离散数学最小生成树例题

合集下载

最小生成树及算法

最小生成树及算法

|S|=n-1, 说明是树 最后S={a1, a2, a3,… ,an-1}
B. 破圈法
算法2 步骤如下: (1) 从图G中任选一棵树T1. (2) 加上一条弦e1,T1+e1中 生成一个圈. 去掉此圈中最大权边,得到新树T2, 以T2代T1,重复(2)再检查剩余的弦,直到全部弦 检查完毕为止.
例 n个城市,各城市之间的距离如下表(距离为 ∞,表示两个城市之间没有直接到达的线路)。 从一个城市出发走遍各个城市,如何选择最优的 旅行路线.
性质 任何一棵树至少有两片树叶。 证明 设树T=(V,E),结点数为v,因T是连通的,因 此,树中每个结点vi,有deg(vi)1,且 deg(vi)=2(v-1)=2v-2. 若T中结点度数都大于2,则 deg(vi) 2v,矛盾。 若T中只有一个结点度数为1,则 deg(vi) 2(v-1)+1=2v-1 矛盾。
4 3
v5 3 v6
3.5 生成树的计数
1、一些概念 • • ① 设 G 是一个连通图。 T , T 分别是 G 的两个生成树,如果 E (T ) E (T ) ,则认为 T , T 是 G 的两个不同的生成树。 G 的 不同的生成树个数用 (G) 表示。 如:
v1 v3 v2 v3 v1 v2 v3 v1 v2 v3 v1 v2
证明:⑴⑵ 当 n=2时, e=1, 显然 e=n-1. 假设n=k-1时命题成立,当n=k时,因G无圈、连 通,则至少有一条边(u,v),deg(u)=1,删去u,得到 连通无圈的图G1, G1的边数e1,结点数n1满足: e1=n1-1= k-2 将u,边(u,v)加到 G1中,得到T,且 e=n-1.
( K3 ) 3。 则:
② G-e: 从G中去掉边e后所得的图。

1.6最小生成树及其算法

1.6最小生成树及其算法

如果生成树T *的权 w(T * ) 是 G 的所有生成树的权中最 小者,则称 T * 是 G 的最小生成树,简称为最小树,即
w(T * ) min{w(T )},式中取遍 G 的所有生成树T .
T
介绍最小树的两种算法: Kruskal算法(或避圈法)和破圈法.
A. Kruskal算法(或避圈法)
b)广探法 例用广探法求出下图10的一棵生成树 步骤如下: i) 在点集V中任取一点u, 给u以标号0. ii) 令所有标号i的点集为 Vi,检查[Vi,V\Vi]中的边端点 是否均已标号. 对所有未标 号之点均标以i+1,记下这些 边. iii) 对标号i+1的点重复步 步骤ii),直到全部点得到 标号为止.
步 骤
u
L( b)
L( c)
L( d)
L( e)
L(f)
L( g)
e
V
T0
C(T 0)
1 2 3 4
a b e c
4 - - -
15 9 5 -
32 25
7 7 - -

28 28 28 (a, b) (a, e)
{a} {a, b} {a, b, e}
{(a, b)} {(a, b), (a, e)} {(a, b), (a, e), (c, e)}


(5)T T {e k }, k,t t 1, k k 1, 转( ) 3
例5.3 用Kruskal算法求下图的最小生成树。
解:将图的边按照权值从小到大进行排列,列 出下表
边 (a, b) (c, e) (a, e) (b, c) (d, g) (a, c)
3) 当第2)步不能继续执行时,则停止. 定理5.3 由Kruskal算法构作的任何生成树都是 最小树。

运筹学最小生成树破圈法例题

运筹学最小生成树破圈法例题

运筹学最小生成树破圈法例题引言运筹学是一门研究如何优化决策的学科,它可以帮助我们在面对各种约束条件和目标函数的情况下,找到一个最优解。

其中一个重要的问题是最小生成树(Minimum Spanning Tree,MST)问题,它用于解决图论中的连通性问题。

在本文中,我们将重点讨论用破圈法(Cycle Breaking Algorithm)求解最小生成树问题的例题。

什么是最小生成树问题?最小生成树问题是在一个加权连通图中,找到一个边的子集,使得这个子集形成一棵树,并且这棵树上所有边的权重之和最小。

最小生成树问题常被用于网络设计、电力传输、通信网络等领域。

最小生成树破圈法为了解决最小生成树问题,我们介绍一种常用的算法——破圈法。

该算法的基本思想是不断将新的边加入到当前的生成树中,同时保证生成树中不会形成闭合的回路。

下面通过一个例题来详细介绍破圈法的具体步骤。

例题描述假设我们有一个无向连通图,共有6个顶点,边的权重如下表所示:边权重AB 4AD 6AC 5BC 1BD 2BE 3CE 7DE 8DF 9边权重EF 10我们的目标是找到这个图的最小生成树。

破圈法求解步骤以下是破圈法求解最小生成树问题的具体步骤:1.初始化:选择一个起始顶点作为生成树的根节点,将该顶点加入生成树的顶点集合V’中,将该顶点的所有相邻边加入到候选边集合E’中,并按权重从小到大排序。

2.迭代:从候选边集合E’中选择一条权重最小且不会形成回路的边e,将该边的两个顶点加入到顶点集合V’中,并将这条边加入生成树的边集合中。

同时更新候选边集合,将与新加入顶点有关的边加入候选边集合,并按权重排序。

3.终止条件:重复步骤2,直到生成树包含了全部的n-1个顶点,其中n为原图的顶点个数。

破圈法求解最小生成树例题解析根据以上步骤,我们逐步求解例题中给出的图的最小生成树。

Step 1: 初始化我们选择顶点A作为起始顶点,并将其加入生成树的顶点集合V’中。

最小生成树实际城市建设例题

最小生成树实际城市建设例题

最小生成树实际城市建设例题在实际的城市规划和建设中,经常需要考虑如何在城市中建立高效的交通网络,以便居民可以便捷地出行,最小生成树实际城市建设例题:1. 最小生成树算法可以通过计算城市道路网络的最短路径来确定交通系统的建设方案。

这意味着,我们可以通过最小生成树来找到连接城市不同区域的最佳道路,确保居民可以高效地到达目的地。

2. 在城市建设中,最小生成树算法可以帮助决策者选择相对最优的交通线路布局。

通过计算不同道路之间的权重(如距离、交通流量等),最小生成树可以找到连接城市不同区域的最短路径,并在最佳位置建设道路。

3. 最小生成树算法还可以帮助决策者优化城市交通网络的设计。

通过分析城市道路的拓扑结构,最小生成树可以帮助找到一个连接城市各个地区的最小的道路集合,从而提高交通系统的效率和可持续性。

4. 最小生成树算法在城市建设中可以被用来规划公共交通系统。

通过将公交线路视作图中的节点,道路视作图中的边,可以利用最小生成树算法来确定最佳的公交线路布局,以满足居民的出行需求。

5. 最小生成树算法还可以应用于城市供水系统的规划。

通过将供水管道网络看作图中的边,不同供水站点看作图中的节点,可以使用最小生成树算法来确定供水系统的建设方案,确保每个区域都能获得足够的水源。

6. 在城市绿化方面,最小生成树算法可以用来规划公园和绿地的布局。

通过将不同公园和绿地看作图中的节点,道路连接的路径看作图中的边,最小生成树算法可以帮助确定最佳的公园布局,使得每个居民都能够方便地享受自然环境。

7. 最小生成树算法在城市建设中还可以被用来规划电力系统的布局。

通过将不同电源点和用电点看作图中的节点,电力线路看作图中的边,可以使用最小生成树算法来确定最佳的电力线路布局,以确保电力供应的连通性和稳定性。

8. 最小生成树算法还可以应用于城市安防系统的规划。

通过将不同监控点看作图中的节点,监控设备之间的连接路径看作图中的边,使用最小生成树算法可以确定最佳的监控点布局,提高城市的安全性和治安。

离散数学作业5[答案]

离散数学作业5[答案]

一、填空题1.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是15 .2.设给定图G(如右由图所示),则图G的点割集是{f,c} .3.设G是一个图,结点集合为V,边集合为E,则G的结点度数等于边数的两倍.4.无向图G存在欧拉回路,当且仅当G连通且所有结点的度数全为偶数.5.设G=<V,E>是具有n个结点的简单图,若在G中每一对结点度数之和大于等于n-1 ,则在G中存在一条汉密尔顿路.6.若图G=<V, E>中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S,在G中删除S中的所有结点得到的连通分支数为W,则S中结点数|S|与W满足的关系式为W≤|S|.7.设完全图Kn 有n个结点(n≥2),m条边,当n为奇数时,Kn中存在欧拉回路.8.结点数v与边数e满足e=v-1 关系的无向连通图就是树.9.设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4 条边后使之变成树.10.设正则5叉树的树叶数为17,则分支数为i = 4 .二、判断说明题(判断下列各题,并说明理由.)1.如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路..不正确,图G是无向图,当且仅当G是连通,且所有结点度数均为偶数,这里不能确定图G是否是连通的。

2.如下图所示的图G存在一条欧拉回路.错误.因为图G为中包含度数为奇数的结点.3.如下图所示的图G不是欧拉图而是汉密尔顿图.解:错,既不是欧拉图也不是汉密尔顿图,欧拉图要求所有结点度数均为偶数,这里结点bd各有三个节点;汉密尔顿图要求每一对结点度数之和大于等于总结点数,这里不满足。

4.设G是一个有7个结点16条边的连通图,则G为平面图.错,没有提到面5.设G是一个连通平面图,且有6个结点11条边,则G有7个面.对,由欧拉定理得到:结点-边+面=2 ,即为连通平面图,这里6-11+7=2三、计算题1.设G=<V,E>,V={ v1,v2,v3,v4,v5},E={ (v1,v3),(v2,v3),(v2,v4),(v3,v4),(v3,v5),(v4,v5) },试(1) 给出G的图形表示;(2) 写出其邻接矩阵;(3) 求出每个结点的度数;(4) 画出其补图的图形.解:(1)G的图形如图十二(2)邻接矩阵:图十二⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡111111111111(3)v1,v2,v3,v4,v5结点的度数依次为1,2,4,3,2(4)补图如图十三:2.图G=<V, E>,其中V={ a, b, c, d, e},E={ (a, b), (a, c), (a, e), (b, d), (b, e), (c, e), (c, d), (d, e) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G的图形;(2)写出G的邻接矩阵;(3)求出G权最小的生成树及其权值.解:(1)G的图形表示如图十四:图十四(2)邻接矩阵:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1111111111111111(3)粗线表示最小的生成树,如图十五如图十五最小的生成树的权为1+1+2+3=7:3.已知带权图G如右图所示.(1) 求图G的最小生成树;(2)计算该生成树的权值.4.设有一组权为2, 3, 5, 7, 17, 31,试画出相应的最优二叉树,计算该最优二叉树的权.四、证明题1.设G 是一个n 阶无向简单图,n 是大于等于3的奇数.证明图G 与它的补图G 中的奇数度顶点个数相等.2.设连通图G 有k 个奇数度的结点,证明在图G 中至少要添加2k 条边才能使其成为欧拉图.证明:由定理3.1.2,任何图中度数为奇数的结点必是偶数,可知k 是偶数.又根据定理4.1.1的推论,图G 是欧拉图的充分必要条件是图G 不含奇数度结点.因此只要在每对奇数度结点之间各加一条边,使图G 的所有结点的度数变为偶数,成为欧拉图. 故最少要加2k 条边到图G 才能使其成为欧拉图.。

最小生成树

最小生成树

思路


假设 d 已知,把所有铺设线路的村庄连接 起来,构成一个图。需要卫星设备的台数 就是图的连通支的个数。 d越小,连通支就可能越多。 那么,只需找到一个最小的d,使得连通支 的个数小于等于卫星设备的数目。
结论

一个图的两棵最小生成树,边的权值序列 排序后结果相同
把一个连通无向图的生成树边按权值递增排序,称排好序的边权列表为有序边权列表,则任意两棵 最小生成树的有序边权列表是相同的。(算法导论23.1-8)
答案

只需先求最小生成树,d 的最小值即为第 k 长边!
例题2:POJ 1639 Picnic Planning
矮人虽小却喜欢乘坐巨大的轿车,车大到可以装下 无论多少矮人。某天,N(N≤20)个矮人打算到野外 聚餐。为了集中到聚餐地点,矮人A 要么开车到 矮人B 家中,留下自己的轿车在矮人B 家,然后乘 坐B 的轿车同行;要么直接开车到聚餐地点,并 将车停放在聚餐地。虽然矮人的家很大,可以停 放无数量轿车,但是聚餐地点却最多只能停放K 辆轿车。给你一张加权无向图,描述了N 个矮人 的家和聚餐地点,求出所有矮人开车最短总路程。
最小生成树


对于一个连通网(连通带权图,假定每条 边上的权均为大于零的实数)来说,每棵 树的权(即树中所有边的权值总和)也可 能不同 具有权最小的生成树称为最小生成树。
最小生成树

生成树


无向连通图的边的集合 无回路 连接所有的点 所有边的权值之和最小

最小

Prim算法

假设G=(V,E)是一个具有n个顶点的连通网, T=(U,TE)是G的最小生成树,U,TE初值均为空集。
int HeapPrim(const vector<vector<XEdge> > & G, int n) //G是邻接表,n是顶点数目,返回值是最小生成树权值和 { int i,j,k; XEdge xDist(0,0); priority_queue<XEdge> pq; vector<int> vDist(n); //各顶点到已经建好的那部分树的距离 vector<int> vUsed(n);//标记顶点是否已经被加入最小生成树 int nDoneNum = 0; //已经被加入最小生成树的顶点数目 for( i = 0;i < n;i ++ ) { vUsed[i] = 0; vDist[i] = INFINITE; } nDoneNum = 0; int nTotalW = 0; pq.push(XEdge(0,0));

离散数学最小生成树例题

离散数学最小生成树例题

离散数学最小生成树例题
离散数学最小生成树例题是:
给定一个带权无向图G,其中顶点集V={1,2,3,4,5},边集E={(1,2),(1,3),(1,4),(2,5),(3,5)},权值集合W={1,2,3,4,5}。

用Kruskal算法求最小生成树。

首先对边集E和权值集合W按照边的权值从小到大进行排序;然后初始化一个空的并查集和一个空的森林;将并查集的根节点设置为第一个顶点,森林中添加这个顶点;对于每一条边,如果它的两个顶点不在同一个集合中,将这条边添加到森林中,并将这两个顶点合并到同一个集合中;最后森林中的边就是最小生成树。

离散数学试题库简答题

离散数学试题库简答题

- - 优质资料编号 题目答案题型 分值大纲难度 11 设集合A={a ,b ,c ,d}上的关系R={<a , b > ,< b , a > ,< b, c > , < c ,d >}用矩阵运算求出R 的传递闭包t (R)。

答: ⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000100001010010R M , ⎪⎪⎪⎪⎪⎭⎫⎝⎛==00000000101001012R R R M M M ⎪⎪⎪⎪⎪⎭⎫⎝⎛==000000000101101023R R R M M M ⎪⎪⎪⎪⎪⎭⎫⎝⎛==000000001010010134R R R M M M ⎪⎪⎪⎪⎪⎭⎫⎝⎛=+++=0000100011111111432)(R R R R R t M M M M M∴t (R)={<a , a> , <a , b> , < a , c> , <a , d > , <b , a > , < b ,b > , < b , c . > , < b , d > , < c , d > }简答题8 4.332如下图所示的赋权图表示某七个城市721,,,v v v 及预先算出它们之间的一些直接通信线路造价,试给出一个设计方案,使得各城市之间能够通信而且总造价答: 用Kruskal 算法求产生的最优树。

算法略。

结果如图:树权C(T)=23+1+4+9+3+17=57即为总造价。

简答题8 7.2 3- - 优质资料最小。

3设<Z 6,+6>是一个群,这里+6是模6加法,Z 6={[0 ],[1],[2],[3],[4],[5]},试求出<Z 6,+6>的所有子群。

答: 子群有<{[0]},+6>;<{[0],[3]},+6>;<{[0],[2],[4]},+6>;<{Z 6},+6>简答题8 8.3 34权数1,4,9,16,25,36,49,64,81,100构造一棵最优二叉树。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学最小生成树例题
一个简单的离散数学的最小生成树例题如下:
给定一个带权无向连通图,顶点集合为{A, B, C, D, E, F, G, H},边集合为{(A, B, 7), (A, D, 5), (B, C, 8), (B, D, 9), (B, E, 7), (C, E, 5), (D, E, 15), (D, F, 6), (E, F, 8), (E, G, 9), (F, G, 11), (F, H, 9), (G, H, 10)}。

要求使用Prim算法求解该图的最小生成树,并求出最小生成
树的权重。

首先,从任意一个顶点开始,假设选择顶点A作为起点,将
A加入最小生成树中。

接下来,利用Prim算法,选择与最小生成树中顶点相邻且权
重最小的边,且该边连接的顶点不在最小生成树中。

由题目可知,A与B边的权重最小,所以选择边(A, B, 7)。

将B加入最小生成树中。

再次选择与最小生成树中顶点相邻且权重最小的边,且该边连接的顶点不在最小生成树中。

此时,顶点C与顶点B相邻,
边的权重为8。

将C加入最小生成树中。

接着选取边(B, E, 7),将E加入最小生成树中。

然后选取边(E, C, 5),由于C已经在最小生成树中,故不作处
理。

接下来选取边(E, G, 9),将G加入最小生成树中。

继续选取边(G, H, 10),将H加入最小生成树中。

最后选取边(H, F, 9),由于F已经在最小生成树中,故不作处理。

至此,所有的顶点都被加入了最小生成树中,最小生成树的权重为7+8+5+7+9+10+9=55。

所以,该图的最小生成树为{(A, B, 7), (B, E, 7), (C, E, 5), (E, G, 9), (G, H, 10), (H, F, 9)},最小生成树的权重为55。

相关文档
最新文档