高考《解三角形》试题分析
解三角形之三角形的角平分线和中线问题(典型例题+跟踪训练)【解答题抢分专题】备战2023年高考数学

【解答题抢分专题】备战2023年高考数学解答题典型例题+跟踪训练(新高考通用)专题05解三角形之三角形中线和角平分线问题目录一览一、梳理必备知识二、基础知识过关三、典型例题讲解四、解题技巧实战五、跟踪训练达标1.正弦定理R CcB b A a 2sin sin sin ===.(其中R 为ABC ∆外接圆的半径)2sin ,2sin ,sin ;a R A b R B c R C ⇔===(边化角)sin ,sin ,sin ;222a b c A B C R R R⇔===(角化边)2.余弦定理:222222222cos 2cos 2cos .2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩⇒2222222222cos ,2cos ,2cos .a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩3.三角形面积公式:B ac A bcC ab S ABC sin 21sin 21sin 21===∆=12++为三角形ABC 的内切圆半径4.三角形内角和定理:一、梳理必备知识在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 5.三角形中线问题如图在ABC ∆中,D 为CB 的中点,2AD AC AB =+,然后再两边平方,转化成数量关系求解!(常用)6.角平分线如图,在ABC ∆中,AD 平分BAC ∠,角A ,B ,C 所对的边分别为a ,b ,c ①等面积法ABC ABD ADC S S S ∆∆∆=+⇒111sin sin sin 22222A AAB AC A AB AD AC AD ⨯⨯=⨯⨯+⨯⨯(常用)②内角平分线定理:AB AC BD DC =或AB BDAC DC =③边与面积的比值:ABDADCS AB AC S =【常用结论】①在ABC ∆中,sin sin ;a b A B A B >⇔>⇔>②sin 2sin 2,.2A B A B A B π==+=则或③在三角函数....中,sin sin A B A B >⇔>不成立。
(典型题)高中数学必修五第二章《解三角形》测试卷(含答案解析)

一、选择题1.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若()sin sin sin c C a A b a B =+-,角C 的角平分线交AB 于点D ,且3CD =,3a b =,则c 的值为( )A .72B .473C .3D .232.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S ,且24cos cos tan Sb C bc B C=+,2a b +=,3c =,则S =( ) A .3 B .36C .16D .3 3.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知()()sin sin 3sin 2B A B A A -++=,且7c =,3C π=,则a =( )A .1B .221C .1或221D .21 4.ABC ∆中,角,,A B C 所对的边分别为,,a b c .若13,3,60a b A ===︒,则边c =( ) A .1 B .2C .4D .65.ABC 的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A .2,4,120a b A ===︒B .3,2,45a b A ===︒C . 6,43,60b c C ===︒D .4,3,30b c C ===︒6.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC .D .7.在ABC 中,内角A ,B ,C 的对边是a ,b ,c ,若sin sin CA=22b a -=,则cos C 等于( )A .12B .13C .14D .158.在△ABC 中,已知点D 在BC 边上,且0AD AC ⋅=,sin 3BAC ∠=,AB =BD =, 则cos C ( )A .63B .3C .3D .139.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,若sin cos 0b A B -=,且三边a b c ,,成等比数列,则2a cb +的值为( )A .4B .2C .1D .210.已知锐角ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,若22sin sin sin sin B A A C -=⋅,3c =,则a 的取值范围是( )A .2,23⎛⎫⎪⎝⎭B .()1,2C .()1,3D .3,32⎛⎫ ⎪⎝⎭11.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin sin B A C =,1a cc a+=+,则B = ( ) A .56π B .6π C .3π D .2π 12.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos a C ,cos b B ,cos c A 成等差数列,且8a c +=,则AC 边上中线长的最小值是( )A .2B .4C .D .二、填空题13.如图,点A 是半径为1的半圆O 的直径延长线上的一点,OA =B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.14.已知ABC 中,内角、、A B C 的对边分别为a b c 、、,且222sin 2a b c c B a a+--=,则B =___________.15.在△ABC 中,∠ABC 为直角,点M 在线段BA 上,满足BM =2MA =2,记∠ACM =θ,若对于给定的θ,这样的△ABC 是唯一确定的,则BC =_____.16.锐角ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且()12cos c a B =+,则ba的取值范围是______. 17.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222a b =,sin 3sin C B =,则cos A =________.18.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22212b c a -=,则tan B =________.19.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin :sin :sin 3:5:7A B C =,则ABC 的最大角的大小是________.20.某环保监督组织为了监控和保护洞庭湖候鸟繁殖区域,需测量繁殖区域内某湿地A 、B 两地间的距离(如图),环保监督组织测绘员在(同一平面内)同一直线上的三个测量点D 、C 、E ,从D 点测得67.5ADC ∠=,从点C 测得45ACD ∠=,75BCE ∠=,从点E 测得60BEC ∠=,并测得23DC =,2CE =(单位:千米),测得A 、B 两点的距离为___________千米.三、解答题21.已知在△ABC 3sin (A +B )=1+2sin 22C . (1)求角C 的大小;(2)若∠BAC 与∠ABC 的内角平分线交于点Ⅰ,△ABC 的外接圆半径为2,求△ABI 周长的最大值.22.在①π2=+A C ,②5415cos -=c a A ,③ABC 的面积3S =这三个条件中任选两个,补充在下面问题中,然后解答补充完整的题目.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,且______,______,求c .注:如果选择多个条件分别解答,按第一个解答计分.23.ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .已知)cos cos A c a C =.(1)求c b;(2)若cos 2c A b =,且ABC 的面积为4,求a . 24.在ABC 中,,,a b c 分别为内角,,A B C 的对边,且2sin (2)sin (2)sin a A b c B c b C =+++.(1)求A 的大小;(2)若sin sin 1B C +=,试判ABC 断的形状.25.请从下面三个条件中任选一个,补充在下面的横线上,并解答.()cos cos sin A c B b C a A +=; ②2cos 2b cC a-=③tan tan tan tan A B C B C ++=.已知ABC 的内角,,A B C 的对应边分别为,,a b c , . (1)求A ;(2)若2,a b c =+=ABC 的面积.26.已知a ,b ,c 分别为锐角ABC 内角A ,B ,C 2sin 0b A -=. (1)求角B ;(2)若b =,5a c +=,求ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用正弦定理边角互化以及余弦定理求出角C 的值,由ABC ACD BCD S S S =+△△△可得出ab a b =+,结合3a b =可求得a 、b 的值,再利用余弦定理可求得c 的值.【详解】()sin sin sin c C a A b a B =+-,由正弦定理可得()22c a b a b =+-,可得222a b c ab +-=,由余弦定理可得:2221cos 22a b c C ab +-==,0C π<<,所以3C π=,由ABC ACD BCD S S S =+△△△,有111sin sin sin 232626ab a CD b CD πππ=⋅+⋅,得ab a b =+,所以234b b =,0b >,43b ∴=,34a b ==, 由余弦定理可得221616471692cos 33c a b ab C =+--==+. 故选:B. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.2.D解析:D 【分析】由24cos cos tan Sb C bc B C=+,利用面积公式和和差角公式求出角C ,用余弦定理求出ab ,求出面积. 【详解】因为24cos cos cos sin S Cb C bc B C⋅=+,所以22cos cos cos ab C b C bc B =+,所以2sin cos sin cos sin cos A C B C C B =+,所以13cos ,sin 2C C ==.由22221()32cos 222a b c a b abC ab ab+-+--===,得13ab =,所以1sin 212S ab C ==故选:D 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.3.C解析:C 【分析】由题意得3sinBcosA sinAcosA =,分0cosA =和0cosA ≠两种情况求解,可得结果. 【详解】∵()()32sin B A sin B A sin A -++=, ∴3sinBcosA sinAcosA =.①当0cosA =时,ABC 为直角三角形,且2A π=.∵c =3C π=,∴sin3a ==②当0cosA ≠时,则有3sinB sinA =, 由正弦定理得3b a =.由余弦定理得2222c a b abcosC =+-, 即()()22173232a a a a =+-⋅⋅, 解得1a =. 综上可得,a =1故选:C . 【点睛】本题考查正余弦定理在解三角形中的应用,考查三角恒等变换,考查学生分类讨论思想,属于中档题.4.C解析:C 【解析】试题分析:2222cos a c b cb A =+-213923cos60c c ⇒=+-⨯⨯︒,即2340c c --=,解得4c =或1c =-(舍去). 考点:余弦定理,正弦定理.5.D解析:D 【分析】运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除. 【详解】A. 2,4,120a b A ===︒,由,a b <A B ⇒<所以不存在这样的三角形.B. 3,2,45a b A ===︒,由sin sin sin a b B A B =⇒=,a b >所以只有一个角BC. 6,60b c C ===︒中,同理也只有一个三角形.D. 4,3,30b c C ===︒中2sin sin sin 3c b B C B =⇒=此时b c >,所以出现两个角符合题意,即存在两个三角形. 所以选择D 【点睛】在直接用正弦定理求另外一角中,求出 sin θ后,记得一定要去判断是否会出现两个角.6.C解析:C 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=,在ABP ∆中,利用正弦定理得30sin 30sin120PB ==即这时船与灯塔的距离是km ,故选C . 【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.7.A解析:A 【分析】由已知利用正弦定理可得c =,结合已知22b a -=,可求得2b a =,进而根据余弦定理可求cos C 的值. 【详解】sinsin CA=∴由正弦定理可得:ca=c =,又22b a -=,2223b a a ∴-=,可得2b a =,222222431cos 2222a b c a a a C ab a a +-+-∴===⨯,故选:A . 【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.8.A解析:A 【分析】求出90BAC BAD ∠=∠+︒,代入利用诱导公式化简sin BAC ∠,求出cos BAD ∠的值,根据余弦定理求出AD 的长度,再由正弦定理求出BC 的长度,求得sin C ,再利用同角三角函数基本关系式即可计算求得结果 【详解】0AD AC ⋅=,可得AD AC ⊥90DAC ∴∠=︒,90BAC BAD DAC BAD ∠=∠+∠=∠+︒()sin sin 90cos 3BAC BAD BAD ∴∠=∠+︒=∠=在ABC 中,AB =BD =根据余弦定理可得22222cos 1883BD AB AD AB AD BAD AD AD =+-∠=+-=解得3AD =或5AD =当5AD =时,AD AB >,不成立,故设去 当3AD =时,在ABD 中,由正弦定理可得:sin sin BD ABBAD ADB=∠∠又cos BAD ∠=,可得1sin 3BAD ∠=,则sin ABsin BAD ADB BD ∠∠==ADB DAC C ∠=∠+∠,90DAC ∠=︒cosC =故选A 【点睛】本题是一道关于三角函数的题目,熟练运用余弦定理,正弦定理以及诱导公式是解题的关键,注意解题过程中的计算,不要计算出错,本题有一定综合性9.C解析:C 【分析】先利用正弦定理边角互化思想得出3B π=,再利余弦定理1cos 2B =以及条件2b ac =得出a c =可得出ABC ∆是等边三角形,于此可得出2a cb+的值. 【详解】sin cos 0b A B =,由正弦定理边角互化的思想得sin sin cos 0A B A B =,sin 0A >,sin 0B B ∴=,tan B ∴=,则3B π=.a 、b 、c 成等比数列,则2b ac =,由余弦定理得222221cos 222a cb ac ac B ac ac +-+-===,化简得2220a ac c -+=,a c ∴=,则ABC ∆是等边三角形,12a cb+∴=,故选C . 【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.10.D解析:D 【分析】由正弦定理可得三边的关系,再由余弦定理可得312cos a B=+,结合三角形为锐角三角形可得a 的取值范围. 【详解】∵22sin sin sin sin B A A C -=⋅, ∴由正弦定理可得22b a ac -=,∵由余弦定理2222cos b a c ac B =+-,可得2222cos a c ac B a ac +-=+, 又3c =,∴可得312cos a B=+,∵锐角ABC 中,若B 是最大角,则B 必须大于 3π,所以,3B ππ⎛⎫∈ ⎪⎝⎭, 所以1cos 02B ⎛⎫∈ ⎪⎝⎭,,所以3,32a ⎛⎫∈ ⎪⎝⎭, 故选:D.【点睛】本题主要考查三角形的正余弦定理的应用,及锐角三角形的性质,属于中档题.11.B解析:B 【分析】根据正弦定理,边角互化可得2b ac =,再根据2221a c a c b c a ac+-+-=,利用余弦定理求角.【详解】∵2sin sin sin B A C =,∴21b ac=,∴2221a c a c b c a ac+-+-==∴cos B =,又()0,πB ∈∴6B π=.故选:B . 【点睛】本题考查正弦定理和余弦定理解不等式,重点考查转化的思想,计算能力,属于基础题型.12.C解析:C 【分析】根据等差中项的性质,结合正弦定理化简可得3B π=,设AC 中点为D ,再利用平面向量的线性运算可得1||||2BD BA BC =+,再平方利用基本不等式求解即可. 【详解】cos a C ,cos b B ,cos c A 成等差数列,2cos cos cos b B a C c A ∴=+,根据正弦定理有2sin cos sin cos sin cos sin()B B A C C A A C =+=+,2sin cos sin B B B ∴=,又sin 0B ≠,1cos 2B ∴=,可得3B π=,设AC 中点为D ,则AC 边上中线长为1||||2BD BA BC =+, 平方可得()()2222221112()444BD BA BC BA BC c a ac a c ac ⎡⎤=++⋅=++=+-⎣⎦ 2221()3()()124416a c a c a c ⎡⎤+≥+-=+=⎢⎥⎣⎦,当且仅当4a c ==时取等号,故2BD 的最小值为12,即AC 边上中线长的最小值为 故选:C. 【点睛】本题主要考查了正弦定理边角互化的运用,同时也考查了利用基本不等式求最值的问题,同时在处理三角形中线的时候可以用平面向量表示从而简化计算,属于中档题.二、填空题13.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积解析:【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC θ=⋅⋅︒=OAB 的面积11sin 122OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=13(sin )60)2θθθ=-=-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.14.(或)【分析】利用余弦定理和正弦定理边角互化整理已知条件最后变形为求角的值【详解】根据余弦定理可知所以原式变形为根据正弦定理边角互化可知又因为则原式变形整理为即因为所以(或)故答案为(或)【点睛】方解析:135︒(或34π) 【分析】利用余弦定理和正弦定理边角互化,整理已知条件,最后变形为tan 1B =-,求角B 的值. 【详解】根据余弦定理可知2222cos a b c ab C +-=,所以原式222sin 2a b c c B a a+--=,变形为cos sin b C c B a -=,根据正弦定理边角互化,可知sin cos sin sin sin B C C B A -=, 又因为()sin sin sin cos cos sin A B C B C B C =+=+, 则原式变形整理为sin cos B B -=, 即tan 1B =-,因为()0,180B ∈,所以135B =(或34π) 故答案为135(或34π) 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.15.【分析】由题意利用直角三角形中的边角关系求出的值再利用两角差的正切公式求得从而求出的值【详解】解:设则为锐角∴∴依题意若对于给定的是唯一的确定的可得解得即的值为故答案为:【点睛】本题主要考查直角三角【分析】由题意利用直角三角形中的边角关系求出tan ACB ∠、tan NCB ∠的值,再利用两角差的正切公式求得tan tan()ACB MCB θ=∠-∠,从而求出BC 的值. 【详解】解:设BC x =,ACM θ∠=,则θ为锐角,∴3tan ACB x ∠=,2tan MCB x∠=, ∴tan tan()ACB MCB θ=∠-∠232132661x x x x x x x x -===+++, 依题意,若对于给定的ACM ∠,ABC ∆是唯一的确定的, 可得6x x=, 解得6x =BC 6,6. 【点睛】本题主要考查直角三角形中的边角关系,两角差的正切公式,属于中档题.16.【分析】利用正弦定理和两角和的正弦公式得出角的关系由为锐角三角形得到角的范围进而利用二倍角公式得出的取值范围【详解】由已知得即为锐角三角形故答案为:【点睛】本题考查正弦定理的应用考查两角和与差的正弦 解析:23),【分析】利用正弦定理和两角和的正弦公式得出角A ,B 的关系,由ABC 为锐角三角形得到角A 的范围,进而利用二倍角公式得出ba的取值范围. 【详解】由已知sin sin()sin (12cos )C A B A B =+=+sin cos cos sin sin 2sin cos A B A B A A B ∴+=+得sin()sin B A A -=B A A ∴-=,即2B A =ABC 为锐角三角形 2,322B AC A B A ππππ∴=<=--=-<23,cos ()64A A ππ∴<<∴∈ sin 2sin cos 2cos (2,3)sin sin b B A A A a A A∴===∈故答案为: 【点睛】本题考查正弦定理的应用,考查两角和与差的正弦公式,考查二倍角公式,属于中档题.17.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:根据余弦定理:又故可联立方程:解得:故答案为:【点睛】本题主要考查了求三角形的一个内角解题关键是掌握由正【分析】由sin C B =,根据正弦定理“边化角”,可得=c ,根据余弦定理2222cos a b c bc A =+-,结合已知联立方程组,即可求得角cos A .【详解】sin C B =,根据正弦定理:sin sin b cB C=,∴=c , 根据余弦定理:2222cos a b c bc A =+-,又222a b =,故可联立方程:222222cos 2c a b c bc A a b ⎧=⎪=+-⎨⎪=⎩,解得:cos A =.故答案为:3. 【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.18.3【分析】由题意结合余弦定理得进而可得再由余弦定理即可求得利用平方关系求得进而求得【详解】由余弦定理可得即又所以所以所以所以所以所以故答案为:3【点睛】本题考查了余弦定理的综合应用考查了同角三角函数解析:3 【分析】由题意结合余弦定理得c =,进而可得a =,再由余弦定理即可求得cos B =,利用平方关系求得sin B =,进而求得sin tan 3cos B B B ==. 【详解】4A π=,∴由余弦定理可得2222cos a b c bc A =+-即222b a c -=-,又22212b a c -=,所以2212c c =-,所以3c =, 222222145299a b c b b b =-=-=,所以a =,所以22222258cos 233b b ba cb B ac +-+-===,所以sin B ==, 所以sin tan 3cos BB B==, 故答案为:3. 【点睛】本题考查了余弦定理的综合应用,考查了同角三角函数关系式,考查了运算求解能力与转化化归思想,属于中档题.19.【分析】根据设根据大角对大边确定角C 是最大角再利用余弦定理求解【详解】因为所以设所以角C 是最大角因为所以则的最大角是故答案为:【点睛】本题主要考查正弦定理余弦定理的应用还考查了运算求解的能力属于中档题 解析:23π 【分析】根据sin :sin :sin 3:5:7A B C =,设()3,5,7,0a t b t c t t ===>,根据大角对大边,确定角C 是最大角,再利用余弦定理求解. 【详解】因为sin :sin :sin 3:5:7A B C =, 所以设()3,5,7,0a t b t c t t ===>,所以角C 是最大角2221cos 22a b c C ab +-==-,因为()0,C π∈,所以23C π=, 则ABC 的最大角是23π. 故答案为:23π 【点睛】本题主要考查正弦定理,余弦定理的应用,还考查了运算求解的能力,属于中档题.20.【分析】在中分析边角关系可得在中由正弦定理可求得的值然后在中利用余弦定理可求得的长【详解】在中则在中则由正弦定理得可得在中由余弦定理得因此(千米)故答案为:【点睛】本题考查距离的测量问题考查了利用正 解析:3【分析】在ACD △中,分析边角关系可得AC CD ==BCE 中,由正弦定理可求得BC 的值,然后在ABC 中,利用余弦定理可求得AB 的长. 【详解】在ACD △中,45ACD ∠=,67.5ADC ∠=,CD =67.5CAD ∴∠=,则AC CD ==在BCE 中,60BEC ∠=,75BCE ∠=,CE 45CBE ∠=,由正弦定理得sin 45sin 60CE BC=,可得2sin 60sin 45CE BC ===在ABC 中,AC =BC =,18060ACB ACD BCE ∠=-∠-∠=, 由余弦定理得2222cos609AB AC BC AC BC =+-⋅=,因此,3AB =(千米). 故答案为:3. 【点睛】本题考查距离的测量问题,考查了利用正弦定理和余弦定理解三角形,考查计算能力,属于中等题.三、解答题21.(1)3π;(2) 【分析】(1)利用降幂公式、两角和的正弦公式变形可得sin (C +6π)=1,再根据角的范围可得解;(2)利用正弦定理求出AB ,求出AIB ∠,设出ABI ∠,将,AI BI 用ABI ∠表示,根据三角函数知识求出AI BI +的最大值可得解. 【详解】 (1)∵(A +B )=1+2sin 22C,且A +B +C =π, ∴C =1+1﹣cos C =2﹣cos C C +cos C =2,∴sin (C +6π)=1.∵C ∈(0,π),∴C +6π∈(6π,76π),∴C +6π=2π,即C =3π.(2)∵△ABC 的外接圆半径为2,∴由正弦定理知,sin ABACB∠=sin 3AB π=2×2=4,∴AB =23, ∵∠ACB =3π,∴∠ABC +∠BAC =23π,∵∠BAC 与∠ABC 的内角平分线交于点Ⅰ, ∴∠ABI +∠BAI =3π,∴∠AIB =23π,设∠ABI =θ,则∠BAI =3π﹣θ,且0<θ<3π, 在△ABI 中,由正弦定理得,sin()3BIπθ-=sin AI θ=sin ABAIB ∠=232sin3π=4, ∴BI =4sin (3π﹣θ),AI =4sin θ, ∴△ABI 的周长为3+4sin (3π﹣θ)+4sin θ=33θ﹣12sin θ)+4sin θ =33θ+2sin θ=4sin (θ+3π)3 ∵0<θ<3π,∴3π<θ+3π<23π,∴当θ+3π=2π,即6πθ=时,△ABI 的周长取得最大值,最大值为3,故△ABI 的周长的最大值为3. 【点睛】关键点点睛:将,AI BI 用ABI ∠表示,根据三角函数知识求出AI BI +的最大值是解题关键.22.答案见解析. 【分析】选条件①②.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,3sin 5B =,再结合π2=+A C ,得π22B C =-,故3cos25C =,进而得sin C =最后利用正弦定理求解.选条件①③.结合已知由面积公式得sin 2a C =,结合π2=+A C ,得π22B C =-,故由正弦定理得sin 3cos sin cos2b A Ca B C==,所以3sin24cos2C C =,再根据π0π2A C <=+<02πC <<,进一步结合同角三角函数关系得3cos25C =,利用二倍角公式得sin C =最后由正弦定理得sin sin b Cc B=选条件②③.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,再根据面积公式得10ac =,由余弦定理得2225a c +=,联立方程解得c =c =.【详解】解:方案一:选条件①②.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=. 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为π2=+A C ,πABC ++=,所以π22B C =-, 所以π3cos 2cos sin 25C B B ⎛⎫=-== ⎪⎝⎭,所以21cos21sin 25C C -==. 因为()0,πC ∈,所以sin C =, 在ABC中,由正弦定理得3sin 53sin 5b Cc B===方案二:选条件①③.因为1sin 32S ab C ==,3b =,所以sin 2a C =. 因为π2=+A C ,πABC ++=,所以π22B C =-. 在ABC 中,由正弦定理得π3sin sin 3cos 2πsin cos 2sin 22C b A C a B CC ⎛⎫+ ⎪⎝⎭===⎛⎫- ⎪⎝⎭, 所以3sin cos 2cos2C CC=,即3sin24cos2C C =.因为π0π,20π,A C C ⎧<=+<⎪⎨⎪<<⎩所以π02C <<,02πC <<, 所以sin20C >,所以cos20C >. 又22sin 2cos 21C C +=,所以3cos25C =, 所以21cos21sin 25C C -==,所以sin C = 在ABC中,由正弦定理得3sin sin sin 53πsin cos 2sin 252b Cb C b Cc BC C ====⎛⎫- ⎪⎝⎭.方案三:选条件②③.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=, 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为1sin 32S ac B ==,所以10ac =.(ⅰ) 在ABC 中,由余弦定理得2222cos b a c ac B =+-, 所以2225a c +=.(ⅱ) 由(ⅰ)(ⅱ)解得c =c =.【点睛】试题把设定的方程与三角形内含的方程(三角形的正、余弦定理,三角形内角和定理等)建立联系,从而求得三角形的部分定量关系,体现了理性思维、数学探索等学科素养,考查逻辑思维能力、运算求解能力,是中档题.本题如果选取②5415cos -=c a A ,则需根据3b =将问题转化为545cos c a b A -=,再结合边角互化求解.23.(1)3;(2) 【分析】(1)根据正弦定理边角互化以及两角和的正弦公式可求得结果; (2)根据三角形的面积公式以及余弦定理可求得结果. 【详解】(1)因为)cos cos A c a C =,cos sin sin cos C A C A C -=,()sin cos sin cos sin C C A A C A C =+=+,而()sin sin A C B +=b =,故3c b =.(2)由(1)知cos 6A =,则sin 6A =,又ABC 的面积为21sin 244bc A c ==,则3c =,b =由余弦定理得2222cos 2792327a b c bc A =+-=+-⨯=,解得a =. 【点睛】关键点点睛:利用正余弦定理以及三角形的面积公式求解是解题关键. 24.(1)120︒;(2)等腰钝角三角形. 【分析】(1)根据2sin (2)sin (2)sin a A b c B c b C =+++,利用正弦定理转化为222b c a bc +-=-,再利用余弦定理求解.(2)根据(1)利用两角差的正弦公式和辅助角公式转化为sin sin B C +=()sin 601B +=求解.【详解】(1)因为2sin (2)sin (2)sin a A b c B c b C =+++, 所以22(2)(2)a b c b c b c =+++, 即222b c a bc +-=-,所以2221cos 22b c a A bc +-==-, 因为()0,A π∈,所以120A =.(2)由(1)知()sin sin sin sin 60B C B B +=+-,()1cos sin sin 60122B B B =+=+=, 因为()0,60B ∈,所以6090B +=,解得30,30B C ==,所以ABC 是等腰三角形.【点睛】方法点睛:有关三角形形状的判断方法:灵活运用正、余弦定理实现边角转化,合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式辅助角公式等,通过边或角进行判断.25.(1)3A π=;(2 【分析】第(1)小问:方案①中是利用正弦定理将边转化为角的关系,化简后求得3A π=; 方案②首先利用正弦定理将边长之比转化为角的正弦之比,再化简求得3A π=;方案③利用两角和的正切公式将tan tan tan A B C ++化成tan tan()(1tan tan )A B C B C ++⋅-,再利用tan()tan B C A +=-对式子进行化简得到3A π=;第(2)小问:由余弦定理2222cos ,2,3a b c bc A a A π=+-==可以得到关于,b c的关系式,再结合b c +=2bc =,最后求得三角形的面积即可.【详解】()1方案①()2sin cos sin cos sin A C B B C A +=()2sin sin A C B A +=,2sin sin A A A =又()0,A π∈,所以sin 0A ≠,所以tan A = 所以3A π=方案②:由已知正弦定理得()2cos sin 2sin sin 2sin sin 2sin cos 2cos sin sin C A B C A C C A C A C C=-=+-=+-所以2cos sin sin 0,A C C -=即2cos sin sin ,A C C =又()0,C π∈,所以sin 0,C ≠ 所以1cos 2A =所以3A π=方案③:因为tan tan tan tan A B C B C ++=所以tan tan tan tan tan tan()(1tan tan )A B C B C A B C B C ++==++⋅- ()tan tan 1tan tan tan tan tan A A B C A B C =--=tan tan tan tan B C A B C =又()0A B C π∈,,,,所以tan 0,tan 0B C ≠≠,所以1tan ,2A A ==所以3A π=()2由余弦定理2222cos ,2,3a b c bc A a A π=+-==,得224b c bc =+- 即()243b c bc +=+,又因为b c +=所以2bc =所以1sin 22ABC S bc A == 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.26.(1)3B π=;(2)2. 【分析】(12sin 0b A -=2sin sin 0A B A -=求解.(2)根据b =5a c +=,由余弦定理得到6ac =,代入三角形的面积公式求解. 【详解】(1)∵2sin 0b A -=, ∴2sin sin 0A B A -=,∵sin 0A ≠,∴sin 2B =, ∵B 为锐角, ∴3B π=.(2)由余弦定理得2222cos3=+-b a c ac π,整理得2()37a c ac +-=,∵5a c +=,∴6ac =,∴ABC 的面积1sin 2S ac B ==. 【点睛】 方法点睛:三角形面积问题的求解方法:(1)灵活运用正、余弦定理实现边角转化;(2)合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式等.。
高考数学压轴专题最新备战高考《三角函数与解三角形》专项训练解析附答案

数学高考《三角函数与解三角形》试题含答案一、选择题1.若函数()sin()f x A x ωϕ=+(其中0A >,||)2πϕ<图象的一个对称中心为(3π,0),其相邻一条对称轴方程为712x π=,该对称轴处所对应的函数值为1-,为了得到()cos2g x x =的图象,则只要将()f x 的图象( )A .向右平移6π个单位长度 B .向左平移12π个单位长度 C .向左平移6π个单位长度 D .向右平移12π个单位长度【答案】B 【解析】 【分析】由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,可得()f x 的解析式,再根据函数()sin y A x ωϕ=+的图象变换规律,诱导公式,得出结论. 【详解】根据已知函数()()sin f x A x ωϕ=+(其中0A >,)2πϕ<的图象过点,03π⎛⎫ ⎪⎝⎭,7,112π⎛⎫-⎪⎝⎭, 可得1A =,1274123πππω⋅=-, 解得:2ω=. 再根据五点法作图可得23πϕπ⋅+=,可得:3πϕ=,可得函数解析式为:()sin 2.3f x x π⎛⎫=+⎪⎝⎭故把()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位长度, 可得sin 2cos236y x x ππ⎛⎫=++= ⎪⎝⎭的图象, 故选B . 【点睛】本题主要考查由函数()sin y A x ωϕ=+的部分图象求解析式,由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,函数()sin y A x ωϕ=+的图象变换规律,诱导公式的应用,属于中档题.2.若函数()sin 2f x x =向右平移6π个单位后,得到()y g x =,则关于()y g x =的说法正确的是( ) A .图象关于点,06π⎛⎫- ⎪⎝⎭中心对称 B .图象关于6x π=-轴对称C .在区间5,126ππ⎡⎤--⎢⎥⎣⎦单调递增 D .在5,1212ππ⎡⎤-⎢⎥⎣⎦单调递增 【答案】D 【解析】 【分析】利用左加右减的平移原则,求得()g x 的函数解析式,再根据选项,对函数性质进行逐一判断即可. 【详解】函数()sin 2f x x =向右平移6π个单位,得()sin 2()sin(2)63g x x x ππ=-=-. 由23x π-=k π,得26k x ππ=+()k ∈Z ,所以,06π⎛⎫- ⎪⎝⎭不是()g x 的对称中心,故A 错; 由23x π-=2k ππ+, 得212k x π5π=+()k ∈Z ,所以()g x 的图象不关于6x π=-轴对称,故B 错;由222232k x k πππππ-≤-≤+,得1212k x k π5ππ-≤≤π+()k ∈Z , 所以在区间5,126ππ⎡⎤--⎢⎥⎣⎦上()g x 不单调递增,在5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增, 故C 错,D 对; 故选:D . 【点睛】解答三角函数问题时一般需将解析式化简为sin()y A x B ωϕ=++或cos()y A x B ωϕ=++,从而可利用正(余)弦型周期计算公式2||T πω=周期,对正弦型函数,其函数图象的对称中心为,k B πϕω-⎛⎫⎪⎝⎭,且对称中心在函数图象上,而对称轴必经过图象的最高点或最低点,此时函数取得最大值或最小值.3.已知函数f (x )=2x -1,()2cos 2,0?2,0a x x g x x a x +≥⎧=⎨+<⎩(a ∈R ),若对任意x 1∈[1,+∞),总存在x 2∈R ,使f (x 1)=g (x 2),则实数a 的取值范围是() A .1,2⎛⎫-∞ ⎪⎝⎭B .2,3⎛⎫+∞⎪⎝⎭C .[]1,1,22⎛⎫-∞ ⎪⎝⎭U D .371,,224⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦U 【答案】C 【解析】 【分析】对a 分a=0,a <0和a >0讨论,a >0时分两种情况讨论,比较两个函数的值域的关系,即得实数a 的取值范围. 【详解】当a =0时,函数f (x )=2x -1的值域为[1,+∞),函数()g x 的值域为[0,++∞),满足题意.当a <0时,y =22(0)x a x +<的值域为(2a ,+∞), y =()cos 20a x x +≥的值域为[a +2,-a +2],因为a +2-2a =2-a >0,所以a +2>2a , 所以此时函数g (x )的值域为(2a ,+∞), 由题得2a <1,即a <12,即a <0. 当a >0时,y =22(0)x a x +<的值域为(2a ,+∞),y =()cos 20a x x +≥的值域为[-a +2,a +2], 当a ≥23时,-a +2≤2a ,由题得21,1222a a a a -+≤⎧∴≤≤⎨+≥⎩. 当0<a <23时,-a +2>2a ,由题得2a <1,所以a <12.所以0<a <12. 综合得a 的范围为a <12或1≤a ≤2, 故选C . 【点睛】本题主要考查函数的图象和性质,考查指数函数和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.4.已知函数()2sin()0,,2f x x πωϕωϕπ⎛⎫⎡⎤=+>∈ ⎪⎢⎥⎣⎦⎝⎭的部分图象如图所示,其中()01f =,5||2MN =,则点M 的横坐标为( )A .12B .25-C .1-D .23-【答案】C 【解析】 【分析】 由(0)1f =求出56πϕ=,由5||23MN πω=⇒=,再根据()2f x =可得答案.【详解】由函数()2sin()0,,2f x x πωϕωϕπ⎛⎫⎡⎤=+>∈ ⎪⎢⎥⎣⎦⎝⎭的部分图象,可得(0)2sin 1f ϕ==,56πϕ∴=, 22512||2243MN ππωω⎛⎫==+⋅⇒= ⎪⎝⎭, ∴函数5()2sin 36f x x ππ⎛⎫=+ ⎪⎝⎭,令52sin 236x ππ⎛⎫+= ⎪⎝⎭, 得52,0362x k k ππππ+=+=得1x =-. 故选:C. 【点睛】本题主要考查三角函数的图象与性质,考查了数形结合思想的应用,解题的关键是利用勾股定理列方程求出3πω=,属于中档题.5.如图所示,已知双曲线C :()222210,0x y a b a b-=>>的右焦点为F ,双曲线的右支上一点A ,它关于原点O 的对称点为B ,满足120AFB ∠=︒,且3BF AF =,则双曲线C 的离心率是( )A 27B .52C 7D 7【答案】C 【解析】【分析】利用双曲线的性质,推出AF ,BF ,通过求解三角形转化求解离心率即可. 【详解】解:双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,双曲线C 的右支上一点A ,它关于原点O 的对称点为B ,满足120AFB ∠=︒,且||3||BF AF =,可得||||2BF AF a -=,||AF a =,||3BF a =,60F BF ∠'=︒,所以2222cos60F F AF BF AF BF '=+-︒g ,可得222214962c a a a =+-⨯,2247c a =,所以双曲线的离心率为:7e =. 故选:C .【点睛】本题考查双曲线的简单性质的应用,三角形的解法,考查转化思想以及计算能力,属于中档题.6.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦ B .30,2⎛⎤ ⎥⎝⎦C .24,33⎛⎤⎥⎝⎦D .33,42⎛⎤⎥⎝⎦【答案】D 【解析】 【分析】推导出sin4d =1,由此能求出d ,可得函数解析式,利用在203x π⎛⎫∈ ⎪⎝⎭,上单调且存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,即可得出结论. 【详解】∵{a n }为等差数列,公差为d ,且0<d <1,a 52k π≠(k ∈Z ), sin 2a 3+2sin a 5•cos a 5=sin 2a 7, ∴2sin a 5cos a 5=sin 2a 7﹣sin 2a 3=2sin 372a a +cos 732a a -•2cos 372a a +sin 732a a -=2sin a 5cos2d •2cos a 5sin2d , ∴sin4d =1,∴d 8π=.∴f (x )8π=cosωx ,∵在203x π⎛⎫∈ ⎪⎝⎭,上单调 ∴23ππω≥, ∴ω32≤; 又存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,, 所以f (x )在(0,23π)上存在零点, 即223ππω<,得到ω34>. 故答案为 33,42⎛⎤⎥⎝⎦故选D 【点睛】本题考查等差数列的公差的求法,考查三角函数的图象与性质,准确求解数列的公差是本题关键,考查推理能力,是中档题.7.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=()A .5-B .CD 【答案】B 【解析】 【分析】由辅助角公式可确定()max f x =sin 2cos θθ-=平方关系可构造出方程组求得结果.【详解】()()sin 2cos f x x x x ϕ=-=+Q ,其中tan 2ϕ=- ()max f x ∴sin 2cos θθ-=又22sin cos 1θθ+= cos θ∴=【点睛】本题考查根据三角函数的最值求解三角函数值的问题,关键是能够确定三角函数的最值,从而得到关于所求三角函数值的方程,结合同角三角函数关系构造方程求得结果.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a ﹣c cos B )sin A =c cos A sin B ,则△ABC 的形状一定是( ) A .钝角三角形 B .直角三角形 C .等腰三角形 D .锐角三角形【答案】C 【解析】 【分析】根据题意,由(cos )sin cos sin a c B A c A B -=变形可得sin sin a A c C =,进而由正弦定理可得22a c =,即a c =,即可得答案. 【详解】根据题意,在ABC ∆中,(cos )sin cos sin a c B A c A B -=, 变形可得:sin cos sin cos sin (cos sin cos sin )sin()sin a A c B A c A B c B A A B c A B c C =+=+=+=,即有sin sin a A c C =,又由正弦定理可得22a c =,即a c =. 故选:C . 【点睛】本题主要考查三角形的形状判断,考查正弦定理的应用,意在考查学生对这些知识点的理解掌握水平,属于基础题.9.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+若2sin sin sin B C A ⋅=,则ABC ∆的形状是()A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形【答案】C 【解析】 【分析】直接利用余弦定理的应用求出A 的值,进一步利用正弦定理得到:b =c ,最后判断出三角形的形状. 【详解】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且b 2+c 2=a 2+bc .则:2221222b c a bc cosA bc bc +-===,由于:0<A <π,故:A 3π=.由于:sin B sin C =sin 2A , 利用正弦定理得:bc =a 2, 所以:b 2+c 2﹣2bc =0, 故:b =c ,所以:△ABC 为等边三角形. 故选C . 【点睛】本题考查了正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.10.在ABC ∆中,60B ∠=︒,AD 是BAC ∠的平分线交BC 于D,BD =,1cos 4BAC ∠=,则AD =( ) A .2 BCD【答案】A 【解析】 【分析】先求出sin BAD ∠=,再利用正弦定理求AD. 【详解】∵21cos 12sin 4BAC BAD ∠=-∠=,∴sin 4BAD ∠=.在ABD ∆中,sin sin AD BD B BAD =∠,∴sin 2sin 4BAD BD BAD =⋅==∠. 【点睛】本题主要考查二倍角的余弦和正弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.如图,在等腰直角ABC ∆中,D ,E 分别为斜边BC 的三等分点(D 靠近点B ),过E 作AD 的垂线,垂足为F ,则AF =u u u v( )A .3155AB AC +u u uv u u u vB .2155AB AC +u u uv u u u vC .481515AB AC +u u uv u u u v D .841515AB AC +u u uv u u u v 【答案】D 【解析】 【分析】设出等腰直角三角形ABC 的斜边长,由此结合余弦定理求得各边长,并求得cos DAE ∠,由此得到45AF AD =u u u r u u u r,进而利用平面向量加法和减法的线性运算,将45AF AD =u u u r u u u r 表示为以,AB AC u u u r u u u r为基底来表示的形式.【详解】设6BC =,则32,2AB AC BD DE EC =====,22π2cos4AD AE BD BA BD BA ==+-⋅⋅10=,101044cos 2105DAE +-∠==⨯, 所以45AF AF AD AE ==,所以45AF AD =u u u r u u u r . 因为()1133AD AB BC AB AC AB =+=+-u u u r u u u r u u u r u u u r u u u r u u u r 2133AB AC =+u u ur u u u r , 所以421845331515AF AB AC AB AC ⎛⎫=⨯+=+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r. 故选:D 【点睛】本小题主要考查余弦定理解三角形,考查利用基底表示向量,属于中档题.12.已知5sin α,sin()10αβ-=,,αβ均为锐角,则β=( ) A .512πB .3π C .4π D .6π 【答案】C【解析】 【分析】 由题意,可得22ππαβ-<-<,利用三角函数的基本关系式,分别求得cos ,cos()ααβ-的值,利用sin[(]sin )ααββ=--,化简运算,即可求解.【详解】由题意,可得α,β均为锐角,∴-2π <α-β<2π.又sin(α-β),∴cos(α-β).又sin αcos α ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=5×10-5×⎛ ⎝⎭=2.∴β=4π. 【点睛】本题主要考查了三角函数的化简、求值问题,其中熟记三角函数的基本关系式和三角恒等变换的公式,合理构造sin[(]sin )ααββ=--,及化简与运算是解答的关键,着重考查了推理与运算能力,属于基础题.13.已知函数()3cos(2)2f x x π=+,若对于任意的x ∈R ,都有12()()()f x f x f x 剟成立,则12x x -的最小值为( ) A .4 B .1C .12D .2【答案】D 【解析】 【分析】由题意得出()f x 的一个最大值为()2f x ,一个最小值为()1f x ,于此得出12x x -的最小值为函数()y f x =的半个周期,于此得出答案. 【详解】对任意的x ∈R ,()()()12f x f x f x 剟成立. 所以()()2min 3f x f x ==-,()()2max 3f x f x ==,所以12min22Tx x -==,故选D . 【点睛】本题考查正余弦型函数的周期性,根据题中条件得出函数的最值是解题的关键,另外就是灵活利用正余弦型函数的周期公式,考查分析问题的能力,属于中等题.14.已知双曲线()222210,0x y a b a b-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点,若121cos 4F MF ∠=,122MF MF =,则此双曲线渐近线方程为( ) A.y =B.y x = C .y x =± D .2y x =±【答案】A【解析】【分析】 因为M 为双曲线上一点,可得122MF MF a -=,在12F MF ∆使用余弦定理,结合已知条件即可求得答案.【详解】Q 双曲线()222210,0x y a b a b-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点 ∴ 121222MF MF a MF MF ⎧-=⎪⎨=⎪⎩,解得:14MF a =,22MF a = 在12F MF ∆中,根据余弦定理可得:∴ 12121222122c 2os F F MF MF M MF MF F F ∠=+-⋅⋅可得:2221(2)(4)(2)2424c a a a a =+-⋅⋅⋅化简可得:2c a =由双曲线性质可得:22222243b c a a a a =-=-=可得:b = Q 双曲线渐近线方程为:b y x a=± 则双曲线渐近线方程为: y =故选:A.【点睛】本题考查了求双曲线渐近线方程问题,解题关键是掌握双曲线的基本知识,数形结合,考查分析能力和计算能力,属于中档题.15.在三角形ABC 中,给出命题:p “2ab c >”,命题:q “3C π<”,则p 是q 的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】【分析】由余弦定理将2c 化为222cos a b ab C +-,整理后利用基本不等式求得12cos 2C +>,求出C 范围,即可判断充分性,取4a =,7b =,6c =,则可判断必要性不成立,两者结合可得正确的选项.【详解】充分性:由余弦定理,2222cos c a b ab C =+-,所以2ab c >,即222cos ab a b ab C >+-, 整理得,2212cos a b C ab++>,由基本不等式,222a b ab ab+≥=, 当且仅当a b =时等号成立,此时,12cos 2C +>,即1cos 2C >,解得3C π<, 充分性得证;必要性:取4a =,7b =,6c =,则164936291cos 247562C +-==>⨯⨯, 故3C π<,但228ab c =<,故3C π<推不出2ab c >.故必要性不成立;故p 是q 的充分不必要条件.故选:A【点睛】本题主要考查充分必要条件的判断、余弦定理的应用和基本不等式的应用,考查学生分析转化能力,属于中档题.16.函数()()()cos 20f x x ϕϕπ=+<<在区间,66ππ⎡⎤-⎢⎥⎣⎦单调递减,在区间,06π⎛⎫- ⎪⎝⎭上有零点,则ϕ的取值范围是( )A .,62ππ⎡⎤⎢⎥⎣⎦B .25,36ππ⎡⎫⎪⎢⎣⎭C .2,23ππ⎛⎤ ⎥⎝⎦D .,32ππ⎡⎫⎪⎢⎣⎭【答案】C【解析】分析:结合余弦函数的单调减区间,求出零点,再结合零点范围列出不等式 详解:当[,]66x ππ∈-,2[,]33x ππϕϕϕ+∈-++,又∵(0,)ϕπ∈,则[,][0,]33ππϕϕπ-++⊆,即033πϕπϕπ⎧-≥⎪⎪⎨⎪+≤⎪⎩,233ππϕ≤≤, 由cos(2)0x ϕ+=得2,2x k k Z πϕπ+=+∈,242k x ππϕ=+-, ∴0642ππϕ-<-<,解得526ππϕ<<, 综上223ππϕ<≤. 故选C.点睛:余弦函数的单调减区间:[2,2]k k ππ+π,增区间:[2,22]k k ππππ++,零点:2x k ππ=+,对称轴:x k π=,对称中心:,2)0(k ππ+,k Z ∈. 17.已知1tan 4,tan θθ+=则2sin ()4πθ+=( ) A .15 B .14 C .12 D .34【答案】D【解析】【分析】 根据同角三角函数的关系化简1tan 4tan θθ+=成关于正余弦的关系式,再利用降幂公式与诱导公式化简2sin ()4πθ+求解即可.【详解】 由题, 1tan 4,tan θθ+=则22sin cos sin cos 444sin cos 1cos sin sin cos θθθθθθθθθθ++=⇒=⇒=, 故1sin 22θ=. 所以2sin ()4πθ+=1cos 222πθ⎛⎫-+ ⎪⎝⎭1sin 2324θ+==. 故选:D【点睛】 本题主要考查了三角函数的公式运用,在有正切函数时可考虑转化为正余弦的关系进行化简,属于基础题.18.已知函数()()sin x f x x R ωφ+=∈,,其中0ωπφπ>-<,≤.若函数()f x 的最小正周期为4π,且当23x π=时,()f x 取最大值,是( ) A .()f x 在区间[]2ππ--,上是减函数 B .()f x 在区间[]0π-,上是增函数 C .()f x 在区间[]0π,上是减函数 D .()f x 在区间[]02π,上是增函数 【答案】B【解析】【分析】 先根据题目所给已知条件求得()f x 的解析式,然后求函数的单调区间,由此得出正确选项.【详解】由于函数()f x 的最小正周期为4π,故2π14π2ω==,即()1sin 2f x x φ⎛⎫=+ ⎪⎝⎭,2ππsin 1,33π6f φφ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭=⎭⎝.所以()1πsin 26f x x ⎛⎫=+ ⎪⎝⎭.由π1ππ2π2π2262k x k -≤+≤+,解得4π2π4π4π33k x k -≤≤+,故函数的递增区间是4π2π4π,4π33k k ⎡⎤-+⎢⎥⎣⎦,令0k =,则递增区间为4π2π,33⎡⎤-⎢⎥⎣⎦,故B 选项正确.所以本小题选B.【点睛】本小题主要考查三角函数解析式的求法,考查三角函数单调区间的求法,属于基础题.19.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,b =c =( )A .B .2CD .1【答案】B【解析】1sin A ===cos A =,所以22212c c =+-2320,c c -+=求得1c =或 2.c = 若1c =,则三角形为等腰三角形,0030,60A C B ===不满足内角和定理,排除.【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.当求出cos 2A =后,要及时判断出0030,60AB ==,便于三角形的初步定型,也为排除1c =提供了依据.如果选择支中同时给出了1或2,会增大出错率.20.函数()4sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期是3π,则其图象向左平移6π个单位长度后得到的函数的一条对称轴是( )A .4x π= B .3x π= C .56x π= D .1912x π= 【答案】D【解析】【分析】 由三角函数的周期可得23πω=,由函数图像的变换可得, 平移后得到函数解析式为244sin 39y x π⎛⎫=+ ⎪⎝⎭,再求其对称轴方程即可. 【详解】 解:函数()4sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期是3π,则函数2()4sin 33f x x π⎛⎫=+ ⎪⎝⎭,经过平移后得到函数解析式为2244sin 4sin 36339y x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由24()392x k k πππ+=+∈Z , 得3()212x k k ππ=+∈Z ,当1k =时,1912x π=. 故选D.【点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.。
全国通用2020-2022年三年高考数学真题分项汇编专题10解三角形

10 解三角形1.【2022年全国甲卷】沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,AB是以O为圆心,OA为半径的圆弧,C是的AB中点,D在AB 上,CD⊥AB.“会圆术”给出AB的弧长的近似值s的计算公式:s=AB+CD2OA.当OA=2,∠AOB=60°时,s=()A.11−3√32B.11−4√32C.9−3√32D.9−4√32【答案】B【解析】【分析】连接OC,分别求出AB,OC,CD,再根据题中公式即可得出答案. 【详解】解:如图,连接OC,因为C是AB的中点,所以OC⊥AB,又CD⊥AB,所以O,C,D三点共线,即OD=OA=OB=2,又∠AOB=60°,所以AB=OA=OB=2,则OC=√3,故CD=2−√3,所以s=AB+CD2OA =2+(2−√3)22=11−4√32.故选:B.2.【2021年甲卷文科】在ABC 中,已知120B =︒,AC 2AB =,则BC =( )A .1 BC D .3【答案】D 【解析】 【分析】利用余弦定理得到关于BC 长度的方程,解方程即可求得边长. 【详解】设,,AB c AC b BC a ===,结合余弦定理:2222cos b a c ac B =+-可得:21942cos120a a c =+-⨯⨯⨯, 即:22150a a +-=,解得:3a =(5a =-舍去), 故3BC =. 故选:D. 【点睛】利用余弦定理及其推论解三角形的类型: (1)已知三角形的三条边求三个角;(2)已知三角形的两边及其夹角求第三边及两角; (3)已知三角形的两边与其中一边的对角,解三角形.3.【2021年乙卷理科】魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .⨯+表高表距表目距的差表高B .⨯-表高表距表目距的差表高C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距【答案】A 【解析】 【分析】利用平面相似的有关知识以及合分比性质即可解出. 【详解】 如图所示:由平面相似可知,,DE EH FG CGAB AH AB AC==,而 DE FG =,所以 DE EH CG CG EH CG EHAB AH AC AC AH CH--====-,而 CH CE EH CG EH EG =-=-+, 即CG EH EG EG DE AB DE DE CG EH CG EH-+⨯=⨯=+--=+⨯表高表距表高表目距的差. 故选:A. 【点睛】本题解题关键是通过相似建立比例式,围绕所求目标进行转化即可解出.4.【2020年新课标3卷理科】在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A .19B .13C .12D .23【答案】A 【解析】 【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC +-=⋅,即可求得答案.【详解】在ABC 中,2cos 3C =,4AC =,3BC = 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅ 2224322433AB =+-⨯⨯⨯可得29AB = ,即3AB = 由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯故1cos 9B =. 故选:A. 【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.5.【2022年全国甲卷】已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当AC AB取得最小值时,BD =________.【答案】√3−1−1+√3 【解析】 【分析】设CD =2BD =2m >0,利用余弦定理表示出AC 2AB 2后,结合基本不等式即可得解.【详解】设CD =2BD =2m >0,则在△ABD 中,AB 2=BD 2+AD 2−2BD ⋅ADcos ∠ADB =m 2+4+2m , 在△ACD 中,AC 2=CD 2+AD 2−2CD ⋅ADcos ∠ADC =4m 2+4−4m , 所以AC 2AB 2=4m 2+4−4m m 2+4+2m =4(m 2+4+2m)−12(1+m)m 2+4+2m=4−12(m+1)+3m+1≥42√(m+1)⋅3m+1=4−2√3,当且仅当m +1=3m+1即m =√3−1时,等号成立, 所以当ACAB 取最小值时,m =√3−1. 故答案为:√3−1.6.【2021年乙卷文科】记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,60B =︒,223a c ac +=,则b =________.【答案】【解析】 【分析】由三角形面积公式可得4ac =,再结合余弦定理即可得解. 【详解】由题意,1sin 2ABCSac B === 所以224,12ac a c =+=,所以22212cos 122482b ac ac B =+-=-⨯⨯=,解得b =(负值舍去).故答案为:7.【2020年新课标1卷理科】如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =______________.【答案】14-【解析】 【分析】在ACE 中,利用余弦定理可求得CE ,可得出CF ,利用勾股定理计算出BC 、BD ,可得出BF ,然后在BCF △中利用余弦定理可求得cos FCB ∠的值. 【详解】AB AC ⊥,AB =1AC =,由勾股定理得2BC =,同理得BD BF BD ∴==在ACE 中,1AC =,AE AD ==30CAE ∠=,由余弦定理得2222cos3013211CE AC AE AC AE =+-⋅=+-⨯=, 1CF CE ∴==,在BCF △中,2BC =,BF =1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-.【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.8.【2022年全国乙卷】记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知sinCsin (A −B )=sinBsin (C −A ). (1)若A =2B ,求C ; (2)证明:2a 2=b 2+c 2 【答案】(1)5π8;(2)证明见解析. 【解析】 【分析】(1)根据题意可得,sinC =sin (C −A ),再结合三角形内角和定理即可解出; (2)由题意利用两角差的正弦公式展开得sinC (sinAcosB −cosAsinB )=sinB (sinCcosA −cosCsinA ),再根据正弦定理,余弦定理化简即可证出. (1)由A =2B ,sinCsin (A −B )=sinBsin (C −A )可得,sinCsinB =sinBsin (C −A ),而0<B <π2,所以sinB ∈(0,1),即有sinC =sin (C −A )>0,而0<C <π,0<C −A <π,显然C ≠C −A ,所以,C +C −A =π,而A =2B ,A +B +C =π,所以C =5π8.(2)由sinCsin (A −B )=sinBsin (C −A )可得,sinC (sinAcosB −cosAsinB )=sinB (sinCcosA −cosCsinA ),再由正弦定理可得, accosB −bccosA =bccosA −abcosC ,然后根据余弦定理可知,12(a 2+c 2−b 2)−12(b 2+c 2−a 2)=12(b 2+c 2−a 2)−12(a 2+b 2−c 2),化简得:2a 2=b 2+c 2,故原等式成立.9.【2022年全国乙卷】记△ABC 的内角A,B,C 的对边分别为a,b,c ,已知sinCsin(A −B)=sinBsin(C −A).(1)证明:2a2=b2+c2;(2)若a=5,cosA=2531,求△ABC的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc,从而可求得b+c,即可得解.(1)证明:因为sinCsin(A−B)=sinBsin(C−A),所以sinCsinAcosB−sinCsinBcosA=sinBsinCcosA−sinBsinAcosC,所以ac⋅a2+c2−b22ac −2bc⋅b2+c2−a22bc=−ab⋅a2+b2−c22ab,即a2+c2−b22−(b2+c2−a2)=−a2+b2−c22,所以2a2=b2+c2;(2)解:因为a=5,cosA=2531,由(1)得b2+c2=50,由余弦定理可得a2=b2+c2−2bccosA,则50−5031bc=25,所以bc=312,故(b+c)2=b2+c2+2bc=50+31=81,所以b+c=9,所以△ABC的周长为a+b+c=14.10.【2022年新高考1卷】记△ABC的内角A,B,C的对边分别为a,b,c,已知cosA1+sinA =sin2B1+cos2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.【答案】(1)π6;(2)4√2−5.【解析】【分析】(1)根据二倍角公式以及两角差的余弦公式可将cosA1+sinA =sin2B1+cos2B化成cos(A+B)=sinB,再结合0<B <π2,即可求出;(2)由(1)知,C =π2+B ,A =π2−2B ,再利用正弦定理以及二倍角公式将a 2+b 2c 2化成4cos 2B +2cos 2B−5,然后利用基本不等式即可解出.(1)因为cosA1+sinA =sin2B1+cos2B =2sinBcosB 2cos 2B=sinBcosB ,即sinB =cosAcosB −sinAsinB =cos (A +B )=−cosC =12,而0<B <π2,所以B =π6;(2)由(1)知,sinB =−cosC >0,所以π2<C <π,0<B <π2,而sinB =−cosC =sin (C −π2),所以C =π2+B ,即有A =π2−2B .所以a 2+b 2c 2=sin 2A+sin 2Bsin 2C=cos 22B+1−cos 2Bcos 2B=(2cos 2B−1)2+1−cos 2Bcos 2B=4cos 2B +2cos 2B−5≥2√8−5=4√2−5.当且仅当cos 2B =√22时取等号,所以a 2+b 2c 2的最小值为4√2−5.11.【2022年新高考2卷】记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为S 1,S 2,S 3,已知S 1−S 2+S 3=√32,sinB =13.(1)求△ABC 的面积; (2)若sinAsinC =√23,求b .【答案】(1)√28(2)12 【解析】 【分析】(1)先表示出S 1,S 2,S 3,再由S 1−S 2+S 3=√32求得a 2+c 2−b 2=2,结合余弦定理及平方关系求得ac ,再由面积公式求解即可; (2)由正弦定理得b 2sin 2B=acsinAsinC ,即可求解. (1)由题意得S 1=12⋅a 2⋅√32=√34a 2,S 2=√34b 2,S 3=√34c 2,则S 1−S 2+S 3=√34a 2−√34b 2+√34c 2=√32,即a 2+c 2−b 2=2,由余弦定理得cosB =a 2+c 2−b 22ac,整理得accosB =1,则cosB >0,又sinB =13,则cosB =√1−(13)2=2√23,ac =1cosB =3√24,则S △ABC =12acsinB =√28; (2)由正弦定理得:b sinB =a sinA =csinC ,则b 2sin 2B =a sinA ⋅c sinC =acsinAsinC =3√24√23=94,则b sinB =32,b =32sinB =12. 12.【2021年新高考1卷】记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠. 【答案】(1)证明见解析;(2)7cos 12ABC ∠=. 【解析】 【分析】(1)根据正弦定理的边角关系有acBD b=,结合已知即可证结论. (2)方法一:两次应用余弦定理,求得边a 与c 的关系,然后利用余弦定理即可求得cos ABC ∠的值.【详解】(1)设ABC 的外接圆半径为R ,由正弦定理, 得sin sin ,22b c R ABC C R==∠, 因为sin sin BD ABC a C ∠=,所以22b cBD a R R⋅=⋅,即BD b ac ⋅=. 又因为2b ac =,所以BD b =.(2)[方法一]【最优解】:两次应用余弦定理因为2AD DC =,如图,在ABC 中,222cos 2a b c C ab+-=,①在BCD △中,222()3cos 23ba b b a C +-=⋅.② 由①②得2222223()3b a b c a b ⎡⎤+-=+-⎢⎥⎣⎦,整理得22211203a b c -+=.又因为2b ac =,所以2261130a ac c -+=,解得3c a =或32ca =, 当22,33c c ab ac ===时,222()733cos =622c c c ABC c c ∠⋅+-=⋅(舍去).当2233,22c c a b ac ===时,22233()722cos 31222c c ABC c c c +⋅-==⋅∠. 所以7cos 12ABC ∠=. [方法二]:等面积法和三角形相似 如图,已知2AD DC =,则23ABD ABC S S =△△, 即21221sin sin 2332b ac AD A B BC ⨯=⨯⨯∠∠,而2b ac =,即sin sin ADB ABC ∠=∠, 故有ADB ABC ∠=∠,从而ABD C ∠=∠. 由2b ac =,即b ca b =,即CA BA CB BD=,即ACB ABD ∽, 故AD ABAB AC=,即23bc c b =,又2b ac =,所以23c a =, 则2227cos 212c a b ABC ac +-==∠. [方法三]:正弦定理、余弦定理相结合由(1)知BD b AC ==,再由2AD DC =得21,33AD b CD b ==.在ADB △中,由正弦定理得sin sin AD BDABD A=∠.又ABD C ∠=∠,所以s 3sin n 2i C b A b=,化简得2sin sin 3C A =. 在ABC 中,由正弦定理知23c a =,又由2b ac =,所以2223b a =. 在ABC 中,由余弦定理,得222222242793cos 221223a a a a c b ABC ac a +--⨯∠+===. 故7cos 12ABC ∠=. [方法四]:构造辅助线利用相似的性质如图,作DE AB ∥,交BC 于点E ,则DEC ABC △∽△.由2AD DC =,得2,,333c a aDE EC BE ===.在BED 中,2222()()33cos 2323BED a c b a c -=⋅∠+⋅.在ABC 中222cos 2a a BC c A b c +-=∠.因为cos cos ABC BED ∠=-∠, 所以2222222()()3322233a c ba cb ac ac +-+-=-⋅⋅,整理得22261130a b c -+=.又因为2b ac =,所以2261130a ac c -+=, 即3c a =或32a c =.下同解法1.[方法五]:平面向量基本定理 因为2AD DC =,所以2AD DC =. 以向量,BA BC 为基底,有2133BD BC BA =+. 所以222441999BD BC BA BC BA =+⋅+, 即222441cos 999b ac c ABC a ∠=++, 又因为2b ac =,所以22944cos ac a ac ABC c ⋅∠=++.③ 由余弦定理得2222cos b a c ac ABC =+-∠, 所以222cos ac a c ac ABC =+-∠④ 联立③④,得2261130a ac c -+=.所以32a c =或13a c =.下同解法1. [方法六]:建系求解以D 为坐标原点,AC 所在直线为x 轴,过点D 垂直于AC 的直线为y 轴,DC 长为单位长度建立直角坐标系,如图所示,则()()()0,0,2,0,1,0D A C -.由(1)知,3BD b AC ===,所以点B 在以D 为圆心,3为半径的圆上运动. 设()(),33B x y x -<<,则229x y +=.⑤ 由2b ac =知,2BA BC AC ⋅=,9=.⑥联立⑤⑥解得74x =-或732x =≥(舍去),29516y =,代入⑥式得||||3a BC c BA b =====,由余弦定理得2227cos 212a c b ABC ac +-∠==.【整体点评】(2)方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.13.【2021年新高考2卷】在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.【答案】(1(2)存在,且2a =. 【解析】 【分析】(1)由正弦定理可得出23c a =,结合已知条件求出a 的值,进一步可求得b 、c 的值,利用余弦定理以及同角三角函数的基本关系求出sin B ,再利用三角形的面积公式可求得结果; (2)分析可知,角C 为钝角,由cos 0C <结合三角形三边关系可求得整数a 的值. 【详解】(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c Cab,所以,C 为锐角,则sin C ==因此,11sin 4522ABC S ab C ==⨯⨯△ (2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===<++,解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,a Z ∈,故2a =.14.【2020年新课标1卷文科】ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ,求ABC 的面积;(2)若sin AC C . 【答案】(1(2)15︒. 【解析】 【分析】(1)已知角B 和b 边,结合,a c 关系,由余弦定理建立c 的方程,求解得出,a c ,利用面积公式,即可得出结论;(2)方法一 :将30A C =︒-代入已知等式,由两角差的正弦和辅助角公式,化简得出有关C 角的三角函数值,结合C 的范围,即可求解.【详解】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,c a ABC ∴==∴△的面积1sin 2S ac B =(2)[方法一]:多角换一角 30A C +=︒,sin sin(30)A C C C ∴=︒-1cos sin(30)2C C C =+=+︒=, 030,303060C C ︒<<︒∴︒<+︒<︒, 3045,15C C ∴+︒=︒∴=︒.[方法二]:正弦角化边 由正弦定理及150B =︒得22sin sin sin ====a c b R b A C B .故sin ,sin 22==a cA C b b.由sin A C +=a .又由余弦定理得22222cos =+-⋅=+b a c ac B a 2+c ,所以()222()2=++a a c ,解得a c =. 所以15=︒C . 【整体点评】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题.其中第二问法一主要考查三角恒等变换解三角形,法二则是通过余弦定理找到三边的关系,进而求角.15.【2020年新课标2卷理科】ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【解析】 【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)方法一:利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈,23A π∴=. (2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+[方法二]:正弦化角(通性通法)设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知sin sin sin a b cA B C===以sin )b c B C +=+sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦α=≤0α=,即6B C π==时,等号成立.此时ABC 周长的最大值为3+[方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c.令13sin ,20,2b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin b c θθ+=6πθ⎛⎫+≤ ⎪⎝⎭6C π=时,max ()b c +=所以ABC周长的最大值为3+ 【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题. 16.【2020年新课标2卷文科】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ; (2)若b c -=,证明:△ABC 是直角三角形. 【答案】(1)3A π=;(2)证明见解析【解析】 【分析】(1)根据诱导公式和同角三角函数平方关系,25cos cos 24A A π⎛⎫++= ⎪⎝⎭可化为251cos cos 4A A -+=,即可解出; (2)根据余弦定理可得222b c a bc +-=,将b c -=代入可找到,,a b c 关系, 再根据勾股定理或正弦定理即可证出. 【详解】(1)因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=,解得1cos 2A =,又0A π<<, 所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①,又b c -=②, 将②代入①得,()2223b c b c bc +--=, 即222250b c bc +-=,而b c >,解得2b c =,所以a =, 故222b a c =+, 即ABC 是直角三角形. 【点睛】本题主要考查诱导公式和平方关系的应用,利用勾股定理或正弦定理,余弦定理判断三角形的形状,属于基础题.17.【2020年新高考1卷(山东卷)】在①ac sin 3c A =,③=c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin A B ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分. 【答案】详见解析 【解析】 【分析】方法一:由题意结合所给的条件,利用正弦定理角化边,得到a ,b 的比例关系,根据比例关系,设出长度长度,由余弦定理得到c 的长度,根据选择的条件进行分析判断和求解. 【详解】[方法一]【最优解】:余弦定理由sin 3sin AB 可得:ab=(),0a b m m =>,则:2222222cos 32c a b ab C m m m m =+-=+-⨯=,即c m =. 若选择条件①:据此可得:2ac m =⨯==1m ∴=,此时1c m ==.若选择条件②:据此可得:222222231cos 222b c a m m m A bc m +-+-===-,则:sin A ==sin 3c A m ==,则:c m ==若选择条件③: 可得1c mb m==,c b =,与条件=c 矛盾,则问题中的三角形不存在. [方法二]:正弦定理 由,6C A B C ππ=++=,得56A B π=-. 由sin 3sin A B,得5sin 6B B π⎛⎫-= ⎪⎝⎭,即1cos 2B B B =,得tan B =.由于0B π<<,得6B π=.所以2,3b c A π==.若选择条件①:由sin sin a c A C=,得2sin sin 36a cππ=,得a =.解得1,c b a ===.所以,选条件①时问题中的三角形存在,此时1c =. 若选择条件②: 由sin 3c A =,得2sin33c π=,解得c =,则b c == 由sin sin a c A C=,得2sin sin 36a cππ=,得6a ==.所以,选条件②时问题中的三角形存在,此时c =. 若选择条件③:由于=c 与b c =矛盾,所以,问题中的三角形不存在. 【整体点评】方法一:根据正弦定理以及余弦定理可得,,a b c 的关系,再根据选择的条件即可解出,是本题的通性通法,也是最优解;方法二:利用内角和定理以及两角差的正弦公式,消去角A ,可求出角B ,从而可得2,,36b c A B C ππ====,再根据选择条件即可解出.。
(压轴题)高中数学必修五第二章《解三角形》测试(有答案解析)(3)

一、选择题1.如图,某人在一条水平公路旁的山顶P 处测得小车在A 处的俯角为30,该小车在公路上由东向西匀速行驶7.5分钟后,到达B 处,此时测得俯角为45.已知小车的速度是20km/h ,且33cos 8AOB ∠=-,则此山的高PO =( )A .1 kmB .2km 2C . 3 kmD . 2 km2.如图,四边形ABCD 中,CE 平分ACD ∠,23AE CE ==,3DE =,若ABC ACD ∠=∠,则四边形ABCD 周长的最大值( )A .24B .1233+C .183D .(3533.ABC ∆中,角,,A B C 所对的边分别为,,a b c .若13,3,60a b A ===︒,则边c =( ) A .1B .2C .4D .64.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48π B .12πC .12πD .3π5.设,,a b c 分别是ABC 中,,A B C ∠∠∠所对边的边长,则直线sin 0x A a y c ⋅+⋅+=与sin sin 0b x y B C ⋅-⋅+=位置关系是( ) A .平行B .重合C .垂直D .相交但不垂直6.某校运动会开幕式上举行升旗仪式,在坡度为15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为106 m (如图),则旗杆的高度为( )A .10 mB .30 mC .103 mD .106 m7.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC .3kmD .53km8.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2sin cos cos a B b A B =,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定9.ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,已知a ,b ,c 成等差数列,且2C A =,若AC 边上的中线79BD =△ABC 的周长为( ) A .15 B .14C .16D .12 10.在ABC 中,若2a =,3b =30A =︒,则B 等于( )A .30B .30或150︒C .60︒D .60︒或120︒11.在钝角ABC ∆中,角A B C ,,的对边分别是a b c ,,,若3013C c a =︒==,,ABC ∆的面积为A 3B 3C .34D .3212.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos a C ,cos b B ,cos c A 成等差数列,且8a c +=,则AC 边上中线长的最小值是( )A .2B .4C .23D .43二、填空题13.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且πsin cos 6b A a B ⎛⎫=- ⎪⎝⎭,则角B =______.14.在ABC 中,3A π∠=,D 是BC 的中点.若34AD BC ≤,则sin sin B C 的最大值为____________.15.如图,在ABC 中,角C 的平分线交AB 于D 且CD AD =.若3AC =,2BC =,则AB =________16.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a +c =2b ,3sin B =5sin A ,则C =_____.17.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22212b c a -=,则tan B =________.18.在相距3千米的A ,B 两个观察点观察目标点C ,其中观察点B 在观察点A 的正东方向,在观察点A 处观察,目标点C 在北偏东15︒方向上,在观察点B 处观察,目标点C 在西北方向上,则A ,C 两点之间的距离是______千米.19.在ABC 中,cos cos 3A B +=23AB =sin sin A B +取最大值时,ABC 的外接圆半径为________.20.如图,在ABC 中,点D 是边BC 上的一点,1DC =,2AC =,3BD =,120BAD ∠=︒,则AB 的长为________.三、解答题21.已知在△ABC 3sin (A +B )=1+2sin 22C . (1)求角C 的大小;(2)若∠BAC 与∠ABC 的内角平分线交于点Ⅰ,△ABC 的外接圆半径为2,求△ABI 周长的最大值.22.已知在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,22(sin sin )sin sin sin A B C A B -=-.(Ⅰ)求角C 的大小;(Ⅱ)若3a b =,求cos(2)B C +的值.23.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且()sin sin sin b c CB A b a-=-+.(1)求A ; (2)若2a =,求11tan tan B C+的最小值. 24.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A 为锐角,22sin cos 2c a B C ab--=. (1)求A ;(2)若34b =,且BC 边上的高为3ABC 的面积. 25.已知ABC 中,角,,A B C 所对的边分别为,,a b c ,且()2cos cosA cosC b 0a C c ++=(1)求角C 的大小;(2)求22sin sin A B +的取值范围.26.在①2222b ac a c =+,②cos sin a B b A =,③sin cos 2B B +=,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,___________,3A π=,2b =ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由题意作图可得60APO ∠=,45BPO ∠=,设PO h =,在Rt POA △,Rt POB 中 求出3AO h =,BO h =,在AOB 中,由余弦定理列方程即可求解.【详解】由题意可知:PO ⊥平面AOB ,903060APO ∠=-=,904545BPO ∠=-=,7.520 2.560AB =⨯=km , 设PO h =,在POA 中,tan AO APO PO ∠=,tan 60AOh=,所以3AO h =, 在POB 中,tan BO BPO PO ∠=,tan 45BOh=,所以BO h =, 在AOB 中,由余弦定理可得:2222cos AB AO BO AO A BO OB =∠+-⨯, 所以)2222.532333h h h h =+-⨯⎛ ⎝⎭⨯,即2252544h =,解得:1h =, 所以山的高1PO =, 故选:A.2.D解析:D 【分析】ACD △和CDE △中,结合正弦定理可求得6ACE DCE π∠=∠=,这样可得,DC AC ,在ABC 中,由余弦定理得2222cos3AC AB BC AB BC π=+-⋅,应用基本不等式可得AB BC +的最大值,从而可得四边形ABCD 周长的最大值.【详解】设ABC ACD ∠=∠2θ=,(0,)2πθ∈,∵CE 平分ACD ∠,∴DCE ACE θ∠=∠=, 又AE CE =,∴EAC ACE θ∠=∠=,AE CE ==DE =AD =ACD △中,由正弦定理得sin sin CD AD DAC ACD =∠∠,则CD ==, CDE △中,2DEC EAC ECA θ∠=∠+∠=,由正弦定理得sin sin CD DE CED DCE =∠∠,则2sin CD θθθ==,∴2cos θθ=,解得cos θ=,6πθ=,∴3CD ==,ACD △中,由角平分线定理得AC AE CD DE ==,得236AC =⨯=. ABC 中,23ABC πθ∠==,由余弦定理得2222cos 3AC AB BC AB BC π=+-⋅,即2222223136()3()()()44AB BC AB BC AB BC AB BC AB BC AB BC AB BC =+-⋅=+-⋅≥+-+=+,当且仅当AB BC =时等号成立,12AB BC +≤,此时ABC 为等边三角形.∴AB BC CD DA +++的最大值为12315++=+ 故选:D . 【点睛】本题主要考查正弦定理、余弦定理的应用,考查基本不等式求最值,在平面图形中充分利用平面几何的知识可减少计算量.本题解题关键是求出6ACE π∠=.3.C解析:C 【解析】试题分析:2222cos a c b cb A =+-213923cos60c c ⇒=+-⨯⨯︒,即2340c c --=,解得4c =或1c =-(舍去). 考点:余弦定理,正弦定理.4.D解析:D 【分析】 先化简得23B π=,再利用正弦定理求出外接圆的半径,即得ABC ∆的外接圆面积. 【详解】由题得222222a b c b a c ab+-⋅=+,所以22222a b c a ac +-=+, 所以222a b c ac -+=-, 所以12cos ,cosB 2ac B ac =-∴=-, 所以23B π=.,2R R ∴= 所以ABC ∆的外接圆面积为=3ππ. 故选D 【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.C解析:C 【解析】,,a b c 分别是ABC 中,,A B C ∠∠∠所对边的边长,则直线sin 0x A a y c ⋅+⋅+=斜率为:sin Aa-, sin sin 0b x y B C ⋅-⋅+=的斜率为:sin bB, ∵sin sin A ba B -=﹣1,∴两条直线垂直.故选C .6.B解析:B 【分析】作图,分别求得∠ABC ,∠ACB 和∠BAC ,然后利用正弦定理求得AC ,最后在直角三角形ACD 中求得AD . 【详解】 解:如图,依题意知∠ABC =30°+15°=45°,∠ACB =180°﹣60°﹣15°=105°, ∴∠BAC =180°﹣45°﹣105°=30°, 由正弦定理知BC ACsin BAC sin ABC=∠∠,∴AC BC sin BAC=∠•sin ∠ABC1062122=⨯=3m ), 在Rt △ACD 中,AD 32=•AC 32=⨯3=30(m ) 即旗杆的高度为30m . 故选B . 【点睛】本题主要考查了解三角形的实际应用.结合了正弦定理等基础知识,考查了学生分析和推理的能力.7.C解析:C 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=, 在ABP ∆中,利用正弦定理得30sin 30103sin120PB ==即这时船与灯塔的距离是103km ,故选C . 【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.8.B解析:B 【分析】根据正弦定理得到2sin sin sin cos cos A B B A B =,化简得到()sin cos 0B A B -+=,计算得到答案. 【详解】2sin cos cos a B b A B =,所以2sin sin sin cos cos A B B A B =,所以()sin sin sin cos cos 0B A B A B -=,即()sin cos 0B A B -+=. 因为0A π<<,0B π<<,所以2A B π+=,故ABC ∆是直角三角形.故选:B 【点睛】本题考查了正弦定理和三角恒等变换,意在考查学生对于三角公式的综合应用.9.A解析:A 【分析】由已知结合等差数列的性质及二倍角公式,正弦定理及余弦定理进行化简,即可求得结果. 【详解】由a ,b ,c 成等差数列可知,2b a c =+, 因为2C A =,所以sin sin 22sin cos C A A A ==,由正弦定理及余弦定理可得,22222b c a c a bc+-=⋅,所以2223bc ab ac a =+-, 所以32c a =,54b a =,若AC 边上的中线BD =所以2225379242a a a ⎡⎤⎛⎫⎛⎫+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解可得4a =,5b =,6c =, 故△ABC 的周长为15. 故选:A. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,正弦定理,等差数列的条件,以及边角关系,属于简单题目.10.D解析:D 【分析】由正弦定理,求得sin sin bB A a=,再由a b <,且0180B ︒<<︒,即可求解,得到答案. 【详解】由题意,在ABC 中,由正弦定理可得sin sin a bA B=,即sin sin sin 3022b B A a ==︒=, 又由a b <,且0180B ︒<<︒, 所以60B =︒或120B =︒, 故选:D. 【点睛】本题主要考查了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.11.A解析:A 【分析】根据已知求出b 的值,再求三角形的面积. 【详解】在ABC ∆中,301C c a =︒==,, 由余弦定理得:2222cos c a b a b C =+-⋅⋅, 即2320b b -+=, 解得:1b =或2b =.∵ABC ∆是钝角三角形,∴2b =(此时为直角三角形舍去).∴ABC ∆的面积为111sin 1222ab C =⨯=. 故选A . 【点睛】本题主要考查余弦定理解三角形和三角形的面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.12.C解析:C 【分析】根据等差中项的性质,结合正弦定理化简可得3B π=,设AC 中点为D ,再利用平面向量的线性运算可得1||||2BD BA BC =+,再平方利用基本不等式求解即可. 【详解】cos a C ,cos b B ,cos c A 成等差数列,2cos cos cos b B a C c A ∴=+,根据正弦定理有2sin cos sin cos sin cos sin()B B A C C A A C =+=+,2sin cos sin B B B ∴=,又sin 0B ≠,1cos 2B ∴=,可得3B π=, 设AC 中点为D ,则AC 边上中线长为1||||2BD BA BC =+, 平方可得()()2222221112()444BD BA BC BA BC c a ac a c ac ⎡⎤=++⋅=++=+-⎣⎦ 2221()3()()124416a c a c a c ⎡⎤+≥+-=+=⎢⎥⎣⎦, 当且仅当4a c ==时取等号,故2BD 的最小值为12,即AC 边上中线长的最小值为故选:C.【点睛】本题主要考查了正弦定理边角互化的运用,同时也考查了利用基本不等式求最值的问题,同时在处理三角形中线的时候可以用平面向量表示从而简化计算,属于中档题. 二、填空题13.【分析】由正弦定理及可得结合两角差余弦公式可得进而可得到值【详解】由正弦定理及可得:在中∴即∴又B 为三角形内角∴=故答案为:【点睛】本题考查三角形中求角的问题涉及到正弦定理两角差余弦公式考查计算能力 解析:π3B =【分析】 由正弦定理及πsin cos 6b A a B ⎛⎫=-⎪⎝⎭可得πsin sin sin cos 6B A A B ⎛⎫=- ⎪⎝⎭,结合两角差余弦公式可得tanB =B 值. 【详解】 由正弦定理及πsin cos 6b A a B ⎛⎫=- ⎪⎝⎭可得:πsin sin sin cos 6B A A B ⎛⎫=- ⎪⎝⎭,在ABC 中,sin 0A ≠, ∴πsin cos 6B B ⎛⎫=-⎪⎝⎭,即ππsin cos cos sin sin 66B B B =+ ∴tanB =B 为三角形内角,∴B =3π 故答案为:3π. 【点睛】本题考查三角形中求角的问题,涉及到正弦定理,两角差余弦公式,考查计算能力,属于基础题.14.【分析】设三角形三条边长分别为先分析得到再利用余弦定理得到最后利用正弦定理即得解【详解】设三角形三条边长分别为那么因为所以故由题意得故答案为:【点睛】本题主要考查正弦定理和余弦定理解三角形意在考查学 解析:1532【分析】设AD x =,三角形三条边长分别为,,a b c ,先分析得到222138b c a +≤,再利用余弦定理得到258bc a ≤,最后利用正弦定理即得解. 【详解】设AD x =,三角形三条边长分别为,,a b c ,那么2243,169x a x a ≤∴≤,因为cos cos 0ADB ADC ∠+∠=所以2222422+=+x a b c , 故2222222213168849,8x b c a a b c a =+-≤∴+≤ 由题意得222222221135cos ,,2288b c a A b c bc a a bc a bc +-==∴+=+≤∴≤ 255315sin sin sin =88432B C A ∴≤=⨯. 故答案为:1532【点睛】本题主要考查正弦定理和余弦定理解三角形,意在考查学生对这些知识的理解掌握水平. 15.【分析】不妨令易知然后在中利用正弦定理求出的值最后在中利用正弦定理可求出的值【详解】解:在中角的平分线交于且设则即整理得所以:结合得即显然是锐角所以再由得:解得故答案为:【点睛】本题考查正弦定理三角【分析】不妨令A α∠=,易知ACD BCD α∠==,3B πα∠=-,然后在ABC 中,利用正弦定理,求出sin α,cos α的值,最后在ABC 中,利用正弦定理,可求出AB 的值.【详解】解:在ABC 中,角C 的平分线交AB 于D ,且CD AD =.设A α∠=,则ACD BCD α∠==,3B πα∠=-, ∴sin sin AC BC B A =∠∠,即32sin(3)sin παα=-, 整理得2sin33sin αα=,所以:2(sin cos2cos sin 2)3sin ααααα+=,结合sin 0α≠得222(2cos 12cos )3αα-+=, 即258cos α=,显然α是锐角,所以cos αα=∴sin 22sin cos ααα==. 再由ABC 得:2sin sin 2AB αα=,∴= 解得10AB .【点睛】本题考查正弦定理,三角恒等变换的知识方法在解题中的作用,属于中档题.16.【分析】由正余弦定理可得的余弦值进而求出的值【详解】因为则由正弦定理可得所以又所以由余弦定理可得又因为所以故答案为:【点睛】本题主要考查了正余弦定理的应用考查了运算能力属于中档题解析:23π 【分析】由正余弦定理可得C 的余弦值,进而求出C 的值.【详解】因为3sin 5sin B A =,则由正弦定理可得35b a =,所以35a b =, 又2a c b +=,所以725c b a b =-=, 由余弦定理可得22222294912525cos 32225b b b a b c C ab b b +-+-===-⋅⋅, 又因为(0,)C π∈,所以23C π=, 故答案为:23π.【点睛】本题主要考查了正余弦定理的应用,考查了运算能力,属于中档题.17.3【分析】由题意结合余弦定理得进而可得再由余弦定理即可求得利用平方关系求得进而求得【详解】由余弦定理可得即又所以所以所以所以所以所以故答案为:3【点睛】本题考查了余弦定理的综合应用考查了同角三角函数 解析:3【分析】由题意结合余弦定理得3c =,进而可得3a b =,再由余弦定理即可求得cos 10B =,利用平方关系求得sin 10B =,进而求得sin tan 3cos B B B ==. 【详解】4A π=,∴由余弦定理可得2222cos a b c bc A =+-即222b a c -=-, 又22212b a c -=,所以2212c c =-,所以3c =, 222222145299a b c b b b =-=-=,所以3a b =,所以22222258cos 2b b b a c b B ac +-+-===,所以sin B ==, 所以sin tan 3cos B B B==, 故答案为:3.【点睛】本题考查了余弦定理的综合应用,考查了同角三角函数关系式,考查了运算求解能力与转化化归思想,属于中档题.18.【分析】在中则再由正弦定理列出方程即可求解【详解】由题设可知在中所以由正弦定理得即解得故答案为:【点睛】本题主要考查了解三角形的实际应用其中解答中熟练应用正弦定理列出方程是解答的关键着重考查运算与求【分析】在ABC 中,75CAB ∠=︒,45CBA ∠=︒,则60ACB ∠=︒,再由正弦定理列出方程,即可求解.【详解】由题设可知,在ABC 中,75CAB ∠=︒,45CBA ∠=︒,所以60ACB ∠=︒,由正弦定理得sin sin AB AC ACB CBA =∠∠,即3sin 60sin 45AC =,解得AC =..【点睛】本题主要考查了解三角形的实际应用,其中解答中熟练应用正弦定理,列出方程是解答的关键,着重考查运算与求解能力,属于基础题.19.2【分析】设与两边平方后相加可得即可知时最大可得角再利用正弦定理即可求解【详解】设则又因为所以所以所以当时此时的外接圆半径为故答案为:2【点睛】本题主要考查了正弦定理二倍角公式三角函数的性质同角三角 解析:2【分析】设sin sin A B t +=与cos cos A B +=两边平方后相加,可得2322cos()A B t +=+-,即21cos()2t A B +-=,可知A B =时,sin sin =+t A B 最大,可得角C ,再利用正弦定理即可求解.【详解】设sin sin A B t +=,则()2222sin sin sin sin 2sin sin t A B A B A B =+=++, 又因为()2223cos cos cos cos 2cos cos A B A B A B =+=++,所以222223sin 2sin sin sin cos 2cos cos cos t A A B B A A B B +=+++++ 22cos()B A =+-,所以21cos()2t A B +-=, 所以当A B =时,max 1=t ,23C π∠=,此时ABC 2=. 故答案为:2【点睛】本题主要考查了正弦定理、二倍角公式、三角函数的性质、同角三角函数基本关系,属于中档题. 20.【分析】在两个三角形中利用余弦定理建立等量关系式整理得出结合题中所给的条件利用余弦定理建立等量关系式求得结果【详解】因为所以可得在△中所以整理得出所以所以故答案为:【点睛】该题考查的是有关解三角形的解析:677 【分析】 在两个三角形中,利用余弦定理,建立等量关系式,整理得出2AB AD =,结合题中所给的条件,利用余弦定理建立等量关系式,求得结果. 【详解】 因为cos cos ADB ADC ∠=-∠,所以2229142321AD AB AD AD AD+-+-=-⨯⨯⨯⨯,可得2AB AD =, 在△ABD 中,2222cos BD AD AB AD AB BAD =+-⨯⨯∠,所以22192()422AB AB AB AB =+-⨯⨯⨯-, 整理得出2794AB =,所以2367AB =,所以67AB =, 故答案为:67. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理解三角形,属于简单题目.三、解答题21.(1)3π ;(2)4+23. 【分析】(1)利用降幂公式、两角和的正弦公式变形可得sin (C +6π)=1,再根据角的范围可得解;(2)利用正弦定理求出AB ,求出AIB ∠,设出ABI ∠,将,AI BI 用ABI ∠表示,根据三角函数知识求出AI BI +的最大值可得解.【详解】(1)∵3sin (A +B )=1+2sin 22C ,且A +B +C =π, ∴3sin C =1+1﹣cos C =2﹣cos C ,即3sin C +cos C =2,∴sin (C +6π)=1. ∵C ∈(0,π),∴C +6π∈(6π,76π),∴C +6π=2π,即C =3π.(2)∵△ABC 的外接圆半径为2,∴由正弦定理知,sin AB ACB ∠=sin3ABπ=2×2=4,∴AB=23,∵∠ACB=3π,∴∠ABC+∠BAC=23π,∵∠BAC与∠ABC的内角平分线交于点Ⅰ,∴∠ABI+∠BAI=3π,∴∠AIB=23π,设∠ABI=θ,则∠BAI=3π﹣θ,且0<θ<3π,在△ABI中,由正弦定理得,sin()3BIπθ-=sinAIθ=sinABAIB∠23sin34,∴BI=4sin(3π﹣θ),AI=4sinθ,∴△ABI的周长为3+4sin(3π﹣θ)+4sinθ=3(32cosθ﹣12sinθ)+4sinθ=33θ+2sinθ=4sin(θ+3π)3∵0<θ<3π,∴3π<θ+3π<23π,∴当θ+3π=2π,即6πθ=时,△ABI的周长取得最大值,最大值为3,故△ABI的周长的最大值为3.【点睛】关键点点睛:将,AI BI用ABI∠表示,根据三角函数知识求出AI BI+的最大值是解题关键.22.(Ⅰ)3π;(Ⅱ)17-.【分析】(Ⅰ)利用正弦定理的边角互化以及余弦定理即可求解.(Ⅱ)利用正弦定理的边角互化可得sin3sinA B=,再由23A Bπ+=求出3tan B=,再利用两角和的余弦公式即可求解.【详解】(Ⅰ)∵22(sin sin )sin sin sin A B C A B -=-∴由正弦定理得22()a b c ab -=-,即222a b c ab +-= ∴1cos 2C =, 又∵(0,)C π∈ ∴3C π=;(Ⅱ)∵3a b =,∴由正弦定理得sin 3sin A B =, ∵23A B π+=,∴2sin 3sin 3B B π⎛⎫-= ⎪⎝⎭,∴tan B =,∴0,2B π⎛⎫∈ ⎪⎝⎭∴sin B B == ,∴11sin 22sin cos 214B B B B === ∴1cos(2)cos 2cos sin 2sin 7BC B C B C +=-=-23.(1)3π;(2)3. 【分析】 (1)根据题设条件和正弦定理,化简得到222b c a bc +-=,再利用余弦定理,求得cos A 的值,即可求解;(2)由余弦定理和基本不等式,求得2bc a ≤,在结合正弦定理和三角恒等变换的公式,化简得22sin 22si 11tan tan n 2sin R R A R a R B R C B bcC ⋅⋅==⋅+,即可解. 【详解】(1)由()sin sin sin b c CB A b a -=-+,可得()()()sin sin sin b cC B A b a -=-+,由正弦定理得()()()b c c b a b a -=-+,即222b c a bc +-=, 由余弦定理,得2221cos 22b c a A bc +-==, 因为0A π<<,可得3A π=.(2)由(1)知3A π=,设三角形的外接圆的半径为R ,可得2sin a R A == 又由余弦定理得222222cos a b c bc A b c bc bc =+-=+-≥,即24bc a ≤=,当且仅当2b c ==时取等号, 又由11cos cos cos sin sin cos tan tan sin sin sin sin B C B C B C B C B C B C++=+=()sin sin sin sin sin sin B C A B C B C +==22sin 2sin 2sin R R A R B R C ⋅=⋅23343R a bc bc ⋅==≥=⨯, 其中R 是ABC 外接圆的半径,所以11tan tan B C +.24.(1)6π;(2) 【分析】(1)先用余弦定理化余弦为边,再用正弦定理化边为角从而求得A ;(2)由余弦定理用c 表示a ,然后把三角形的面积用两种方法表示求得c ,从而可计算出面积.【详解】(1)由22sin cos 2c a B C ab--=得222sin 2cos ab B ab C c a -=-, 由余弦定理得222222sin ab B c a b c a +--=-,所以2sin a B b =,由正弦定理得2sin sin sin A B B =,B 是三角形内角,sin 0B ≠, 所以1sin 2A =,又A 为锐角,所以6A π=.(2)由(1)2222232cos 2cos 166a b c bc A c c c π=+-=+-⋅⋅2716c =,4a c =,所以11sin 22ABC S bc A a ==⨯△211124224c ⨯⨯=⨯⨯c =b == 111sin 222ABC S bc A ===△ 【点睛】思路点睛:本题考查正弦定理、余弦定理、三角形面积公式.利用正弦定理和余弦定理进行边角互化是解题关键.三角形的面积采取了二次计算,通过不同的计算方法得出等式,从而求解.这是一种解题技巧.25.(1)23C π=;(2)13,24⎡⎫⎪⎢⎣⎭. 【分析】(1)利用正弦定理的边角互化即可求解.(2)利用二倍角公式以及三角形的内角和性质可得22sin sin A B +11sin 226A π⎛⎫=-+ ⎪⎝⎭,利用三角函数的性质即可求解. 【详解】解:(1)由已知及正弦定理得2(sin cos sin cos )cos sin 0A C C A C B ++=,2sin()cos sin 0A C C B ++=,因为A B C π+=-,所以sin (2cos 1)0B C +=, 因为sin 0B ≠,所以1cos 2C =-, 因为0C π<<,所以23C π=. (2)221cos 21cos 21sin sin 1(cos 2cos 2)222A B A B A B --+=+=-+12111cos 2cos 21cos 2cos 2223222A A A A A π⎛⎫⎡⎤⎛⎫=-+-=--+ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭1111cos 221sin 22226A A A π⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为03A π<<,所以52666A πππ<+<,1sin 2126A π⎛⎫<+≤ ⎪⎝⎭, 111sin 22264A π⎛⎫-≤-+<- ⎪⎝⎭,1131sin 22264A π⎛⎫≤-+< ⎪⎝⎭, 所以2213sin sin 24A B ≤+<,即22sin sin A B +的取值范围是13,24⎡⎫⎪⎢⎣⎭.26.条件选择见解析;ABC 【分析】选择①,用余弦定理求得B 角,选择②,用正弦定理化边为角后求得B 角,选择③用两角和的正弦公式变形后求得B 角,然后利用正弦定理求得a ,再由诱导公式与两角和的正弦公式求得sin C ,最后由面积公式计算出面积.【详解】解:(1)若选择①,222b a c =+由余弦定理,222cos 222a cb B ac ac +-===, 因为()0,B π∈,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 12464646C πππππππ⎛⎫==+=+=⎪⎝⎭所以113sin 2244ABC S ab C +===△. (2)若选择②cos sin a B b A =,则sin cos sin sin A B B A =, 因为sin 0A ≠,所以sin cos B B =, 因为()0,B π∈,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin 2b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 12464646C πππππππ⎛⎫==+=+=⎪⎝⎭,所以113sin 2244ABC S ab C +===△. (3)若选择③sin cos B B +=4B π⎛⎫+= ⎪⎝⎭sin 14B π⎛⎫+= ⎪⎝⎭, 因为()0,B π∈,所以5,444B πππ⎛⎫+∈ ⎪⎝⎭, 所以42B ππ+=,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 12464646C πππππππ⎛⎫==+=+=⎪⎝⎭,所以11sin 22ABC S ab C ===△. 【点睛】关键点点睛:本题考查正弦定理、余弦定理、三角形的面积公式,解题中要注意条件与结论之间的联系,确定选用的公式与顺序.用正弦定理进行边角转换是一种重要技巧,它的目的是边角分离,公式应用明确.本题是求三角形面积,一般要知道两边和夹角的正弦,在已知一角和一边情况下还需要求得一条边长及两边夹角,这样我们可以采取先求B 角,再求a 边和sin C ,从而得面积.。
2020年高考理科数学 《解三角形》题型归纳与训练及答案解析

2020年高考理科数学 《解三角形》题型归纳与训练【题型归纳】题型一 正弦定理、余弦定理的直接应用例1ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin2BA C +=. (1)求cos B(2)若6a c +=,ABC ∆面积为2,求b . 【答案】(1)15cos 17B =(2)2b =. 【解析】由题设及A B C π++=得2sin 8sin2BB =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15cos 17B =.(2)由15cos 17B =得8sin 17B =,故14sin 217ABC S ac B ac ∆==. 又2ABC S ∆=,则172ac =. 由余弦定理及6a c +=得22222cos ()2(1cos )b a c ac B a c ac B =+-=+-+1715362(1)4217=-⨯⨯+=. 所以2b =.【易错点】二倍角公式的应用不熟练,正余弦定理不确定何时运用 【思维点拨】利用正弦定理列出等式直接求出例2 ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = . 【答案】π3【解析】1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=.【易错点】不会把边角互换,尤其三角恒等变化时,注意符号。
【思维点拨】边角互换时,一般遵循求角时,把边换成角;求边时,把角转换成边。
例3在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23π,则S △ABC =________.【答案】34【解析】因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1sin B =3sin 2π3=2,即sin B =12,所以B=π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34. 【易错点】大边对大角,应注意角的取值范围【思维点拨】求面积选取公式时注意,一般选取已知角的公式,然后再求取边长。
第19题 解三角形-2021年高考数学真题逐题揭秘与以例及类(新高考全国Ⅰ卷)(含答案解析)

第19题 解三角形一、原题呈现【原题】记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.解法一:(1)由sin sin BD ABC a C ∠=及正弦定理得2sin sin a C ac b BD b ABC b b ====∠(2)由余弦定理得22222223cos 2223b c b b c a A b c b c ⎛⎫+- ⎪+-⎝⎭==⨯⨯⨯⨯整理得22211203a c b +-=,即2211203a c ac +-=, 所以233c a c a ==或, 当3c a =时,由2b ac =得b =,此时)1a b a c +=<,不满足题意,当23c a =时,由2b ac =得3b a =, 所以2227cos 212ac b ABC ac +-∠==解法二:(1)由题设,sin sin a C BD ABC =∠,由正弦定理知:sin sin c bC ABC=∠,即sin sin C cABC b=∠,∴acBD b=,又2b ac =, ∴BD b =,得证.(2)由题意知:2,,33b b BD b AD DC ===, ∴22222241399cos 24233b b b c c ADB b b b +--∠==⋅,同理2222221099cos 2233b b b a a CDB b b b +--∠==⋅, ∵ADB CDB π∠=-∠, ∴2222221310994233b bc a b b --=,整理得2221123b a c +=,又2b ac =, ∴42221123b b a a +=,整理得422461130a a b b -+=,解得2213a b =或2232a b =,由余弦定理知:222224cos 232a c b a ABC ac b+-∠==-,当2213a b =时,7cos 16ABC ∠=>不合题意;当2232a b =时,7cos 12ABC ∠=;综上,7cos 12ABC ∠=. 【就题论题】本题第(1)问比较简单,利用正弦定理进行边角代换,即可得出结论.第(2)问求解的关键是利用正弦定理、余弦定理整理出,a b 的关系式,再利用余弦定理求cos ABC ∠.二、考题揭秘【命题意图】本题考查正弦定理及余弦定理的应用,考查数学运算与逻辑推理的核心素养.难度:中等偏易【考情分析】新教材高考,解三角形是必考题,一般以解答题形式考查,考查主要方式是利用正弦定理与余弦定理解三角形,有时还会涉及到三角形中的三角变换.【得分秘籍】(1)正弦定理是一个连比等式,只要知道其比值或等量关系就可以运用正弦定理通过约分达到解决问题的目的.(2)运用余弦定理时,要注意整体思想的运用.在已知三角形两边及其中一边的对角,求该三角形的其他边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用.(3)应用正弦、余弦定理的解题技巧①求边:利用公式a=sinsinb AB,b=sinsina BA,c=sinsina CA或其他相应变形公式求解.②求角:先求出正弦值,再求角,即利用公式sin A=sina Bb,sin B=sinb Aa,sin C=sinc Aa或其他相应变形公式求解.③已知两边和夹角或已知三边可利用余弦定理求解.④灵活利用式子的特点转化:如出现a2+b2-c2=λab形式用余弦定理,等式两边是关于边或角的正弦的齐次式用正弦定理.(4)判定三角形形状的途径:①化边为角,通过三角变换找出角之间的关系.②化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.(5)三角形面积公式的应用原则①对于面积公式S=ɑb sin C=ɑc sin B=bc sin A,一般是已知哪一个角就使用哪一个公式.②与面积有关的问题,一般要用到正弦定理和余弦定理进行边和角的转化.(6)应用解三角形知识解决实际问题需要下列三步:①根据题意,画出示意图,并标出条件;②将所求问题归结到一个或几个三角形中(如本例借助方位角构建三角形),通过合理运用正、余弦定理等有关知识正确求解;③检验解出的结果是否符合实际意义,得出正确答案.【易错警示】(1)已知两边及其中一边的对角解三角形时,注意要对解的情况进行讨论,讨论的根据一是所求的正弦值是否合理,当正弦值小于等于1时,还应判断各角之和与180°的关系;二是两边的大小关系.(2)等式两边都不要随意约掉公因式;要移项提取公因式,否则会有漏掉一种形状的可能.三、以例及类(以下所选试题均来自新高考Ⅰ卷地区2020年1-6月模拟试卷) 解答题(2021福建省厦门市高三三模)1. 锐角ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,满足4sin s sin sin in C B a B C +=. (1)求A ;(2)若4b =,ABC 的面积为D 是BC 上的点,AD 平分BAC ∠,求AD .【答案】(1)3A π=;(2)AD =. 【解析】【分析】(1)先利用正弦定理进行边化角并化简得到sin A =,再结合锐角三角形得到角A 即可;(2)先利用面积公式求得c 边,再结合角平分线,利用BAD CAD BAC S S S +=△△△和面积公式,列式计算求得AD 即可.【详解】解:(1)在ABC 中,由正弦定理得sin sin sin a b cA B C==,4sin s sin sin in C B a B C +=,sin sin 4sin sin sin B C C B A B C +=,即sin 4sin sin sin B C A B C =又因为sin sin 0B C ≠,所以4sin A =,即sin A =, 又因为ABC 为锐角三角形,所以3A π=;(2)由1sin 2ABCSbc A ==14sin 23c π⨯⨯=3c =,因为BAC ∠的角平分线为AD ,所以126BAD CAD BAC π∠∠∠===, 又因为BAD CAD BAC S S S +=△△△,所以11sin sin 2626c AD b AD ππ⋅+⋅=113sin 4sin 2626AD AD ππ⨯⋅+⨯⋅=,所以74AD =7AD =. 【点睛】思路点睛:一般地,解有关三角形的题目时,常运用正弦定理(或余弦定理)进行边角互化,要有意识地根据已知条件判断用哪个定理更合适. 如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理.(2021福建省福州市高三5月二模) 2.ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,sin cos()6b A a B π=-.(1)求B ;(2)若D 是ABC 的外接圆的劣弧AC 上一点,且3a =,4c =,1AD =,求CD .【答案】(1)3π;(2)3. 【解析】【分析】(1)利用正弦定理边化角,再用差角的余弦公式展开化成正切即可得解; (2)利用余弦定理求出边b ,借助圆内接四边形性质求得ADC ∠,最后又由余弦定理建立方程得解.【详解】(1)ABC 中,由正弦定理有sin cos()sin sin sin cos()66b A a B B A A B ππ=-⇒=-,从而1sin sin sin sin )2B A A B B =+,化简得,1sin sin cos 22A B A B =,因为0A π<<,即sin 0A ≠,所以tan B =0B π<<,故3B π=.(2)在ABC 中,由余弦定理知,2222cos b a c ac B =+-2234234cos133π=+-⨯⨯⋅=,即 b =又由于A ,B ,C ,D 四点共圆,从而23ADC B ππ∠=-=, 在ADC 中,设DC x =,由余弦定理得,2222cos AC AD DC AD DC ADC =+-⋅⋅∠,即得22213121cos3x x π=+-⋅⋅⋅,化简得,2120x x +-=,解得3x =或 4x =-(舍去), 故3DC =.【点睛】思路点睛:已知两边及一边的对角求第三边的三角形问题,可用余弦定理建立关于第三边的一元二次方程求解. (广东省汕头市高三二模)3. 随着人们生活水平的不断提高,人们对餐饮服务行业的要求也越来越高,由于工作繁忙无法抽出时间来享受美食,这样网上外卖订餐应运而生.现有美团外卖送餐员小李在A 地接到两份外卖单,他须分别到B 地、D 地取餐,再将两份外卖一起送到C 地,运餐过程不返回A 地.A ,B ,C ,D 各地的示意图如图所示,2km BD =,AD =,120ABD ∠=︒,45DCB ∠=︒,30CDB ∠=︒,假设小李到达B 、D 两地时都可以马上取餐(取餐时间忽略不计),送餐过程一路畅通.若小李送餐骑行的平均速度为每小时20千米,请你帮小李设计出所有送餐路径(如:AB BD DB BC →→→),并计算各种送餐路径的路程,然后选择一条最快送达的送餐路径,并计算出最短送餐时间为多少分钟.(各数值保留3位小数)(参考数据:1.414≈ 1.732≈)【答案】答案见解析 【解析】【分析】根据正弦定理先求解出,BC CD 的值,再根据余弦定理求解出AB 的值,然后分析每条送餐路径的路程并确定出最短送餐路径对应的送餐时间.【详解】解:在BCD △中,由正弦定理可知:sin sin BC BDBDC BCD =∠∠,即:2sin 30sin 45BC =︒︒,解得:BC =由sin sin CD BDCBD BCD =∠∠,即:2sin105sin 45CD =︒︒,解得:1CD =(由余弦定理可得22cos BC BD CD BD CD CDB =+-⋅⋅∠,解得=1CD +或者1CD ,,CBD DCB CD BD ∠>∠∴>=1CD ∴)在ABD △中,由余弦定理可知:222cos 2AB BD AD ABDAB BD即2412cos1204AB AB+-︒=,解得2AB =或4AB =-(舍);①若送餐路径为:AB BD DB BC →→→,则总路程=67.414km +≈①若送餐路径为:AD DB BC →→,则总路程=2 6.878km ≈①若送餐路径为:AB BD DC →→,则总路程=221 6.732km ++≈①若送餐路径为:AD DB BD DC →→→,则总路程=22110.196km ++≈所以最短送餐路径为AB BD DC →→, 此路径的送餐时间为:6.7326020.19620⨯=(分钟). 【点睛】关键点点睛:本题是实际问题中解三角形的应用,解答问题的关键在于通过正余弦定理求解出每一段未知的线段长度,然后再去分析每一条路径对应的总路程并确定出最短路径以及送餐时间. (2021广东省广州市天河区高三三模)4. 在ABC 中,角,,A B C 所对的边分别是,,a b c ,已知22cos c b a B -=. (1)求角A 的值; (2)若ABC的面积S c ==sin sin B C 的值 【答案】(1)3π;(2)12.【解析】【分析】(1)由正弦定理化边为角,然后由诱导公式,两角和的正弦变形可求得A 角;(2)由三角形面积求得b ,由余弦定理求得a ,然后用正弦定理可得sin sin B C . 【详解】(1)因为22cos c b a B -=,由正弦定理得2sin sin 2sin cos C B A B -=,sin 2sin()2sin cos 2sin()2sin cos 2(sin cos cos sin )B A B A B A B A B A B A B π=---=+-=+2sin cos 2cos sin A B A B -=,又B 是三角形内角,sin 0B ≠,所以()1cos ,02A A π=∈,,3A π=; (2)11sin sin 223ABC S bc A b π===△,b =2222212cos 292a b c bc A =+-=+-⨯=,3a =,又3sin sin sin sin 3a b c A B C π==== sin 1B =,1sin 2C = 所以1sin sin 2B C =.【点睛】方法点睛:正弦定理、余弦定理、三角形面积是解三角形的常用公式,解题方法是利用正弦定理进行边角转换,化边为角,然后由诱导公式,两角和的正弦公式变形求角,然后再根据问题先用相应公式计算. (2021河北省张家口市高三三模)5. 在四边形ABCD 中,,1,2AB CD AB AC BD ===,且sin sin DBC DCB ∠∠=.(1)求AD 的长; (2)求ABC 的面积.【答案】(1)AD =(2 【解析】【分析】(1)在DBC △中,由sin sin DBC DCB ∠∠=及正弦定理可得 2.BD CD ==设.AD x =在ABD △和ACD △中,分别由余弦定理,列方程22144724x x x x+-+-=-,解得AD ;(2)在ACD △中,由222AD CD AC +=,得到AD CD ⊥,直接利用面积公式求出ABC 的面积.【详解】(1)因为在四边形ABCD 中,AB CD ,所以cos cos .CDA DAB ∠∠=- 在DBC △中,由sin sin DBC DCB ∠∠=及正弦定理可得 2.BD CD == 设.AD x =在ABD △和ACD △中,由1,AB AC ==22144724x x x x+-+-=-, 所以()()2221447.x x +-=-+-解得x =AD =.(2)在ACD △中,2AD AC CD ===,得222AD CD AC +=,所以AD CD ⊥,所以12ABCSAB AD =⋅=.所以ABC 【点睛】(1)在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考:①从题目给出的条件,边角关系来选择;②从式子结构来选择. (2)平面四边形问题通常转化为解三角形来处理. (2021河北省唐山市高三三模)6. 如图所示,在梯形ABCD 中,//AB CD ,2BAD π∠=,点E 是AD 上一点,2=4DE AE =,2cos cos cos BC BEC BE EBC CE ECB ∠=∠+∠.(1)求BEC ∠的大小;(2)若BCE 的面积S 为BC .【答案】(1)∠BEC =3π;(2)BC = 【解析】【分析】(1)利用余弦定理将角化为边,从而可得1cos 2BEC ∠=,故可求其大小. (2)设AEB α∠=,由解直角三角形可得,BE CE ,根据面积可求α的值,利用余弦定理可求BC 的长.【详解】(1)∵2cos cos cos BC BEC BE EBC CE ECB ∠=∠+∠2222222•2•BE C BE BC CE CE BC BE BE BC CE E BC BC+-+-⋅⋅=+=∴1cos 2BEC ∠=,而BEC ∠为三角形内角,故3BEC π∠=. (2)设AEB α∠=,则23DEC πα∠=-,其中203πα<<, ∵DE =2AE =4, ∴2cos cos AE BE αα==,422cos()cos()33CE DE ππαα=--=, ∵△BCE的面积1sin 23cos cos()3S BE CE παα=⋅⋅=-==2sin(2)16πα==--,2sin(21)6α=--, ∴sin 216πα⎛⎫-= ⎪⎝⎭,因为72666πππα-<-<,故262ππα-=,即3πα=, 此时24cos BE α==,482cos()3CE πα==-, ∴在△BCE 中,由余弦定理得:2222cos 48BC BE CE BE CE BEC +⨯∠=-=,∴BC =(2021湖北省襄阳市高三下学期5月第二次模拟)7. 如图,设ABC 中角,,A B C 所对的边分别为,,a b c ,AD 为BC 边上的中线,已知1c =,12sin cos sin sin sin 4c A B a A b B b C =-+,cos 7BAD ∠=.(1)求b 边的长度;(2)求ABC 的面积.【答案】(1)4b =;(2)【解析】【分析】(1)角化边即可求解;(2)设,AB AC θ=,根据cos 7BAD ∠=列方程即可求解 【详解】(1)由条件12sin cos sin sin sin 4c A B a A b B b C =-+, 可得:2212cos 4ca B a b bc =-+,即222221224a c b ca a b bc ac +-⋅=-+, 化简可得:4c b =,因为1c =,所以4b =(2)因为D 为中点,所以()12AD AB AC =+, 设,AB AC θ=,由()()()22222211122cos 444AD AB AC AB AC AB AC c b c b θ=+=++⋅=++⋅ 得17||2AD =, 又()114cos 22AB AD AB AB AC θ+⋅=⋅+=,所以1cos 7||||17AB AD BAD AB AD ⋅=∠==⋅ 化简可得:228cos 8cos 110θθ+-=解得1cos 2θ=或11cos 14θ=-, 又14cos 0θ+>,所以1cos 2θ=,则sin θ==,所以ABC 的面积为11sin 14222bc A =⨯⨯⨯=【点睛】关键点点睛:计算线段长度,关键是找到基底,然后用基底表示,平方之后再开方即可.(2021湖北省武汉市高三下学期4月质量检测)8. 平面凸四边形ABCD 中,9034BAD BCD AD AB ∠=∠=︒==,,.(1)若45ABC ∠=︒,求CD ;(2)若BC =AC .【答案】(1)2;(2) 【解析】【分析】(1)先利用勾股定理求出BD ,利用差角公式求出sin DBC ∠,再利用直角三角形性质可求CD ;(2)先利用直角三角形及BC 求出sin cos 55CBD CBD ∠=∠=,再利用和角公式求出cos ABC ∠,结合余弦定理可得AC .【详解】(1)连接BD ,在Rt BAD 中,由4390AB AD BAD ==∠=︒,,. 得5BD =,①34sin cos 55ABD ABD ∠=∠=,. ∵45ABC ∠=︒,∴45DBC ABC ∠=︒-∠,①43sin sin 45cos cos 45sin 252510DBC ABD ABD ∠=︒⋅∠-︒⋅∠=⨯=-,在Rt BCD 中,由90BCD ∠=︒知:sin 5102CD BD DBC =⋅∠=⨯=.(2)连接AC ,由(1)知5BD =,在Rt ABD △中易知34sin cos 55ABD ABD ∠=∠=,.在Rt BCD 中,由5BC BD ==得CD =,易知sin cos CBD CBD ∠=∠= ①()cos cos cos cos sin sin ABC ABD CBD ABD CBD ABD CBD ∠=∠+∠=∠⋅∠-∠⋅∠4355=-=. 在ABC 中由余弦定理得:(222222cos 424205AC AB BC AB BC ABC =+-⋅∠=+-⨯⨯= ①AC =(2021湖南省衡阳市高三下学期毕业班联考)9. 如图,ABC 中,1302BD CD BAD =∠=︒,.(1)若AB AC =,求sin DAC ∠;(2)若AD BD =,求AC BC的值. 【答案】(1)sin 1DAC ∠=;(2)【解析】【分析】(1)利用三角形的面积比列方程,化简求得sin DAC ∠.(2)设AD x =,求得3BC x =,利用余弦定理列方程,求得AC =,从而求得AC BC. 【详解】(1)设BC 边上的高为h ,11sin 2211sin 22BAD CAD BD h AB AD BAD SS CD h AC AD CAD ⋅⋅⋅⋅∠==⋅⋅⋅⋅∠, 而1sin 302BD CD AB AC BAD ==∠=︒,,,∴sin 1DAC ∠=. (2)设AD x =,则3060AD BD x BAD ABD ADC ==∠=∠=︒∠=︒,,,2,3CD x BC x ==,在ADC 中,由余弦定理得:()()2222222cos603AC x x xx x =+-⋅︒=,∴AC =,∴33AC BC x ==. (2021湖南省株洲市高三下学期质量检测)10. 如图所示,在四边形ABCD中,tan tan BAD BAC ∠=-∠=(1)求DAC ∠的大小;(2)若2DC =,求ADC 周长的最大值.【答案】(1)3π;(2)6. 【解析】【分析】(1)根据DAC BAD BAC ∠=∠-∠,由()tan tan DAC BAD BAC ∠=∠-∠,利用两角差的正切公式求解;(2)利用正弦定理得到,in AD AC ACD ADC =∠=∠,则ADC 的周长为)22si n sin AD AC ACD ADC ++=+∠+∠,再根据23ACD ADC π∠+∠=,利用两角和与差的三角函数转化为22sin 64AD AC ACD π⎛⎫++=+∠+ ⎪⎝⎭,利用三角函数的性质求解. 【详解】(1)因为DAC BAD BAC ∠=∠-∠,且tan tan 2BAD BAC ∠=-∠= 所以()tan tan DAC BAD BAC ∠=∠-∠,tan tan 1tan BAD BAC BAD BAC∠-∠=+∠⋅∠,-== 因为()0,DAC π∠∈, 所以3DAC π∠=;(2)由正弦定理得sin si n s in DAC A DC A CD ADC D AC ∠=∠==∠所以,in 33AD AC ACD ADC =∠=∠,所以ADC 的周长为)22si n sin AD AC ACD ADC ++=+∠+∠,22sin s n 33i ACD ACD π⎛⎫⎛⎫=+∠+-∠ ⎪ ⎪⎝⎭⎝⎭,32sin cos 223ACD ACD ⎛⎫=+∠+∠ ⎪ ⎪⎝⎭, 2n 64si ACD π⎛⎫=+∠+ ⎪⎝⎭, 因为203ACD π<∠<, 所以5666ACD πππ<∠+<, 所以1sin 126ACD π⎛⎫<∠+≤ ⎪⎝⎭, 所以ADC 的周长的最大值为2416+⨯=.【点睛】方法点睛:三角形周长问题,一般地是利用公式a =2R sin A ,b =2R sin B ,c =2R sin C (R 为ABC 外接圆半径),将边转化为角的三角函数关系,然后利用三角函数知识进行化简,其中往往用到三角形内角和定理A +B +C =π,然后利用三角函数的性质求解.(2021江苏省扬州中学高三3月调研)11. 如图,某生态农庄内有一直角梯形区域ABCD ,//AB CD ,AB BC ⊥,3AB =百米,2CD =百米.该区域内原有道路AC ,现新修一条直道DP (宽度忽略不计),点P 在道路AC 上(异于A ,C 两点),6BAC π∠=,DPA θ∠=.(1)用θ表示直道DP 的长度;(2)计划在ADP △区域内种植观赏植物,在CDP 区域内种植经济作物.已知种植观赏植物的成本为每平方百米2万元,种植经济作物的成本为每平方百米1万元,新建道路DP 的成本为每百米1万元,求以上三项费用总和的最小值.【答案】(1)1sin DP θ=,566ππθ<<;(2) 【解析】【分析】(1)根据解三角形和正弦定理可得1sin DP θ=,566ππθ<<, (2)分别求出APD S △,ADC S △,可得DPC S △,设三项费用之和为f,可得()1cos 12sin 2f θθθ+=+,566ππθ<<,利用导数求出最值. 【详解】解:(1)过点D 作DD AB '⊥,垂足为D ,在Rt ABC 中,∵AB BC ⊥,6BAC π∠=,3AB =,∴BC =在Rt ADD '中,∵1AD '=,DD '=2AD =,∴sin DAD '∠=∴3DAD π'∠=, ∵6BAC π∠=, ∴6DAP π∠=, 在ADP △中,由正弦定理可得sin sin 6AD DP πθ=, ∴1sin DP θ=,566ππθ<<, (2)在ADP △中,由正弦定理可得sin sin AD AP ADPθ=∠,∴52sin6sinAPπθθ⎛⎫-⎪⎝⎭=,∴5sin16sin2sinAPDS AP PDπθθθ⎛⎫-⎪⎝⎭=⋅⋅=△,又11sin22222 ADCS AD DC ADC=⋅⋅∠=⨯⨯⨯=△∴5sin6sinDPC ADC APDS S Sπθθ⎛⎫-⎪⎝⎭=-=△△△,设三项费用之和为f,则()55sin sin1 66211 sin sin sinfπθπθθθθθ⎛⎫⎛⎫⎛⎫--⎪ ⎪⎪⎝⎭⎝⎭⎪=⨯+⨯+⨯⎪⎪⎝⎭5sin16sin sinπθθθ⎛⎫-⎪⎝⎭=+1cos12sinθθ+=+,566ππθ<<,∴()21cos2sinfθθθ-='-,令()0fθ'=,解得23πθ=,当2,63ππθ⎛⎫∈ ⎪⎝⎭时,()0fθ'<,函数f单调递减,当25,36ππθ⎛⎫∈ ⎪⎝⎭时,()0fθ'>,函数f单调递增,∴()min23f fπθ⎛⎫==⎪⎝⎭(2021江苏省南京师范大学《数学之友》高三下学期一模)12. 已知ABC中,D是AC边的中点,且①3BA=;①BC=①BD=①60A ∠=︒.(1)求AC 的长;(2)BAC ∠的平分线交BC 于点E ,求AE 的长.上面问题的条件有多余,现请你在①,①,①,①中删去一个,并将剩下的三个作为条件解答这个问题,要求答案存在且唯一.你删去的条件是___________,请写出用剩余条件解答本题的过程.【答案】删去条件见解析;(1)2;(2)5. 【解析】【分析】若删去①①,由余弦定理易得出两解,不满足题意.删①,在ABD △中和ABC 中分别利用余弦定理建立关系可求解,再利用ABE ACE ABC S S S +=可求AE的长;删①,在ABD △中,由余弦定理有2cosADB ∠=,在BCD △中,cosCDB ∠=,由cos cos ADB CDB ∠=-∠求得x ,利用ABE ACE ABC S S S +=可求AE 的长. 【详解】删①.(1)设,AD CD x BA y ===,在ABD △中,由余弦定理可得227x y xy +-=,在ABC 中,由余弦定理可得22427x y xy +-=,联立方程解得1,3x y ==,所以3,2BA AC ==;(2)设AE m =,则由ABE ACE ABC S S S +=得1113sin 302sin 3032sin 60222m m ⨯+⨯=⨯⨯,解得5m =; 删①,则在ABD △中,由余弦定理有2222cos BD AB AD AB AD A =+-⋅⋅,即2796cos60AD AD =+-⋅,解得1AD =或2AD =,则2AC =或4,有2解,不满足题意;删①,在ABC 中,由余弦定理可得2222cos BC AB AC AB AC A =+-⋅⋅,即2796cos60AC AC =+-⋅,解得1AC =或2,有2解,不满足题意; 删①.(1)设AD CD x ==,在ABD △中,由余弦定理有22222cos2BD AD AB ADB BD AD ∠+-===⋅, 同理,在BCD △中,cosCDB ∠=,cos cos ADB CDB ∠∠=-,2=1x =,2AC ∴=; (2)设AE m =,则由ABE ACE ABC S S S +=得1113sin 302sin 3032sin 60222m m ⨯+⨯=⨯⨯,解得m =. 【点睛】关键点睛:解决本题得关键是熟练应用余弦定理建立等量关系求解. (2021江苏省苏州市高三下学期三模)13. ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知11(0)k k a b c+=>.(1)若2k C π==,求A 的值;(2)若k =2,求当C 最大时ABC 的形状.【答案】(1)4A π=;(2)正三角形. 【解析】【分析】(1)由11a b c +=,结合2C π=,利用正弦定理化简得到c 1o 1sin s A A +=24A A π⎛⎫+= ⎪⎝⎭求解;(2)由112a b c +=,得到2ab c a b =+,由余弦定理得到222cos 2a b c C ab+-=()2142a b ab b a a b ⎡⎤=+-⎢⎥+⎢⎥⎣⎦,再利用基本不等式求解. 【详解】(1)11a b +=sin 11sin si 2n 2A A π⎛⎫- ⎪⎝==⎭+即c 1o 1sin s AA +=sin cos cos A A A A +=⋅,24A A π⎛⎫+= ⎪⎝⎭, 所以24A A π+=或24A A ππ+=-, 解得4A π=; (2)112a b c+=,即2a b ab c +=, 所以2ab c a b =+, 由余弦定理得2222222cos 22ab a b a b c a b C ab ab ⎛⎫+- ⎪+-+⎝⎭==, ()()22141412222a b ab ab b a a b ⎡⎤⎡⎤⎢⎥=+-≥-=⎢⎥⎢⎥+⎢⎥⎣⎦⎢⎥⎣⎦, 当且仅当a b =时,等号成立,此时3C π=,ABC 是正三角形.【点睛】方法点睛:在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2021山东省泰安肥城市高三三模)14. 已知锐角ABC ∆的外接圆半径为1,内角,,A B C 的对边分别为,,a b c ,ABC ∆的面积为S2224)S c b =+-.(1)求C ;(2)求bc a的取值范围. 【答案】(1)3C π=;(2bc a<< 【解析】 【分析】(1)2224S c b =+-)2224a b c S +-=,根据余弦定理以及三角形的面积公式可得1cos 4sin 2C ab C =⨯,化简整理即可求出结果;(2)根据正弦定理把bc a变形为2sin 2sin B A,进而得到23sin A Aπ⎛⎫- ⎪⎝⎭然后以函数的思想根据角A 的范围求值域即可.【详解】解:(1)2224S c b =-)2224a b c S +-=∴1cos 4sin 2C ab C =⨯sin C C = ∵cos 0C ≠,∴tan C =又(0,)C π∈ ∴3C π=.(2)ABC ∆的外接圆半径为1 ∴2sin c C=,即2sin c C =又sin sin sin a b c A B C ==, ∴2sin a A =,2sin b B =∴bc a==23sin sin A B A Aπ⎛⎫- ⎪⎝⎭==1cos sin22sinA AA⎫+⎪⎝⎭=32tan A=+又因为ABC∆是锐角三角形∴22ABππ⎧<<⎪⎪⎨⎪<<⎪⎩,即2232AAπππ⎧<<⎪⎪⎨⎪<-<⎪⎩,∴62Aππ<<∴tan3>A,1tan A<<32tan2A<<,∴bca<<【点睛】解三角形中的求值域的问题,有两种解题思路:(1)找到边与边之间的关系,利用均值不等式求出最值,再结合三角形两边之和大于第三边,两边之差小于第三边来确定范围;(2)利用正弦定理,转化为关于某个角的函数,以函数的思想求值域,注意转化的角的范围是关键.(2021山东省潍坊市高三三模)15. 在ABC中,内角A,B,C的对边分别为a,b,c,M是AC上的点,BM平分ABC∠,ABM的面积是BCM面积的2倍.(1)求sinsinCA;(2)若1cos4B=,2b=,求ABC的面积.【答案】(1)2;(2)4.【解析】【分析】(1)由2ABM BCMS S=△△,ABM MBC∠=∠,得到2AB BC=,由正弦定理得sin2sinC ABA BC==;(2)由(1)知2c a =,代入满足1cos 4B =的余弦定理,求得a ,c ,并求得sin B ,则由面积公式1sin 2ABC S ac B =△即可求得三角形面积. 【详解】解:(1)1sin 2ABM AB S BM ABM =⋅∠△, 1sin 2BCM BC S BM MBC =⋅∠△. 因为2ABM BCM S S =△△,ABM MBC ∠=∠,所以2AB BC =. 由正弦定理得sin 2sin C AB A BC == (2)由sin 2sin C A=得2c a =, 由余弦定理得2222cos b a c ac B =+-, 又因为1cos 4B =,2b =, 所以2221444a a a +-⨯4=, 所以1a =,从而2c =. 又因为1cos 4B =且0πB <<,所以sin 4B =.因此 11sin 122244ABC a S c B ==⨯⨯⨯=△. 【点睛】关键点点睛:根据角平分线及面积关系求得2c a =,并利用正弦定理,余弦定理进行边角转化,解得三角形中的参数.。
新北师大版高中数学必修五第二章《解三角形》测试题(包含答案解析)

一、选择题1.在ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知14b c a -=,2sin 3sin B C =,ABC 的面积为3154,则a =( ) A .2B .3C .4D .52.在ABC ∆中,若sin (sin cos )sin 0A B B C +-=,sin cos 20B C +=,4a =,则ABC ∆的面积为( )A .243+B .43+C .623+D .843+3.如图,四边形ABCD 中,CE 平分ACD ∠,23AE CE ==,3DE =,若ABC ACD ∠=∠,则四边形ABCD 周长的最大值( )A .24B .1233+C .183D .(3534.2020年5月1日起,新版《北京市生活垃圾管理条例》实施,根据该条例:小区内需设置可回收垃圾桶和有害垃圾桶.已知李华要去投放这两类垃圾,他从自家楼下出发,向正北方向走了80米,到达有害垃圾桶,随后向南偏东60°方向走了30米,到达可回收物垃圾桶,则他回到自家楼下至少还需走( ) A .50米B .57米C .64米D .70米5.设,,a b c 分别是ABC 中,,A B C ∠∠∠所对边的边长,则直线sin 0x A a y c ⋅+⋅+=与sin sin 0b x y B C ⋅-⋅+=位置关系是( ) A .平行B .重合C .垂直D .相交但不垂直6.已知,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,若1,3a b ==B 是,A C 的等差中项,则角C =( ) A .30B .45︒C .60︒D .90︒7.ABC 的内角,,A B C 的对边分别为,,a b c ,若222sin sin sin 3sin sin A C B A C +-=,1b =,则223a c -的最小值为( )A .4-B .23-C .2-D .3-8.已知锐角ABC 的内角,,A B C 的对边分别为,,a b c .若()2c a a b =+,则2cos cos()AC A -的取值范围是( )A .2,1⎛⎫⎪⎪⎝⎭B .13,2⎛⎫⎪⎪⎝⎭ C .23,⎛⎫⎪⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭9.在△ABC 中,a 2tanB =b 2tanA ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形10.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m11.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为S ,且222()S a b c =+-,则tan C =( )A .43-B .34-C .34D .4312.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若角A ,B ,C 成等差数列,且直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长,则△ABC 的面积的最大值为( ) A .33B .332C .32D 3二、填空题13.已知60A =︒,ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中7a =,133sin sin 14B C +=,则bc 的值为______. 14.如图,点A 是半径为1的半圆O 的直径延长线上的一点,3OA =B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.15.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,则满足10a =,18b =,30A =︒的三角形解的个数是______.16.在ABC 中,2AB =,30C ︒=,则AB BC 的取值范围是________. 17.在锐角ABC ∆中,2AC =,22AB =D 在BC 边上,并且2BD DC =,6π∠=CAD ,则ABC ∆的面积为__________.18.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足22()a b c S --=,b +c =2,则S 的最大值是________19.在ABC 中,2AB =,4AC =.BC 边上的中线2AD =,则=ABC S △_____. 20.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若2b =,2a c =,则当角C 取最大值时,△ABC 的面积为__________.三、解答题21.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若1||2AB AC AC ⋅=,且1c =. 在①cos cos 2a C c A +=;② sin 3cos b C c B c =;③ sin 2sin a B c A =这三个条件中任选一个,补充在下面问题中,并解答问题. (1)求角A ;(2)若___________,角B 的平分线交AC 于点D ,求BD 的长. (注:如果选择多个条件分别解答,按第一个解答计分)22.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A 为锐角,22sin cos 2c a B C ab--=. (1)求A ;(2)若34b c =,且BC 边上的高为23ABC 的面积. 23.ABC 的内角,,A B C 的对边分别为,,a b c .已知222sin sin sin sin sin B A C A C --=.(1)求B ;(2)若3b =,当ABC 的周长最大时,求它的面积. 24.已知ABC 的内角,,A B C 的对边分别为,,a b c ,2cos cos cos aA b C c B=+.(1)求角A 的大小;(2)若a =11b c+的取值范围. 25.在ABC 中,角,,A B C 所对的边分别为,,,a b c 已知1b =,面积28sin aS A=,再从以下两个条件中选择其中一个作为已知,求三角形的周长.(1)6B π=;(2)B C =.注:如果选择多个条件分别解答,按第一个解答计分.26.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,222sin sin sin sin sin A C B A C +=+.(1)求角B 的大小;(2)若ABC 为锐角三角形,b =2a c -的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】首先利用正弦定理表示为23b c =,再结合余弦定理求cos A 和sin A ,并利用1sin 2ABCS bc A ==求a的值. 【详解】2sin 3sin B C =,由正弦定理可知23b c =, 14b c a -=,可得13,24c a b a ==,∴2221cos 24b c a A bc +-==-,sin A ==,1131sin 2242ABCSbc A a a ==⨯⨯=,解得:4a =. 故选:C 2.C解析:C 【分析】在ABC ∆中,()sin sin B A C +=,化简sin (sin cos )sin 0A B B C +-=可得4A π=,又sin cos 20B C +=和34B C π+=,解得3B π=,512C π=,最后通过正弦定理求出1)c =,再根据三角形面积公式得到面积.【详解】由sin (sin cos )sin 0A B B C +-=得:sin sin sin cos sin cos cos sin sin sin cos sin 0A B A B A B A B A B A B ⋅+⋅-⋅-⋅=⋅-⋅=,∴sin cos A A =,又0()A π∈,,则4A π=,则34B C π+=, 又3sin cos 2sin 22B C C π⎛⎫=-=-⎪⎝⎭,则3222B C k ππ=-+或222B C k ππ=-+,(0)B C π∈、,,则322B C π+=或22C B π-=,又34B C π+=,则取22C B π-=,得3B π=,512C π=,又4a =,根据正弦定理,sin 1)sin a Cc A ⋅==,∴1sin 62ABC S ac B ∆=⋅=+ 故选C. 【点睛】思路点睛:在三角形中,由于A B C π++=,根据诱导公式,()sin sin A B C +=,()sin sin A C B +=,()sin sin C B A +=,()cos cos A B C +=-,()cos cos A C B +=-,()cos cos C B A +=-等,以上常见结论需要非常熟练. 3.D解析:D 【分析】ACD △和CDE △中,结合正弦定理可求得6ACE DCE π∠=∠=,这样可得,DC AC ,在ABC 中,由余弦定理得2222cos3AC AB BC AB BC π=+-⋅,应用基本不等式可得AB BC +的最大值,从而可得四边形ABCD 周长的最大值. 【详解】设ABC ACD ∠=∠2θ=,(0,)2πθ∈,∵CE 平分ACD ∠,∴DCE ACE θ∠=∠=, 又AE CE =,∴EAC ACE θ∠=∠=,AE CE ==DE =AD =ACD △中,由正弦定理得sin sin CD AD DAC ACD =∠∠,则CD ==, CDE △中,2DEC EAC ECA θ∠=∠+∠=,由正弦定理得sin sin CD DE CED DCE =∠∠,则CD θ==,∴θ=,解得cos θ=,6πθ=,∴3CD ==,ACD △中,由角平分线定理得AC AE CD DE ==236AC =⨯=. ABC 中,23ABC πθ∠==,由余弦定理得2222cos 3AC AB BC AB BC π=+-⋅,即2222223136()3()()()44AB BC AB BC AB BC AB BC AB BC AB BC AB BC =+-⋅=+-⋅≥+-+=+,当且仅当AB BC =时等号成立,12AB BC +≤,此时ABC 为等边三角形.∴AB BC CD DA +++的最大值为12315++=+ 故选:D . 【点睛】本题主要考查正弦定理、余弦定理的应用,考查基本不等式求最值,在平面图形中充分利用平面几何的知识可减少计算量.本题解题关键是求出6ACE π∠=.4.D解析:D 【分析】画出图形,在ABC 中,利用余弦定理,即可求解AC 的长,得到答案. 【详解】由题意,设李华家为A ,有害垃圾点为B ,可回收垃圾点为C , 则李华的行走路线,如图所示,在ABC 中,因为80,30,60AB BC B ===, 由余弦定理可得:70AC ===米, 即李华回到自家楼下至少还需走70米. 故选:D .【点睛】本题主要考查了解三角形的实际应用,以及余弦定理的应用,其中解答中作出示意图,结合余弦定理求解是解答的关键,着重考查推理与运算能力.5.C解析:C 【解析】,,a b c 分别是ABC 中,,A B C ∠∠∠所对边的边长,则直线sin 0x A a y c ⋅+⋅+=斜率为:sin Aa-, sin sin 0b x y B C ⋅-⋅+=的斜率为:sin bB, ∵sin sin A ba B-=﹣1,∴两条直线垂直.故选C .6.A解析:A 【详解】由题设可得060B =311sin sin 2A A =⇒=,则030A =或0150A =,但a b AB <⇔<,应选答案A .7.A解析:A 【分析】由222sin sin sin 3sin sin A C B A C +-=,利用正弦定理和余弦定理,可得6B π=,再根据正弦定理、三角形内角和及两角和的余弦公式,得到223a c -4cos 3C π⎛⎫=+ ⎪⎝⎭,借助角C 的范围,即可求得结果. 【详解】222sin sin sin 3sin sin A C B A C +-=,∴2223a c b ac +-=,∴2222a c b ac +-=∴cos 2B =,又0B π<<,∴6B π=,12sin sin sin sin 6b A C B ac π====, ∴2sin a A =,2sin c C =,∴24sin a A C -=-4sin()B C C =+-4sin()6C C π=+-14cos 22C C C ⎛⎫=+- ⎪ ⎪⎝⎭2cos C C =-14cos 2C C ⎛⎫=- ⎪ ⎪⎝⎭4cos 3C π⎛⎫=+ ⎪⎝⎭因为506C π<<,所以7336C πππ<+<, 所以当3C ππ+=时,2a -取得最小值,且最小值为4-. 故选:A. 【点睛】本题考查了正弦定理和余弦定理的应用、三角形内角和的应用、两角和的余弦公式及余弦型函数的最值问题,考查学生对这些知识的掌握能力,属于中档题.在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,一 般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理.8.C解析:C 【分析】由余弦定理和正弦定理进行边化角,结合诱导公式和两角和与差的正弦公式可得2C A =,由锐角三角形得出A 角范围,再代入化简求值式,利用余弦函数性质可得结论. 【详解】∵2()c a a b =+,∴22222cos c a ab a b ab C =+=+-,∴(12cos )b a C =+,由正弦定理得sin sin (12cos )B A C =+,∴sin()sin (12cos )sin cos cos sin A C A C A C A C +=+=+,整理得sin sin cos cos sin sin()A C A C A C A =-=-,∵,A C 是三角形的内角,∴A C A =-,即2C A =,又三角形是锐角三角形,∴2222A A A πππ⎧<⎪⎪⎨⎪--<⎪⎩,解得64A ππ<<,由2C A =得22cos cos cos cos()cos A A A C A A ==∈-⎝⎭. 故选:C . 【点睛】本题考查正弦定理和余弦定理的边角转换,考查两角与差的正弦公式,余弦函数的性质,考查学生分析问题解决问题的能力,属于中档题.9.D解析:D 【分析】根据正弦定理22tan ta in n s sin B B A A =⋅⋅,化简得到sin 2sin 2A B =,得到答案. 【详解】22tan tan a B b A =,故22tan ta in n s sin B B A A =⋅⋅,即sin 2sin 2A B =.故22A B =或22A B π+=,即A B =或2A B π+=.故选:D . 【点睛】本题考查了正弦定理判断三角形形状,意在考查学生的计算能力.10.D解析:D 【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】15BCD ∠=︒,45BDC ∠=︒120CBDsin 45BC302sin 45203BC3tan 3020320AB BC故选D 【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.11.A解析:A 【分析】由三角形面积公式和余弦定理可得C 的等式,利用二倍角公式求得tan2C,从而求得tan C .【详解】∵222222()2S a b c a b ab c =+-=++-,即22212sin 22ab C a b ab c ⨯⋅=++-, ∴222sin 2ab C ab a b c ⋅-=+-,又222sin 2sin cos 1222a b c ab C ab CC ab ab +-⋅-===-,∴sin cos 12C C +=, 即22cos sin cos 222C C C =,则tan 22C =,∴222tan2242tan 1231tan2CC C ⨯===---, 故选:A . 【点睛】本题考查三角形面积公式,余弦定理,考查二倍角公式,同角间的三角函数关系,掌握相应的公式即可求解.属于中档题,考查了学生的运算求解能力.12.B解析:B 【分析】由三角形内角和公式以及等差数列的性质可得3B π=,根据直线过圆心可得2312a c +=,根据基本不等式可得6ac ≤,最后由三角形面积公式得结果.【详解】在△ABC 中,A +B +C =π,∵角A ,B ,C 成等差数列,∴2B =A +C , ∴2B =π﹣B ,∴B 3π=.∵直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长, ∴圆心(2,3)在直线ax +cy =12上,则2a +3c =12, ∵a >0,c >0,∴12=2a +3c ≥ac ≤6.当且仅当2a =3c ,即a =3,c =2时取等号.∴11sin 62222ABCSac B =≤⨯⨯=, ∴△ABC故选:B. 【点睛】本题主要考查了直线与圆的位置关系,基本不等式以及三角形面积公式的应用,属于中档题.二、填空题13.40【分析】首先根据正弦定理求并表示最后根据余弦定理求的值【详解】根据正弦定理可知根据余弦定理可知得解得:故答案为:40【点睛】方法点睛:(1)在解有关三角形的题目时要有意识地考虑用哪个定理更适合或解析:40 【分析】首先根据正弦定理求2R ,并表示sin sin 22b c B C R R+=+,最后根据余弦定理求bc 的值. 【详解】22sin a R R A =⇒==,根据正弦定理可知1322b c b c R R +=⇒+=, 根据余弦定理可知()2222222cos 3a b c bc A b c bc b c bc =+-=+-=+-,得249133bc =-,解得:40bc =. 故答案为:40 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.14.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积解析:【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC AB θ=⋅⋅︒==OAB 的面积11sin 122OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=+13(sin )60)2θθθ==-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.15.2【分析】直接利用正弦定理得到答案【详解】根据正弦定理得到:故故满足条件的三角形共有个故答案为:【点睛】本题考查了利用正弦定理判断三角形的个数问题意在考查学生的应用能力解析:2 【分析】直接利用正弦定理得到答案. 【详解】根据正弦定理得到:sin sin a b A B=,故9sin 10B =,91sin sin 10B A >=>. 故满足条件的三角形共有2个. 故答案为:2. 【点睛】本题考查了利用正弦定理判断三角形的个数问题,意在考查学生的应用能力.16.【分析】首先根据正弦定理得化简得到再求其范围即可【详解】由正弦定理得:所以所以因为所以即故的取值范围是故答案为:【点睛】本题主要考查正弦定理的应用同时考查三角函数的值域问题属于中档题 解析:[6,2]-【分析】首先根据正弦定理得4sin =BC A ,化简得到()4sin 2302⋅=+-AB BC A ,再求其范围即可. 【详解】 由正弦定理得:4sin sin ==AB BCC A,所以4sin =BC A . 所以()cos 1808sin cos ⋅=⋅-=-AB BC AB BC B A B()()8sin cos 180308sin cos 30⎡⎤=--+=+⎣⎦AA A A 218sin sin cos 4sin 22⎛⎫=-=- ⎪⎪⎝⎭A A A A A A ()()221cos 24sin 2302=--=+-A A A因为0150<<A ,所以3030330<2+<A , 即()1sin 2301-≤+≤A ,()64sin 23022-≤+-≤A .故AB BC 的取值范围是[6,2]-. 故答案为:[6,2]- 【点睛】本题主要考查正弦定理的应用,同时考查三角函数的值域问题,属于中档题.17.【分析】在中由正弦定理可得到在中由正弦定理可得到由是锐角可知结合三角形的面积公式可得到答案【详解】在中由正弦定理得:则在中由正弦定理得:则因为所以由于三角形是锐角三角形故则故的面积为【点睛】本题考查 1【分析】在ADC ∆中,由正弦定理sin sin DC AC CAD ADC =∠∠,可得到1sin ADC DC∠=,在ADB ∆中,由正弦定理sin sin DB ABBAD ADB=∠∠,可得到12sin sin 2DCDB ADBDC BAD AB ∠∠===,由BAD ∠是锐角,可知4BAD π∠=,46BAC ππ∠=+,结合三角形的面积公式可得到答案.【详解】在ADC ∆中,由正弦定理得:sin sin DC ACCAD ADC=∠∠,则11sin 2sin6ADC DC DCπ∠=⨯⨯=, 在ADB ∆中,由正弦定理得:sin sin DB AB BAD ADB =∠∠,则sin sin DB ADBBAD AB ∠∠=,因为1sin sin ADB ADC DC∠=∠=,2BD DC =,所以122sin 22DCDC BAD ∠==,由于三角形是锐角三角形,故4BAD π∠=,则26sin sin 46BAC ππ+⎛⎫∠=+=⎪⎝⎭,故ABC ∆的面积为126222312+⨯⨯⨯=+.【点睛】本题考查了正弦定理在解三角形中的应用,考查了三角形的面积公式,属于中档题.18.【分析】结合余弦定理同角三角函数的基本关系式和基本不等式先求得然后求得的最大值【详解】由余弦定理得依题意所以由于是三角形的内角所以所以由解得所以当且仅当时等号成立所以的最大值为故答案为:【点睛】本小 解析:417【分析】结合余弦定理、同角三角函数的基本关系式和基本不等式,先求得sin A ,然后求得S 的最大值. 【详解】由余弦定理得2222cos a b c bc A =+-, 依题意221()sin 2a b c S bc A --==,2b c +=, ()()222212cos 221cos sin sin 41cos 2b c bc A b c bc bc A bc A A A +---+=-=⇒=-,所以1cos 1sin 4A A =-,221sin 1sin 14A A ⎛⎫+-= ⎪⎝⎭,2171sin sin 0162A A -=,由于A 是三角形ABC 的内角,所以sin 0A >,所以由2171sin sin 0162A A -=解得8sin 17A =.所以21444sin 21717217b c S bc A bc +⎛⎫==≤⨯= ⎪⎝⎭,当且仅当1b c ==时等号成立,所以S 的最大值为417. 故答案为:417【点睛】本小题主要考查余弦定理解三角形,考查三角形的面积公式,考查基本不等式求最值,属于中档题.19.【分析】中分别用余弦定理表示再利用解边长再根据余弦定理求角最后根据三角形面积公式求解【详解】设中中解得:中故答案为:【点睛】本题考查解三角形重点考查数形结合分析问题计算能力属于基础题型 解析:15【分析】ABD △,ADC 中,分别用余弦定理表示cos ADB ∠,cos ADC ∠,再利用cos cos 0ADB ADC ∠+∠=解边长BC ,再根据余弦定理求角BAC ∠,最后根据三角形面积公式求解. 【详解】 设BD DC x ==,ABD △中,22222cos 224x xADB x +-∠==⋅⋅,ADC 中,22222412cos 224x x ADC x x+--∠==⋅⋅ 180ADB ADC ∠+∠=,cos cos 0ADB ADC ∴∠+∠=,212044x x x -∴+=,解得:6x =26BC ∴=, ABC 中,(22224261cos 2244BAC +-∠==-⨯⨯,sin BAC ∴∠==1242ABCS∴=⨯⨯=【点睛】本题考查解三角形,重点考查数形结合分析问题,计算能力,属于基础题型.20.【分析】由余弦定理可得再利用基本不等式的性质可得的最大值再利用三角形面积计算公式即可得出【详解】解:在中由余弦定理可得:时取等号此时当取最大值时的面积故答案为:【点睛】本题考查了余弦定理基本不等式的【分析】由余弦定理可得cos C ,再利用基本不等式的性质可得C 的最大值,再利用三角形面积计算公式即可得出. 【详解】解:2b =,2a c =,∴在ABC ∆中,由余弦定理可得:22222441311cos ()22222242a b c c c c C ab c c +-+-===+⨯⨯⨯,(0,)C π∈,3c =时取等号.此时,3a =, 06Cπ∴<,∴当C 取最大值6π时,ABC 的面积11222S =⨯=.【点睛】本题考查了余弦定理、基本不等式的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.三、解答题21.(1)3A π=; (2 【分析】(1)由1||2AB AC AC ⋅=,得到1cos 2AB A =,进而求得1cos 2A =,即可求解;(2)分别选①②③,结合正弦定理和余弦定理,求得2B π=,得到4ABD π∠=,进而得到sin ADB ∠的值,在ABD △中结合正弦定理,即可求解. 【详解】 (1)由1||2AB AC AC ⋅=,可得1cos ||2AB AC A AC ⋅=,所以1cos 2AB A =,又由1c =,所以1cos 2A =, 因为(0,)A π∈,所以3A π=. (2)若选①:因为cos cos 2a C c A +=,由余弦定理可得222222222a b c b c a a c ab bc+-+-⋅+⋅=,整理得220b b,解得2b =,又由余弦定理可得2222212cos 2122132a b c bc A =+-=+-⨯⨯⨯=,即a = 因为222a c b +=,所以2B π=,又因为角B 的平分线交AC 于点D ,可得4ABD π∠=,所以5()3412ADB ππππ∠=-+=,则sin sin[()]sin cos cos sin 343434ADB πππππππ∠=-+=+=, 在ABD △中,由正弦定理可得sin sin ABBD A ADB=⋅==∠. 若选②:由sin cos bC B c =,根据正弦定理可得sin sin cos sin B C C B C =, 因为(0,)Cπ∈,可得sin 0C >,所以sin1B B =, 可得sin 2sin()13B B B π-=-=,即1sin()32B π-=,因为2333B πππ-<-<,所以36B ππ-=,可得2B π=又因为角B 的平分线交AC 于点D ,可得4ABD π∠=,所以5()3412ADB ππππ∠=-+=,则sin sin[()]sin cos cos sin 343434ADB πππππππ∠=-+=+=, 在ABD △中,由正弦定理可得sin sin ABBD A ADB=⋅==∠. 若选③:由sin 2sin a B c A =,根据正弦定理可得sin sin 2sin sin A B C A =, 因为(0,)C π∈,可得sin 0C >,可得sin 2sin B C =, 又由()()3C A B B πππ=-+=-+,可得sin 2sin 2sin()sin 3B C B B B π==+=+,所以cos 0B =,因为(0,)B π∈,所以2B π=.又因为角B 的平分线交AC 于点D ,可得4ABD π∠=,所以5()3412ADB ππππ∠=-+=,则sin sin[()]sin cos cos sin 343434ADB πππππππ∠=-+=+=, 在ABD △中,由正弦定理可得sin sin ABBD A ADB=⋅==∠. 【点睛】方法点睛:对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用. 22.(1)6π;(2) 【分析】(1)先用余弦定理化余弦为边,再用正弦定理化边为角从而求得A ;(2)由余弦定理用c 表示a ,然后把三角形的面积用两种方法表示求得c ,从而可计算出面积. 【详解】(1)由22sin cos 2c a B C ab--=得222sin 2cos ab B ab C c a -=-,由余弦定理得222222sin ab B c a b c a +--=-,所以2sin a B b =, 由正弦定理得2sin sin sin A B B =,B 是三角形内角,sin 0B ≠, 所以1sin 2A =,又A 为锐角,所以6A π=.(2)由(1)2222232cos 2cos 166a b c bc A c c c π=+-=+-⋅⋅2716c =,4a =,所以11sin 22ABC S bc A a ==⨯△2111222⨯=⨯c =b == 111sin 222ABC S bc A ===△【点睛】思路点睛:本题考查正弦定理、余弦定理、三角形面积公式.利用正弦定理和余弦定理进行边角互化是解题关键.三角形的面积采取了二次计算,通过不同的计算方法得出等式,从而求解.这是一种解题技巧.23.(1)23B π=;(2)ABC S =△. 【分析】(1)利用正弦定理角化边,整理求得cos B ,由B 的范围可得结果;(2)利用余弦定理和基本不等式可求得当3a c ==时周长最大,由三角形面积公式可求得结果. 【详解】(1)由正弦定理得:222b ac ac --=,2221cos 22a cb B ac +-∴==-,()0,B π∈,23B π∴=; (2)由余弦定理得:()()222222cos 29b a c ac B a c ac ac a c ac =+-=+-+=+-=,()2292a c ac a c +⎛⎫∴=+-≤ ⎪⎝⎭(当且仅当a c =时取等号),6a c ∴+≤,∴当3a c ==时,ABC 取得最大值,此时19sin 22ABCSac B ===. 【点睛】方法点睛:求解与边长相关的最值或取值范围类问题通常有两种方法:①利用正弦定理边化角,将所求式子转化为与三角函数值域有关的问题的求解,利用三角恒等变换和三角函数的知识来进行求解;②利用余弦定理构造方程,结合基本不等式求得基本范围;应用此方法时,需注意基本不等式等号成立的条件. 24.(1)3A π=;(2)⎫+∞⎪⎪⎣⎭. 【分析】(1)利用正弦定理边化角可化简已知关系式求得cos A ,结合A 的范围可求得结果;(2)解法一:利用正弦定理边化角可整理得到1161sin 262B b c B ππ⎛⎫+ ⎪⎝⎭+=⎛⎫-+⎪⎝⎭,利用B 的范围可求得sin 6B π⎛⎫+⎪⎝⎭的范围,代入整理可求得结果; 解法二:利用余弦定理和基本不等式可求得3bc ≤,整理得到11b c +=合二次函数的性质可求得所求的范围. 【详解】(1)由正弦定理得:()sin sin 2cos sin cos sin cos sin A AA B C C B B C ==++. B C A π+=-,()sin sin B C A ∴+=,2cos 1A ∴=,即1cos 2A =, ()0,A π∈,3A π∴=.(2)解法一:由正弦定理知,2sin sin sin sin 3a b c A B C ====,sin sin 1111sin sin 3612sin 2sin 2sin sin 2sin sin sin 2362B B B B C b c B C B C B B B ππππ⎛⎫⎛⎫+++ ⎪ ⎪+⎝⎭⎝⎭∴+=+===⎛⎫⎛⎫+-+⎪ ⎪⎝⎭⎝⎭.3A π=,20,3B π⎛⎫∴∈ ⎪⎝⎭. 令6B πθ=+,则5,66ππθ⎛⎫∈ ⎪⎝⎭,则1sin ,12θ⎛⎤∈ ⎥⎝⎦.则11cos 24sin sin 22sin 22b cθθθθ⎫+====+∞⎪⎪⎣⎭-+--+⎪⎝⎭.解法二:3a =,3A π=,∴由余弦定理知:2232b c bc bc bc +-=≥-(当且仅当b c =时取等号), 3bc ∴≤,()233b c bc +=+,则113bc ≥,11b c b c bc +∴+===.11b c ∴+的取值范围为⎫+∞⎪⎪⎣⎭. 【点睛】方法点睛:求解与边长相关的取值范围类问题通常有两种方法:①利用正弦定理边化角,将所求式子转化为与三角函数值域有关的问题的求解,利用三角恒等变换和三角函数的知识来进行求解;②利用余弦定理构造方程,结合基本不等式求得基本范围;将所求式子化为符合基本不等式的形式或配凑成函数的形式来进行求解;应用此方法时,需注意基本不等式等号成立的条件.25.2+ 【分析】利用三角形的面积公式,结合已知面积变形可得1sin sin 4B C =,再利用所选条件结合正弦定理求出另外两边,可得三角形的周长. 【详解】由三角形的面积公式可知,1sin 2S ab C =, 21sin 28sin a ab C A∴=, 整理得4sin sin ,b A C a =由正弦定理得:4sin sin sin sin ,B A C A =因为sin 0A ≠,4sin sin 1,B C ∴=1sin sin 4B C ∴=, 若选择条件(1)由6B π=:得1sin 2B =,则1sin 2C =, 又,,A B C 为三角形的内角,6B C π∴==,2,3A π∴= 由正弦定理得sin sin sin a b c A B C ==代入1,b c ==解得a =∴三角形的周长为2若选择条件(2)B C =,则由B C =,得sin sin ,B C = 又1sin sin 4B C =,1sin sin 2B C ∴== 又,,A B C 为三角形的内角,,6B C π∴==23A π∴=. 由正弦定理得:sin sin sin a b c A B C ==,代入1,b c ==解得a =∴三角形的周长为2【点睛】关键点点睛:利用三角形的面积公式和正弦定理求出三角形的另外两边是解题关键. 26.(1)3B π=;(2)()0,3.【分析】(1)利用正弦定理边角互化,再利用余弦定理求出角B 的大小;(2)利用正弦定理结合三角恒等变换化简2a c -,再由锐角三角形得出C 的范围,进而得出答案.【详解】(1)由已知222sin sin sin sin sin A C B A C +=+,结合正弦定理,得222a c b ac +=+. 再由余弦定理,得2221cos 222a cb ac B ac ac +-===,又()0,B π∈,则3B π=.(2)由3B π=,b = 224sin 2sin 4sin 2sin 3a c AC C C π⎛⎫-=-=-- ⎪⎝⎭224sin cos cos sin 2sin 33C C C C ππ⎛⎫=--= ⎪⎝⎭因为ABC 为锐角三角形,则62C ππ<<,则0cos C << 所以2a c -的取值范围为()0,3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 -
高考《解三角形》题型分析
陆丰市甲子中学数学教师——胡桢烁
考情分析
(一)目标:要求学生掌握正弦定理、余弦定理及其变形
(二) 难点:要求学生能够在掌握正余
弦定理的基础上结合前面的三角函数知识进行
进一步的综合分析。
知识结构
(一) 特定情况下的解三角形
1、正弦定理的运用,以下两种情况一般用正弦定理
(1)已知两角一边,
(2)已知两边及一边对角
2、余弦定理的运用,以下两种情况一般用余弦定理
(1)已经三边,
(2)两边及这两条边的夹角
(二)、高考热点:边角关系的转化
(三)利用正弦、余弦定理的变形将边的关系转化成角的关系,将角的关系转化成边的关系。
(四)、利用正弦、余弦定理解决生活中的实际问题。
重点与难点
高考全国卷新课标主要考察学生对正弦定理、余弦定理的熟练程度以及利用三角公式进行恒
等变形的能力.考题以化简、求值或判断三角形的形状为主.与以往广东卷以三角函数作为
考查重点有所不同,但在考察中,诱导公式,辅助角公式这些重要的公式也是极为重要的,
也常常渗透在解三角形中,在高三的复习中也应该强化这些知识。
典型例题:
注:以下题型一律默认所对的边,的内角为CBAABCcba,,,
(1) 类型一:将角的关系转化成边的关系的题型:
CBCcbABCcos,2,581则中,、例
2571cos2cos542cos,cos2,2sin,2sincossin2sin2sinsin,22BCb
c
BBbcRbBRcCBBCBCBC,所以所以
代入上式,可得将
所以
所以解:因为
- 2 -
)4sin()2()1(,2,1,32AaBAcbABC求的值求中,、例
32,3,1,222cos,2sin,2sincossin2sin2sinsin,2222222abcacbcabaacbcaBRbBRaABBABABA代入解得因为
代入上式,可得将
所以
所以解:因为
分析:这道题是一道较为基础的题目,而且已知边的关系较多,故我们思考的方向是引导学
生将角的关系转化成边的关系,这样题目就迎刃而解,注意用到的最关键的知识是正余弦定
理的变形的替换,这是解决整道题的关键所在。
对比以上两道题:两道题都有相似之处,用到了一个技巧,就是知道A=2B之后,两边取正弦
第一题只用正弦定理进行代换,第二道又得用上余弦定理的推论。
(2) 类型二:将边的关系转化成角的关系的题型:
是等腰三角形所以所以代入解:将的形状判断、若例ABCBCBCBAACBAACARaCRcABCBaAc,
0sincossincossin
cossincossin
sin2,sin2
,coscos3
4
1tan,sincossinsincossinsincoscossinsinsincossin)sin(sinsincossinsin,sin2,sin2,sin2,sincos4BBBBBCCBCBCBBCCBCBBCCBACRcBRbARaBBcCba,即
即
代入解:将
求、若已知例
分析:不难发现例3和例4是将边的关系转化成角的关系,可以发现已知条件里面没有给出
边的长度关系,所以我们处理的时候化成角的关系,当然还得运用到诱导公式,这是解决的
关键。
(3) 类型三:利用三角形的诱导公式,二倍角公式,辅助角公式及两角和差公式,三角形
面积公式解题
的面积,求且若求角若所对的边的长分别是是斜三角形,内角:已知例题这个重要关系、利用ABCAABCcCCaAccbaCBAABCBAC2sin5)sin(sin,21)2(
)1(
cos3sin
,,,,,5
)sin(sin1
- 3 -
435sin2
1
1,211021252cos5sin5sin,cossin25cos2sincossin25sincoscossinsincoscossin2sin5)sin(sin,2sin5)sin(sin23)1(222222CabaaaaabcbaCabABAAABAAABABABABAABABAABCC所以三角形的面积为解得由余弦定理:
即即
所以
所以
)因为(
不难求得解:
的大小。求角若证明:)((且满足的对边分别为的内角、已知例CacabBAABAcbaCBAABC,7)2(2)1(cos22sin)2sin,,,,,6
aAABAAABAABABAAAABABAAAABAABABAAAABABAABA2b2sinA,sinB,sin2)sinsin2sincoscos)sincossinsin2cos)sincossin2sin2sincoscos)sincossin2sin2)sincos22sin)2sin即所以(即
)((所以
)((所以
)()((所以
)((所以
)((证明:
的最大值求)若(的值求且的对边分别为的内角、在例bcaACBAcbaCBAABC,322cos2sin)1(31cos,,,,,72
911cos22
cos11cos22)cos(12cos2sin222AA
ACBACB解:
ABBbacbaCBAABC则
若的对边分别为的内角、在例2cossin,2,2,,,,,8
ABbAaBBBBB即可求根据正弦定理,,解:,sinsin,42424sin2cossin
- 4 -
分析:这四道题目每道题目都各有侧重,例5用到了诱导公式,例6用到了两角和差的正弦
公式,这里实际上是用到了技巧,将2A+B看成是(A+B)+A,其实,直接展开也是可以做的,只
不过过程稍微复杂一点,例7用到了二倍角公式,例8用到了辅助角公式等。从这四道题目
来看,我们发现前面三角函数学到知识在解三角形中有着重要的应用,因此我在之前的复习
中特别注重三角函数的复习。