Multi-inference with Multi-neurules
人工智能领域中英文专有名词汇总

名词解释中英文对比<using_information_sources> social networks 社会网络abductive reasoning 溯因推理action recognition(行为识别)active learning(主动学习)adaptive systems 自适应系统adverse drugs reactions(药物不良反应)algorithm design and analysis(算法设计与分析) algorithm(算法)artificial intelligence 人工智能association rule(关联规则)attribute value taxonomy 属性分类规范automomous agent 自动代理automomous systems 自动系统background knowledge 背景知识bayes methods(贝叶斯方法)bayesian inference(贝叶斯推断)bayesian methods(bayes 方法)belief propagation(置信传播)better understanding 内涵理解big data 大数据big data(大数据)biological network(生物网络)biological sciences(生物科学)biomedical domain 生物医学领域biomedical research(生物医学研究)biomedical text(生物医学文本)boltzmann machine(玻尔兹曼机)bootstrapping method 拔靴法case based reasoning 实例推理causual models 因果模型citation matching (引文匹配)classification (分类)classification algorithms(分类算法)clistering algorithms 聚类算法cloud computing(云计算)cluster-based retrieval (聚类检索)clustering (聚类)clustering algorithms(聚类算法)clustering 聚类cognitive science 认知科学collaborative filtering (协同过滤)collaborative filtering(协同过滤)collabrative ontology development 联合本体开发collabrative ontology engineering 联合本体工程commonsense knowledge 常识communication networks(通讯网络)community detection(社区发现)complex data(复杂数据)complex dynamical networks(复杂动态网络)complex network(复杂网络)complex network(复杂网络)computational biology 计算生物学computational biology(计算生物学)computational complexity(计算复杂性) computational intelligence 智能计算computational modeling(计算模型)computer animation(计算机动画)computer networks(计算机网络)computer science 计算机科学concept clustering 概念聚类concept formation 概念形成concept learning 概念学习concept map 概念图concept model 概念模型concept modelling 概念模型conceptual model 概念模型conditional random field(条件随机场模型) conjunctive quries 合取查询constrained least squares (约束最小二乘) convex programming(凸规划)convolutional neural networks(卷积神经网络) customer relationship management(客户关系管理) data analysis(数据分析)data analysis(数据分析)data center(数据中心)data clustering (数据聚类)data compression(数据压缩)data envelopment analysis (数据包络分析)data fusion 数据融合data generation(数据生成)data handling(数据处理)data hierarchy (数据层次)data integration(数据整合)data integrity 数据完整性data intensive computing(数据密集型计算)data management 数据管理data management(数据管理)data management(数据管理)data miningdata mining 数据挖掘data model 数据模型data models(数据模型)data partitioning 数据划分data point(数据点)data privacy(数据隐私)data security(数据安全)data stream(数据流)data streams(数据流)data structure( 数据结构)data structure(数据结构)data visualisation(数据可视化)data visualization 数据可视化data visualization(数据可视化)data warehouse(数据仓库)data warehouses(数据仓库)data warehousing(数据仓库)database management systems(数据库管理系统)database management(数据库管理)date interlinking 日期互联date linking 日期链接Decision analysis(决策分析)decision maker 决策者decision making (决策)decision models 决策模型decision models 决策模型decision rule 决策规则decision support system 决策支持系统decision support systems (决策支持系统) decision tree(决策树)decission tree 决策树deep belief network(深度信念网络)deep learning(深度学习)defult reasoning 默认推理density estimation(密度估计)design methodology 设计方法论dimension reduction(降维) dimensionality reduction(降维)directed graph(有向图)disaster management 灾害管理disastrous event(灾难性事件)discovery(知识发现)dissimilarity (相异性)distributed databases 分布式数据库distributed databases(分布式数据库) distributed query 分布式查询document clustering (文档聚类)domain experts 领域专家domain knowledge 领域知识domain specific language 领域专用语言dynamic databases(动态数据库)dynamic logic 动态逻辑dynamic network(动态网络)dynamic system(动态系统)earth mover's distance(EMD 距离) education 教育efficient algorithm(有效算法)electric commerce 电子商务electronic health records(电子健康档案) entity disambiguation 实体消歧entity recognition 实体识别entity recognition(实体识别)entity resolution 实体解析event detection 事件检测event detection(事件检测)event extraction 事件抽取event identificaton 事件识别exhaustive indexing 完整索引expert system 专家系统expert systems(专家系统)explanation based learning 解释学习factor graph(因子图)feature extraction 特征提取feature extraction(特征提取)feature extraction(特征提取)feature selection (特征选择)feature selection 特征选择feature selection(特征选择)feature space 特征空间first order logic 一阶逻辑formal logic 形式逻辑formal meaning prepresentation 形式意义表示formal semantics 形式语义formal specification 形式描述frame based system 框为本的系统frequent itemsets(频繁项目集)frequent pattern(频繁模式)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy data mining(模糊数据挖掘)fuzzy logic 模糊逻辑fuzzy set theory(模糊集合论)fuzzy set(模糊集)fuzzy sets 模糊集合fuzzy systems 模糊系统gaussian processes(高斯过程)gene expression data 基因表达数据gene expression(基因表达)generative model(生成模型)generative model(生成模型)genetic algorithm 遗传算法genome wide association study(全基因组关联分析) graph classification(图分类)graph classification(图分类)graph clustering(图聚类)graph data(图数据)graph data(图形数据)graph database 图数据库graph database(图数据库)graph mining(图挖掘)graph mining(图挖掘)graph partitioning 图划分graph query 图查询graph structure(图结构)graph theory(图论)graph theory(图论)graph theory(图论)graph theroy 图论graph visualization(图形可视化)graphical user interface 图形用户界面graphical user interfaces(图形用户界面)health care 卫生保健health care(卫生保健)heterogeneous data source 异构数据源heterogeneous data(异构数据)heterogeneous database 异构数据库heterogeneous information network(异构信息网络) heterogeneous network(异构网络)heterogenous ontology 异构本体heuristic rule 启发式规则hidden markov model(隐马尔可夫模型)hidden markov model(隐马尔可夫模型)hidden markov models(隐马尔可夫模型) hierarchical clustering (层次聚类) homogeneous network(同构网络)human centered computing 人机交互技术human computer interaction 人机交互human interaction 人机交互human robot interaction 人机交互image classification(图像分类)image clustering (图像聚类)image mining( 图像挖掘)image reconstruction(图像重建)image retrieval (图像检索)image segmentation(图像分割)inconsistent ontology 本体不一致incremental learning(增量学习)inductive learning (归纳学习)inference mechanisms 推理机制inference mechanisms(推理机制)inference rule 推理规则information cascades(信息追随)information diffusion(信息扩散)information extraction 信息提取information filtering(信息过滤)information filtering(信息过滤)information integration(信息集成)information network analysis(信息网络分析) information network mining(信息网络挖掘) information network(信息网络)information processing 信息处理information processing 信息处理information resource management (信息资源管理) information retrieval models(信息检索模型) information retrieval 信息检索information retrieval(信息检索)information retrieval(信息检索)information science 情报科学information sources 信息源information system( 信息系统)information system(信息系统)information technology(信息技术)information visualization(信息可视化)instance matching 实例匹配intelligent assistant 智能辅助intelligent systems 智能系统interaction network(交互网络)interactive visualization(交互式可视化)kernel function(核函数)kernel operator (核算子)keyword search(关键字检索)knowledege reuse 知识再利用knowledgeknowledgeknowledge acquisitionknowledge base 知识库knowledge based system 知识系统knowledge building 知识建构knowledge capture 知识获取knowledge construction 知识建构knowledge discovery(知识发现)knowledge extraction 知识提取knowledge fusion 知识融合knowledge integrationknowledge management systems 知识管理系统knowledge management 知识管理knowledge management(知识管理)knowledge model 知识模型knowledge reasoningknowledge representationknowledge representation(知识表达) knowledge sharing 知识共享knowledge storageknowledge technology 知识技术knowledge verification 知识验证language model(语言模型)language modeling approach(语言模型方法) large graph(大图)large graph(大图)learning(无监督学习)life science 生命科学linear programming(线性规划)link analysis (链接分析)link prediction(链接预测)link prediction(链接预测)link prediction(链接预测)linked data(关联数据)location based service(基于位置的服务) loclation based services(基于位置的服务) logic programming 逻辑编程logical implication 逻辑蕴涵logistic regression(logistic 回归)machine learning 机器学习machine translation(机器翻译)management system(管理系统)management( 知识管理)manifold learning(流形学习)markov chains 马尔可夫链markov processes(马尔可夫过程)matching function 匹配函数matrix decomposition(矩阵分解)matrix decomposition(矩阵分解)maximum likelihood estimation(最大似然估计)medical research(医学研究)mixture of gaussians(混合高斯模型)mobile computing(移动计算)multi agnet systems 多智能体系统multiagent systems 多智能体系统multimedia 多媒体natural language processing 自然语言处理natural language processing(自然语言处理) nearest neighbor (近邻)network analysis( 网络分析)network analysis(网络分析)network analysis(网络分析)network formation(组网)network structure(网络结构)network theory(网络理论)network topology(网络拓扑)network visualization(网络可视化)neural network(神经网络)neural networks (神经网络)neural networks(神经网络)nonlinear dynamics(非线性动力学)nonmonotonic reasoning 非单调推理nonnegative matrix factorization (非负矩阵分解) nonnegative matrix factorization(非负矩阵分解) object detection(目标检测)object oriented 面向对象object recognition(目标识别)object recognition(目标识别)online community(网络社区)online social network(在线社交网络)online social networks(在线社交网络)ontology alignment 本体映射ontology development 本体开发ontology engineering 本体工程ontology evolution 本体演化ontology extraction 本体抽取ontology interoperablity 互用性本体ontology language 本体语言ontology mapping 本体映射ontology matching 本体匹配ontology versioning 本体版本ontology 本体论open government data 政府公开数据opinion analysis(舆情分析)opinion mining(意见挖掘)opinion mining(意见挖掘)outlier detection(孤立点检测)parallel processing(并行处理)patient care(病人医疗护理)pattern classification(模式分类)pattern matching(模式匹配)pattern mining(模式挖掘)pattern recognition 模式识别pattern recognition(模式识别)pattern recognition(模式识别)personal data(个人数据)prediction algorithms(预测算法)predictive model 预测模型predictive models(预测模型)privacy preservation(隐私保护)probabilistic logic(概率逻辑)probabilistic logic(概率逻辑)probabilistic model(概率模型)probabilistic model(概率模型)probability distribution(概率分布)probability distribution(概率分布)project management(项目管理)pruning technique(修剪技术)quality management 质量管理query expansion(查询扩展)query language 查询语言query language(查询语言)query processing(查询处理)query rewrite 查询重写question answering system 问答系统random forest(随机森林)random graph(随机图)random processes(随机过程)random walk(随机游走)range query(范围查询)RDF database 资源描述框架数据库RDF query 资源描述框架查询RDF repository 资源描述框架存储库RDF storge 资源描述框架存储real time(实时)recommender system(推荐系统)recommender system(推荐系统)recommender systems 推荐系统recommender systems(推荐系统)record linkage 记录链接recurrent neural network(递归神经网络) regression(回归)reinforcement learning 强化学习reinforcement learning(强化学习)relation extraction 关系抽取relational database 关系数据库relational learning 关系学习relevance feedback (相关反馈)resource description framework 资源描述框架restricted boltzmann machines(受限玻尔兹曼机) retrieval models(检索模型)rough set theroy 粗糙集理论rough set 粗糙集rule based system 基于规则系统rule based 基于规则rule induction (规则归纳)rule learning (规则学习)rule learning 规则学习schema mapping 模式映射schema matching 模式匹配scientific domain 科学域search problems(搜索问题)semantic (web) technology 语义技术semantic analysis 语义分析semantic annotation 语义标注semantic computing 语义计算semantic integration 语义集成semantic interpretation 语义解释semantic model 语义模型semantic network 语义网络semantic relatedness 语义相关性semantic relation learning 语义关系学习semantic search 语义检索semantic similarity 语义相似度semantic similarity(语义相似度)semantic web rule language 语义网规则语言semantic web 语义网semantic web(语义网)semantic workflow 语义工作流semi supervised learning(半监督学习)sensor data(传感器数据)sensor networks(传感器网络)sentiment analysis(情感分析)sentiment analysis(情感分析)sequential pattern(序列模式)service oriented architecture 面向服务的体系结构shortest path(最短路径)similar kernel function(相似核函数)similarity measure(相似性度量)similarity relationship (相似关系)similarity search(相似搜索)similarity(相似性)situation aware 情境感知social behavior(社交行为)social influence(社会影响)social interaction(社交互动)social interaction(社交互动)social learning(社会学习)social life networks(社交生活网络)social machine 社交机器social media(社交媒体)social media(社交媒体)social media(社交媒体)social network analysis 社会网络分析social network analysis(社交网络分析)social network(社交网络)social network(社交网络)social science(社会科学)social tagging system(社交标签系统)social tagging(社交标签)social web(社交网页)sparse coding(稀疏编码)sparse matrices(稀疏矩阵)sparse representation(稀疏表示)spatial database(空间数据库)spatial reasoning 空间推理statistical analysis(统计分析)statistical model 统计模型string matching(串匹配)structural risk minimization (结构风险最小化) structured data 结构化数据subgraph matching 子图匹配subspace clustering(子空间聚类)supervised learning( 有support vector machine 支持向量机support vector machines(支持向量机)system dynamics(系统动力学)tag recommendation(标签推荐)taxonmy induction 感应规范temporal logic 时态逻辑temporal reasoning 时序推理text analysis(文本分析)text anaylsis 文本分析text classification (文本分类)text data(文本数据)text mining technique(文本挖掘技术)text mining 文本挖掘text mining(文本挖掘)text summarization(文本摘要)thesaurus alignment 同义对齐time frequency analysis(时频分析)time series analysis( 时time series data(时间序列数据)time series data(时间序列数据)time series(时间序列)topic model(主题模型)topic modeling(主题模型)transfer learning 迁移学习triple store 三元组存储uncertainty reasoning 不精确推理undirected graph(无向图)unified modeling language 统一建模语言unsupervisedupper bound(上界)user behavior(用户行为)user generated content(用户生成内容)utility mining(效用挖掘)visual analytics(可视化分析)visual content(视觉内容)visual representation(视觉表征)visualisation(可视化)visualization technique(可视化技术) visualization tool(可视化工具)web 2.0(网络2.0)web forum(web 论坛)web mining(网络挖掘)web of data 数据网web ontology lanuage 网络本体语言web pages(web 页面)web resource 网络资源web science 万维科学web search (网络检索)web usage mining(web 使用挖掘)wireless networks 无线网络world knowledge 世界知识world wide web 万维网world wide web(万维网)xml database 可扩展标志语言数据库附录 2 Data Mining 知识图谱(共包含二级节点15 个,三级节点93 个)间序列分析)监督学习)领域 二级分类 三级分类。
多层感知器神经网络的训练算法优化与收敛性分析

多层感知器神经网络的训练算法优化与收敛性分析深度学习在人工智能领域中扮演着重要角色,而多层感知器神经网络作为经典的深度学习模型,被广泛应用于图像识别、自然语言处理等领域。
然而,多层感知器神经网络的训练过程通常需要大量的计算资源和时间,在实际应用中存在一定挑战。
为了提高多层感知器神经网络的训练效果和速度,需要对训练算法进行优化,并对其收敛性进行深入分析。
首先,为了优化多层感知器神经网络的训练算法,可以尝试使用更高效的优化算法,如Adam、RMSprop等。
Adam算法结合了自适应矩估计和随机梯度下降算法的优势,能够快速且稳定地收敛。
而RMSprop算法则通过自适应调整学习率的方式避免了学习率过大或过小的问题,同样能够加速网络的收敛过程。
此外,还可以考虑使用批量归一化技术,通过减小输入数据的分布差异,加速网络的收敛过程。
其次,多层感知器神经网络的训练效果和速度还可通过调整网络结构进行优化。
一方面,可以增加网络的宽度,即增加隐藏层的节点数,使得网络更加复杂,提高性能。
另一方面,可以增加网络的深度,即增加隐藏层的层数,使得网络更具有判别性。
但是,增加网络的宽度和深度也会导致模型参数的增加,增加计算量和过拟合的风险。
因此,在网络结构的选择中需要权衡精度和效率之间的平衡。
对于多层感知器神经网络的收敛性分析,需要考虑训练过程中的梯度消失和梯度爆炸问题。
梯度消失是指在反向传播过程中,梯度不断减小,导致网络参数无法有效更新;而梯度爆炸则是指梯度过大,使网络参数波动较大,无法收敛。
为了解决这些问题,可以使用不同的激活函数,如ReLU、Leaky ReLU等,来减少梯度消失和梯度爆炸的概率。
此外,还可以通过权重初始化、梯度裁剪等技术来控制梯度的大小,稳定网络的训练过程。
除了上述的优化算法和收敛性分析,还有一些其他的方法可以进一步提高多层感知器神经网络的训练效果和速度。
例如,使用数据增强技术来扩充训练集,增加模型的泛化能力;采用正则化方法减少过拟合的风险;引入集成学习方法,如dropout和bagging,减少模型的方差。
多智能体强化学习的几种BestPractice

多智能体强化学习的几种BestPractice(草稿阶段,完成度40%)多智能体强化学习的几种Best Practice - vonZooming的文章 - 知乎 https:///p/99120143这里分享一下A Survey and Critique of Multiagent Deep Reinforcement Learning这篇综述里面介绍的多智能体强化学习Best Practice。
这部分内容大部分来自第四章,但是我根据自己的理解加上了其他的内容。
1.改良Experience replay buffer1.1 传统的Single-agent场景之下的Replay bufferReplay Buffer[90, 89]自从被提出后就成了Single-Agent强化学习的常规操作,特别是DQN一炮走红之后[72] 。
不过,Replay Buffer有着很强的理论假设,用原作者的话说是——The environment should not changeover time because this makes pastexperiences irrelevantor even harmful.(环境不应随时间而改变,因为这会使过去的experience replay变得无关紧要甚至有害)Replay buffer假设环境是stationary的,如果当前的环境信息不同于过去的环境信息,那么就无法从过去环境的replay中学到有价值的经验。
(画外音:大人,时代变了……别刻舟求剑了)在multi-agent场景下,每个agent都可以把其他的agent当作环境的一部分。
因为其他的agent不断地学习进化,所以agent所处的环境也是在不断变换的,也就是所谓的non-stationary。
因为multi-agent场景不符合replay buffer的理论假设,所以有的人就直接放弃治疗了——例如2016年发表的大名鼎鼎的RIAL和DIAL中就没有使用replay buffer。
人工智能习题库与答案

人工智能习题库与答案一、单选题(共103题,每题1分,共103分)1.()问题更接近人类高级认知智能,有很多重要的开放问题。
A、计算机视觉B、自然语言处理C、语音识别D、知识图谱正确答案:B2.逻辑回归模型中的激活函数Sigmoid函数值范围是A、(0,1)B、[0,1]C、(-∞~∞)D、[-1,1]正确答案:A3.使用什么命令检测基本网络连接?A、routeB、pingC、netstatD、ifconfig正确答案:B4.关于bagging下列说法错误的是:()A、为了让基分类器之间互相独立,需要将训练集分为若干子集。
B、当训练样本数量较少时,子集之间可能有重叠。
C、最著名的算法之一是基于决策树基分类器的随机森林。
D、各基分类器之间有较强依赖,不可以进行并行训练。
正确答案:D5.下列快捷键中能够中断(Interrupt Execution)Python程序运行的是A、F6B、Ctrl+QC、Ctrl+CD、Ctrl+F6正确答案:C6.下列关于深度学习说法错误的是A、LSTM在一定程度上解决了传统RNN梯度消失或梯度爆炸的问题B、CNN相比于全连接的优势之一是模型复杂度低,缓解过拟合C、只要参数设置合理,深度学习的效果至少应优于随机算法D、随机梯度下降法可以缓解网络训练过程中陷入鞍点的问题正确答案:C7.传统GBDT以()作为基分类器A、线性分类器B、CARTC、gblinearD、svm正确答案:B8.半监督支持向量机简称?A、S2VMB、SSVMC、S3VMD、SVMP正确答案:C9.以下不属于人工智能软件的是()。
A、语音汉字输入软件B、百度翻译C、在网上与网友下棋D、使用OCR汉字识别软件正确答案:C10.云计算通过共享()的方法将巨大的系统池连接在一起。
A、CPUB、软件C、基础资源D、处理能力正确答案:C11.下列哪项是自然语言处理的Python开发包?A、openCVB、jiebaC、sklearnD、XGBoost正确答案:B12.神经网络中最基本的成分是()模型。
多层前向小世界神经网络的逼近与容错性能

Ap o i a i n a u tTo e a c r o m a e f M u tl y r pr x m to nd Fa l・ l r n e Pe f r nc s o lia e Fe df r r m a lW o l u a t r e o wa d S l r d Ne r lNe wo k
3 时, 0 重连概 率不 大 于 0 8的 小世 界神 经 网络 与规 则 网络 同样 具有较 优 的容错性 能 , 当故 障率 . 而
大于 4 时 , O 重连概 率较 大的 小世 界神 经 网络和 随机连 接的 神经 网络 的 容错性 能要 明显优 于规 则
网络.
关键 词 :小世界 神 经网络 ; 复杂 网络 ; 函数逼近 中图分类 号 :TP 8 文献 标 志码 :A 文章 编号 : 2 39 7 2 1 ) 70 5 —5 13 0 5 —8 X( 0 0 0 —0 90
L a h DU afn 2, ZHANG h a , W ANG u n IXio u , H i g e Jn u i S na
( . h o fM e h nia gie rn 1 Sc o lo c a c l En n e ig,Xi nJa tn ie st ’ ioo g Unv riy,Xi n 7 0 49 a 1 0 ,Chn a ia;2 Ce e o . ntrfr Ad ns rto n mplxt in e。Xi nJa o g Unv riy,Xi n 7 0 4 miita ina dCo ei S ec yc iotn ie st a 0 9,Chn ) a 1 ia
nt r e wo k:a dwh n t elan n a ep r m ee f ewo k g t ewe n 0 1t . ,i e e t e s n e h e r ig r t a a t r t r esb t e . O0 3 t x rsts o n
基于多重注意力机制的多模态脑肿瘤图像分割

第13卷㊀第12期Vol.13No.12㊀㊀智㊀能㊀计㊀算㊀机㊀与㊀应㊀用IntelligentComputerandApplications㊀㊀2023年12月㊀Dec.2023㊀㊀㊀㊀㊀㊀文章编号:2095-2163(2023)12-0080-07中图分类号:TP391文献标志码:A基于多重注意力机制的多模态脑肿瘤图像分割陈子昂1,刘㊀娜1,袁㊀野2,李清都2,万里红3(1上海理工大学健康科学与工程学院,上海200093;2上海理工大学机器智能研究院,上海200093;3中原动力智能机器人有限公司,郑州450018)摘㊀要:本文提出了一种新型的多模态脑肿瘤图像分割方法,该方法将3种注意力机制与传统U-Net模型相结合,从三维多模态MRI医学图像中分割脑肿瘤㊂所提出的模型分为编码器㊁解码器㊁特征融合和瓶颈层4部分,各采用不同的注意力机制,增强了多模态信息提取能力㊂在特征融合部分,提出了一种新的注意力模块 注意力门控传播模块(AGPM),该模块将通道注意力和注意力门结合起来,沿通道维度和空间维度依次推断注意力映射;瓶颈层部分,在卷积层之间应用了一个多头自注意力层(MHSA)来增强感受野㊂此外,在模型的瓶颈层部分加入了一种新的注意力模块 多头特征增强模块(MHFEM),来补充多尺度信息㊂通过在BraTS2020数据集上的实验结果,表明了所提模型的有效性㊂关键词:医学图像;深度学习;语义分割;注意力机制MultimodalimagesegmentationofbraintumorsbasedonmultipleattentionalmechanismsCHENZiang1,LIUNa1,YUANYe2,LIQingdu2,WANLihong3(1SchoolofHealthScienceandEngineering,UniversityofShanghaiforScienceandTechnology,Shanghai200093,China;2InstituteofMachineIntelligence,UniversityofShanghaiforScienceandTechnology,Shanghai200093,China;3OriginDynamicsIntelligentRobotCo.,Ltd.,Zhengzhou450018,China)Abstract:Inthispaper,anovelmultimodalbraintumorimagesegmentationmethodisproposed,whichcombinesthreeattentionalmechanismswithatraditionalU-Netmodeltosegmentbraintumorsfrom3DmultimodalMRImedicalimages.Theproposedmodelisdividedintofourparts:encoder,decoder,featurefusionandbottlenecklayer,eachofwhichemploysadifferentattentionalmechanismtoenhancethemultimodalinformationextractioncapability.Inthefeaturefusionpart,anewattentionmodule-attentiongatedpropagationmodule(AGPM)isproposed,whichcombineschannelattentionandattentiongatestoinfertheattentionmappingsequentiallyalongthechanneldimensionandspatialdimension;inthebottlenecklayerpart,amulti-headself-attentionlayer(MHSA)isappliedbetweentheconvolutionallayerstoenhancethesensoryfield.Inaddition,anewattentionmodule-Multi-HeadedFeatureEnhancementModule(MHFEM)-isaddedtothebottlenecklayerpartofthemodeltosupplementthemulti-scaleinformation.TheeffectivenessoftheproposedmodelisdemonstratedbyexperimentalresultsontheBraTS2020dataset.Keywords:medicalimage;deeplearning;semanticsegmentation;attentionmechanism基金项目:国家自然科学基金(61773083);上海市浦江人才计划(2019PJD035);上海市人工智能创新发展专项;上海市引进海外高层次人才工作专项;上海高校特聘教授(东方学者)计划㊂作者简介:陈子昂(1998-),男,硕士研究生,主要研究方向:计算机视觉㊂通讯作者:刘㊀娜(1985-),女,博士,讲师,主要研究方向:计算机视觉㊂Email:liuna@usst.edu.cn收稿日期:2022-12-160㊀引㊀言脑肿瘤根据其来源可分为原发性肿瘤和继发性肿瘤,胶质瘤是最常见的原发性脑肿瘤,由大脑和脊髓中的胶质细胞癌变引起[1],可进一步分为低级别胶质瘤(LGG)和高级别胶质瘤(HGG)㊂HGG是一种恶性脑肿瘤,侵袭性高,预后较差,治疗后复发性较高㊂胶质瘤的治疗主要以切除为主,因此准确的脑肿瘤分割对于疾病的诊断和治疗计划至关重要[2]㊂然而,由于胶质瘤的位置㊁外观和形状的多样性,胶质瘤的自动分割仍然具有挑战性,被认为是医学领域最困难的分割问题之一㊂多模态磁共振成像(Multi-modalMagneticResonanceImaging,MRI)能提供高对比度和空间分辨率的脑图像,是一种常用的脑结构分析方法[3],已广泛应用于临床,如大脑㊁心脏㊁椎间盘分割等[4]㊂通过改变磁共振信号,可以获得4种模态的磁共振图像,分别为T1-加权(T1)㊁T1-带对比增强(T1ce)㊁T2-加权(T2)和T2流体衰减反演恢复(Flair)㊂其中,T2和Flair像能突出瘤周水肿,T1和T1ce像能显示坏死和非增强的肿瘤核心,T1ce能进一步显示增强的肿瘤区域[3]㊂因此,多模态MR图像在脑肿瘤分割中的应用越来越受到重视㊂近年来,随着卷积神经网络(ConvolutionalNeuralNetworks,CNN)的提出,基于深度学习的方法成为三维MRI脑肿瘤分割的常用方法㊂文献[5]将分割问题转化为像素级的分类问题,首次将CNN引入图像分割中,提出了一种全卷积网络(FullyConvolutionalNetwork,FCN)的编码器-解码器神经网络架构㊂在编码阶段,使用CNN提取特征,并将CNN的最后一个全连接层替换为卷积层,从而减小图像的尺寸,增加特征的数量;在解码阶段,通过插值或反褶积对图像进行恢复,并对groundtruth的每个像素对应的预测结果进行分类,实现像素级分类㊂尽管FCN在自然图像分割方面具有很强的性能,但仍存在许多缺点,容易丢失自然图像的局部信息㊂文献[6]提出了一种称为U-Net的神经网络架构来弥补这一缺陷,其给编码器和解码器设置相同的层数,形成U型架构,并以此得名㊂U-Net在每个编码器层的输出和相应解码器层的输入之间引入了跳跃式连接㊂跳越连接的优点使其保留了精确的局部信息,可以被解码器用来实现清晰的分割轮廓㊂文献[7]使用基于U-Net的深度卷积网络进行脑肿瘤图像分割,有效地获得了出色的分割结果㊂注意力机制本质上类似于人类对外部事物的观察机制㊂一般来说,人们在观察外部事物时,首先比较注意并倾向于观察事物的一些重要的局部信息,然后将不同区域的信息结合起来,形成对所观察事物的整体印象㊂注意力机制在各种AI任务中非常流行,经常用于各种网络模型的组件中,使用注意力机制的网络模块通常称为注意力模型㊂注意力机制的体系结构大致可分为空间域㊁通道域和混合域三大类㊂文献[8]提出了一种名为SpatialTransformer的网络模块,通过生成并计算所有通道特征图的权重,来聚焦图像的不同区域㊂文献[9]提出了一种称为SEblock的网络模块,用于为所有通道生成权重参数,这些权重参数可以描述对不同通道的重视程度㊂文献[10]提出了一种混合域注意力模块(ConvolutionalBlockAttentionModule,CBAM),集成了通道注意力和空间注意力㊂文献[11]首次将自注意力(Self-Attention)机制引入计算机视觉,本质上是一种特殊的空间注意力㊂文献[12]首次在计算机视觉中引入了多头自我注意力(MHSA),将瓶颈层的卷积层换成了MHSA块,模型的精度得到了明显的提高㊂文献[13]提出了一种专门用于语义分割的空间注意力机制模块㊂与传统的空间注意力机制相比,权值层结合了上采样和下采样的特征,在给予注意力权值的同时进行特征融合㊂一些研究尝试使用注意力模型优化多模态融合㊂文献[14]尝试在U-Net的跳跃连接部分添加CBAM模块,优化鼻咽癌(NPC)MRI的多模态融合㊂文献[15]提出了一种注意相互增强(AME)模块,在特征提取阶段融合每种模态的特征,以挖掘不同图像模态之间的关系,用于宫颈发育不良的诊断㊂综上所述,本文认为三维MRI脑肿瘤分割还存在以下不足:(1)仅将脑肿瘤MRI的4个多模态序列转换为四通道输入,未充分利用3DMRI的多模态信息㊂(2)感受野缺失一直是CNNBasedNetwork中存在的问题,导致分割结果缺乏详细信息㊂(3)在脑肿瘤分割中,整个图像只有极小部分包含肿瘤㊂在BraTS[3]数据集的训练集中,大约超过95%的体素属于background,不足5%的体素属于ED㊁NCR㊁NET和ET㊂数据集存在类不平衡问题㊂为此,提出了一种全新的基于多重注意力机制的多模态脑肿瘤图像分割方法㊂为了克服这些挑战,本文考虑以下设计:(1)提出注意门控传播模块(AGPM),同时获取信道注意和空间注意信息,优化多模态融合;(2)在瓶颈层增加三维多头自注意力(MHSA)块,补充分割细节,扩展网络接受域;(3)将多头特征增强模块(Multi-HeadFeatureEnhancementModule,MHFEM)置于瓶颈层后,有利于远程信息建模,并将低层特征作为门控特征的多尺度信息进行组合,实现对噪声的滤波;(4)将广义骰子损失(GDL)[16]与二元交叉熵(BCE)相结合,用以处理类不平衡问题㊂1㊀方㊀法1.1㊀整体网络结构如图1所示,本文中所提模型采用了基于U-Net的三维全卷积编码器-解码器架构,其体系结构可分为编码器㊁解码器㊁特征融合㊁瓶颈层等4个部分㊂模型输入是128∗128∗128的立方体,其中所18第12期陈子昂,等:基于多重注意力机制的多模态脑肿瘤图像分割有体素将被预测属于某个类㊂编码器部分使用5个基于CNN的模块提取脑肿瘤MRI图像的特征㊂这些基于CNN的模块由三维卷积层㊁BatchNorm层和LeakyReLU层组成,由两个小模型块组成一个整体㊂在第一个小模型块的最后,设置三维卷积层的步长为2,用来代替池化层进行降维㊂解码器部分采用5个基于三维卷积层和转置卷积层的模型块来实现特征恢复和上采样㊂这些模型块与编码器中的大致相同,但其步长设置为1㊂在瓶颈部分,本文在两个三维卷积层之间添加一个三维MHSA模型块,然后提供多头特征增强模块(MHFEM)来获取远程建模信息㊂此外,利用跳跃连接实现上采样与下采样同层特征映射之间的特征融合㊂这是语义分割中常见的体系结构,其可以补充特征,改善图像细节㊂在特征融合过程中增加了通道注意力模块和空间注意力模块㊂编码器部分特征融合部分解码器部分输入输出瓶颈层部分卷积层卷积层(步长为2)反卷积层3DM H S Ab l o c k A G P M M H F E M图1㊀整体网络结构Fig.1㊀Thearchitectureoftheproposednetwork1.2㊀3DMHSA模块多头自注意力(MHSA)模块作为Transformer模块中一种重要的结构,在计算机视觉领域得到了广泛的应用㊂许多研究表明,MHSA模块可以显著提高CNN的性能㊂例如,在文献[12]中,将ResNet瓶颈层的第二个卷积层替换为MHSA模块,扩大感受域㊂实验表明,该替换方法可以大大提高模型在目标检测㊁实例分割等任务中的性能㊂鉴于其优异的性能,本文将MHSA引入到脑肿瘤MRI分割任务中㊂此外,为了匹配MRI图像的三维度,本文在原MHSA块的基础上设计了一种新的3DMHSA块,并在U-Net瓶颈层的两个卷积层之间添加了新设计的MHSA块㊂㊀㊀如图2所示,输入MHSA模块的特征图维度设置为H∗W∗D∗Cd㊂其中,H㊁W㊁D分别为特征图的高㊁宽㊁深,Cd为通道数除以MHSA模块的多头数d㊂文中使用绝对位置编码[17]来学习空间注意力㊂RW㊁RH㊁RD分别表示维度为H∗1∗D∗d㊁1∗W∗D∗d㊁H∗W∗1∗d的可学习权值矩阵㊂在单个头中,输出可用式(1)表示:Z=softmax(qkT+qrT)v(1)1.3㊀注意门控传播模块注意力门(Attention-Gate)[13]是一种专门用于医学图像的空间注意力模型㊂其通过计算一个门控向量来确定每个像素的焦点区域,摒弃了以单一标量值表示每个像素向量的注意力级别的传统方法㊂该模型通过抑制与任务无关的区域特征,采用补充上层特征的方式,更有效地捕捉注意力依赖性㊂这种策略在处理数据集较小的医学图像任务时尤为有益㊂然而,需要注意的是,该注意力模型在通道特征方面并未经过优化㊂在三维MRI图像中,通道信息用来表示MRI图像的模态特征,因此,对通道特征的优化显得尤为重要㊂为此,本文提出了一种新的注意模型 注意门控传播模块(AGPM)来解决这一问题㊂28智㊀能㊀计㊀算㊀机㊀与㊀应㊀用㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第13卷㊀D HdWH *W *D ?H *W *D H *W *D ?dH *W *D ?H *W *DH *W *D ?H *W *D三维自注意力层H ?W ?D ?dH ?W ?D ?dH ?W ?D ?dH ?W ?D ?dkqrvW q ∶1?1?1W k ∶1?1?1W v ∶1?1?1H ?1?D ?dH ?W ?1?d1?W ?D ?dR WR HR DD HWds o f t m a xZ X 图2㊀3DMHSA模块Fig.2㊀3DMulti-HeadSelf-Attention(MHSA)block㊀㊀MRI数据集通常具有多模态序列,而BraTS数据集中有T1㊁T2㊁FLAIR和T1CE4种模式㊂在本文所提出的工作中,将多模态图像叠加成一个四通道输入㊂因此,如果要直接优化MRI的多模态融合,优化网络中的通道是最好㊁最直接的方法㊂卷积块注意力模块(CBAM)[10]是一个同时获得通道注意和空间注意的注意块,CBAM的通道注意块不仅使用全局平均池层捕获平均值,还使用了全局最大池层获得特征映射的最大值,平均值和最大值都被输入到共享MLP中,其空间注意模块也使用了全局平均池层和全局最大池层,通过softmax获取空间注意㊂本文认为,在医学图像任务中,注意门比CBAM中的空间注意模块能更好地获取空间注意力信息,通道注意可以优化医学图像的多模态融合㊂因此,本文在网络特征融合部分结合了通道注意力和注意力门㊂如图3所示,在特征融合部分,先将编码器同层的特征映射输入到信道注意块中,得到信道注意映射;然后将特征图与通道注意图点积输入注意门,并结合上层特征得到空间注意图;最后,将其与空间注意图进行点积,得到结果㊂注意力门通道注意力GXX图3㊀注意门控传播模块Fig.3㊀AttentionGatedPropagationModule1.4㊀多头特征增强模块在瓶颈层部分,本文提出了多头特征增强模块(MHFEM),在输入解码器之前对特征进行增强㊂基于多头注意力,利用特征图生成注意力权重,有利于远程信息建模和集成多尺度信息㊂㊀㊀如图4所示,将待上采样的特征设为X,编码器中上层的特征映射设为门控特征G㊂先使用三线性插值上采样,使X的维度与门控特性G的维度Hg∗Wg∗Dg∗d统一,然后将特性X与门控特征G点积;同时使用3D绝对位置编码,生成空间位置特征X;将两组特征点积并相加求和;再通过Softmax层得到注意力权重,并与门控特征G点乘得到结果㊂其表达如式(2)所示:Z=softmax(xgT+xrT)g(2)38第12期陈子昂,等:基于多重注意力机制的多模态脑肿瘤图像分割H g *W g *D g ?dH g *W g *D g ?H g *W g *D gH g ?W g ?D g ?dH g ?W g ?1?d1?W g ?D g ?dH g ?1?D g ?d 绝对位置编码H g ?W g ?D g ?d H g ?W g ?D g ?d dD g H gW gH g ?W g ?D g ?d dW xH xD x D g H gW gdR W R H R DU p s a m p l eW g :1?1?1W x :1?1?1s o f t m a x图4㊀多头特征增强模块Fig.4㊀Multi-HeadFeatureEnhancementModule1.5㊀广义骰子损失文献[16]中提出的广义骰子损失(GeneralizedDiceLoss)已被证明是一种强大的图像分析工具,现在广泛用于分割2D和3D医学图像㊂当处理一些罕见图像数据集时,候选标签之间可能会发生严重的类不平衡,从而导致性能欠佳㊂由于只有很小一部分的完整图像代表了有特征的病理区域,这种问题在医学图像中尤其严重㊂广义骰子损失可表示为式(3)形式:GDL=1-2ðLl=1wlðNi=1rlipliðLl=1wlðNi=1rlipli(3)式中:rli表示属于L类的第i个体素的真值,pli为相应的预测值,N是体素的总数,L是类的总数,wl用于为不同的标签集属性提供不变性㊂2㊀实㊀验2.1㊀数据集本文中所提出的方法在包含FLAIR㊁T1㊁T1c㊁T2四种MRI图像的BraTS2020数据集上得到了验证㊂BraTS2020训练集包含369张不同患者的胶质母细胞瘤(HGG)和低级别胶质瘤(LGG)的MRI扫描图㊂训练集包含293个HGG扫描和76个LGG扫描,并附有经委员会认证的神经放射专家的地面真相标签;验证集包含125个案例㊂在分割任务中需要分割3个区域:非增强性肿瘤㊁增强性肿瘤㊁瘤周水肿㊂在评价指标中,整个肿瘤区域由水肿区㊁非增强区和增强区组成㊂肿瘤核心区由增强区和非增强区组成[18]㊂此外,BraTS挑战一直专注于评估MRI扫描中脑肿瘤分割的最先进方法㊂BraTS2020利用多机构术前MRI扫描,重点关注内在异质性脑肿瘤(称为胶质瘤)的外观㊁形状和组织学分割㊂最后,该挑战旨在通过实验评估肿瘤分割的不确定性㊂2.2㊀实验设置本文方法在PyTorch中实现;模型采用NVIDIAGeForceRTX2080TiGPU和IntelXeon(R)CPUe5-2650v3@2.30GHzx2032gbRAMCPU进行,且仅使用BraTS2020数据集训练模型;4种模态数据(Flair㊁T1ce㊁T2㊁T1)重叠作为初始通道;初始输入为4∗128∗128∗128patch㊂本文方法在在线评估平台上进行评估,可以与许多最先进的方法直接比较㊂首先将每种网络结构的改进效果在BraTS2020训练集上的五折交叉验证实验进行了比较,选择效果最好的网络结构上传到在线评价平台,得到验证集结果㊂此外,还将提出的方法与近年来常用的深度学习模型进行了比较,并且在相同的数据集中重现这些训练模型㊂在BraTS数据集中,训练的标签为水肿㊁非增强性肿瘤和增强性肿瘤㊂通常,BraTS评估分割使用部分重叠的整个肿瘤㊁肿瘤核心㊁增强肿瘤区域㊂实验设置sigmoid作为分类器,将二元交叉熵(BinaryCross-Entropy,BCE)与GDL相结合作为损失函数;设置batchsize为5,初始学习率为1e-2㊂在训练阶段,学习率是线性下降的㊂2.3㊀实验结果本文报告了近年来深度学习模型应用于脑肿瘤48智㊀能㊀计㊀算㊀机㊀与㊀应㊀用㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第13卷㊀分割的结果㊂项目组复制了这些模型,并在BraTS2020数据集上评估了这些方法,见表1㊂由于表1中提到的模型参数并不明确,故而在重新生成这些模型时做了很多更改㊂表中模型代码采用开源项目,本项目组采用了相同的预处理和后处理方法,本研究集中在模型层面㊂为了评估现有的深度学习方法,比较了5个具有最先进性能的方法,本文提出的网络架构性能更佳㊂除了提高肿瘤骰子得分外,本文方法在整个肿瘤骰子得分及肿瘤核心骰子得分上都有较好的表现㊂实验表明,本文方法在最先进的模型中仍然具有竞争力㊂在图5中,展示了不同深度学习架构的分割结果,并选择了5个有代表性的样本进行验证㊂结果表明,与其他网络相比本文方法在细节特征的生成方面具有更好的性能㊂表1㊀实验结果对比Table1㊀ThedetailedBraTS2020validationsetresultModelWTTCETMean3DUNet[19]0.88220.79270.71980.7982MMTSN[20]0.88230.80120.76370.8157nnUNet[21]0.90500.83900.74000.8280TransBTS[22]0.89000.81360.78500.8295Ours0.90830.84680.74980.8349图5㊀分割结果可视化Fig.5㊀Segmentationresultvisualization58第12期陈子昂,等:基于多重注意力机制的多模态脑肿瘤图像分割3 结束语本文将U-Net结构与3种注意力模块相结合,提出了一种新的多模态脑肿瘤分割模型㊂其中,包含了注意门控传播模块(AGPM)和多头特征增强模块(MHFEM)的设计与应用㊂本文通过AGPM优化MRI的多模态融合,在上采样期间使用MHFEM补充详细信息,并使用MHSA学习全局语义相关性㊂同时,提出了一种基于广义DiceLoss(GDL)和二元交叉熵(BCE)的混合损失函数来处理类不平衡问题,从而在评价平台上获得更好的评价指标㊂在未来的工作中,将重点简化注意力模块,开发高效㊁高精度的三维MRI脑肿瘤分割模型㊂参考文献[1]方玲玲,王欣.MRI脑肿瘤图像的超像素/体素分割及发展现状[J].中国图象图形学报,2022,27(10):2897-2915.[2]方新林,方艳红,王迪.基于多模态特征融合的脑瘤图像分割方法[J].中国医学物理学杂志,2022,39(6):682-689.[3]张士强,石磊,程晓东.脑肿瘤分割算法研究[J].中国生物医学工程学报,2022,41(3):290-300.[4]ZHANGW,LIR,DENGH,etal.Deepconvolutionalneuralnetworksformulti-modalityisointenseinfantbrainimagesegmentation[J].NeuroImage,2015,108:214-224.[5]LONGJ,SHELHAMERE,DARRELLT.Fullyconvolutionalnetworksforsemanticsegmentation[C]//ProceedingsoftheIEEEConferenceonComputerVisionandPatternRecognition.2015:3431-3440.[6]RONNEBERGERO,FISCHERP,BROXT.U-net:Convolutionalnetworksforbiomedicalimagesegmentation[C]//ProceedingsofMedicalImageComputingandComputer-AssistedIntervention–MICCAI2015:18thInternationalConference,Munich,Germany:SpringerInternationalPublishing,2015:234-241.[7]DONGH,YANGG,LIUF,etal.AutomaticbraintumordetectionandsegmentationusingU-Netbasedfullyconvolutionalnetworks[C]//MedicalImageUnderstandingandAnalysis:21stAnnualConference,MIUA2017.Edinburgh,UK:SpringerInternationalPublishing,2017:506-517.[8]JADERBERGM,SIMONYANK,ZISSERMANA,etal.Spatialtransformernetworks[C]//Proceedingsofthe28thInternationalConferenceonNeuralInformationProceedingsSystems-Volume2.2015:2017-2025.[9]HUJ,SHENL,SUNG.Squeeze-and-excitationnetworks[C]//ProceedingsoftheIEEEConferenceonComputerVisionandPatternRecognition.2018:7132-7141.[10]WOOS,PARKJ,LEEJY,etal.Cbam:Convolutionalblockattentionmodule[C]//ProceedingsoftheEuropeanConferenceonComputerVision(ECCV).2018:3-19.[11]WANGX,GIRSHICKR,GUPTAA,etal.Non-localneuralnetworks[C]//ProceedingsoftheIEEEConferenceonComputerVisionandPatternRecognition.2018:7794-7803.[12]SRINIVASA,LINTY,PARMARN,etal.Bottlenecktransformersforvisualrecognition[C]//ProceedingsoftheIEEE/CVFConferenceonComputerVisionandPatternRecognition.2021:16519-16529.[13]OKTAYO,SCHLEMPERJ,FOLGOCLL,etal.Attentionu-net:Learningwheretolookforthepancreas[J].arXivpreprintarXiv:1804.03999,2018.[14]CHENH,QIY,YINY,etal.MMFNet:Amulti-modalityMRIfusionnetworkforsegmentationofnasopharyngealcarcinoma[J].Neurocomputing,2020,394:27-40.[15]CHENT,MAX,YINGX,etal.Multi-modalfusionlearningforcervicaldysplasiadiagnosis[C]//Proceedingsof2019IEEE16thInternationalSymposiumonBiomedicalImaging(ISBI2019).IEEE,2019:1505-1509.[16]SUDRECH,LIW,VERCAUTERENT,etal.Generaliseddiceoverlapasadeeplearninglossfunctionforhighlyunbalancedsegmentations[C]//DeepLearninginMedicalImageAnalysisandMultimodalLearningforClinicalDecisionSupport:ThirdInternationalWorkshop,DLMIA2017,and7thInternationalWorkshop,ML-CDS2017,HeldinConjunctionwithMICCAI2017,QuébecCity,QC,Canada:SpringerInternationalPublishing,2017:240-248.[17]BELLOI,ZOPHB,VASWANIA,etal.Attentionaugmentedconvolutionalnetworks[C]//ProceedingsoftheIEEE/CVFInternationalConferenceonComputerVision.2019:3286-3295.[18]ZHANGJ,ZENGJ,QINP,etal.Braintumorsegmentationofmulti-modalityMRimagesviatripleintersectingU-Nets[J].Neurocomputing,2021,421:195-209.[19]LIUC,DINGW,LIL,etal.Braintumorsegmentationnetworkusingattention-basedfusionandspatialrelationshipconstraint[C]//InternationalMICCAIBrainlesionWorkshop.Cham:SpringerInternationalPublishing,2020:219-229.[20]CIRILLOMD,ABRAMIAND,EKLUNDA.Vox2Vox:3D-GANforbraintumoursegmentation[C]//Brainlesion:Glioma,MultipleSclerosis,StrokeandTraumaticBrainInjuries:6thInternationalWorkshop,BrainLes2020,HeldinConjunctionwithMICCAI2020.Lima,Peru:SpringerInternationalPublishing,2021:274-284.[21]MILLETARIF,NAVABN,AHMADISA.V-net:Fullyconvolutionalneuralnetworksforvolumetricmedicalimagesegmentation[C]//Proceedingsof2016FourthInternationalConferenceon3DVision(3DV).IEEE,2016:565-571.[22]WANGW,CHENC,DINGM,etal.Transbts:Multimodalbraintumorsegmentationusingtransformer[C]//MedicalImageComputingandComputerAssistedIntervention-MICCAI2021:24thInternationalConference.Strasbourg,France:SpringerInternationalPublishing,2021:109-119.68智㊀能㊀计㊀算㊀机㊀与㊀应㊀用㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第13卷㊀。
多输出数据依赖核支持向量回归快速学习算法
多输出数据依赖核支持向量回归快速学习算法王定成;赵友志;陈北京;陆一祎【期刊名称】《计算机应用》【年(卷),期】2017(037)003【摘要】针对基于递推下降法的多输出支持向量回归算法在模型参数拟合过程中收敛速度慢、预测精度低的情况,使用一种基于秩2校正规则且具有二阶收敛速度的修正拟牛顿算法(BFGS)进行多输出支持向量回归算法的模型参数拟合,同时为了保证模型迭代过程中的下降量和全局收敛性,应用非精确线性搜索技术确定步长因子.通过分析支持向量机(SVM)中核函数的几何结构,构造数据依赖核函数替代传统核函数,生成多输出数据依赖核支持向量回归模型.将模型与基于梯度下降法、修正牛顿法拟合的多输出支持向量回归模型进行对比.实验结果表明,在200个样本下该算法的迭代时间为72.98 s,修正牛顿法的迭代时间为116.34 s,递推下降法的迭代时间为2065.22 s.所提算法能够减少模型迭代时间,具有更快的收敛速度.%For the Multi-output Support Vector Regression (MSVR) algorithm based on gradient descent method in the process of model parameter fitting,the convergence rate is slow and the prediction accuracy is low.A modified version of the Quasi-Newton algorithm (BFGS) with second-order convergence rate based on the rank-2 correction rule was used to fit the model parameters of MSVR algorithm.At the same time,to ensure the decrease of the iterative process and the global convergence,the step size factor was determined by the non-exact linear search technique.Based on the analysis of the geometry structure of kernel function in Support VectorMachine (SVM),a data-dependent kernel function was substituted for the traditional kernel function,and the multi-output data-dependent kernel support vector regression model was generated.The model was compared with the multi-output support vector regression model based on gradient descent method and modified Newton method.The experimental results show that in the case of 200 samples,the iterative time of the proposed algorithm is 72.98 s,the iterative time of modified Newton's algorithm is 116.34 s and the iterative time of gradient descent method is 2 065.22 s.The proposed algorithm can reduce the model iteration time and has faster convergence speed.【总页数】5页(P746-749,765)【作者】王定成;赵友志;陈北京;陆一祎【作者单位】南京信息工程大学计算机与软件学院,南京210044;南京信息工程大学计算机与软件学院,南京210044;南京信息工程大学计算机与软件学院,南京210044;南京信息工程大学计算机与软件学院,南京210044【正文语种】中文【中图分类】TP181【相关文献】1.多输出支持向量回归算法 [J], 胡蓉2.基于多输出支持向量回归算法的股市预测 [J], 胡蓉3.多输出支持向量回归算法 [J], 张永清;孙德山4.基于数据依赖核支持向量机回归的风速预测模型 [J], 王定成;倪郁佳;陈北京;曹智丽5.多输出直觉模糊最小二乘支持向量回归算法 [J], 王定成;陆一祎;邹勇杰因版权原因,仅展示原文概要,查看原文内容请购买。
人工智能核心算法试题与答案 (3)
人工智能核心算法试题与答案一、单选题(共44题,每题1分,共44分)1.半监督支持向量机简称?A、S2VMB、S3VMC、SSVMD、SVMP正确答案:B2.特征是描述样本的特性的维度,关于其在传统机器学习和深度学习的可解释性,以下说法正确的是:A、特征在传统机器学习可解释性强,而在深度学习可解释性弱B、特征在传统机器学习可解释性弱,而在深度学习可解释性强C、特征在传统机器学习和深度学习可解释性均弱D、特征在传统机器学习和深度学习可解释性均强正确答案:A3.在以下模型中,训练集不需要标注信息的是()A、线性回归B、决策树C、神经网络D、k-means正确答案:D4.在中期图像识别技术(2003-2012)中,索引的经典模型是()。
A、词袋模型B、增量模型C、口袋模型D、胶囊模型正确答案:A5.目标检测常用性能指标的是()A、信噪比B、平方误差C、mAPD、分辨率正确答案:C6.欠拟合会出现高()问题A、平方差B、偏差C、标准差D、方差正确答案:B7.以下对于标称属性说法不正确的是A、标称属性的值是一些符号或事物的名称,每种值代表某种类别、编码或状态。
B、标称值并不具有有意义的顺序,且不是定量的C、对于给定对象集,找出这些属性的均值、中值没有意义。
D、标称属性通过将数值量的值域划分有限个有序类别,把数值属性离散化得来。
正确答案:D8.TF-IDF模型中,TF意思是词频,IDF意思是()。
A、文本频率指数;B、逆文本频率指数C、词频指数D、逆词频指数正确答案:B9.在统计语言模型中,通常以概率的形式描述任意语句的可能性,利用最大相似度估计进行度量,对于一些低频词,无论如何扩大训练数据,出现的频度仍然很低,下列哪种方法可以解决这一问题A、一元切分B、N元文法C、一元文法D、数据平滑正确答案:D10.决策树模型刚建立时,有很多分支都是根据训练样本集合中的异常数据(由于噪声等原因)构造出来的。
树枝修剪正是针对这类数据()问题而提出来的。
具有还原性的多重多维模糊推理算法
so a n ou ’ T il I ehda doh r i l i -ae zyrao igmeh d on t aeterd c hwt t h Wa gGujn S r e to n te mi r ybsdf z
Ab t a t Z d h’ sr c a e SCRIme h d i a p id i u z e s n n l l t o p l n f z y r a o ig wi y,b ti i n tr d ci e F r te a p e r ie O s e d u o e u tv . i s x m l sa eg v n t ts
HE Y n - i ig S QUAN Ha Jn D NG Hu— e ' l i。 E i n ’ — W
( co l f o ue Sh o mp tr& Ifr t nS ine S uh s ies y h n qn 0 7 5 oC nomai c c 。 o twetUnv ri ,C o g ig4 0 1 ) o e t
o t wetUnv riy。Ch n qn 07 5 S u h s ie st o g ig40 1 )
( o i adItlg neR sac e tr L gc n nel e c ee rhC ne , i
( h ol fM ah ma isa a itc ,S utwe tUnv riy,Cho g ig4 0 1 。 c S o te tc ndSttsis o h s ie st o n qn 0 7 5)
tv op r y ie pr e t .
Ke wo d F z y i f r n e y rs u z e e c ,CRIme h d,Trp e Im e h d,S mi r y me s r ,Re u tv r p r y n to i l t o i l i aue a t d ci e p o e t
《2024年基于多尺度和注意力机制融合的语义分割模型研究》范文
《基于多尺度和注意力机制融合的语义分割模型研究》篇一一、引言语义分割是计算机视觉领域中的一项重要任务,旨在将图像中的每个像素进行准确的分类,进而实现对图像的精确理解和解析。
随着深度学习技术的快速发展,基于卷积神经网络的语义分割模型已经成为研究的热点。
本文将重点研究一种基于多尺度和注意力机制融合的语义分割模型,以实现更高的分割精度和效率。
二、相关文献综述近年来,语义分割领域取得了显著的进展。
许多研究者通过引入不同的技术和方法,如全卷积网络(FCN)、U-Net等,来提高模型的分割性能。
其中,多尺度特征融合和注意力机制被广泛应用于提升模型的性能。
多尺度特征融合可以捕捉到不同尺度的上下文信息,提高分割的鲁棒性;而注意力机制则可以自动学习重要区域和特征,从而提高模型的分割精度。
然而,目前这些方法仍然存在一些问题,如计算复杂度高、分割精度不够高等。
因此,研究一种基于多尺度和注意力机制融合的语义分割模型具有重要意义。
三、方法论本文提出的基于多尺度和注意力机制融合的语义分割模型主要包括以下两部分:1. 多尺度特征融合为了捕捉不同尺度的上下文信息,本文采用了一种多尺度特征融合的方法。
具体而言,我们通过引入不同尺度的卷积核和池化操作来获取不同尺度的特征图,然后通过上采样和下采样操作将这些特征图进行融合。
这样,模型可以同时获取到不同尺度的上下文信息,从而提高分割的鲁棒性。
2. 注意力机制为了进一步提高模型的分割精度,我们引入了注意力机制。
具体而言,我们采用了一种自注意力机制,通过在卷积层之间引入注意力权重来自动学习重要区域和特征。
这样,模型可以更加关注图像中的关键区域和特征,从而提高分割的准确性。
四、实验设计与结果分析为了验证本文提出的模型的有效性,我们进行了大量的实验。
实验中,我们采用了Cityscapes等公开数据集进行训练和测试。
实验结果表明,本文提出的模型在语义分割任务上取得了显著的性能提升。
具体而言,我们的模型在多尺度特征融合和注意力机制的共同作用下,能够更加准确地捕捉到图像中的关键区域和特征,从而提高了分割的精度和效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Multi-inference with Multi-neurulesIoannis Hatzilygeroudis and Jim PrentzasUniversity of Patras, School of EngineeringDept of Computer Engin. & Informatics, 26500 Patras, Hellas (Greece)&Computer Technology Institute, P.O. Box 1122, 26110 Patras, Hellas (Greece){ihatz, prentzas}@ceid.upatras.grAbstract. Neurules are a type of hybrid rules combining a symbolic and aconnectionist representation. There are two disadvantages of neurules. The firstis that the created neurule bases usually contain multiple representations of thesame piece of knowledge. Also, the inference mechanism is ratherconnectionism oriented than symbolism oriented, thus reducing naturalness. Toremedy these deficiencies, we introduce an extension to neurules, called multi-neurules, and an alternative inference process, which is rather symbolismoriented. Experimental results comparing the two inference processes are alsopresented.1 IntroductionThere have been efforts at combining the expert systems approach and the neural networks (connectionism) one into hybrid systems, in order to exploit their benefits [1]. In some of them, called embedded systems, a neural network is used in the inference engine of an expert system. For example, in NEULA [2] a neural network selects the next rule to fire. Also, LAM [1] uses two neural networks as partial problem solvers. However, the inference process in those systems, although gains efficiency, lacks the naturalness of the symbolic component. This is so, because pre-eminence is given to the connectionist framework.On the other hand, connectionist expert systems are integrated systems that represent relationships between concepts, considered as nodes in a neural network. Weights are set in a way that makes the network infer correctly. The system in [3] is a popular such system, whose inference engine is called MACIE. Two characteristics of MACIE are: its ability to reason from partial data and its ability to provide explanations in the form of if-then rules. However, its inference process lacks naturalness. Again, this is due to the pure connectionist inference approach.In a previous work [4], we introduced neurules, a hybrid rule-based representation scheme integrating symbolic rules with neurocomputing, which gives pre-eminence to the symbolic component. Thus, neurules give a more natural and efficient way of representing knowledge and making inferences. However, there are two disadvantages of neurules, from the symbolic point of view. Neurules are constructed I.P. Vlahavas and C.D. Spyropoulos (Eds.): SETN 2002, LNAI 2308, pp. 30–41, 2002.© Springer-Verlag Berlin Heidelberg 2002Multi-inference with Multi-neurules 31either from symbolic rules or from learning data in the form of training examples. In case of non-separable sets of training examples, more than one neurule with the same conditions and the same conclusion, but different significance factors exist in a neurule base. This creates neurule bases with multiple representations of the same piece of knowledge [5]. The second disadvantage is that the associated inference mechanism [6] is rather connectionism oriented, thus reducing naturalness.To remedy the first deficiency, we introduce here an extension to neurules called multi-neurules . For the second, we introduce an alternative hybrid inference process,which is rather symbolism oriented. Experimental results comparing the two inference processes are presented.The structure of the paper is as follows. Section 2 presents neurules and Section 3mainly the inference process introduced here. In Section 4, an example knowledge base and an example inference are presented. Section 5 presents some experimental results and finally Section 6 concludes.2 Neurules2.1 Simple NeurulesNeurules (: neu ral rules ) are a kind of hybrid rules. Each neurule (Fig. 1a) is considered as an adaline unit (Fig.1b). The inputs C i (i =1,...,n ) of the unit are the conditions of the rule. Each condition C i is assigned a number sf i , called a significance factor , corresponding to the weight of the corresponding input of the adaline unit.Moreover, each rule itself is assigned a number sf 0, called the bias factor ,corresponding to the bias of the unit.(a)(b)Fig. 1. (a) Form of a neurule (b) corresponding adaline unitEach input takes a value from the following set of discrete values: [1 (true), -1(false), 0 (unknown)]. The output D , which represents the conclusion of the rule, is calculated via the formulas:C 1C 2n(sf 0) if C1 (sf 1),C 2 (sf 2),…C n (sf n )then D32 I. Hatzilygeroudis and J. PrentzasD = f(a ) , ∑n i=ii C sf + = sf 10a (1)where a is the activation value and f(x) the activation function , which is a threshold function:1if a 0f (a) =-1otherwiseHence, the output can take one of two values, ‘-1’ and ‘1’, representing failure and success of the rule respectively.2.2 Training NeurulesEach neurule is individually trained via a training set , which contains training examples in the form [v 1 v 2 … v n d ], where v i , i = 1, …,n are their component values ,corresponding to the n inputs of the neurule, and d is the desired output (‘1’ for success, ‘-1’ for failure). The learning algorithm employed is the standard least mean square (LMS) algorithm (see e.g. [3]).However, there are cases where the LMS algorithm fails to specify the right significance factors for a number of neurules. That is, the adaline unit of a rule does not correctly classify some of the training examples. This means that the training examples correspond to a non-separable (boolean) function. To overcome this problem, the initial training set is divided into subsets in a way that each subset contains success examples (i.e. with d =1) which are “close ” to each other in some degree. The closeness between two examples is defined as the number of common component values. For example, the closeness of [1 0 1 1 1] and [1 1 0 1 1] is ‘2’.Also, we define as least closeness pair (LCP), a pair of success examples with the least closeness in a training set. There may be more than one LCP in a training set.Initially, a LCP in the training set is found and two subsets are created each containing as its initial element one of the success examples of that pair, called its pivot . Each of the remaining success examples are distributed between the two subsets based on their closeness to their pivots. More specifically, each subset contains the success examples which are closer to its pivot. Then, the failure examples of the initial set are added to both subsets, to avoid neurule misfiring. After that, two copies of the initial neurule, one for each subset, are trained. If the factors of a copy misclassify some of its examples, the corresponding subset is further split into two other subsets, based on one of its LCPs. This continues, until all examples are classified. This means that from an initial neurule more than one final neurule may be produced, which are called sibling neurules (for a more detailed and formaldescription see [5]).Multi-inference with Multi-neurules 332.3 Multi-neurulesThe existence of sibling neurules creates neurule bases with multiple representations of the same piece of knowledge, which is their main disadvantage. To remedy this deficiency, we introduce multi-neurules.(a)(b)Fig. 2. (a) Form of a multi-neurule (b) corresponding multi-adaline unitA multi-neurule of size m has the form presented in Fig. 2a and is considered as a multi-adaline unit (Fig. 2b), also introduced here. Each m i CF is called a condition sf-tuple that consists of m significance factors:>≡<im i i m i sf sf sf CF ,...,,21.A multi-adaline unit of size m is a merger of m simple adaline units.Correspondingly, a multi-neurule of size m is the merger of m simple neurules. So, in a multi-unit of size m we distinguish m different sets of weights, each corresponding to the weights of a constituent unit. Similarly, a multi-neurule of size m includes m different sets of significance factors, called rule sf-sets , each corresponding to the significance factors of a constituent neurule. Thus, the rule sf-set RF i consists of the i th significance factors of the sf-tuples:RF i = (sf 1i , sf 2i , …, sf ni ), for i = 1, mEach RF i is used to compute the activation a i of the corresponding adaline unit.The output of a multi-unit is determined by the set that produces the maximum activation value. Hence, a multi-unit is activated as soon as any of its constituent units gets activated (i.e. any a i 0). The output D of a multi-adaline unit is calculated via the formulas:i m i f D a a , a V 1)(===, ∑=+=n j jij i i C sf sf 10a (2)The activation function is the same as in a simple unit.(m CF 0) if C 1 (m CF 1),C 2 (m CF 2),…C n (m n CF )then D12n (34 I. Hatzilygeroudis and J. PrentzasFig. 3. Merging sibling neurules into a multi-neuruleIn practice, a multi-neurule is produced by simply merging all sibling neurules with the same conclusion. For example, neurule NR5, used in the example knowledge base in Section 4.1, is a multi-neurule produced from merging two sibling neurules of the old knowledge base (NR5, NR6), as shown in Fig.3. Notice that, because the conditions in each simple neurule are are sorted, so that |sf 1| |sf 2| … |sf n |, for efficiency reasons, this information is also attached to multi-neurules. So, NR5 has two sf-sets, RF 1 = (-1.8, 1.0) and RF 2 = (-2.6, 1.8).2.4 Syntax and SemanticsThe general syntax of a neurule, simple or multi, (in a BNF notation, where ‘{}’denotes zero, one or more occurrences and ‘<>’ denotes non-terminal symbols) is:<rule>::= (<bias-factors>) if <conditions> then <conclusions><bias-factors>::= <bias-factor> {, <bias-factor>}<conditions>::= <condition> {, <condition>}<conclusions>::= <conclusion> {, <conclusion>}<condition>::= <variable> <predicate> <value> (<significance-factors>)< significance-factors >::= < significance-factor> {, < significance-factor>}<conclusion>::= <variable> <predicate> <value> .In the above definition, <variable> denotes a variable as in a variable declaration.<predicate> denotes a predicate, which is one of {is, isnot, <, >}. <value> denotes a value. It can be a symbol (e.g. “male ”, “night-pain ”) or a number (e.g “5”). <bias-factor> and <significance-factor> are (real) numbers. The significance factor of a condition represents the significance (weight) of the condition in drawing the conclusion. A significance factor with a sign opposite to that of the bias factor of its neurule positively contributes in drawing the conclusion, otherwise negatively.Multi-inference with Multi-neurules 353 The Hybrid Inference ProcessesThe inference engine associated with neurules implements the way neurules co-operate to reach conclusions. It supports two alternative hybrid inference processes.The one gives pre-eminence to neurocomputing, and is called connectionism-oriented inference process, whereas the other to symbolic reasoning, and is called symbolism-oriented inference process . In the symbolism-oriented process, a type of a classical rule-based reasoning is employed, but evaluation of a rule is based on neurocomputing measures. In the connectionism-oriented process, the choice of the next rule to be considered is based on a neurocomputing measure, so the process jumps from rule to rule, but the rest is symbolic. In this section, we mainly present the symbolism oriented process.3.1 Neurules EvaluationIn the following, WM denotes the working memory and NRB the neurule base.Generally, the output of a simple neurule is computed according to Eq. (1).However, it is possible to deduce the output of a neurule without knowing the values of all of its conditions. To achieve this, we define for each simple neurule the known sum and the remaining sum as follows:∑∈+=−E C i i i C sf sf sum kn 0(3)∑∈=−U C i i sf sum rem ||(4)where E is the set of evaluated conditions, U the set of unevaluated conditions and C i is the value of condition cond i . A condition is evaluated, if its value (‘true ’ or ‘false ’)is by some way known. So, known-sum is the weighted sum of the values of the already known (i.e. evaluated) conditions (inputs) of the corresponding neurule and rem-sum represents the largest possible weighted sum of the remaining (i.e.unevaluated) conditions of the neurule. If |kn-sum | > rem-sum for a certain neurule,then evaluation of its conditions can stop, because its output can be deduced regardless of the values of the unevaluated conditions. In this case, its output is guaranteed to be '-1' if kn-sum < 0, or ‘1’, if kn-sum > 0.In the case of a multi-neurule of size m , we define m different kn-sum s and rem-sum s, one for each RF i :∑∈+=−E C j ji i i j C sf sf sum kn 0, i =1, m (5)∑∈=−U C ji i j sf sum rem ||, i =1, m .(6)36 I. Hatzilygeroudis and J. PrentzasIt is convenient, for the connectionism-oriented process, to define the firing potential (fp) of a neurule as follows:sum rem sum kn fp −−=|| .(7)The firing potential of a neurule is an estimate of its intention that its output will become ‘ 1’. Whenever fp > 1, the values of the evaluated conditions can determine the value of its output, regardless of the values of the unevaluated conditions. The rule then evaluates to ‘1’ (true), if kn-sum > 0 or to ‘-1’ (false), if kn-sum < 0. In the first case, we say that the neurule is fired , whereas in the second that it is blocked . Notice,that the firing potential has meaning only if rem-sum 0. If rem-sum = 0, all the conditions have been evaluated and its output is evaluated based on kn-sum . For a multi-neurule, we define as many fp s as the size of the multi-neurule.3.2 Symbolism-Oriented ProcessThe symbolism-oriented inference process is based on a backward chaining strategy.There are two stacks used, a goal stack (GS ), where the current goal (CG ) (condition)to be evaluated is always on its top, and a neurule stack (NS), where the current neurule under evaluation is always on its top. The conflict resolution strategy, due to backward chaining and the neurules, is based on textual order. A neurule succeeds if it evaluates to ‘true ’, that is its output is computed to be ‘1’ after evaluation of its conditions. Inference stops either when a neurule with a goal variable is fired (success) or there is no further action (failure). WM denotes the working memory.More formally, the process is as follows:1. Put the initial goal(s) on GS .2. While there are goals on GS do2.1 Consider the first goal on GS as the current goal (CG ) and find theneurules having it as their conclusion. If there are no such neurules, stop (failure). Otherwise, put them on RS .2.2 For each neurule NR i on NS (current rule : CR = NR i ) do 2.2.1 (simple neurule case) While CR is not fired or blocked, for eachcondition C i of CR (current condition : CC = C i ) do 2.2.1.1 If CC is already evaluated, update the kn-sum and the rem-sum of NR x . Otherwise, if it contains an input variable, ask the user for its value (user data), evaluate CC , put it in WMand update the kn-sum and the rem-sum of CR , otherwise(intermediate or output variable) put CC on the top of GS and execute step 2.1 recursively until CC is evaluated. Afterits evaluation update the kn-sum and the rem-sum of CR .2.2.1.2 If (|kn-sum | > rem-sum and kn-sum > 0), mark CR as ‘fired ’,mark its conclusion as ‘true ’, put the conclusion in WM andremove the current goal from GS (multi-valued variable) orremove from GS all goals containing the variable (single-valued variable). If (|kn-sum | > rem-sum and kn-sum < 0),mark CR as ‘blocked ’.Multi-inference with Multi-neurules 37 2.2.2(multi-neurule case) While CR is not ‘fired’ or ‘blocked’, for eachRFi (current sf-set: CRF = RFi) of CR do2.2.2.1 While CRF is not ‘fired’ or ‘blocked’, for each for eachcondition Ci of CRF (CC = Ci) do2.2.2.1.1 The same as 2.2.1.1 (with kn-sumi and rem-sumiinstead of kn-sum and rem-sum, respectively).2.2.2.1.2 If (|kn-sum i| > rem-sum i and kn-sumi > 0), markCR as ‘fired’, mark its conclusion as ‘true’, put the conclusion in WM and remove the current goal from GS (multi-valued variable) or remove from GS all goals containing the variable (single-valued variable). If (|kn-sum i| > rem-sum iand kn-sumi < 0), mark CRF as ‘blocked’. If it isthe last rule sf-set, mark CR as ‘blocked’.2.3If all neurules on RS are blocked, mark their conclusions as ‘false’, put theconclusions in WM and remove the current goal from GS.3.If there are no conclusions in WM containing output variables, stop (failure).Otherwise, display the conclusions in WM marked as ‘TRUE’ (output data) and stop (success).3.3 Connectionism-Oriented ProcessInitially, the values of the variables (conditions) may be not known to the system. The kn-sum for every simple neurule is then set to its bias factor, whereas its rem-sum is set to the sum of the absolute values of all its significance factors. For a multi-neurule,this is done for each RFi (i=1, m). If the value of a variable becomes known, itinfluences the values of the conditions containing it and hence the known sums, the remaining sums and the firing potentials of the unevaluated neurules containing them, which are called affected neurules. As soon as an intermediate neurule becomes evaluated, the known sums, the remaining sums and the firing potentials of all the affected neurules are also updated. Updating a multi-neurule consists in updating each of its fp s (kn-sum s and rem-sum s). Obviously, a firing potential is updated only if the corresponding remaining sum is not equal to zero.Unevaluated neurules that are updated, due to a new variable value, constitute the participating neurules. The inference mechanism tries then to focus on participating neurules whose firing potential is close to exceeding ‘1’. More specifically, it selects the one with the maximum firing potential, because it is the most likely, has a greater intention, to fire. In the case of a multi-neurule, its maximum fp represents the neurule. The system tries to evaluate the first unevaluated condition, which is the one with the maximum absolute significance factor (recall that the conditions of a neurule are sorted). After evaluation of the condition, kn-sum, rem-sum and fp of the neurule are computed. If rem-sum = 0 or fp > 1, it evaluates and its conclusion is put in the WM. If the system reaches a final conclusion, it stops.A more formal description of this inference algorithm, for a NRB containing only simple neurules, can be found in [6, 11].38 I. Hatzilygeroudis and J. Prentzas4 Examples4.1 Example Knowledge BaseWe use as an example to illustrate the functionalities of our system the one presented in [3]. It contains training data dealing with acute theoretical diseases of the sarcophagus. There are six symptoms (Swollen feet, Red ears, Hair loss, Dizziness, Sensitive aretha, Placibin allergy), two diseases (Supercilliosis, Namastosis) whose diagnoses are based on the symptoms and three possible treatments (Placibin, Biramibio, Posiboost). Also, dependency information is provided. We used the dependency information to construct the initial neurules and the training data provided to train them. The produced knowledge base, which contains five neurules (NR1-NR5), is illustrated in Table 1. An equivalent knowledge base forming a multilevel network is presented in [3]. It is quite clear how more natural is our knowledge base than that in [3].Table 1.NR1:(-0.4) if SwollenFeet is true (3.6),HairLoss is true (3.6),RedEars is true (-0.8)then Disease is Supercilliosis NR2:(1.4) if Dizziness is true (4.6),SensitiveAretha is true (1.8),HairLoss is true (1.8)then Disease is NamastosisNR3:(-2.2) if PlacibinAllergy is true (-5.4), Disease is Supercilliosis (4.6)Disease is Namastosis (1.8), then Treatment is Placibin NR4:(-4.0) if HairLoss is true (-3.6),Disease is Namastosis (3.6),Disease is Supercilliosis (2.8) then Treatment is BiramibioNR5:(-2.2, -2.2)if Treatment is Placibin (-1.8, 1.8),Treatment is Biramibio (1.0,- 2.6) then Treatment is Posiboost4.2 Example InferenceWe suppose that the initial data in the WM is: ‘HairLoss is true’ (TRUE). Since ‘Treatment’ is the only goal variable, its possible conclusions are initially put on GS. The inference tracing, according to the symbolism oriented process, is briefly presented in Table 2 (follow the left column first in both pages, then the right).Multi-inference with Multi-neurules 39 Table 2.Initial situation and Steps 1, 2-2.1 WM: {‘HairLoss is true’ (TRUE)}GS: [‘Treatment is Placibin’, ‘Treatment isBiramibio’, ‘Treatment is Posi-boost’] CG: ‘Treatment is Placibin’RS: [NR3]Fired neurules:Blocked neurules:Step 2.2-2.2.1CR: NR3CC: ‘PlacibinAllergy is true’ (NR3)Step 2.2.1.1User data: ‘PlacibinAllergy is true’(FALSE)WM: {‘PlacibinAllergy is true’ (FALSE),‘HairLoss is true’ (TRUE)} Updated sums: kn-sum=3.2, rem-sum=6.4 (NR3)Step 2.2.1.2|kn-sum| < rem-sum (NR3)Step 2.2.1CC: ‘Disease is Supercilliosis’ (NR3) Step 2.2.1.1GS: [‘Disease is Supercilliosis’, ‘Treatment is Placibin’, …](start of recursion)Step 2.1-2.2CG: ‘Disease is Supercilliosis’RS: [NR1, NR3]CR: NR1Step 2.2.1CC: ‘SwollenFeet is true’ (NR1)Step 2.2.1.1User data: ‘SwollenFeet is true’ (FALSE) WM: {‘SwollenFeet is true’ (FALSE),‘PlacibinAllergy is true’ (FALSE),‘HairLoss is true’ (TRUE)}Updated sums: kn-sum=-4.0, rem-sum=4.4 (NR1)Step 2.2.1.2|kn-sum| < rem-sum (NR1)Step 2.2.1CC: ‘HairLoss is true’ (NR1)Step 2.2.1.1User data: ‘HairLossis true’ (TRUE) WM: {‘HairLoss is true’ (TRUE),GS: [‘Treatment is Placibin’, ‘Treatment is Biramibio’, ‘Treatment is Posiboost’] (return from recursion)Step 2.2.1.1Updated sums: kn-sum=7.8, rem-sum=1.8 (NR3)Step 2.2.1.2|kn-sum| > rem-sum and kn-sum > 0 (NR3)Fired neurules: NR3, NR1WM: {‘Treatment is Placibin’ (TRUE),‘Disease is Supercilliosis’ (TRUE),‘RedEars is true’ (FALSE), …}GS: [‘Treatment is Biramibio’, ‘Treatment is Posiboost’]Step 2.1-2.2CG: ‘Treatment is Biramibio’RS: [NR4]CR: NR4Step 2.2.1CC: ‘HairLoss is true’ (NR4)Step 2.2.1.1Updated sums: kn-sum=-7.6, rem-sum=6.4 (NR4)Step 2.2.1.2|kn-sum| > rem-sum and kn-sum < 0 (NR4)Blocked neurules: NR4Step 2.3WM: {‘Treatment is Biramibio’ (FALSE),‘Treatment is Placibin’ (TRUE), ‘Disease is Supercilliosis’ (TRUE), …}GS: [‘Treatment is Posiboost’]Step 2-2.1-2.2CG: ‘Treatment is Posiboost’RS: [NR5]CR: NR5Step 2.2.2-2.2.2.1CRF: RF1-NR5CC: ‘Treatment is Placibin’ (RF1-NR5) Given that both conditions are already evaluated…Step 2.2.2.1.1-2.2.2.1.2…finally:Updated sums: kn-sum1= -5.0, rem-sum1= 0|kn-sum| < 0Blocked RFs: RF1-NR540 I. Hatzilygeroudis and J. Prentzas‘SwollenFeet is true’ (FALSE), …} Updated sums: kn-sum=-0.4, rem-sum=0.8 (NR1)Step 2.2.1.2|kn-sum| < rem-sum (NR1)Step 2.2.1CC: ‘RedEars is true’ (NR1)Step 2.2.1.1User data: ‘RedEars is true’ (FALSE) WM:{‘RedEars is true’ (FALSE),‘HairLossis true’ (TRUE), …}Updated sums: kn-sum=0.4, rem-sum=0 (NR1)Step 2.2.1.2|kn-sum| > rem-sum and kn-sum > 0 (NR1)Fired neurules: NR1WM: {‘Disease is Supercilliosis’ (TRUE),‘RedEars is true’ (FALSE), ‘HairLossis true’ (TRUE), …}Step 2.2.2-2.2.2.1CRF: RF2-NR5CC: ‘Treatment is Biramibio’Given that both conditions are already evaluated…Step 2.2.2.1.1-2.2.2.1.2…finally:Updated sums: kn-sum2= 2.2, rem-sum2= 0 |kn-sum| > 0Fired neurules: NR5, NR3, NR1WM: {‘Treatment is Posiboost’(TRUE),‘Treatment is Biramibio’ (FALSE),‘Treatment is Placibin’ (TRUE), ‘Disease is Supercilliosis’ (TRUE), …}GS: [ ]Step 3Output data: ‘Treatment is Placibin’,‘Treatment is Posiboost’5 Experimental ResultsIn this section, we present experimental results comparing the two inference processes, the symbolism oriented and the connectionism oriented (see Table 3).Table 3.Connectionism orientedprocess Symbolism orientedprocessKBASKED EVALS ASKED EVALS ANIMALS(20 inferences)162 (8.1),364 (18.2)142 (7.1)251 (12.5)LENSES(24 inferences)79 (3.3)602 (25.1)85 (3.5)258 (10.8)ZOO(101inferences)1052 (10.4)8906 (88.2)1013 (10)1963 (19.4) MEDICAL(134inferences)670 (5)25031 (186.8)670 (5)11828 (88.3) We used four knowledge bases: ANIMALS (from [7]), LENSES and ZOO (from [8]), MEDICAL (from [9]), of different size and content. Numbers in the ASKED column (outside the parentheses) represent the number of inputs (variables) whose values were required/asked to reach a conclusion. The numbers within the parentheses represent the mean number of required input values (per inference). The number of inferences attempted for each KB is depicted within the parentheses in the KBMulti-inference with Multi-neurules 41 column. Furthermore, the numbers in the EVALS columns represent the number of conditions/inputs visited for evaluation (the mean value within the parentheses). It is clear, that the symbolism oriented process did equally well or better than the connectionism oriented in all cases, except one (the shaded one). This is clearer for the condition evaluations, especially as the number of inferences increases. Given that the connectionism oriented process is better than the inference processes introduced in [3] and [10], as concluded in [6, 11], the symbolism oriented process is even better.6 ConclusionIn this paper, we present an extension to neurules, called multi-neurules. Multi-neurules, although they make the inference cycle more complicated, increase the conciseness of the rule base. Simple neurules have the disadvantage that they may produce multiple representations (sibling neurules) of the same piece of knowledge. Multi-neurules merge those representations into one. So, although the overall naturalness seems to increase, interpretation of the significance factors becomes a tedious task, especially in cases that a large number of sibling rules participate.We also present a new inference process, which gives pre-eminence to the symbolic inference than the connectionist one. Thus, it offers more natural inferences. This new process is proved to be more efficient than the connectionism oriented one. References1.Medsker L.R.: Hybrid Neural Networks and Expert Systems. Kluwer AcademicPublishers, Boston (1994)2.Tirri H.: Replacing the Pattern Matcher of an Expert System with a Neural Network. In: ,Goonatilake S., Sukdev K. (eds): Intelligent Hybrid Systems. John Wiley & Sons (1995).3.Gallant, S.I.: Neural Network Learning and Expert Systems. MIT Press (1993)4.Hatzilygeroudis, I., Prentzas, J.: Neurules: Improving the Performance of Symbolic Rules.International Journal on AI Tools (IJAIT) 9(1), (2000) 113-1305.Hatzilygeroudis, I., Prentzas, J.: Constructing Modular Hybrid Knowledge Bases forExpert Systems. International Journal on AI Tools (IJAIT) 10(1-2) (2001) 87-1056.Hatzilygeroudis, I., Prentzas, J.: An Efficient Hybrid Rule Based Inference Engine withExplanation Capability. Proceedings of the 14th International FLAIRS Conference, Key West, FL. AAAI Press (2001) 227-2317.Fu L.M.: Neural Networks in Computer Intelligence. McGraw-Hill (1994)8.DataSet. ftp:///pub/machine-learning-databases/9.Hatzilygeroudis, I., Vassilakos, P. J., Tsakalidis, A.: XBONE: A Hybrid Expert System forSupporting Diagnosis of Bone Diseases. In: Pappas, C., Maglaveras, N., Scherrer J.-R.(eds): Medical Informatics Europe’97 (MIE’97). IOS Press (1997) 295-299.10.Ghalwash, A.Z.: A Recency Inference Engine for Connectionist Knowledge Bases.Applied Intelligence 9 (1998) 201-21511.Hatzilygeroudis I., Prentzas, J.: HYMES: A HYbrid Modular Expert System with EfficientInference and Explanation. Proceedings of the 8th Panhellenic Conference on Informatics, Nicosia, Cyprus, Vol.1 (2001) 422-431。