九年级数学上册几何模型压轴题单元测试卷(含答案解析)

九年级数学上册几何模型压轴题单元测试卷(含答案解析)
九年级数学上册几何模型压轴题单元测试卷(含答案解析)

九年级数学上册几何模型压轴题单元测试卷(含答案解析)

一、初三数学旋转易错题压轴题(难)

1.在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.

(1) 如图1,若点E,F分别落在边AB,AC上,求证:PC=PE;

(2) 如图2,把图1中的△AEF绕着点A顺时针旋转,当点E落在边CA的延长线上时,探索PC与PE的数量关系,并说明理由.

(3) 如图3,把图2中的△AEF绕着点A顺时针旋转,点F落在边AB上.其他条件不变,问题(2)中的结论是否发生变化?如果不变,请加以证明;如果变化,请说明理由.

【答案】(1)见解析;(2)PC=PE,理由见解析;(3)成立,理由见解析

【解析】

【分析】

(1)利用直角三角形斜边的中线等于斜边的一半,即可;

(2)先判断△CBP≌△HPF,再利用直角三角形斜边的中线等于斜边的一半;

(3)先判断△DAF≌△EAF,再判断△DAP≌△EAP,然后用比例式即可;

【详解】

解:(1)证明:如图:

∵∠ACB=∠AEF=90°,

∴△FCB和△BEF都为直角三角形.

∵点P是BF的中点,

∴CP=1

2BF,EP=

1

2

BF,

∴PC=PE.

(2)PC=PE理由如下:

如图2,延长CP,EF交于点H,

∵∠ACB=∠AEF=90°,

∴EH//CB,

∴∠CBP=∠PFH,∠H=∠BCP,

∵点P是BF的中点,

∴PF=PB,

∴△CBP≌△HFP(AAS),

∴PC=PH,

∵∠AEF=90°,

∴在Rt△CEH中,EP=1

2

CH,

∴PC=PE.

(3)(2)中的结论,仍然成立,即PC=PE,理由如下:

如图3,过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,

∵∠DAF=∠EAF,∠FDA=∠FEA=90°,

在△DAF和△EAF中,

DAF,

,

,

EAF

FDA FEA

AF AF

∠=∠

?

?

∠=∠

?

?=

?

∴△DAF≌△EAF(AAS),

∴AD=AE,

在△DAP≌△EAP中,

,

,

,

AD AE

DAP EAP

AP AP

=

?

?

∠=∠

?

?=

?

∴△DAP≌△EAP (SAS),

∴PD=PF,

∵FD⊥AC,BC⊥AC,PM⊥AC,

∴FD//BC//PM,

∴DM FP

MC PB

=,

∵点P 是BF 的中点, ∴DM =MC , 又∵PM ⊥AC , ∴PC =PD , 又∵PD =PE , ∴PC =PE . 【点睛】

此题是几何变换综合题,主要考查了直角三角形斜边的中线等于斜边一半,全等三角形的性质和判定,相似三角形的性质和判定,作出辅助线是解本题的关键也是难点.

2.已知如图1,在ABC 中,90ABC ∠=?,BC AB =,点D 在AC 上,DF AC ⊥交BC 于F ,点E 是AF 的中点.

(1)写出线段ED 与线段EB 的关系并证明;

(2)如图2,将CDF 绕点C 逆时针旋转(

)

090a α?

<

(3)将CDF 绕点C 逆时针旋转一周,如果6BC =,32CF =,直接写出线段CE 的范围.

【答案】(1)ED EB =,DE BE ⊥,证明见解析;(2)结论不变,理由见解析;(3)最大值92=最小值32

= 【解析】 【分析】

(1)在Rt △ADF 中,可得DE=AE=EF ,在Rt △ABF 中,可得BE=EF=EA ,得证ED=EB ;然后利用等腰三角形的性质以及四边形ADFB 的内角和为180°,可推导得出∠DEB=90°; (2)如下图,先证四边形MFBA 是平行四边形,再证△DCB ≌△DFM ,从而推导出△DMB 是等腰直角三角形,最后得出结论;

(3)如下图,当点F 在AC 上时,CE 有最大值;当点F 在AC 延长线上时,CE 有最小值.

【详解】

(1)∵DF⊥AC,点E是AF的中点

∴DE=AE=EF,∠EDF=∠DFE

∵∠ABC=90°,点E是AF的中点

∴BE=AE=EF,∠EFB=∠EBF

∴DE=EB

∵AB=BC,

∴∠DAB=45°

∴在四边形ABFD中,∠DFB=360°-90°-45°-90°=135°

∠DEB=∠DEF+∠FEB=180°-2∠EFD+180°-2∠EFB=360°-2(∠EFD+∠EFB)

=360°-2×135°=90°

∴DE⊥EB

(2)如下图,延长BE至点M处,使得ME=EB,连接MA、ME、MF、MD、FB、DB,延长MF交CB于点H

∵ME=EB,点E是AF的中点

∴四边形MFBA是平行四边形

∴MF∥AB,MF=AB

∴∠MHB=180°-∠ABC=90°

∵∠DCA=∠FCB=a

∴∠DCB=45°+a,∠CFH=90°-a

∵∠DCF=45°,∠CDF=90°

∴∠DFC=45°,△DCF是等腰直角三角形

∴∠DFM=180°-∠DFC-∠CFH=45°+a

∴∠DCB=∠DFM

∵△ABC和△CDF都是等腰直角三角形

∴DC=DF,BC=AB=MF

∴△DCB≌△DFM(SAS)

∴∠MDF=∠BDC,DB=DM

∴∠MDF+∠FDB=∠BDC+∠FDB=90°

∴△DMB是等腰直角三角形

∵点E是MB的中点

∴DE=EB,DE⊥EB

(3)当点F在AC上时,CF有最大值,图形如下:

∵BC=6,∴在等腰直角△ABC中,AC=62

∵CF=32,∴AF=32

∴CE=CF+FE=CF+1

2AF92

=

当点F在AC延长线上时,CE有最小值,图形如下:

同理,CE=EF-CF

32 =

【点睛】

本题考查三角形的旋转变换,用到了等腰直角三角形的性质和平行四边形的性质,解题关

键是构造并证明△BDM是等腰直角三角形.

3.如图,在矩形ABCD中,6

AB cm

=,8

AD cm

=,连接BD,将ABD

△绕B点作顺时针方向旋转得到A B D

'''

△(B′与B重合),且点D'刚好落在BC的延长上,A D''与CD相交于点E.

(1)求矩形ABCD与A B D

'''

△重叠部分(如图1中阴影部分A B CE

'')的面积;(2)将A B D

'''

△以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与A B D

'''

△重叠部分的面积为y,移动的时间为x,请你直接写出y关于x的函数关系式,并指出自变量x的取值范围;

(3)在(2)的平移过程中,是否存在这样的时间x,使得AA B''

△成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.

【答案】(1)2

45

2

cm;(2)

2

2

3316

24(0)

225

88020016

(4)

3335

x x x

y

x x x

?

--+≤<

??

=?

?-+≤≤

??

;(3)存在,使得AA B''

△成为等腰三角形的x的值有:0秒、

3

2

669

-

【解析】

【分析】

(1)先用勾股定理求出BD的长,再根据旋转的性质得出10

B D BD cm

''==,

2

CD B D BC cm

'=''-=,利用B D A

∠'''的正切值求出CE的值,利用三角形的面积差即可求阴影部分的面积;

(2)分类讨论,当

16

5

x

≤<时和当

16

4

5

x

≤≤时,分别列出函数表达式;

(3)分类讨论,当AB A B

'=''时;当AA A B

'=''时;当AB AA

'='时,根据勾股定理列方程即可.

【详解】

解:(1)6

AB cm

=,8

AD cm

=,

10

BD cm

∴=,

根据旋转的性质可知10

B D BD cm

''==,2

CD B D BC cm

'=''-=,

tan

A B CE

B D A

A D CD

''

'''

∠==

'''

682CE ∴=, 3

2

CE cm ∴=,

()286345

22222

A B CE A B D CED S S S cm ''''''?∴==

-?÷=-; (2)①当1605x ≤<

时,22CD x '=+,3

2

CE x =, 233

+22

CD E S x x '∴=

△, 221333

68242222

y x x x ∴=??-=--+;

②当

1645x ≤≤时,102BC x =-,()4

1023

CE x =- ()2

21488020010223333

y x x x ∴=?-=-+.

(3)①如图1,当AB A B '=''时,0x =秒;

②如图2,当AA A B '=''时,1825A N BM BB B M x '=='+'=+

,24

5

A M N

B '==, 2236AN A N +'=,

22

2418623655x ?

???∴-++= ? ??

???,

解得:x =

秒,(x =舍去); ③如图2,当AB AA '='时,1825A N BM BB B M x '=='+'=+

,24

5

A M N

B '==, 2222AB BB AN A N +'=+'

22

2

24183646255x x ?

???∴+=-++ ? ??

???

解得:3

2

x =

秒.

综上所述:使得AA B ''△成为等腰三角形的x 的值有:0秒、

32秒、95

【点睛】

本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.

4.综合与探究:

如图1,Rt AOB 的直角顶点O 在坐标原点,点A 在y 轴正半轴上,点B 在x 轴正半轴上,4OA =,2OB =,将线段AB 绕点B 顺时针旋转90?得到线段BC ,过点C 作

CD x ⊥轴于点D ,抛物线23y ax x c =++经过点C ,与y 轴交于点(0,2)E ,直线AC 与x 轴交于点H .

(1)求点C 的坐标及抛物线的表达式;

(2)如图2,已知点G 是线段AH 上的一个动点,过点G 作AH 的垂线交抛物线于点F (点F 在第一象限),设点G 的横坐标为m . ①点G 的纵坐标用含m 的代数式表示为________;

②如图3,当直线FG 经过点B 时,求点F 的坐标,判断四边形ABCF 的形状并证明结论;

③在②的前提下,连接FH ,点N 是坐标平面内的点,若以F ,H ,N 为顶点的三角形与FHC 全等,请直接写出点N 的坐标.

【答案】(1)点C 的坐标为(6,2),21322y x x =-

++;(2)①1

43

m -+;②点F 的坐标为(4,6),四边形ABCF 为正方形,证明见解析;③点N 的坐标为(10,4)或

4226,55?? ???或384,55?? ???

. 【解析】 【分析】

(1)根据已知条件与旋转的性质证明ABO BCD ≌,根据全等三角形的性质得出点C

的坐标,结合点E 的坐标,根据待定系数法求出抛物线的表达式;

(2)①设直线AC 的表达式为y kx b =+,由点A 、C 的坐标求出直线AC 的表达式,进而得解;

②过点G 作GM x ⊥轴于点M ,过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与

DC 的延长线交于点Q ,根据等腰三角形三线合一得出AG CG =,结合①由平行线分线

段成比例得出点G 的坐标,根据待定系数法求出直线BG 的表达式,结合抛物线的表达式求出点F ;利用勾股定理求出AB BC CF FA ===,结合90ABC ?∠=可得出结论; ③根据直线AC 的表达式求出点H 的坐标,设点N 坐标为(,)s t ,根据勾股定理分别求出

2FC ,2CH ,2FN ,2NH ,然后分两种情况考虑:若△FHC ≌△FHN ,则FN =FC ,NH

=CH ,若△FHC ≌△HFN ,则FN =CH ,NH =FC ,分别列式求解即可. 【详解】 解:(1)

4=OA ,2OB =,

∴点A 的坐标为(0,4),点B 的坐标为(2,0),

线段AB 绕点B 顺时针旋转90?得到线段BC , AB BC ∴=,90ABC ?∠=,

90ABO DBC ?∴∠+∠=,

在Rt AOB 中,90ABO OAB ?∴∠+∠=,

=OAB DBC ∴∠∠,

CD x ⊥轴于点D ,

90BDC ?∴∠=,

90AOB BDC ?∴∠=∠=.

AB BC =,

ABO BCD ∴△≌△,

2CD OB ∴==,4BD OA ==, 6OB BD ∴+=,

∴点C 的坐标为(6,2),

∵抛物线2

3y ax x c =++的图象经过点C ,与y 轴交于点(0,2)E ,

236182c a c =?∴?++=?

, 解得,122

a c ?

=-?

??=?,

∴抛物线的表达式为2

1322

y x x =-

++; (2)①设直线AC 的表达式为y kx b =+,

∵直线AC 经过点()6,2C ,(0,4)A , ∴62

4k b b +=??

=?

解得,134k b ?

=-

???=?

,即143y x =-+,

∴点G 的纵坐标用含m 的代数式表示为:1

43

m -+,

故答案为:143

m -+.

②过点G 作GM x ⊥轴于点M ,

OM m ∴=,1

43

GM m =-+,

AB BC =,BG AC ⊥, AG CG ∴=,

90AOB GMH CDH ?∠=∠=∠=,

OA GM CD ∴,

1OM AG

MD GC

==, 1

32OM MD OD ∴===,

3m ∴=,1433

m -+=,

∴点G 为(3,3),

设直线BG 的表达式为y kx b =+,将(3,3)G 和(2,0)B 代入表达式得,20

33

k b k b +=??

+=?,

36

k b =?∴?=-?,即表达式为36y x =-, 点F 为直线BG 和抛物线的交点,

∴得2

132362

x x x -

++=-, 14x ∴=,24x =-(舍去), ∴点F 的坐标为(4,6),

过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与DC 的延长线交于点Q ,

4PF ∴=,2AP =,2FQ =,4CQ =,

在Rt AFP △中和Rt FCQ △

中,根据勾股定理,得AF FC ==

同理可得25

AB BC

==,

AB BC CF FA

∴===,

∴四边形ABCF为菱形,

90

ABC?

∠=,

∴菱形ABCF为正方形;

③∵直线AC:

1

4

3

y x

=-+与x轴交于点H,

1

40

3

x

-+=,

解得,x=12,

∴(12,0)

H,

∴222

(64)(26)20

FC=-+-=,222

(126)(02)40

CH=-+-=,设点N坐标为(,)

s t,

∴222

(4)(6)

FN s t

=-+-,222

(12)(0)

NH s t

=-+-,

第一种情况:若△FHC≌△FHN,则FN=FC,NH=CH,

22

22

(4)(6)20

(12)40

s t

s t

?-+-=

?

-+=

?

解得,

1

1

42

5

26

5

s

t

?

=

??

?

?=

??

,2

2

6

2

s

t

=

?

?

=

?

(即点C),

4226

,

55

N

??

?

??

第二种情况:若△FHC≌△HFN,则FN=CH,NH=FC,

22

22

(4)(6)40

(12)20

s t

s t

?-+-=

?

-+=

?

解得,

1

1

38

5

4

5

s

t

?

=

??

?

?=

??

,2

2

10

4

s

t

=

?

?

=

?

384

,

55

N

??

?

??

或(10,4)

N,

综上所述,以F,H,N为顶点的三角形与△FHC全等时,点N坐标为(10,4)或

4226

,

55?? ???

384

,

55

?? ???

【点睛】

本题是函数与几何的综合题,考查了待定系数法求函数的表达式,全等三角形的判定与性质,菱形与正方形的判定,旋转的性质,勾股定理等知识,其中对全等三角形存在性的分析,因有一条公共边,可对另外两边进行分类讨论,本题有一定的难度,是中考压轴题.

5.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.

(1)求证:AC垂直平分EF;

(2)试判断△PDQ的形状,并加以证明;

(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.

【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.

【解析】

试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,

∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明

∠DPQ=90°,即可得出结论;

(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.

试题解析:(1)证明:∵四边形ABCD是正方形,

∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,

∵BE=DF,

∴CE=CF,

∴AC垂直平分EF;

(2)解:△PDQ是等腰直角三角形;理由如下:

∵点P是AF的中点,∠ADF=90°,

∴PD=AF=PA,

∴∠DAP=∠ADP,

∵AC垂直平分EF,

∴∠AQF=90°,

∴PQ=AF=PA,

∴∠PAQ=∠AQP,PD=PQ,

∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,

∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,

∴△PDQ是等腰直角三角形;

(3)成立;理由如下:

∵点P是AF的中点,∠ADF=90°,

∴PD=AF=PA,

∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,

∴CE=CF,∠FCQ=∠ECQ,

∴CQ⊥EF,∠AQF=90°,

∴PQ=AF=AP=PF,

∴PD=PQ=AP=PF,

∴点A、F、Q、P四点共圆,

∴∠DPQ=2∠DAQ=90°,

∴△PDQ是等腰直角三角形.

考点:四边形综合题.

6.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.

(1)求证:DE⊥AG;

(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.

①在旋转过程中,当∠OAG′是直角时,求α的度数;

②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写

出结果不必说明理由.

【答案】(1)见解析;(2)①30°或150°,②AF'的长最大值为

2

2+,此时0

315

α=.

【解析】

【分析】

(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;

(2)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,

α=150°;

②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=

2

2

+2,此时

α=315°.

【详解】

(1)如图1,延长ED交AG于点H,

∵点O是正方形ABCD两对角线的交点,

∴OA=OD,OA⊥OD,

∵OG=OE,

在△AOG和△DOE中,

90

OA OD

AOG DOE

OG OE

=

?

?

∠=∠=?

?

?=

?

∴△AOG≌△DOE,

∴∠AGO=∠DEO,

∵∠AGO+∠GAO=90°,

∴∠GAO+∠DEO=90°,

∴∠AHE=90°,

即DE⊥AG;

(2)①在旋转过程中,∠OAG′成为直角有两种情况:

(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,

∵OA=OD=1

2

OG=

1

2

OG′,

∴在Rt△OAG′中,sin∠AG′O=OA

OG

=

1

2

∴∠AG′O=30°,

∵OA⊥OD,OA⊥AG′,

∴OD∥AG′,

∴∠DOG′=∠AG′O=30°°,

即α=30°;

(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,

同理可求∠BOG′=30°,

∴α=180°?30°=150°.

综上所述,当∠OAG′=90°时,α=30°或150°.

②如图3,当旋转到A. O、F′在一条直线上时,AF′的长最大,

∵正方形ABCD的边长为1,

∴OA=OD=OC=OB=

2

2

∵OG=2OD,

∴2,∴OF′=2,

∴AF′=AO+OF′=

2

2

+2,

∵∠COE′=45°,∴此时α=315°.

【点睛】

本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.

7.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。 (1)概念理解:

如图1,在ABC ?中,6AC = ,3BC =.30ACB ∠=?,试判断ABC ?是否是“等高底”三角形,请说明理由. (2)问题探究:

如图2, ABC ?是“等高底”三角形,BC 是“等底”,作ABC ?关于BC 所在直线的对称图形得到A BC '?,连结AA '交直线BC 于点D .若点B 是123,12z ai z i =-=+的重心,求AC

BC

的值. (3)应用拓展:

如图3,已知12l l //,1l 与2l 之间的距离为2.“等高底”ABC ?的“等底” BC 在直线1l 上,点A 在直线2l 上,有一边的长是BC 的2倍.将ABC ?绕点C 按顺时针方向旋转45?得到

A B C ?'',A C '所在直线交2l 于点D .求CD 的值.

【答案】(1)证明见解析;(2)13

AC BC =

(3)CD 210322 【解析】

分析:(1)过点A 作AD ⊥直线CB 于点D ,可以得到AD =BC =3,即可得到结论; (2)根据 ΔABC 是“等高底”三角形,BC 是“等底”,得到AD =BC , 再由 ΔA ′BC 与ΔABC 关于直线BC 对称, 得到 ∠ADC =90°,由重心的性质,得到BC =2BD .设BD =x ,则AD =BC =2x , CD =3x ,由勾股定理得AC 13,即可得到结论; (3)分两种情况讨论即可:①当AB 2BC 时,再分两种情况讨论; ②当AC 2BC 时,再分两种情况讨论即可. 详解:(1)是.理由如下:

如图1,过点A 作AD ⊥直线CB 于点D , ∴ΔADC 为直角三角形,∠ADC =90°. ∵ ∠ACB =30°,AC =6,∴ AD =1

2

AC =3, ∴ AD =BC =3,

即ΔABC是“等高底”三角形.

(2)如图2,∵ ΔABC是“等高底”三角形,BC是“等底”,∴AD=BC,∵ ΔA′BC与ΔABC关于直线BC对称,∴ ∠ADC=90°.

∵点B是ΔAA′C的重心,∴ BC=2BD.

设BD=x,则AD=BC=2x,∴CD=3x,

∴由勾股定理得AC=13x,

1313

22 AC x

BC x

==.

(3)①当AB=2BC时,

Ⅰ.如图3,作AE⊥l1于点E,DF⊥AC于点F.

∵“等高底” ΔABC的“等底”为BC,l1//l2,

l1与l2之间的距离为2,AB=2BC,

∴BC=AE=2,AB=22,

∴BE=2,即EC=4,∴AC= 25.

∵ΔABC绕点C按顺时针方向旋转45°得到ΔA' B' C,∴∠CDF=45°.设DF=CF=x.

∵l1//l2,∴∠ACE=∠DAF,∴

1

2

DF AE

AF CE

==,即AF=2x.

∴AC=3x=25,可得x=2

5

3

,∴CD=2x=

2

10

3

Ⅱ.如图4,此时ΔABC是等腰直角三角形,

∵ΔABC绕点C按顺时针方向旋转45°得到ΔA' B' C,∴ΔACD是等腰直角三角形,

∴CD2AC=22

②当AC=2BC时,

Ⅰ.如图5,此时△ABC是等腰直角三角形.

∵ ΔABC绕点C按顺时针方向旋转45°得到ΔA′ B′C,∴A′C⊥l1,∴CD=AB=BC=2.

Ⅱ.如图6,作AE⊥l1于点E,则AE=BC,

∴AC=2BC=2AE,∴∠ACE=45°,

∴ΔABC绕点C按顺时针方向旋转45°得到ΔA′ B′C时,点A′在直线l1上,

∴A′C∥l2,即直线A′ C与l2无交点.

综上所述:CD 2

10

3

,222.

点睛:本题是几何变换-旋转综合题.考查了重心的性质,勾股定理,旋转的性质以及阅读理解能力.解题的关键是对新概念“等高底”三角形的理解.

8.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB2F(m,0)是x轴的正半轴上一点,将抛物线C绕点F 旋转180°,得到新的抛物线C′.

(1)求抛物线C的函数表达式;

(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.

【答案】(1)2

142

y x =-+;(2)2<m <223)m =6或m 17﹣3.

【解析】 【分析】

(1)由题意抛物线的顶点C (0,4),A (20),设抛物线的解析式为

24y ax =+,把A (220)代入可得a =1

2

-

,由此即可解决问题; (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为

()21242y x m =--,由()22142

124

2y x y x m ?=-+????=--??

,消去y 得到222280x mx m -+-=,由题

意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有

()

222(2)4280

20280m m m m ?--->??

>?

?->??

,解不等式组即可解决问题; (3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得

M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题. 【详解】

(1)由题意抛物线的顶点C (0,4),A (20),设抛物线的解析式为

24y ax =+,把A (220)代入可得a =12

-

, ∴抛物线C 的函数表达式为2

142

y x =-+.

(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为

()2

1242

y x m =

--,

由()22

1421242y x y x m ?=-+????=--??

消去y 得到222280x mx m -+-= ,

由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有

()

222(2)428020280m m m m ?--->??

>?

?->??

, 解得2<m <22,

∴满足条件的m 的取值范围为2<m <22. (3)结论:四边形PMP ′N 能成为正方形.

理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .

由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得

PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在21

42

y x =-+上,

∴()2

12242

m m -=-++,解得m 17﹣3173(舍弃),∴m 17﹣3时,四边形PMP ′N 是正方形.

情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),

把M (m ﹣2,2﹣m )代入2

142y x =-+中,()212242

m m -=--+,解得m =6或0(舍

弃),

∴m =6时,四边形PMP ′N 是正方形.

中考数学压轴题100题精选【含答案】

中考数学压轴题100题精选【含答案】 【001 】如图,已知抛物线 2 (1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为 ()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若O C O B =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 【002】如图16,在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1 个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围) (3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由;

初三数学压轴题

1.如图,直线3y x =-+与x 轴,y 轴分别相交于点B ,点C ,经过B C ,两点的抛物线 2 y ax bx c =++与x 轴的另一交点为A ,顶点为P ,且对称轴是直线2x =. (1)求A 点的坐标; (2)求该抛物线的函数表达式; (3)连结A C .请问在x 轴上是否存在点Q ,使得以点P B Q ,,为顶点的三角形与 A B C △相似,若存在,请求出点Q 的坐标;若不存在,请说明理由. [解] 直线3y x =-+与x 轴相交于点B ,∴当0y =时,3x =, ∴点B 的坐标为(30), . 又 抛物线过x 轴上的A B ,两点, 且对称轴为2x =,根据抛物线的对称性,∴点A 的坐标为(10),. (2)3y x =-+ 过点C ,易知(03)C ,,3c ∴=. 又 抛物线2y ax bx c =++过点(10)(30)A B ,,,, 309330a b a b +==?∴?++=?,. 解得14a b =??=-?,. 2 43y x x ∴=-+. (3)连结P B ,由22 43(2)1y x x x =-+=--,得(21)P -,, 设抛物线的对称轴交x 轴于点M ,在R t P B M △中,1PM M B ==, 452PBM PB ∴== ,∠.由点(30)(03)B C ,,,易得3O B O C ==, 在等腰直角三角形O BC 中,45ABC = ∠,由勾股定理,得32BC =. 假设在x 轴上存在点Q ,使得以点P B Q ,,为顶点的三角形与A B C △相似. ①当 B Q P B B C A B =,45PBQ ABC == ∠∠时,PBQ ABC △∽△. 即 2232 B Q = ,3BQ ∴=,又3B O = ,∴点Q 与点O 重合,1Q ∴的坐标是(00),. ②当 Q B P B A B B C = ,45Q BP ABC == ∠∠时,QBP ABC △∽△. A B C P O y 2x = A B C P O x y 2x =

中考数学复习几何压轴题

中考数学复习几何压轴题 1.在△ABC 中,点D 在AC 上,点E 在BC 上,且DE ∥AB ,将△CDE 绕点C 按顺时针方向旋转得到△E D C ''(使E BC '∠<180°),连接D A '、E B ',设直线E B '与AC 交于点O . (1)如图①,当AC =BC 时,D A ':E B '的值为 ; (2)如图②,当AC =5,BC =4时,求D A ':E B '的值; (3)在(2)的条件下,若∠ACB =60°,且E 为BC 的中点,求△OAB 面积的最小值. 图① 图② 答 案 : 1;……………………………………………………………………………………………1分 (2)解:∵DE ∥AB ,∴△CDE ∽△CAB .∴AC DC BC EC =. 由旋转图形的性质得,C D DC C E EC '='=,,∴AC C D BC C E '='. ∵ D C E ECD ' '∠=∠,∴ , E AC D C E E AC ECD '∠+''∠='∠+∠即 D AC E BC '∠='∠. ∴E BC '?∽D AC '?.∴4 5 ==''BC AC E B D A .……………………………………………………4分 (3)解:作BM ⊥AC 于点M ,则BM =BC ·sin 60°=23. ∵E 为BC 中点,∴CE = 2 1 BC =2. △CDE 旋转时,点E '在以点C 为圆心、CE 长为半径的圆上运动. ∵CO 随着E CB '∠的增大而增大, ∴当E B '与⊙C 相切时,即C E B '∠=90°时E CB '∠最大,则CO 最大. O D E'O E' A D

中考数学压轴题精选讲义

2010年中考数学压轴题 【001 】如图,已知抛物线2 (1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D , 过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为 ()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 【002】如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP =,点Q 到AC 的距离是; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围) (3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值. 图16

中考数学几何压轴题

1.(1)操作发现· 如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗?说明理由. (2)问题解决 保持(1)中的条件不变,若DC =2DF ,求AB AD 的值; (3)类比探究 保持(1)中的条件不变,若DC =n ·DF ,求 AB AD 的值. 2.如图1所示,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,∠DCB =75o,以CD 为一边的

等边△DCE 的另一顶点E 在腰AB 上. (1)求∠AED 的度数; (2)求证:AB =BC ; (3)如图2所示,若F 为线段CD 上一点,∠FBC =30o. 求 DF FC 的值. 3.如图①,在等腰梯形ABCD 中,AD ∥BC ,AE ⊥BC 于点E ,DF ⊥BC 于点F .AD =2cm ,BC =6cm ,AE =4cm .点P 、Q 分别在线段AE 、DF 上,顺次连接B 、P 、Q 、C ,线段BP 、PQ 、QC 、CB 所围成的封闭图形记为M .若点P 在线段AE 上运动时,点Q 也随之在线段DF 上运动,使图形M 的形状发生改变,但面积始终.. 为10cm 2.设EP =x cm ,FQ =y cm ,A B C D E 图1 A B C D E 图2 F

解答下列问题: (1)直接写出当x =3时y 的值; (2)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)当x 取何值时,图形M 成为等腰梯形?图形M 成为三角形? (4)直接写出线段PQ 在运动过程中所能扫过的区域的面积. 4.如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC ,△A 1B 1C 1. A B C D E F (备用图) A B C D E F Q P 图① 图 ① A C A 1 B 1 C 1

九年级上册上册数学压轴题测试卷附答案

九年级上册上册数学压轴题测试卷附答案 一、压轴题 1.已知,如图1,⊙O 是四边形ABCD 的外接圆,连接OC 交对角线BD 于点F ,延长AO 交BD 于点E ,OE=OF. (1)求证:BE=FD ; (2)如图2,若∠EOF=90°,BE=EF ,⊙O 的半径25AO =,求四边形ABCD 的面积; (3)如图3,若AD=BC ; ①求证:22?AB CD BC BD +=;②若2?12AB CD AO ==,直接写出CD 的长. 2.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以 1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移 动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒. (1)填空:______=______,______=______(用含t 的代数式表示); (2)当t 为何值时,PQ 的长度等于5cm ? (3)是否存在t 的值,使得五边形APQCD 的面积等于226cm ?若存在,请求出此时t 的值;若不存在,请说明理由. 3.如图,在Rt △AOB 中,∠AOB =90°,tan B =3 4 ,OB =8. (1)求OA 、AB 的长; (2)点Q 从点O 出发,沿着OA 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点A 出发,沿着AB 方向也以1个单位长度秒的速度匀速运动,设运动时间为t 秒(0<t ≤5)以P 为圆心,PA 长为半径的⊙P 与AB 、OA 的另一个交点分别为C 、D ,连结CD ,QC . ①当t 为何值时,点Q 与点D 重合? ②若⊙P 与线段QC 只有一个公共点,求t 的取值范围.

中考数学压轴题(含答案)

2016中考压轴题突破 训练目标 1.熟悉题型结构,辨识题目类型,调用解题方法; 2.书写框架明晰,踩点得分(完整、快速、简洁)。 题型结构及解题方法 压轴题综合性强,知识高度融合,侧重考查学生对知识的综合运用能力,对问题背景的研究能力以及对数学模型和套路的调用整合能力。

答题规范动作 1.试卷上探索思路、在演草纸上演草。 2.合理规划答题卡的答题区域:两栏书写,先左后右。 作答前根据思路,提前规划,确保在答题区域内写完答案;同时方便修改。 3.作答要求:框架明晰,结论突出,过程简洁。 23题作答更加注重结论,不同类型的作答要点: 几何推理环节,要突出几何特征及数量关系表达,简化证明过程; 面积问题,要突出面积表达的方案和结论; 几何最值问题,直接确定最值存在状态,再进行求解; 存在性问题,要明确分类,突出总结。 4.20分钟内完成。 实力才是考试发挥的前提。若在真题演练阶段训练过程中,对老师所讲的套路不熟悉或不知道,需要查找资源解决。下方所列查漏补缺资源集中训练每类问题的思路和方法,这些训练与真题演练阶段的训练互相补充,帮学生系统解决压轴题,以到中考考场时,不仅题目会做,而且能高效拿分。课程名称: 2014中考数学难点突破 1、图形运动产生的面积问题 2、存在性问题 3、二次函数综合(包括二次函数与几何综合、二次函数之面积问题、二次函数中的存在性问题) 4、2014中考数学压轴题全面突破(包括动态几何、函数与几何综合、点的存在性、三角形的存 在性、四边形的存在性、压轴题综合训练)

一、图形运动产生的面积问题 一、 知识点睛 1. 研究_基本_图形 2. 分析运动状态: ①由起点、终点确定t 的范围; ②对t 分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置. 3. 分段画图,选择适当方法表达面积. 二、精讲精练 1. 已知,等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在△ABC 的边AB 上,沿AB 方向以1 厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M 、N 分别作AB 边的垂线,与△ABC 的其他边交于P 、Q 两点,线段MN 运动的时间为t 秒. (1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形并求出该矩形的面积. (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围. 1题图 2题图 2. 如图,等腰梯形ABCD 中,AB ∥CD ,AB = CD 高CE =,对角线AC 、BD 交于点H .平 行于线段BD 的两条直线MN 、RQ 同时从点A 出发,沿AC 方向向点C 匀速平移,分别交等腰梯形ABCD 的边于M 、N 和R 、Q ,分别交对角线AC 于F 、G ,当直线RQ 到达点C 时,两直线同时停止移动.记 等腰梯形ABCD 被直线MN 扫过的面积为1S ,被直线RQ 扫过的面积为2S ,若直线MN 平移的速度为1单位/秒,直线RQ 平移的速度为2单位/秒,设两直线移动的时间为x 秒. (1)填空:∠AHB =____________;AC =_____________; (2)若213S S ,求x . 3. 如图,△ABC 中,∠C =90°,AC =8cm ,BC =6cm ,点P 、Q 同时从点C 出发,以1cm/s 的速度分别沿CA 、 CB 匀速运动,当点Q 到达点B 时,点P 、Q 同时停止运动.过点P 作AC 的垂线l 交AB 于点R ,连接PQ 、RQ ,并作△PQR 关于直线l 对称的图形,得到△PQ'R .设点Q 的运动时间为t (s ),△PQ'R 与△PAR 重叠部分的面积为S (cm 2). (1)t 为何值时,点Q' 恰好落在AB 上 (2)求S 与t 的函数关系式,并写出t 的取值范围. (3)S 能否为9 8 若能,求出此时t 的值; 若不能,请说明理由. C B A B C P R Q Q' l A C M N Q P B C H D C B A A B C H H D C B A A B C D M N R Q F G H E H D C B A H D C B A

2020年贵州省中考数学压轴题汇编解析:几何综合

2020年全国各地中考数学压轴题汇编(贵州专版) 几何综合 参考答案与试题解析 一.选择题(共6小题) 1.(2020?贵阳)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为() A.24 B.18 C.12 D.9 解:∵E是AC中点, ∵EF∥BC,交AB于点F, ∴EF是△ABC的中位线, ∴EF=BC, ∴BC=6, ∴菱形ABCD的周长是4×6=24. 故选:A. 2.(2020?遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为() A.10 B.12 C.16 D.18 解:作PM⊥AD于M,交BC于N.

则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形, ∴S △ADC =S △ABC ,S △AMP =S △AEP ,S △PBE =S △PBN ,S △PFD =S △PDM ,S △PFC =S △PCN , ∴S △DFP =S△PBE=×2×8=8, ∴S 阴=8+ 8=16, 故选:C. 3.(2020?贵阳)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为() A.B.1 C.D. 解:连接BC, 由网格可得AB=BC=,AC=,即AB2+BC2=AC2, ∴△ABC为等腰直角三角形, ∴∠BAC=45°, 则tan∠BAC=1, 故选:B. 4.(2020?遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()

中考数学几何选择填空压轴题精选配答案

中考数学几何选择填空压轴题精选配答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

2016中考数学几何选择填空压轴题精选(配答案)一.选择题(共13小题) 1.(2013蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC 于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HEHB. A .1个B . 2个C . 3个D . 4个 2.(2013连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作 D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A .B . C . D . 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论: ①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A .1个B . 2个C . 3个D . 4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:

初中中考数学压轴题及答案(精品)

中考数学专题复习——压轴题 1. 已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D. (1) 求该抛物线的解析式; (2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积; (3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由. (注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为??? ? ??--a b ac a b 44,22) 2. 如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于 R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =. (1)求点D 到BC 的距离DH 的长; (2)求y 关于x 的函数关系式(不要求写出自变量的取值范围); (3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由. 3在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x . (1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切? (3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少? 4.如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积等于43,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.

中考数学压轴题精选及答案(整理版)

20XX 年全国各地中考数学压轴题精选 1、(黄石市20XX 年)(本小题满分9分)已知⊙1O 与⊙2O 相交于A 、B 两点,点1 O 在⊙2O 上,C 为⊙2O 上一点(不与A ,B ,1O 重合) ,直线CB 与⊙1O 交于另一点D 。 (1)如图(8),若 AC 是⊙2O 的直径,求证:AC CD =; (2)如图(9),若C 是⊙1O 外一点,求证:1O C AD ⊥; (3)如图(10),若C 是⊙1O 内一点,判断(2)中的结论是否成立。 2、(黄石市20XX 年)(本小题满分10分)已知二次函数 2248y x mx m =-+- (1)当2x ≤时,函数值 y 随x 的增大而减小,求m 的取值范围。 (2)以抛物线 2248y x mx m =-+-的顶点A 为一个顶点作该抛物线的内接 正三角形 AMN (M ,N 两点在抛物线上) ,请问:△AMN 的面积是与m 无关的定值吗?若是,请求出这个定值;若不是,请说明理由。 (3)若抛物线 2248y x mx m =-+-与x 轴交点的横坐标均为整数,求整数m 的值。

3、(20XX 年广东茂名市)如图,⊙P 与y 轴相切于坐标原点O (0,0) ,与x 轴相交于点A (5,0),过点A 的直线AB 与 y 轴的正半轴交于点B ,与⊙P 交于点C . (1)已知AC=3,求点B的坐标; (4分) (2)若AC=a , D 是O B的中点.问:点O 、P 、C 、D 四点是否在同一圆上?请说明 理由.如果这四点在同一圆上,记这个圆的圆心为1O ,函数 x k y = 的图象经过点1O ,求k 的值(用含a 的代数式表示). 4、庆市潼南县20XX 年)如图,在平面直角坐标系中,△ABC 是直角三角形,∠ ACB =90,AC =BC ,OA =1,OC =4,抛物线2y x bx c =++经过A ,B 两点,抛物 线的顶点为D . (1)求b ,c 的值; (2)点E 是直角三角形ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的 垂线 交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标; (3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛 物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形? 若存在,求出所有点P 的坐标;若不存在,说明理由. 第3题图 χ y

中考数学几何综合圆的综合大题压轴题

圆的综合大题 1.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF. (1)证明:AF平分∠BAC; (2)证明:BF=FD; (3)若EF=4,DE=3,求AD的长. 2.如图,AB是⊙O的直径,过点B作⊙O的切线BM,点P在右半圆上移动(点P与点A,B不重合),过点P作PC⊥AB,垂足为C;点Q在射线BM上移动(点M在点B的右边),且在移动过程中保持OQ∥AP. (1)若PC,QO的延长线相交于点E,判断是否存在点P,使得点E恰好在⊙O上?若存在,求出∠APC的大小;若不存在,请说明理由; (2)连接AQ交PC于点F,设,试问:k的值是否随点P的移动而变化?证明你的结论.

3.已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P. (1)请你在图1中作出⊙O(不写作法,保留作图痕迹); (2)与是否相等?请你说明理由; (3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考) 4.在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F. (I)如图①,若∠F=50°,求∠BGF的大小; (II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.

5.如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF. (1)求证:∠ACD=∠F; (2)若tan∠F= ①求证:四边形ABCD是平行四边形; ②连接DE,当⊙O的半径为3时,求DE的长. 6.如图,⊙O的直径AB为10cm,弦BC为6cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE. (1)求AC、AD的长; (2)试判断直线PC与⊙O的位置关系,并说明理由.

初中数学压轴题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 中考数学压轴题 1. 已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D. (1) 求该抛物线的解析式; (2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积; (3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理 由. (注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为???? ? ?--a b ac a b 44,22 ) 2. 如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作 QR BA ∥交AC 于 R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =. (1)求点D 到BC 的距离DH 的长; (2)求y 关于x 的函数关系式(不要求写出自变量的取值范围); (3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的

值;若不存在,请说明理由. 3在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x . (1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切? (3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少? 创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* P 图 3 B D 图 2 B 图 1 A B C D E R P H Q

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选 一.选择题(共13小题) 1.(2013?蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE 的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE?HB. A.1个B.2个C.3个D.4个 2.(2013?连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A.B.C.D. 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A.1个B.2个C.3个D.4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论: ①EC=2DG;②∠GDH=∠GHD;③S△CDG=S?DHGE;④图中有8个等腰三角形.其中正确的是() A.①③B.②④C.①④D.②③ 5.(2008?荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为() A.5:3B.3:5C.4:3D.3:4 6.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为() A.B.C.D. 7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是() A.B.6C.D.3 8.(2013?牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是() A.1个B.2个C.3个D.4个 9.(2012?黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论: ①(BE+CF)=BC; ②S△AEF≤S△ABC; ③S四边形AEDF=AD?EF; ④AD≥EF; ⑤AD与EF可能互相平分, 其中正确结论的个数是() A.1个B.2个C.3个D.4个

中考数学几何专题知识点总结78点中考数学几何压轴题

中考数学几何专题知识点总结78点中考数学 几何压轴题 1 同角或等角的余角相等 2 过一点有且只有一条直线和已知直线垂直 3 过两点有且只有一条直线 4 两点之间线段最短 5 同角或等角的补角相等 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边

16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

2017年挑战中考数学压轴题(全套含答案)

第一部分函数图象中点的存在性问题 §1.1 因动点产生的相似三角形问题 例1 2014年衡阳市中考第28题 例2 2014年益阳市中考第21题 例3 2015年湘西州中考第26题 例4 2015年张家界市中考第25题 例5 2016年常德市中考第26题 例6 2016年岳阳市中考第24题 例7 2016年上海市崇明县中考模拟第25题 例8 2016年上海市黄浦区中考模拟第26题 §1.2 因动点产生的等腰三角形问题 例9 2014年长沙市中考第26题 例10 2014年张家界市第25题 例11 2014年邵阳市中考第26题 例12 2014年娄底市中考第27题 例13 2015年怀化市中考第22题 例14 2015年长沙市中考第26题 例15 2016年娄底市中考第26题 例16 2016年上海市长宁区金山区中考模拟第25题 例17 2016年河南省中考第23题

§1.3 因动点产生的直角三角形问题 例19 2015年益阳市中考第21题 例20 2015年湘潭市中考第26题 例21 2016年郴州市中考第26题 例22 2016年上海市松江区中考模拟第25题 例23 2016年义乌市绍兴市中考第24题 §1.4 因动点产生的平行四边形问题 例24 2014年岳阳市中考第24题 例25 2014年益阳市中考第20题 例26 2014年邵阳市中考第25题 例27 2015年郴州市中考第25题 例28 2015年黄冈市中考第24题 例29 2016年衡阳市中考第26题 例30 2016年上海市嘉定区宝山区中考模拟中考第24题例31 2016年上海市徐汇区中考模拟第24题 §1.5 因动点产生的面积问题 例32 2014年常德市中考第25题 例33 2014年永州市中考第25题

中考数学压轴题几何代数综合题(PDF版)

第三课时 几何代数综合题1.已知:如图①,在矩形ABCD 中,AB=5,AD=320 ,AE ⊥BD ,垂足是 E.点F 是点E 关于AB 的对称点,连接 AF 、BF. (1)求AE 和BE 的长; (2)若将△ABF 沿着射线BD 方向平移,设平移的距离为 m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,直接写出相应的m 的值. (3)如图②,将△ABF 绕点B 顺时针旋转一个角(0°<<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程 中,设A ′F ′所在的直线与直线 AD 交于点P.与直线BD 交于点Q.是否存在这样的P 、Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由 . 解:(1)在Rt △ABD 中,AB=5,AD = ,由勾股定理得:BD === . ∵S △ABD =BD?AE =AB?AD , ∴AE===4. 在Rt △ABE 中,AB=5,AE=4,由勾股定理得: BE=3.(2)设平移中的三角形为△ A ′ B ′F ′,如答图2所示:由对称点性质可知,∠ 1=∠2.由平移性质可知,AB ∥A ′B ′,∠4=∠1,BF=B ′F ′=3. ①当点F ′落在AB 上时,∵AB ∥A ′B ′, ∴∠3=∠4,∴∠3=∠2, ∴BB ′=B ′F ′=3,即m=3; ②当点F ′落在AD 上时,∵AB ∥A ′B ′, ∴∠6=∠2,∵∠1=∠2,∠5=∠1, ∴∠5=∠6,又易知A ′B ′⊥AD , ∴△B ′F ′D 为等腰三角形, ∴B ′D=B ′F ′=3, ∴BB ′=B D ﹣B ′D =﹣3=,即m=. (3)存在.理由如下:

初三数学压轴题专题训练试题

初三数学压轴题专题训练 1、如图,在矩形 ABCD 中, AB =3, BC =4.动点 P 从点 A 出发沿 AC 向终点 C 运动,同时动点 Q 从点 B 出发沿 BA 向点 A 运动,到达 A 点后立刻以原来的速度沿 AB 返回.点 P 、 Q 运动速度均为每秒1个单位长度,当点 P 到达点 C 时停止运动,点 Q 也同时停止.连接 PQ ,设运动时间为 t( t >0)秒. (1)在点Q从B到A的运动过程中,当t=_______时,PQ AC ; (2)伴随着P、Q两点的运动,线段 PQ 的垂直平分线为l. ①当l经过点 A 时,射线PQ交 AD 于点 E ,求 AE 的长; ②当l经过点 B 时,求 t 的值. 2、如图,在平面直角坐标系中,O为坐标原点,⊙C的圆心坐标为(-2,-2),半径为2.函数 y=-x+2的图象与x轴交于点A,与y轴交于点B, (1)图1中,连接CO并延长和AB交于点G,求证:CG⊥AB; (2)图2中,当点P从B出发,以1个单位/秒的速度在线段AB上运动,连接PO,当直线PO与⊙C相切时,求点P运行的时间t是多少? (3) 图3中,当直线PO与⊙C相交时,设交点为E、F,如果C M⊥EF于点M,令PO=x,MO=y,求y与 x之间的函数关系式,写出x的取值范围。

3、在Rt AOB ?中, 3 3,sin ,5 OA B P == 、M 分别是BA 、BO 边上的两个动点。点M 从点B 出发,沿 BO 以1单位/秒的速度向点O 运动;点P 从点B 出发,沿BA 以a 单位/秒的速度向点A 运动;P 、M 两点同 时出发,任意一点先到达终点时,两点停止运动。设运动的时间为t . (1)线段AP 的长度为 (用含a 、t 的代数式表示); (2)如图①连结PO 、PM ,若1a =, PMO ?的面积为S ,试求S 的最大值; (3)如图②连结PM 、AM ,试探究:在点P 、M 运动的过程中,是否存在某个时刻:,使得PMB ?为直角 三角形且PMA ?是等腰三角形?若存在,求出此时a 和t 的取值,若不存在,请说明理由 . 4、如图,梯形OABC 中,O 为直角坐标系的原点,A 、B 、C 的坐标分别为(14,0)、(14,3)、(4,3).点P 、Q 同时从原点出发,分别作匀速运动,其中点P 沿OA 向终点A 运动,速度为每秒1个单位;点Q 沿OC 、CB 向终点B 运动,当这两点中有一点到达自己的终点时,另一点也停止运动.设P 从出发起运动了t 秒. (1)如果点Q 的速度为每秒2个单位, ①试分别写出这时点Q 在OC 上或在CB 上时的坐标(用含t 的代数式表示,不要求写出t 的取值范围); ②求t 为何值时,PQ ∥OC ? (2)如果点P 与点Q 所经过的路程之和恰好为梯形OABC 的周长的一半, ①试用含t 的代数式表示这时点Q 所经过的路程和它的速度; ②试问:这时直线PQ 是否可能同时把梯形OABC 的面积也分成相等的两部分?如有可能,求出相应的t 的值和P 、Q 的坐标;如不可能,请说明理由.

2018年全国各地中考数学压轴题汇编:几何综合(广西专版)(解析卷)

2018年全国各地中考数学压轴题汇编(广西专版) 几何综合 参考答案与试题解析 一.选择题(共8小题) 1.(2018?广西)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为() A.B.C.2D.2 解:过A作AD⊥BC于D, ∵△ABC是等边三角形, ∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°, ∵AD⊥BC, ∴BD=CD=1,AD=BD=, ∴△ABC的面积为=, S扇形BAC==π, ∴莱洛三角形的面积S=3×π﹣2×=2π﹣2, 故选:D. 2.(2018?桂林)如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△

ABF,连接EF,则线段EF的长为() A.3 B.C.D. 解:如图,连接BM. ∵△AEM与△ADM关于AM所在的直线对称, ∴AE=AD,∠MAD=∠MAE. ∵△ADM按照顺时针方向绕点A旋转90°得到△ABF, ∴AF=AM,∠FAB=∠MAD. ∴∠FAB=∠MAE ∴∠FAB+∠BAE=∠BAE+∠MAE. ∴∠FAE=∠MAB. ∴△FAE≌△MAB(SAS). ∴EF=BM. ∵四边形ABCD是正方形, ∴BC=CD=AB=3. ∵DM=1, ∴CM=2. ∴在Rt△BCM中,BM==, ∴EF=, 故选:C. 解法二:如图,过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,则∠AHG=∠MGE=90°, 由折叠可得,∠AEM=∠D=90°,AE=AD=3,DM=EM=1, ∴∠AEH+∠MEG=EMG+∠MEG=90°, ∴∠AEH=∠EMG, ∴△AEH∽△EMG,

初三数学压轴题含答案

准备题1. 如图,直线y = - 1 2 x +1和抛物线 y =x 2+bx +c 都经过点A (2,0)和点B (k ,3 4 ). (1)k 的值是 ; (2)求抛物线的解析式; (3)不等式x 2+bx +c > - 1 2 x +1的解集是 . 例1..如图,直线3y x =-+与x 轴,y 轴分别相交于点B ,点C ,经过B C ,两点的抛物线2 y ax bx c =++与x 轴的另一交点为A ,顶点为P ,且对称轴是直线2x =. (1)求A 点的坐标; (2)求该抛物线的函数表达式; (3)连结AC .请问在x 轴上是否存在点Q ,使得以点P B Q ,,为顶点的三角形与 ABC △相似,若存在,请求出点Q [解] Q 直线3y x = -+与x 轴相交于点B ,∴当0y =时,3x =, (图6)

∴点B 的坐标为(30),. 又Q 抛物线过x 轴上的A B ,两点, 且对称轴为2x =,根据抛物线的对称性,∴点A 的坐标为(1(2)3y x =-+Q 过点C ,易知(03)C ,,3c ∴=. 又Q 抛物线2 y ax bx c =++过点(10)(30)A B ,,,, 309330a b a b +==?∴? ++=?,. 解得1 4a b =??=-?,. 243y x x ∴=-+. (3)连结PB ,由2 2 43(2)1y x x x =-+=--,得(21)P -,, 设抛物线的对称轴交x 轴于点M ,在Rt PBM △中,1PM MB ==, 45PBM PB ∴==o ,∠.由点(30)(03)B C ,,,易得3OB OC ==, 在等腰直角三角形OBC 中,45ABC =o ∠,由勾股定理,得BC = 假设在x 轴上存在点Q ,使得以点P B Q ,,为顶点的三角形与ABC △相似. ①当BQ PB BC AB = ,45PBQ ABC ==o ∠∠时,PBQ ABC △∽△. =,3BQ ∴=,又3BO =Q ,∴点Q 与点O 重合,1Q ∴的坐标是(00),. ②当QB PB AB BC =,45QBP ABC ==o ∠∠时,QBP ABC △∽△. 即 2QB = ,23QB ∴=.273333OB OQ OB QB =∴=-=-=Q ,, 2Q ∴的坐标是703?? ??? ,. 180********PBx BAC PBx BAC =-=<∴≠o o o o Q ,,∠∠∠∠. ∴点Q 不可能在B 点右侧的x 轴上 x

相关文档
最新文档