,帐篷的体积最大,最大体积为3163

m 。

2.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析

式可以表示为:

313

8(0120).

12800080y x x x =

-+<≤

已知甲、乙两地相距100千米。

(I )当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (II )当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

解:(I )当40x =时,汽车从甲地到乙地行驶了100

2.5

40=小时,

要耗没313(40408) 2.517.5

12800080?-?+?=(升)。

(II )当速度为x 千米/小时时,汽车从甲地到乙地行驶了100

x 小时,设耗油量为()h x 升,

依题意得3213100180015

()(8).(0120),

1280008012804h x x x x x x x =-+=+-<≤

33

2280080'()(0120).

640640x x h x x x x -=-=<≤ 令'()0,h x =得80.x =

当(0,80)x ∈时,'()0,()h x h x <是减函数; 当(80,120)x ∈时,'()0,()h x h x >是增函数。

∴当80x =时,()h x 取到极小值(80)11.25.h = 因为()h x 在(0,120]上只有一个极值,所以它是最小值。

答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。当汽车以80千米/小时的速度

匀速行驶时,从甲地到乙地耗油最少,最少为11.25升。 题型九:导数与向量的结合

1.设平面向

11(),(2222a b =-=r r ,若存在不同时为零的两个实数s 、t 及实数k ,使且b t s k t ⊥+-=-+=,)(2

(1)求函数关系式()S f t =;(2)若函数()S f t =在[)∞+,

1上是单调函数,求k 的取值范围。 解:(1)

).23,21(),21,23(

=-=10a b a b ==?=r r r r ,

22222

23,0000x y x y a t k b sa tb sa t t k b t st sk a b s t k t s f t t kt ⊥?=??+--+=??-+--+?=∴-+-===-r u r r u r

r r r r r r r r 又,得()()

,即()-()。(),故()。

(2)

[)上是单调函数,,)在(且)(∞+-='132t f k t t f

则在[)+∞,1上有00)(≤'≥')(或t f t f 由3)3(3030)(min 2

22≤?≤?≤?≥-?≥'k t k t k k t t f ; 由2

23030)(t k k t t f ≥?≤-?≤'。

因为在t ∈[)+∞,1上2

3t 是增函数,所以不存在k ,使2

3t k ≥在[)+∞,1上恒成立。故k 的取值范围是3≤k 。

相关文档
最新文档