陶瓷烧结原理工艺

合集下载

陶瓷工艺学第十四讲 烧结2

陶瓷工艺学第十四讲 烧结2
3)表面张力γ:对于常见的硅酸盐玻璃其表面张力不会因组分 变化而有很大的改变。
2 塑性流动
塑性流动:当坯体中液相含量很少时,高温下流动 传质不能看成是纯牛顿型流动,而是同于塑性流动 型。
max 1 exp(
2
fr
)
为了尽可能达到致密烧结,应选择最小的颗粒原始半 径r,液体粘度η和较大的液-气表面张力γ。
问题二:液相为什么加强了致密化过程?
➢增强颗粒重排:摩擦力便小 ➢增强物质输运:对于固相烧结,Dgb和晶界宽度 决定了物质输运的速率,而对于液相烧结,溶解 度DL和液相桥的宽度决定了物质输运的速率。
问题三:液相的来源 ➢添加剂 ➢添加剂与固相颗粒形成低共熔相(相图)
问题四:液相量
➢一般为5Vol%,较少可以达到10Vol%,一般不 可以充填满颗粒之间的空隙。而传统陶瓷可以达 到25~35%,基本上可以填满空隙,这个烧结就 类似于玻璃粉的烧结,直接玻璃化就可以了 (Vitrifiaction)。
在固态烧结中也存在塑性流动。在烧结早期,表面 张力较大,塑性流动可以靠位错的运动来实现;而 烧结后期,在低应力作用下靠空位自扩散而形成粘 性蠕变,高温下发生的蠕变是以位错的滑移或攀移 来完成的、塑性流动机理目前应用在热压烧结的动 力学过程是很成功的。
三、溶解-沉淀传质机理
1、溶解-沉淀传质概念
在有固液两相的烧结中,当固相在液相中有可溶性,这时烧 结传质过程就由部分固相溶解而在另一部分固相上沉积.直 至晶粒长大和获得致密的烧结体。
➢缺点:液相最后会在晶界上形成新相,劣化材料 性能,如高温力学性能;尺寸控制较难;开裂和 塌陷。
液态烧结特点
➢传质机理和液相量有关; ➢传质过程和液相的性质有关; ➢与固-液润湿性有关; ➢与固相在液相的溶解度有关。

3d打印陶瓷排胶烧结技术

3d打印陶瓷排胶烧结技术

3d打印陶瓷排胶烧结技术
3D打印陶瓷排胶烧结技术是一种利用3D打印技术制造陶瓷制品的工艺。

该技术通常包括以下步骤:
1. 原料准备:选择合适的陶瓷粉末作为原料,并进行粉末预处理,如筛选、干燥等。

2. 设计与建模:使用计算机辅助设计(CAD)软件进行设计,并生成3D模型。

3. 打印:将设计好的3D模型导入到3D打印机中,通过控制打印头的运动和喷嘴的喷射,逐层将陶瓷粉末粘结在一起,形成所需的形状。

4. 排胶:打印完成后,将制造的陶瓷模型从打印机中取出,并进行排胶处理。

这一步主要是将模型表面的支撑结构或多余的材料去除。

5. 烧结:将排胶后的陶瓷模型放入烧结炉中进行烧结。

烧结过程中,陶瓷粉末颗粒之间发生结合,形成致密的陶瓷材料。

6. 补充烧结:对于一些复杂的陶瓷制品,可能需要进行多次烧结,以获得更高的密度和强度。

通过3D打印陶瓷排胶烧结技术,可以实现复杂形状的陶瓷制品的快速制造,并且可以根据需要进行个性化定制。

这种技术在陶瓷制品的设计与生产中具有广泛的应用前景,可以应用于陶瓷工艺、建
筑装饰、生物医学领域等。

陶瓷烧成与烧结

陶瓷烧成与烧结

7 烧成与烧结7.1 烧成原理为制定合理的煅烧工艺,就必须对物料在烧成时所发生的物理化学变化的类型和规律有深入的了解。

但是物料烧成时的变化较所用的原料单独加热时更为复杂,许多反应是同时进行的。

一般而言,物料的烧成变化首先取决于物料的化学组成,正确的说是物料中的矿物组成。

使用不同的地区的原料,即使物料的化学组成相同,也不能得到完全相同的烧成性质。

其次,物料的烧成变化在很大程度上还取决于物料中各组分的物理状态,即粉碎细度、混合的均匀程度、物料的致密度等,因为物料的烧成是属于液相参与的烧结过程,因此物料的分散性和各组分的接触的密切程度直接影响固相反应、液相的生成和晶体的形成。

此外,烧成温度、时间和气氛条件对物料的烧成变化影响也很大。

要将这些复杂的因素在物料烧成过程中的变化上反映出来是困难的。

为研究方便本书以长石质陶瓷坯体为例进行讨论。

7.1.1 陶瓷坯体在烧成过程中的物理化学变化陶瓷坯体在烧成过程中一般经过低温阶段、氧化分解阶段和高温阶段。

1.低温阶段(由室温~300℃)坯料在窑内进行烧成时,首先是排除在干燥过程中尚未除去的残余水分。

这些残余水分主要是吸附水和少量的游离水,其量约为2~5%。

随着水分排除固体颗粒紧密靠拢,发生少量的收缩。

但这种收缩并不能完全填补水分所遗留的空间,因此物料的强度和气孔率都相应的增加。

在120~140℃之前,由于坯体内颗粒间尚有一定的孔隙,水分可以自由排出,可以迅速升温,随着温度进一步提高,坯体中毛细管逐渐变小,坯体内汽化加剧,使得开裂倾向增大。

例如,当加热至120℃时,一克水占有的水蒸气容积为:22.4×(1+120/273)/18=1.79(升)。

如果坯体中含有4~5%的游离水,则100克坯体的水蒸气体积达7.16--8.95升,相当于坯体体积的155倍。

这些水蒸气主要由坯体的边角部位排出。

为了保证水分排出不致使坯体开裂,在此阶段应注意均匀升温,速度要慢(大制品30℃/时,中小制品50~60℃/时),尤其是厚度和形状复杂的坯体更应注意。

09陶瓷烧结工艺

09陶瓷烧结工艺

第22章陶瓷烧结工艺烧结温度T s和熔融温度T m之间的关系有一定的规律:z金属粉末T s=(0.3~0.4)T m,z盐类T s=0.57T m,z硅酸盐(0.6~0.8)T m。

§22.1 固相烧结22.1.1 烧结驱动力z烧结致密化的驱动力是固气界面消除所造成的表面积减少和表面自由能降低,以及新的能量更低的固-固界面的形成所导致的烧结过程中自由能发生的变化。

z细小的陶瓷颗粒,不仅有利于可塑性成型的制造过程,它所产生的表面能在烧成时也成为有利于致密化的推动力。

22.1.2 烧结模型z1949年库钦斯基(Kukansky)提出等径球体作为粉末压块的模型,随烧结的进行,球体的接触点开始形成颈部并逐渐扩大,最后烧结成一个整体。

z由于颈部所处环境和几何条件基本相同,因此只需确定两个颗粒形成颈的生长速率就基本代表了整个烧结初期的动力学关系。

22.1.3 传质机理一、蒸发—凝聚z在高温过程中,由于颗粒表面曲率的不同,必然在系统的不同部位有不同的蒸气压,在蒸气压差的作用下,存在一种传质趋势。

图22-1 蒸发—凝聚烧结的起始阶段z可以观察到,烧结初期的烧结速率随t的1/3次方而变化,随烧结的进行,颈部生长很快就停止了。

可以认为这种传质过程用延长烧结时间不能达到促进烧结的效果。

z除了时间因素.在蒸发-凝聚过程中,起始颗粒尺寸及蒸气压也是影响接触颈部生长速率的重要因素。

起始颗粒尺寸越小,烧结速率越大。

提高温度有利于提高蒸气压,因而对烧结有利。

z对微米级的颗粒尺寸,气相传质要求蒸气压的数量级为10-4~10-5大气压,这高于氧化物或类似材料在烧结时的蒸气压,如Al2O3在1200℃时的蒸气压只有10-46大气压,因而这种传质方式在一般陶瓷材料的烧结中并不多见。

二、扩散过程z对大多数高温蒸气压低的固体材料,物质的传递可能更容易通过固态过程产生;颈部区域和颗粒表面之间的自由能或化学势之差,提供了固态传质可以利用的驱动力。

sic陶瓷常压烧结

sic陶瓷常压烧结

sic陶瓷常压烧结以"SIC陶瓷常压烧结"为题,本文将介绍SIC陶瓷的常压烧结工艺和特点。

1. 引言SIC(碳化硅)陶瓷是一种具有优异性能的工程陶瓷材料,其主要特点包括高硬度、高强度、耐高温、耐腐蚀等。

而常压烧结是一种常用的SIC陶瓷制备工艺,本文将从工艺流程、工艺条件以及材料特性等方面介绍SIC陶瓷常压烧结的相关内容。

2. 工艺流程SIC陶瓷常压烧结的工艺流程主要包括原料制备、成型、烧结和表面处理等步骤。

首先,将SIC粉末与其他添加剂按一定比例混合,并经过球磨等工艺进行均匀混合,以提高材料的致密性。

然后,将混合料进行成型,常见的成型方法有压制、注塑和挤出等。

成型后的坯体需要经过干燥处理,以去除水分和有机物。

接下来,将干燥后的坯体进行烧结,烧结温度一般在1900~2200摄氏度之间,烧结时间根据陶瓷的要求而定。

最后,通过机械加工和表面处理,得到符合要求的SIC陶瓷制品。

3. 工艺条件SIC陶瓷常压烧结的工艺条件对于制备高质量的陶瓷制品非常重要。

其中,烧结温度是影响陶瓷致密性和晶粒尺寸的关键因素,过低或过高的温度都会影响烧结效果。

此外,烧结时间也会对陶瓷的性能产生影响,过短的时间可能导致烧结不完全,而过长的时间则会导致晶粒长大。

此外,压制力和添加剂的选择也会对烧结效果产生影响。

4. 材料特性SIC陶瓷常压烧结后,具有许多优异的特性。

首先,SIC陶瓷的硬度非常高,仅次于金刚石和立方氮化硼。

其次,SIC陶瓷具有优异的耐高温性能,可在高达1600摄氏度的温度下长时间稳定工作。

此外,SIC陶瓷还具有良好的耐腐蚀性能,可在酸、碱等恶劣环境下使用。

而且,SIC陶瓷的导热性能也非常好,可用于高温传热领域。

此外,SIC陶瓷还具有良好的机械性能和尺寸稳定性,可用于制备精密零部件。

5. 应用领域SIC陶瓷常压烧结后,可以应用于众多领域。

在机械工程领域,SIC 陶瓷常用于制造轴承、密封件、喷嘴等零部件。

7-陶瓷烧结-2

7-陶瓷烧结-2
粉末热锻( Powder Hot Forging):又称烧 结锻造,一般是先对压坯预烧结,然后在适 当的高温下再实施锻造。
12
第12页,共95页。
新型烧结方法
微波烧结 放电等离子烧结(Spark Plasma Sintering) 自蔓延高温合成
13 第13页,共95页。
1.3 烧结与固相反应的区别
晶界能取代了表面能,这是烧结后多晶材料稳定存在的原因。
粉体颗粒尺寸很小--比表面积大--表面能高 烧结是一个自发的不可逆过程,系统表面能降低是
推动烧结进行的基本动力。
23 第23页,共95页。
对于N个半径为a的球形颗粒的lmol粉体,
式中:M为分子重量,ρ为颗粒比重,Vm是摩尔体积。而颗粒系 统的总表面积SA为
能。 v烧结的应用领域:
陶瓷、耐火材料、粉末冶金、超高温材料等
烧结体特征: 烧结体一种多晶材料,其显微结构由晶体、玻璃体和气孔组成。
烧结直接影响显微结构中晶粒尺寸和分布、气孔大小形状和分布及 晶界的体积分数等。 v烧结依赖因素:
扩散、相变、固相反应等
4
第4页,共95页。
1 烧结概述
1.1 烧结理论研究的历史 烧结理论研究的过去、现在和未来。
16
第16页,共95页。
2.1.2 烧结过程的模型示意
¨ 一般烧结过程,总伴随有气孔率降低,颗粒总表 面积减少,表面自由能减少及与其相联系的晶粒 长大等变化,可根据其变化特点来划分烧结阶段, 包括初期阶段、烧结中期、烧结后期。
图3-4 粉状成型体的烧结过程示意
17
第17页,共95页。
(1)初期阶段(a~b)
2.2 烧结推动力
烧结过程伴随着体系自由能的降低。促使自 由能降低的驱动力具体可分为下述三类: 1 烧结颗粒表面能提供的驱动力 2外加压力(如热压烧结时)所作的功 3 烧结中化学反应提供的驱动力

烧结工艺原理及方法

烧结工艺原理及方法

生烧结
爆炸机理:
➢ 颗粒的塑性变形以及颗粒间的相互碰撞、 孔隙塌缩、颗粒表层的破坏导致颗粒表 面的沉热和融化-发生焊接 ➢ 颗粒破碎、孔隙的填充、颗粒表面由于 热量的沉积而发生部分熔焊和固态扩散 结合
烧结设备

烧结是在热工设备中进行的,这里热工设备指的是先进陶瓷生产
窑炉及附属设备。烧结陶瓷的窑炉类型很多,同一制品可以在不 同类型的窑内烧成,同一种窑也可烧结不同的制品。主要介绍常
液相烧结过程及机理

有液相参加的烧结称为液相烧结。粉料中含少量杂质,在烧结中 出现液相;或某一组分在高温下熔融出现液相 流动传质比扩散传质速度要快的多,烧结速率高,导致在更低的 温度下获得致密的烧结体

➢ ➢
液相烧结具体的条件:
液相对固相颗粒的润湿 固相在液相中有相当的溶解度


液相具有合适的粘度
表面扩散
晶格扩散 蒸发-凝聚 气相扩散
晶粒表面
晶粒表面 晶粒表面 晶粒表面
颈部
颈部 颈部 颈部
表面扩散率Ds
晶格扩散率D1 蒸气压差Δp 气相扩散率Dg
固相烧结的主要传质方式是扩散传质 存在表面扩散、晶界扩散和体积扩散,不是每种扩散传质均能
导致材料收缩或气孔率降低。
物质以表面扩散或晶格扩散方式从表面传递到颈部,不会引起 中心间距的减小,不会导致收缩和气孔率降低 颗粒传质从颗粒体积内或从晶界上传质到颈部,会引起材料的 收缩和气孔消失,真正导致材料致密化 材料的组成、颗粒大小、显微结构(气孔、晶界)、温度、气氛 及添加剂等都会影响扩散传质,进而影响材料的烧结。
用的间歇式窑炉、连续式窑炉和辅助设备。

间歇式窑炉按其功能新颖性可分为电炉、高温倒焰窑、梭式窑和 钟罩窑

陶瓷的烧结工艺流程

陶瓷的烧结工艺流程

陶瓷的烧结工艺流程嘿,咱今儿来聊聊陶瓷的烧结工艺流程呀!你可别小瞧这陶瓷,那可是咱老祖宗留下来的宝贝呢!先来说说原料准备吧,这就好比是要做一顿大餐,得先把食材准备好呀!各种黏土、石英啥的,都得精挑细选,就跟咱买菜得挑新鲜的一样。

然后把它们按照一定的比例混合在一起,这可是个技术活,多一点少一点都可能影响最后的效果。

接下来就是成型啦!就像是捏泥巴,不过这可比咱小时候玩的高级多了。

可以用各种方法,什么拉坯呀、注浆呀,把那一堆原料变成各种各样好看的形状。

想象一下,一块泥巴在师傅的巧手下慢慢变成了一个精美的花瓶,是不是很神奇?然后呢,就该干燥啦!这就好比洗完衣服要晾干一样。

把成型的陶瓷放在合适的地方,让水分慢慢跑掉。

可不能着急哦,要是没干好,后面可就麻烦啦!终于到了最重要的烧结环节啦!这就像是陶瓷的一场大考。

把陶瓷放进高温的炉子里,那温度高得吓人,就像夏天里的大太阳。

在里面经过一番“烤验”,陶瓷才能变得坚硬、漂亮。

这过程可不简单,火候得掌握好,时间也得恰到好处,不然不是没烧好就是烧过头啦,那不就前功尽弃了嘛!你说这陶瓷的烧结工艺流程是不是很有意思?从一堆普通的原料,经过这么多道工序,最后变成了让人爱不释手的艺术品。

这就像我们的人生呀,要经过各种磨练才能变得更加精彩。

咱再想想,要是没有这精细的烧结工艺流程,哪来那些精美的陶瓷呢?那些摆在博物馆里的珍贵瓷器,可都是经过了无数人的心血和努力才诞生的呀!所以说呀,做什么事都得认真对待,就像对待陶瓷的烧结一样,不能马虎。

咱平时用的碗呀、杯子呀,看着普通,可背后都有着这么复杂的工艺呢!咱可得好好珍惜这些陶瓷制品,它们可都是来之不易的呀!你说是不是这个理儿?反正我觉得是这么回事儿!这陶瓷的烧结工艺流程,真的是充满了智慧和魅力,让人不得不佩服咱老祖宗的厉害呀!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档