单纯形法的简述及应用

单纯形法的简述及应用
单纯形法的简述及应用

单纯形法的简述及应用

摘要

自1947年G.B.Dantzig提出单纯形法以来,他一直是求线性规划的最有效的计算方法。但是,单纯形法要求已知一个基本可行解,且线性规划需化典式。而在一般情况下,线性规划问题并无明显的可行解。如用两阶段法获得基本可行解,必须增加人工变量,从而增加计算量。针对这一问题,本文提出了改进单纯形法(一),在不增加人工变量的前提下,采用较简单的方法,求出一基本可行解,并在求解过程中剔除多余约束,判断问题是否有解,同时将线性规划的约束方程化为典式。此方法减少了比较次数,且简单易行,容易在计算机上实现。本文针对线性规划问题在变量和约束的个数较多时,传统单纯形法占据较大的内存空间,且有不少多余计算的情况提出改进单纯形法(二),能以较少的计算量及较小的占用存储空间方法从基的逆矩阵计算出新基的逆矩阵。从而既能使迭代过程持续进行下去,又能克服上述单纯形法的不足,是解决这些问题的一种实用且较有效的方法。

关键词:线性规划、单纯形法、基本可行解、初等变换。

绪论

引言

运筹学是近六十年发展起来的一门学科。运筹学在生产管理、工程技术、军事作战、科学实验。财政经济。社会科学以及自然科学和其他学科都应经取得了很多令人瞩目的成果。线性规划是运筹学的一个重要分支,是运筹学中最重要的一种数量方法,其应用范围非常广泛。主要用于研究解决有限资源的最佳分配问题,即如何对有限的资源做出最佳方式的调配和最有力的使用,以便最充分地发挥资源的效能去获取最佳经济效益。从数学的角度来说,也就是在对决策变量施加一组线性等式、不等式以及等号的约束下,求决策变量的线性目标函数的最大化和最小化。

与其他的数学学科相比,线性规划是一个相当年轻又非常活跃的应用数学分支。自从一般线性规划问题求解的方法——单纯形法被提出之后,线性规划在理论上趋向成熟,在使用中日益广发与深入。线性规划的广泛应用以及涉及到的数学理论和计算方法,都引起了专业人员和学者们的很大兴趣。

线性规划基础及单纯形法

线性规划问题及数学模型

凡是同时满足以下三个条件的问题,就叫做线性规划问题:

(1)可用一些变量表示问题的待定方案,这些变量的一组定值就代表一个具体的方案。因此,可将这些变量称为决策变量,并往往要求它们为非负的。

(2)存在一定的约束条件,这些约束条件都能用关于决策变量的线性等式或线性不等式来表示。

(3)有一个期望达到的目标,它可用决策变量的线性函数(称为目标函数)来表示,根据具体问题的不同,要求目标函数实现最大化或最小化。

线性规划就是研究并解决上述问题的一种理论和方法。满足以上三个条件的数学模型称为线性规划的数学期望,简称线性规划模型。期一般形式如下:

其中n j j ...3,2,1,x =,为待定的决策变量,已知的系数ij a 组成的矩阵

称为约束矩阵。A 的列向量记为;...,2,1,A n j j =A 的行向量记为.,...,2,1,A m i T i =称n n x c x c x c +++...2211为目标函数,记为∑=n

1j j j x c ,向量T n c c c C ),...,,(21=称为价值向量,

),...,2,1(n j c j =称为价值系数;向量T n b b b b ),...,,(21=称为右端向量;条件o j ≥x 称为非负约束;符号0≥j x 表示变量j x 可取正值、负值、或零值,成这样的变量为自由变量。如果原问题是要求目标函数∑=n j j j

x c 1的最大值,可等价地转化为求)(n

1j j j x c ∑=-的最小值。 从实际问题中建立线性规划问题数学模型的三个步骤:

(1)根据影响所要达到目的的因素找出决策变量;

(2)由决策变量和所要达到目的之间的函数关系确定目标函数;

(3)由决策变量所售的限制条件确定决策变量索要满足的约束条件。

单纯形法的计算步骤

对于一个给定的线性规划问题,单纯形法的计算步骤如下:

第一步 找一个初始的可行解B ;

第二步 求出对应的典式及检验数向量ξ;

第三步 求],...,3,2,1ξmax[ξj k n ==;

第四步 若0k ≤ξ,停止。

已找到最优解

及最优值,否则转为第六步;

第五步 若

停止。原问题无界; 第六步 求; 第七步 以k A 代替r B A 得到新的基,转到第二步。

多重最优解

对线性规划问题的求解结果可能出现无穷多个最优解的情形。但是,单纯形法的迭代步骤在求得了第一个最优解时就告停止,这也就突破了最优解的相持。

不过,在实际应用中,了解所用的线性规划模型是否有多重最优解是必要的。那么,在求得了第一个最优解后,再如何求出其他的最优解呢?单纯形法解的判定定理指出,若T m b b b X )0,...0,,...,(21-

--=为某线性规划问题的一个基本可行解,且对于所有的n 2,...,m 1,m j ++=,均有0j ≤ξ,而且又存在某个非基变量的检验数0k =ξ,则该线性规划问题可能有无穷多个解、在求得第一个最优解后。若检验数0=k ξ的非基变量k x 对应的系数列中有正系数,则按照单纯形法另做几次迭代,每次都选一个这样的k x 进基,就能得到其他的最优解了。

应用举例

结论

单纯形法要求已知一个基本解,且线性规划需要典式。而在一般情况下,线性规划问题并无明显的可行解。此时可用两阶段法获得基本可行解,必须增加人工变量,从而求出最优解。

单纯形法的综述及其应用-文献综述

毕业论文文献综述 数学与应用数学 单纯形法的综述及其应用 一、 前言部分(说明写作的目的,介绍有关概念、综述范围,扼要说明有关 主题争论焦点) 1.写作目的 本文主要在于介绍单纯形法的历史背景,基本计算方法,改进的计算方法,以及单纯形法的应用.目的在于对单纯形法的历史背景,计算方法等进行综述,并总结单纯形法在生活各个领域的应用,单纯形法是求解线性规划问题很有效的方法,通过对单纯形法的进一步了解,最后提出一实际问题利用单纯法进行分析求解. 2.有关概念 LP 问题的一般形式[1] ()1122. Max min n n ob Z c x c x c x =+++L ()()()11112211 211222221122 12..: ,,,0 n n n n m m mn n m n a x a x a x b a x a x a x b s t a x a x a x b x x x +++≤≥?? +++≤≥?? ??+++≤≥??≥? L L L L L 线性规划问题的标准型为[2] ()()()11221111221121122222 m1122 12min a a s.t.a 01,2,,,,,n n n n n n m mn n m j n S c x c x c x S x a x a x b x a x a x b x a x a x b x j n x x x =+++?+++=? +++=?? ??+++=??≥=? L L L L L L 为目标函数(1)为决策变量 其矩阵形式为 min s.t.0 S CX AX b X ==?? ≥?(2)

其中,()12,,,n C c c c =L ,决策向量()()1212,,,,,,,T T n m X x x x b b b b ==L L . A 为约束条件中的系数矩阵, 即 1112121 22212 n n m m mm a a a a a a A a a a ??????=??????L L M M M M L 本文除了介绍线性规划问题的一般形式、标准形式和矩阵形式以外还列举了一些定义. 定义1[3]:设矩阵A 的秩为m ,矩阵B 是A 中的一个m 阶满秩子方阵,则B 为一个基矩阵.矩阵A 中剩余元素组成的子阵为N ,即[]A BN =.把x 的分量相应地分成两部分,记成B x 和N x ,B x 的分量与B 的列对应,称为基变量;N x 的分量与N 中的列对应,称为非基 变量.在约束Ax b =中令所有的非基变量取值为零时,得到解10B N x B b x x -?? ??==???????? ,称为相 应于B 的基本解. 定义2[3]:基本解得基变量都取非负值时,即满足1 0B x B b -=≥的基本解为基本可行解. 定义3[4]:满足式(1)各约束条件的解()12,,,T n X x x x =L 称为可行解.全部可行解的集合称为可行域.目标函数1 min n j j j Z c x == ∑达到最大值的可行解称为最优解. 定义4[4]:设 A 为约束方程组1 (1,...,)n ij j i j a x b i m ===∑的m n ?阶系数矩阵, 设(n m >),其秩为m ,B 为矩阵A 中的一个m m ?阶的满秩子矩阵,称B 为线性规划问题的一个基.不失一般性,设 11111...(,...,)...m m m mm a a B a a αα?? ??==?? ???? M M B 中每一个向量(1,..,)j j m α=称为基向量;与基向量j α对应的变量j x 称为基变量. 基变量以外的的变量称为非基变量. 定义5[4] :在约束方程组 1 (1,...,)n ij j i j a x b i m ===∑中,令所有非基变量

单纯形法步骤例题详解

单纯形法演算 j c 2 1 B C X B b 1x 2x 3x 4x 5x 0 3x 15 0 5 1 0 0 无穷 0 4x 24 6 2 0 1 0 4 0 5x 5 1 1 0 0 1 5 j j z c -(检验数) 2 1 首先列出表格,先确定正检验数最大值所在列为主列,然后用b 除以主列上对应的同行数字。除出来所得值最小的那一行为主行,根据主行和主列可以确定主元(交点)。接着把主元化为1并把X4换成X1. ??? ??? ?≥=++=++=+++++=0,,524261550002max 5152 14213 25 4321x x x x x x x x x x x x x x x z ??????? ≥≤+≤+≤+=0 ,5 24261552max 21212122 1x x x x x x x x x z

j c 2 1 B C X B b 1x 2x 3x 4x 5x 0 3x 15 0 5 1 0 0 2 1x 4 1 2/6 0 1/6 0 0 5x 5 1 1 0 0 1 j j z c - 2 1 这时进行初等行列变换,把主列换单位向量,主元为1。也就是X5所在行减去X1所在行。并且重新计算检验数。 j c 2 1 B C X B b 1x 2x 3x 4x 5x 0 3x 15 0 5 1 0 0 2 1x 4 1 2/6 0 1/6 0 0 5x 5-4 1-1=0 1-2/6 =4/6 0-1/6=-1/6 1 j j z c - 2-2*1-0*0-0*1=0 1-0*5-2*2/6-0*4/6=1/3 0-0*0-2*1/6-0*-1/6=-1/3 再次确定主元。为4/6。然后把X5换成X2。并且把主元化成1。

使用单纯形法解线性规划问题

使用单纯形法解线性规划问题 要求:目标函数为:123min 3z x x x =-- 约束条件为: 123123 1312321142321,,0 x x x x x x x x x x x -+≤??-++≥?? -+=??≥? 用单纯形法列表求解,写出计算过程。 解: 1) 将线性规划问题标准化如下: 目标函数为:123max max()3f z x x x =-=-++ s.t.: 123412356 1371234567211 42321,,,,,,0 x x x x x x x x x x x x x x x x x x x -++=??-++-+=??-++=??≥? 2) 找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下: 表一:最初的单纯形表 变量 基变量 x 1 x 2 x 3 x 4 x 5 x 6 x 7 b i x 4 1 -2 1 1 0 0 0 11 x 6 -4 1 2 0 -1 1 0 3 x 7 -2 0 1 0 0 0 1 1 -f -3 1 1 3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一次迭代。迭代后新的单纯形表为: 表二:第一种换入换出变量取法迭代后的单纯形表 变量 基变量 x 1 x 2 x 3 x 4 x 5 x 6 x 7 b i x 4 -7 5 1 -2 2 3

x2-4120-1103 x7-20100011 -f10-101-10-3 由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。 表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为: 表三:第二种换入换出变量取法迭代后的单纯形表 变量 基变量x1x2x3x4x5x6x7 b i x43-20100-110 x60100-11-21 x3-20100011 -f-110000-1-1 4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。之后的单纯形 表为: 表四:第二次迭代后的单纯形表 变量 基变量x1x2x3x4x5x6x7 b i x43001-22-512 x20100-11-21 x3-20100011 -f-10001-11-2 5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。之后的单纯形 表为: 表五:第三次迭代后的单纯形表 变量 基变量x1x2x3x4x5x6x7 b i x4-7051-22017 x2-4120-1103 x7-20100011 -f10-101-10-3可以看出,此时x1,x5对应的系数全部非零即负,故迭代结束,没有最优解。 结论: 综上所述,本线性规划问题,使用单纯形法得不到最优解。

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤 1>初始化 将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都是非负的(否则无解),接下来的m列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示 2>最优化测试 如果目标行的所有单元格都是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为0 3>确定输入变量 从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列 4>确定分离变量 对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量和主元行 5>建立下一张表格 将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格和新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0).把主元列的变量名进行代换,得到新的单纯形表,返回第一步 为求简单 在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式: 1:指定行和列,由用户自行输入每一个元素SimpleMatrix(introw=0,int col=0); 2:直接在主程序中初始化一个二维数组,然后利用构造函数SimpleMatrix(introw,int col,double **M) 来初始化和处理(本程序所用的实例用的是这种方法) 程序中主要的函数以及说明 ~SimpleMatrix(); 销毁动态分配的数组.用于很难预先估计矩阵的行和列,所以在程序中才了动态的内存分配.需要重载析构函数 bool Is_objectLine_All_Positive(); //判断目标行是否全部为非负数,最后一列不作考虑 这个函数用来判断是否已经存在最优解 bool Is_MainCol_All_Negative(int col);//判断主元列是否全部为负数或零 这个函数用来判断线性规划是否是无解的 bool Is_column_all_Positive(int col); //判断col列中是否全部为正(不包括目标行)

(完整word版)单纯形法的解题步骤

三、单纯形法的解题步骤 第一步:作单纯形表. )(1)把原线性规划问题化为标准形式; )(2)找出初始可行基,通常取约束方程组系数矩阵中的单位矩阵; )(3)目标函数非基化; )(4)作初始单纯形表. 第二步:最优解的判定. (1) 若所有检验数都是非正数,即,则此时线性规划问题已取 得最优解. (2) 若存在某个检验数是正数,即,而所对应的列向量无正分量,则线性规划 问题无最优解. 如果以上两条都不满足,则进行下一步. 第三步:换基迭代. ,并确定所在列的非基变量为进基变量. (1)找到最大正检验数,设为 (2)对最大正检验数所在列实施最小比值法,确定出主元,并把主元加上小括号. 主元是最大正检验数 所在列,用常数项与进基变量所对应的列向 量中正分量的比值最小者; 替换出基变量,从而得到新的基变量.也就是主元所在 (3)换基:用进基变量 (4)利用矩阵的行初等变换,将主元变为1,其所在列其他元素都变为零,从此得到新的单纯形表; (5)回到第二步,继续判定最优解是否存在,然后进行新一轮换基迭代,直到问题得到解决为止. 例3 求.

解(1)化标准型:令 ,引进松弛变量 ,其标准型为 求 (2)作单纯形表:在约束方程组系数矩阵中 的系数构成单位矩阵,故取 为基变量,目标函数已非基化了,作初始单纯形表并“换基迭代”(见表6.8).表 6.8

(3)最终结果:此时检验数均为非正数,线性规划问题取得最优解,最优解为 目标函数取得最优值. 原线性规划问题的最优解为:.目标函数的最优值为14,即. 例4 用单纯形方法解线性规划问题. 求. 解此数学模型已是标准型了,其中约束方程含有一个二阶单位矩阵(1、2行,3、4列构成),取为基变量,而目标函数没有非基化.从约束方程找出 ,, 代入目标函数 , 经整理后,目标函数非基化了. 作单纯形表,并进行换基迭代(见表6.9). 最大检验数,由最小比值法知:为主元,对主元所在列施以行初等变出基,非基变量进基. 换,基变量

单纯形法求最优解问题及一些知识点整理

单纯形法求最优解问题 题目(老师布置的那道作业题):2153m ax x x f +=,其中 ??? ??? ?=≥=++=+=+5,4,3,2,1,0182312245214 231j x x x x x x x x j ,求2153m ax x x f +=的最大值。 这张表是根据题目画的,Cj (行向量)为5432100053m ax x x x x x f ++++=中各个变量的系数,Ci (列向量)为与X B (列向量)相对应的各项的系数,X B 称为基变量(3列,由题目中的方程个数决定),起初的基变量由构造的变量x3、x4、x5组成,b 为对应三个方程等式右边的常数,z j 为Ci 各列与xj 各列乘积的和,如z1=0*1+0*0+0*3=0。i θ为判别将哪个基变量换出的依据,根据c j -z j 为正,要先将x2换入XB 中,关键是判断x3、x4、x5哪个跟x2换,这就要根据各列各列除以2x B i X =θ,与所得的最小的i θ对应的XB 换,如上表可知x2跟x4换,换完之后注意原来x4所对应的列向量为[0 1 0]T ,故要将x2所对应的列向量变换为为[0 1 0]T ,注意b 也要跟着变化,于是得下表.

由上表知c 1-z 1=3>0,故仍需将x1换入XB 中,用各列各列除以2x B i X =θ,与所得的最小的i θ对应的XB 换,结合i θ可知,x1跟x5换,于是得下表。 由上表可知c j -z j 均非正,故5432100053m ax x x x x x f ++++=取最大值时,????? ?? ?????????=00662x , 对应的最大值36max =f . 系统工程导论知识点整理: 系统是由相互作用和相互依赖的若干组成部分(要素)结合的具有特定功能的有机整体。 系统的特征:整体性、相关性、目的性、环境适应性。 系统的功能是指系统与外部环境相互作用所反映的能力。 结构是功能的内在根据,功能是结构的外在表现。 系统功能的特性:易变性、相关性。 系统工程就是用科学的方法规划和组织人力、物力、财力,通过最优途径的选择,使人们的工作在一定期限内收到最合理、最经济、最有效的效果。 科学的方法:从整体观念出发,通盘筹划,合理安排整体中的每一个局部,以求得整体的最优规划、最优管理和最优控制,使每个局部都服从一个整体目标,力求避免资源的损失和浪费。

改进单纯形法matlab程序

clear clc X=[1 2 3 4 5]; A=[ 1 2 1 0 0; 4 0 0 1 0; 0 4 0 0 1]; C=[2 3 0 0 0 ]; b=[8;16;12]; t=[3 4 5]; B0=A(:,t); while 1 CB0=C(:,t); XN01=X; for i=1:length(t); for j=1:length(X); if XN01(j)==t(i) XN01(j)=0; end end end j=1; for i=1:length(X); if XN01(i)~=0 XN0(j)=XN01(i); j=j+1; end end for j=1:length(XN0); CN0(j)=C(XN0(j)); end N0=[]; for i=1:length(XN0); N0=[N0,A(:,XN0(i))]; end xiN0=CN0-CB0*B0*N0; j=1; z=[]; for i=1:length(xiN0) if xiN0(i)>0 z(j)=i; j=j+1; end end if length(z)+1==1; break; end n=1; for i=1:length(z) if z(i)>z(n) n=i; end end k=XN0(z(n));%换入变量 B=B0*b; P=B0*A(:,k); j=1; for i=1:length(P)

if P(i)>0 x(j)=i; j=j+1; end end y=1; for i=1:length(x) if B(x(y))/P(x(y))>B(x(i))/P(x(i)) y=i; end end y1=x(y); y=t(y1);%换出变量 for i=1:length(t) if t(i)==y m=i; break; end end t(m)=k; P2=B0*A(:,k); q=P2(y1); P2(y1)=-1; P2=-P2./q; E=[1 0 0;0 1 0;0 0 1]; E(:,m)=P2; B0=E*B0; end CB0*B0*b

单纯形法求解原理过程

单纯形法 需要解决的问题: 如何确定初始基本可行解; 如何由一个基本可行解迭代出另一个基本可行解,同时使目标函数获得较大的下降; 如何判断一个基本可行解是否为最优解。 min f(X)=-60x1-120x2 s.t. 9x1+4x2+x3=360 3x1+10x2+x4=300 4x1+5x2+x5=200 x i≥0 (i=1,2,3,4,5) (1) 初始基本可行解的求法。当用添加松弛变量的方法把不等式约 束换成等式约束时,我们往往会发现这些松弛变量就可以作为 初始基本可行解中的一部分基本变量。 例如:x1-x2+x3≤5 x1+2x2+x3≤10 x i≥0 引入松弛变量x4,x5后,可将前两个不等式约束换成标准形式 x1-x2+x3+x4=5 x1+2x2+x3+x5=10 x i≥0 (i=1,2,3,4,5) 令x1=x2=x3=0,则可立即得到一组基本可行解 x1=x2=x3=0,x4=5,x5=10 同理在该实例中,从约束方程式的系数矩阵 中可以看出其中有个标准基,即 与B对应的变量x3,x4,x5为基本变量,所以可将约束方程写成 X3=360-9x1-4x2 x4=300-3x1-10x2 x5=200-4x1-5x2 若令非基变量x1=x2=0,则可得到一个初始基本可行解X0 X0=[0,0,360,300,200] T 判别初始基本可行解是否是最优解。此时可将上式代入到目标函数中,得:

F(X)=-60x1-120x2 对应的函数值为f(X0)=0。 由于上式中x1,x2系数为负,因而f(X0)=0不是最小值。因此所得的解不是最优解。 (2) 从初始基本可行解X0迭代出另一个基本可行解X1,并判断X1是否 为最优解。从一个基本可行解迭代出另一个基本可行解可分为 两步进行: 第一步,从原来的非基变量中选一个(称为进基变量)使其成为基本变量; 第二步,从原来的基本变量中选一个(称为离基变量)使其成为新的非基变量。 选择进基和离基变量的原则是使目标函数值得到最快的下降和使所有的基本变量值必须是非负。 在目标函数表达式中,非基变量x1,x2的系数是负值可知,若x1,x2不取零而取正值时,则目标函数还可以下降。因此,只要目标函数式中还存在负系数的非基变量,就表明目标函数还有下降的可能。也就还需要将非基本变量和基本变量进行对换。一般选择目标函数式中系数最小的(即绝对值最大的负系数)非基变量x2换入基本变量,然后从x3,x4,x5中换出一个基本变量,并保证经变换后得到的基本变量均为非负。 当x1=0,约束表达式为: X3=360-4x2≥0 x4=300-10x2≥0 x5=200-5x2≥0 从上式中可以看出,只有选择 x2=min{}=30 才能使上式成立。由于当x2=30时,原基本变量x4=0,其余x3和x5都满足非负要求。因此,可以将x2,x4互换。于是原约束方程式可得到:4x2+x3=360-9x1 10x2 =300-3x1-x4 5x2+x5=200-4x1 用消元法将上式中x2的系数列向量变[4,10,5]T换成标准基向量[0,1,0]T。其具体运算过程如下: -*4/10 : x3=240-78x1/10+4 x4/10 /10 : x2 =30-3x1/10-x4/10

单纯形法及其应用

单纯形法及其应用 摘要 单纯形法是一种主要的解决线性规划问题的方法,它在生活的成本问题、交通选择或规划学术问题等方面得到广泛应用.本文系统的研究了单纯形法的相关概念以及原理.并阐述了用单纯形法解决线性规划问题的步骤与方法及不同方法的特殊性.正确的应用单纯形法解决问题能够提高准确率,从而进行合理的规划安排,使得效果或收益达到期待化或最优化. 关键词:单纯形法;单纯形表;最优性

The Simplex Method and its Application Abstract:Simplex method is a main to solve linear programming problems, it in life cost, the choice of traffic or academic planning problems are widely used. This paper study the simplex method of the related concepts and principles. It describes the steps and methods to use simplex method to solve linear programming problems, and the different method. Correct application of the simplex method problem solving is able to improve the accuracy, in order to carry out reasonable planning arrangements, makes the effect or income reached expectations or optimization. Keywords:simplex method;simplex tableau;optimality

单纯形法在经济管理中的应用

单纯形法在经济管理中的应用 [摘要]发展生产力,提高经济效益是人类发展不可或缺的要求,是合理利用现有的人力,物力资源,使经济效益达到最好的重要途径,而这些正是线性规划所研究的主要内容。本篇论文主要探讨单纯形法在经济管理中的应用,即应用单纯形法及其改进的方法来求解经济管理中的线性规划问题。详细介绍线性规划问题的基本思想和数学模型,深入研究单纯形法的原理和解法,将方法运用到生产计划模型和投资模型中。分析模型的求解结果,比较各种算法之间的优劣性,进一步说明单纯形法的实用性。 [关键字]线性规划单纯形法生产计划模型投资计划模型

The application of simplex method in economic management [Abstract]Development of productivity and economic efficiency are indispensable requirement of human development. Rational use of human and material resources is an important way to achieve the best economic benefits, which is the main contents the linear programming studies. This paper mainly discusses the application of the simplex method in economic management, namely Simplex method and the improved methods are applied to solving the economic management of the linear programming problem. The basic ideas and mathematical models of linear programming problems will be introduced in detail the research on the theory and solution of the simplex method is studied, and apply these methods to the production planning model and investment model . The results of the model will be analyzed. By comparing the advantages and disadvantages between various algorithms, the practicality of the simplex method is further illustrated. [Key words]Linear Programming Simplex Method Production planning model Investment Planning Model

图解法和单纯形法求解线性规划问题

图解法和单纯形法求解以下线性规划问题 1.1 图解法解线性规划问题 只含两个变量的线性规划问题,可以通过在平面上作图的方法求解,步骤如下: (1)以变量x1为横坐标轴,x2为纵坐标轴,适当选取单位坐标长度建立平面坐标直 角坐标系。由变量的非负性约束性可知,满足该约束条件的解均在第一象限内。 (2)图示约束条件,找出可行域(所有约束条件共同构成的图形)。 (3)画出目标函数等值线,并确定函数增大(或减小)的方向。 (4)可行域中使目标函数达到最优的点即为最优解。 然而,由于图解法不适用于求解大规模的线性规划问题,其实用意义不大。 1.2 单纯形法解线性规划问题 它的理论根据是:线性规划问题的可行域是n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。顶点所对应的可行解称为基本可行解。 单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。 单纯形法的一般解题步骤可归纳如下:①把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。②若基本可行解不存在,即约束条件有矛盾,则问题无解。③若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。④按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。⑤若迭代过程中发现问题的目标函数值无界,则终止迭代。 1.3 线性规划问题的标准化 使用单纯形法求解线性规划时,首先要化问题为标准形式

使用单纯形法解线性规划问题

使用单纯形法解线性规划 问题 The Standardization Office was revised on the afternoon of December 13, 2020

使用单纯形法解线性规划问题 要求:目标函数为:123min 3z x x x =-- 约束条件为: 123123 1312321142321,,0 x x x x x x x x x x x -+≤??-++≥?? -+=??≥? 用单纯形法列表求解,写出计算过程。 解: 1)将线性规划问题标准化如下: 目标函数为:123max max()3f z x x x =-=-++ .: 1234123561371234567211 42321,,,,,,0x x x x x x x x x x x x x x x x x x x -++=??-++-+=??-++=??≥? 2)找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下: 表一:最初的单纯形表 3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一 次迭代。迭代后新的单纯形表为: 表二:第一种换入换出变量取法迭代后的单纯形表

由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。 表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为: 表三:第二种换入换出变量取法迭代后的单纯形表 4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。之后的单纯形表为: 表四:第二次迭代后的单纯形表 5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。之后的单纯形表为: 表五:第三次迭代后的单纯形表

使用单纯形法解线性规划问题

使用单纯形法解线性规划问题 要求:目标函数为:123min 3z x x x =-- 约束条件为: 123123 1312321142321,,0 x x x x x x x x x x x -+≤??-++≥?? -+=??≥? 用单纯形法列表求解,写出计算过程。 解: 1) 将线性规划问题标准化如下: 目标函数为:123max max()3f z x x x =-=-++ s.t.: 123412356 1371234567211 42321,,,,,,0 x x x x x x x x x x x x x x x x x x x -++=??-++-+=??-++=??≥? 2) 找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下: 表一:最初的单纯形表 3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一次迭代。迭代后新的单纯形表为: 表二:第一种换入换出变量取法迭代后的单纯形表

由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。 表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为: 表三:第二种换入换出变量取法迭代后的单纯形表 4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。之后的单纯形表为: 表四:第二次迭代后的单纯形表 5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。之后的单纯形表为: 表五:第三次迭代后的单纯形表 可以看出,此时x1,x5对应的系数全部非零即负,故迭代结束,没有最优解。 结论: 综上所述,本线性规划问题,使用单纯形法得不到最优解。

单纯形法的简述及应用

单纯形法的简述及应用 摘要 自1947年G.B.Dantzig提出单纯形法以来,他一直是求线性规划的最有效的计算方法。但是,单纯形法要求已知一个基本可行解,且线性规划需化典式。而在一般情况下,线性规划问题并无明显的可行解。如用两阶段法获得基本可行解,必须增加人工变量,从而增加计算量。针对这一问题,本文提出了改进单纯形法(一),在不增加人工变量的前提下,采用较简单的方法,求出一基本可行解,并在求解过程中剔除多余约束,判断问题是否有解,同时将线性规划的约束方程化为典式。此方法减少了比较次数,且简单易行,容易在计算机上实现。本文针对线性规划问题在变量和约束的个数较多时,传统单纯形法占据较大的内存空间,且有不少多余计算的情况提出改进单纯形法(二),能以较少的计算量及较小的占用存储空间方法从基的逆矩阵计算出新基的逆矩阵。从而既能使迭代过程持续进行下去,又能克服上述单纯形法的不足,是解决这些问题的一种实用且较有效的方法。 关键词:线性规划、单纯形法、基本可行解、初等变换。 绪论 引言 运筹学是近六十年发展起来的一门学科。运筹学在生产管理、工程技术、军事作战、科学实验。财政经济。社会科学以及自然科学和其他学科都应经取得了很多令人瞩目的成果。线性规划是运筹学的一个重要分支,是运筹学中最重要的一种数量方法,其应用范围非常广泛。主要用于研究解决有限资源的最佳分配问题,即如何对有限的资源做出最佳方式的调配和最有力的使用,以便最充分地发挥资源的效能去获取最佳经济效益。从数学的角度来说,也就是在对决策变量施加一组线性等式、不等式以及等号的约束下,求决策变量的线性目标函数的最大化和最小化。 与其他的数学学科相比,线性规划是一个相当年轻又非常活跃的应用数学分支。自从一般线性规划问题求解的方法——单纯形法被提出之后,线性规划在理论上趋向成熟,在使用中日益广发与深入。线性规划的广泛应用以及涉及到的数学理论和计算方法,都引起了专业人员和学者们的很大兴趣。 线性规划基础及单纯形法 线性规划问题及数学模型 凡是同时满足以下三个条件的问题,就叫做线性规划问题: (1)可用一些变量表示问题的待定方案,这些变量的一组定值就代表一个具体的方案。因此,可将这些变量称为决策变量,并往往要求它们为非负的。 (2)存在一定的约束条件,这些约束条件都能用关于决策变量的线性等式或线性不等式来表示。 (3)有一个期望达到的目标,它可用决策变量的线性函数(称为目标函数)来表示,根据具体问题的不同,要求目标函数实现最大化或最小化。 线性规划就是研究并解决上述问题的一种理论和方法。满足以上三个条件的数学模型称为线性规划的数学期望,简称线性规划模型。期一般形式如下:

单纯形法例题讲解

例1 max z=2x1+3x2 (标准形式即所有的变量均为负、所有约束条件为等式、所有的右端项系数非负) a=(2,3) b1=(80,160,120) A2=NULL b2=NULL A3=NULL b3=NULL n.iter=n+2*m maxi=TRUE ● simplex(a=a,A1=A1,b1=b1,maxi=TRUE): m1=3,m2=0,m3=0 m=3,n=2 a.o=a=(2,3) if(maxi) a=-a(-2,-3) if(m2+m3==0) a=(-2,-3,0,0,0) b=(80,160,120) init=(0,0,0,80,160,120) basic=(3,4,5) eps=1e -10 out1<-simplex1(a=a,A=A,b=b,init=init,basic=basic,eps=eps) ? simplex1(a=a,A=A,b=b,init=init,basic=basic,eps=eps): N=5,M=3 nonbasic=(1,2) if(stage==2) obfun=(-2,-3) it=1 ◆ while(!all(obfun > -eps) && (it <= n.iter))循环 pcol=3 if(stage==2) neg=(1,3) x1+2x2<=80 4x1<=160 4x2<=120 x1,x2>=0 A1= 1 2 4 0 0 4 A= 1 2 1 0 0 4 0 0 1 0 0 4 0 0 1 tableau= 80 -1 -2 160 -4 0 120 0 -4 tableau= 80 -1 -2 160 -4 0 120 0 -4 0 -2 -3 转化为标准形式 x1+2x2+x3=80 4x1+x4=160 4x2+x5=120 x1,x2,x3,x4,x5>=0

单纯形法在线性规划中的应用

单纯形法在线性规划中的应用 摘要 求解线性规划问题,就是在各项资源条件的限制下,如何确定方案,使预期的目标达到最优。本文重点介绍了求解线性规划问题目前最常见的两种方法,图解法和单纯形法。图解法适合于只含两个变量的线性规划问题,文中只做了简单的描述。而单纯形法是求解线性规划问题的通用方法,适合于求解大规模的线性规划问题,本文作了重点描述,对单纯形法中的基本概念如基变量、非基变量、基向量、非基向量、可行基以及基本可行解等概念作了详细的陈述,在此基础上,介绍了线性规划问题的标准化、单纯形法的基本原理、确定初始可行解、最优性检验、解的判别、基本可行解的改进、换入变量的确定-最大增加原则、换出变量的确定-最小比值原则、表格单纯形法、大M法、两阶段法等。 关键词:线性规划图解法单纯形法基变量基向量可行基基本可行解

正文 引言 在生产管理和经济活动中,经常遇到这些问题,如生产计划问题,即如何合理利用有限的人、财、物等资源,以便得到最好的经济效果;材料利用问题,即如何下料使用材最少;配料问题,即在原料供应量的限制下如何获取最大利润;劳动力安排问题,即如何用最少的劳动力来满足工作的需要;运输问题,即如何制定调运方案,使总运费最小;投资问题,即从投资项目中选取方案,使投资回报最大等等。对于这些问题,都能建立相应的线性规划模型。事实上,线性规划就是利用数学为工具,来研究在一定条件下,如何实现目标最优化。 解线性规划问题目前最常见的方法有两种,图解法和单纯形法。单纯形法是求解线性规划问题的通用方法。 1 线性规划问题的求解方法 1.1 图解法解线性规划问题 只含两个变量的线性规划问题,可以通过在平面上作图的方法求解,步骤如下: (1)以变量x 1为横坐标轴,x 2 为纵坐标轴,适当选取单位坐标长度建立平面 坐标直角坐标系。由变量的非负性约束性可知,满足该约束条件的解均在第一象限内。 (2)图示约束条件,找出可行域(所有约束条件共同构成的图形)。 (3)画出目标函数等值线,并确定函数增大(或减小)的方向。 (4)可行域中使目标函数达到最优的点即为最优解。 然而,图解法虽然直观、简便,但当变量数多于三个以上时,其实用意义不大。

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤 1>初始化 将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都是非负的(否则无解),接下来的m列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示 2>最优化测试 如果目标行的所有单元格都是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为0 3>确定输入变量 从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列 4>确定分离变量 对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量和主元行 5>建立下一张表格 将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格和新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0).把主元列的变量名进行代换,得到新的单纯形表,返回第一步 为求简单 在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式: 1:指定行和列,由用户自行输入每一个元素SimpleMatrix(introw=0,int col=0); 2:直接在主程序中初始化一个二维数组,然后利用构造函数SimpleMatrix(introw,int col,double **M) 来初始化和处理(本程序所用的实例用的是这种方法) 程序中主要的函数以及说明 ~SimpleMatrix(); 销毁动态分配的数组.用于很难预先估计矩阵的行和列,所以在程序中才了动态的内存分配.需要重载析构函数 bool Is_objectLine_All_Positive();其中row2为主元所在的行,col为主元所在的列,row1为要处理的行 void PrintAnswer();数不合法"<

线性规划单纯形法例题

《吉林建筑工程学院城建学院人文素质课线性规划单纯形法例题》 ??? ??≥=++=+++++=?? ? ??≥≤+≤++=0,,,24 261553).(002max ,,0,24 261553).(2max 14.1843214213 214 321432121212 1x x x x x x x x x x t s x x x x z x x x x x x x x t s x x z 标准型得到该线性规划问题的,分别加入松驰变量在上述线性规划问题中法求解线性规划问题。分别用图解法和单纯形)】 (页【为初始基变量,选择43,x x )1000(00)0010(01 )2050(12)6030(24321=?+?-==?+?-==?+?-==?+?-=σσσσ 为出基变量。为进基变量,所以选择41x x

3 /1)6/122/10(00 )0210(03 /1)3/1240(10)1200(24321-=?+-?-== ?+?-==?+?-==?+?-=σσσσ 为出基变量。为进基变量,所以选择32x x 24 /724/528/11012/112/124/1100 021110120124321-=?+-?-=-=-?+?-==?+?-==?+?-=)()()()(σσσσ 433 4341522max ,)4 3,415( ),(2112= +?=+===x x z x x X T T 故有:所以,最优解为

??? ??? ?≥=+ +=+=+ ++++=?????? ?≥≤+≤≤+=0,,,,18232424).(0002max ,,,0 ,182312212 ).(52max 24.185432152142315 43215432121212 1x x x x x x x x x x x x t s x x x x x z x x x x x x x x x t s x x z 标准型得到该线性规划问题的,分别加入松驰变量在上述线性规划问题中法求解线性规划问题。分别用图解法和单纯形)】 (页【 )000010(00001000000000100520200052300010254321=?+?+?-==?+?+?-==?+?+?-==?+?+?-==?+?+?-=σσσσσ)()()()( 为出基变量。为进基变量,所以选择42x x

用单纯形法求解线性规划问题

目录 一.摘要 (2) 二.实验目的 (2) 三.实验内容 (2) 四.建立数学模型 (3) 五.实验原理 (5) 六.MALTAB程序代码及注释 (7) 七.结果运行测试 (13) 八.心得与感悟 (15)

一.摘要: 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.研究线性约束条件下线性目标函数的极值问题的数学理论和方法,英文缩写LP。 自1946年G.B.Dantizig提出单纯形法以来,它一直是求解线性规划问题的最有效的数学方法之一。单纯形法的理论根据是:线性规划问题的可行域是 n 维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。顶点所对应的可行解称为基本可行解。通过引入普通单纯形法,依次迭代并判断,逐步逼近,最后得到最优解。若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。 关键字:线性规划,单纯形法,最优值,最优解 二.实验目的: 1.加强学生分析问题能力,锻炼数学建模能力。 2.了解并掌握MATLAB软件中的线性规划问题的编程、求解和分析。 3.利用所学的MALTAB语言,完成对单纯形法问题的编程设计。 三.实验内容: 某商场决定,营业员每周连续工作5天后连续休息2天,轮流休息,据统计,商场每天需要营业员如下:星期一:300,二:300;三:350,四:400,五:480,六:600;日:500; (1)商场人力资源部应如何安排每天上班的人数才能使商场总的营业员最少 (2)若商场可以雇佣临时工,上班时间同正式工,若正式工每天工资80,临时工每天100,问商场是否应雇佣临时工及雇佣多少名?

相关文档
最新文档