2019最新高中数学1.2.1 函数的概念学案 新人教A版必修1
河北省承德市高中数学 第一章 集合与函数的概念 1.2.1 函数的概念(2)学案(无答案)新人教A版必修1

学习目标
1.理解函数符号“y=f(x)”的含义。
2.会求一些简单函数的定义域;会判断两个函数是否是同一个函数.
重点难点
理解函数符号“y=f(x)”的含义;函数的定义域.
方法
自主探究
一.探知部分:阅读课本17页18页内容.思考下面问题:
求函数定义域就是求使解析式有意义的自变量的取值集合,必须考虑那些情形?
B.y= -1与y=x-1
C.y=x0(x≠0)与y=1(x≠0)
D.y=x+1,x∈Z与y=x-1,x∈Z
四.巩固部分:
1.下列各组函数相同的是( )
A.f(x)= 与g(x)=x+1B.f(x)= 与g(x)=x·
C.f(x)=2x+1与g(x)= D.f(x)=|x2-1|与g(t)=
2.已知函数f(x)= ,又知f(t)=6,则t=________.
3.函数f(x)=( -2)0+ 的定义域是________.
4.函数y= 的定义域用区间表示为________
5.(2020·高考安徽卷)下列函数中,不满足:f(2x)=2f(x)的是( )
A.f(x)=|x|B.f(x)=x-|x|
C.f(x)=x+1D.f(x)=-x
6.已知函数f(x)= + .
(1)求f(2),g(2)的值;
(2)求f(g(2)),g(f(2))的值;
(3)求f(g(x))的表达式.
2.函数f(x)= + ,则函数f(x+1)的定义域为( )
A. [0,+∞)B. [1,+∞)
C. [2,+∞)D. [-2,+∞)
3.下列各组函数表示相等函数的是( )
A.y= 与y=x+3
探究3.下列各对函数中,是相等函数的序号是________.
高中数学第一章集合与函数概念121函数的概念课件新人教A版必修1

A.11
B.12
C.13
D.10
【答案】C
【解析】f[f(1)]=f(3)=9+3+1=13.
4.下列各组函数中,表示同一个函数的是( )
A.y=x-1 和 y=xx2+-11
B.y=x0 和 y=1
C.f(x)=x2 和 g(x)=(x+1)2
D.f(x)=
xx2和 g(x)=
x x2
【答案】D
【答案】B 【解析】根据函数的存在性和唯一性(定义)可知,B不 正确.
2.函数 f(x)= xx--21的定义域为(
)
A.[1,2)∪(2,+∞) B.(1,+∞)
C.[1,2)
D.[1,+∞)
【答案】A 【解析】由题意可知,要使函数有意义,需满足xx--21≠≥00,,
即 x≥1 且 x≠2.
3.已知f(x)=x2+x+1,则f[f(1)]的值是( )
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们休 睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐对 哦~
2.(1)y=x+x+120; (2)y= 2x+3- 21-x+1x. 【解析】(1)由于 00 无意义,故 x+1≠0,即 x≠-1. 又 x+2>0,x>-2,所以 x>-2 且 x≠-1. 所以函数 y=x+x+120的定义域为{x|x>-2 且 x≠-1}.
求函数的定义域
【例 2】求下列函数的定义域: (1)y=2x+3;(2)f(x)=x+1 1; (3)y= x-1+ 1-x;(4)y=xx2+-11. 【解题探究】求函数的定义域,即是求使函数有意义的那 些自变量 x 的取值集合.
【解析】(1)函数 y=2x+3 的定义域为{x|x∈R}. (2)要使函数有意义,即分式有意义,则 x+1≠0,x≠-1. 故函数的定义域为{x|x≠-1}. (3)要使函数有意义,则1x--1x≥≥00,, 即xx≥≤11,, 所以 x=1, 从而函数的定义域为{x|x=1}. (4)因为当 x2-1≠0,即 x≠±1 时,xx2+-11有意义,所以原函 数的定义域是{x|x≠±1}.
2019新版高中数学人教A版必修一第三章 函数的概念与性质 第1节 函数的概念及其表示

2019新版高中数学人教A 版必修一 第1节 函数的概念及其表示一.知识点: 1.函数的概念一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f: A→B 为从集合A 到集合B 的一个函数,记作y =f(x),x ∈A. 2.函数的定义域与值域在函数y =f(x),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域.如果自变量x =a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作y =f(a)或y|x =a .所有函数值构成的集合{y|y =f(x),x ∈A}叫做这个函数的值域. 3.区间及表示设a ,b 是两个实数,而且a<b.(1) 满足不等式a≤x≤b 的实数x 的集合叫做闭区间,表示为[a ,b]; (2) 满足不等式a<x<b 的实数x 的集合叫做开区间,表示为(a ,b); (3) 满足不等式a≤x<b 或a<x≤b 的实数x 的集合叫做半开半闭区间,分别 表示为[a ,b),(a ,b];(4)实数集R 可以用区间表示为(-∞,+∞) 二.考点突破 考点一:函数的概念例1:下列各式中,函数的个数是( )①y =1;②y =x 2;③2y x =;④y =.A .4B .3C .2D .1答案:C练习:下列图象中,表示函数关系y =f (x )的是( )A .B .C .D .解:根据函数的定义知,一个x 有唯一的y 对应,由图象可看出,只有选项D 的图象满足这一点.故选:D . 作业:1.下列式子中能确定y 是x 的函数的是________. ①x 2+y 2=1;②y =x -2+1-x ; ③y =12gx 2(g =9.8 m/s 2);④y =x.解析:①中每一个x 对应两个y ,故①不是函数. ②中满足式子有意义的x 取值范围是⎩⎪⎨⎪⎧x -2≥0,1-x≥0即x≤1且x≥2,∴为∅,故②也不是,而③④可以确定y 是x 的函数. 答案:③④考点二:函数的定义域 例2:求下列函数的定义域: (1)y =2+3x -2; (2)y =3-x ·x -1; (3)y =(x -1)0+2x +1. 解:(1)当且仅当x -2≠0,即x≠2时,函数y =2+3x -2有意义,所以这个函数的定义域为{x|x≠2}.(2)函数有意义,当且仅当⎩⎪⎨⎪⎧3-x≥0,x -1≥0.解得1≤x≤3,所以这个函数的定义域为{x|1≤x≤3}.(3)函数有意义,当且仅当⎩⎪⎨⎪⎧x -1≠0,2x +1≥0,x +1≠0.解得x>-1,且x≠1,所以这个函数的定义域为{x|x>-1,且x≠1}. 练习:求下列函数的定义域: (1)y =x +12x +1-1-x ;(2)y =x +1|x|-x.解:(1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x≥0,即⎩⎪⎨⎪⎧x≠-1,x≤1,所以函数的定义域为{x|x≤1,且x≠-1}. (2)要使函数有意义,需满足 |x|-x≠0,即|x|≠x, ∴x<0.∴函数的定义域为{x|x<0}. 作业:2.求下列函数的定义域: (1)f(x)=1x +1;(2)y =x 2-1+1-x 2; (3)y =2x +3; (4)y =x +1x 2-1. 解:(1)要使函数有意义,即分式有意义,需x +1≠0,x≠-1.故函数的定义域为{x|x≠-1}.(2)要使函数有意义,需⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,即⎩⎪⎨⎪⎧x 2≥1,x 2≤1.所以x 2=1,从而函数的定义域为{x|x =±1}={1,-1}. (3)函数y =2x +3的定义域为{x|x ∈R}.(4)因为当x 2-1≠0,即x≠±1时,x +1x 2-1有意义,所以原函数的定义域是{x|x≠±1,x ∈R}.例3:已知函数y=f (x )定义域是{x|-2≤x ≤3},则y=f (2x ﹣1)的定义域是( ) A .{x|0≤x ≤52}B .{x|-1≤x ≤4}C{x|12-≤x ≤2} D . {x|-5≤x ≤5} 解:∵函数y=f (x )定义域是-2≤x ≤3, ∴由﹣2≤2x ﹣1≤3, 解得﹣≤x ≤2,即函数的定义域为12≤x≤2,故选:C .练习:已知函数y=f(x+1)的定义域是{x|-2≤x≤3},则y=f(x2)的定义域是()A.{x|-1≤x≤4} B.{x|0≤x≤16} C.{x|-2≤x≤2} D.{x|1≤x≤4} 解:∵函数y=f(x+1)的定义域是{x|-2≤x≤3},即﹣2≤x≤3,∴﹣1≤x+1≤4,即函数y=f(x)的定义域为{x|-1≤x≤4},由﹣1≤x2≤4,得﹣2≤x≤2.∴y=f(x2)的定义域是{x|-2≤x≤2}.故选:C.作业:3. 已知函数y=f(x+1)定义域是{x|-2≤x≤1} ,则y=f(2x﹣1)的定义域()A.{x|0≤x≤32} B.{x|-1≤x≤4} C.{x|-5≤x≤5} D.{x|-3≤x≤7}解:∵函数y=f(x+1)定义域是{x|-2≤x≤1},∴-2≤x≤1,∴-1≤x+1≤2,∴-1≤2x﹣1≤2,∴0≤x≤3 2∴y=f(2x﹣1)的定义域为{x|0≤x≤32}.故答案为:A考点三:函数值例4:若f(x)=1-x1+x(x≠-1),求f(0),f(1),f(1-a)(a≠2),f[f(2)].解:f(0)=1-01+0=1;f(1)=1-11+1=0;f(1-a)=1-1-a1+1-a=a2-a(a≠2);f[f(2)]=1-f21+f2=1-1-21+21+1-21+2=2.练习: 设函数f(x)=41-x,若f(a)=2,则实数a=________.解析:由题意知,f(a)=41-a=2,得a=-1. 答案:-1作业:4.已知f(x)=11+x(x∈R,且x≠-1),g(x)=x2+2(x∈R).(1)求f(2),g(2)的值;(2)求f[g(2)],g[f(2)]的值. 解:(1)f(2)=11+2=13,g(2)=22+2=6; (2)f[g(2)]=f(6)=11+6=17,g[f(2)]=g(13)=(13)2+2=199. 考点四:简单的求函数的值域 例5:求下列函数的值域: (1)y =2x +1,x ∈{1,2,3,4,5}; (2)y =x +1;(3)y =-x 2-2x +3(-1≤x≤2); (4)y =1-x21+x2.解:(1)将x =1,2,3,4,5分别代入y =2x +1,算得函数的值域为{3,5,7,9,11}. (2)∵x ≥0,∴x +1≥1,即函数的值域为[1,+∞).(3)y =-x 2-2x +3=-(x +1)2+4.∵-1≤x≤2,∴0≤x+1≤3,∴0≤(x+1)2≤9.∴-5≤-(x +1)2+4≤4.∴函数的值域为[-5,4].(4)∵y =1-x 21+x 2=-1+21+x 2,∴函数的定义域为R.∵x 2+1≥1,∴0<21+x2≤2.∴y ∈(-1,1]. ∴函数的值域为(-1,1].练习:(1)已知函数y=2x+1,x ∈{x ∈Z|0≤x <3},则该函数的值域为( ) A .{y|1≤y <7} B .{y|1≤y ≤7} C .{1,3,5,7} D .{1,3,5} 解:函数y=2x+1,x ∈{x ∈Z|0≤x <3}={0,1,2}. 当x=0时,y=1,当x=1时,y=3,当x=2时,y=5. ∴函数的值域为{1,3,5}.故选D .(2)函数y=x 2﹣4x+1,x ∈[1,5]的值域是( ) A .{y|1≤y ≤6} B .{y|-3≤y ≤1}C .{y|y ≥-3}D .{y|-3≤y ≤6}解:对于函数f (x )=x 2﹣4x+1,是开口向上的抛物线. 对称轴x=,所以函数在区间[1,5]上面是先减到最小值再递增的.所以在区间上的最小值为f (2)=﹣3.又f (1)=﹣2<f (5)=6,,所以最大值为6.故选D .作业:5.求下列函数的值域:(1)f(x)=(x -1)2+1,x ∈{-1,0,1,2,3}; (2)f(x)=(x -1)2+1,x ∈R ; (3)y =1-x 2,x ∈R ; (4)y =2x +1x,x≠0. 解:(1)函数的定义域为{-1,0,1,2,3},∵f(-1)=5, f(0)=2,f(1)=1,f(2)=2,f(3)=5, ∴这个函数的值域为{1,2,5}.(2)函数的定义域为R ,∵(x -1)2+1≥1, ∴这个函数的值域为{y|y≥1}. (3)函数的定义域为R ,∵1-x 2≤1, ∴函数y =1-x 2的值域为{y|y≤1}. (4)y =2x +1x =2+1x ,∵x≠0,∴1x≠0, ∴y =2+1x ≠2,∴函数的值域为{y|y≠2}.考点五:判断两函数是否相等例6:下列各组函数表示相等函数的是( ) A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1C .y =x 0(x≠0)与y =1(x≠0) D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z解析:选C A 中两函数定义域不同,B 、D 中两函数对应法则不同,C 中定义域与对应法则都相同.练习:下列四组函数中,表示同一函数的是( ) A .f (x )=|x|,g (x )=B .f (x )=|x|,g (x )=()2C .f (x )=,g (x )=x+1D .f (x )=,g (x )=解:要判断两个函数是否是同一个函数,需要从三个方面来分析,即定义域,对应法则和值域,B 选项两个函数的定义域不同,前面函数的定义域为R ,后面函数的定义域为[0,+∞),C 选项两个函数的定义域不同,前面函数的定义域为{x|x ≠1},后面函数的定义域为R ,D 选项两个函数的定义域不同,前面函数的定义域为[1,+∞),后面函数的定义域为(﹣∞,﹣1]∪[1,+∞),故选:A . 作业:6. 下列四组函数中,表示同一函数的是( ) A .y =,y =()2B .y =|x|,y =C .y =,y =x+1D .y =x ,y =解:对于A ,y ==|x|(x ∈R ),与y ==t (t ≥0)的定义域不同,对应关系也不同,不是同一函数; 对于B ,y =|x|(x ∈R ),与y ==|t|(t ∈R )的定义域相同,对应关系也相同,是同一函数; 对于C ,y ==x+1(x ≠1),与y =x+1(x ∈R )的定义域不同,不是同一函数;对于D ,y =x (x ∈R ),与y ==x (x ≠0)的定义域不同,不是同一函数.故选:B .考点六:区间及其表示例7:集合{x|-12≤x<10,或x>11}用区间表示为________. 答案:[-12,10)∪(11,+∞)练习:已知函数y =1-x 2x 2-3x -2,则其定义域为( )A .(-∞,1]B .(-∞,2]C .(-∞,-12)∪(-12,1)D .(-∞,-12)∪(-12,1]解析:选D 要使式子1-x2x 2-3x -2有意义,则⎩⎪⎨⎪⎧1-x≥0,2x 2-3x -2≠0即⎩⎪⎨⎪⎧x≤1,x≠2且x≠-12,所以x≤1且x≠-12,即该函数的定义域为(-∞,-12)∪(-12,1],故选D.作业: 7. 函数y=+1的值域为( ) A .(0,+∞) B .(1,+∞)C .[0,+∞)D .[1,+∞)解:函数y=+1,定义域为[1,+∞),当x=1时,函数y 取得最小值为1, 函数y=+1的值域为[1,+∞),故选D。
高中数学第一章1.2函数及其表示1.2.1函数的概念学案含解析新人教A版必修019

解得 x>- 1,且 x≠ 1.
∴函数的定义域为 { x| x>- 1,且 x≠ 1} .
求函数值和值域
1 [例 3] 已知 f(x)= 1+ x(x∈ R,且 x≠- 1), g(x)= x2+ 2(x∈ R).
(1)求 f(2), g(2)的值; (2)求 f(g(2))的值; (3)求 f(x), g(x)的值域.
马鸣风萧萧整理
》》》》》》》》》积一时之跬步 臻千里之遥程《 《《《《《《《《《《《
2.根据图形判断对应是否为函数的方法步骤
(1)任取一条垂直于 x 轴的直线 l;
(2)在定义域内平行移动直线 l;
(3)若 l 与图形有且只有一个交点, 则是函数;若在定义域内没有交点或有两个或两个以
上的交点,则不是函数.
2x+ 1 (3)y= x- 3 ;
(4)y= 2x- x- 1.
解: (1)(观察法 )因为 x∈ {1,2,3,4,5},分别代入求值,可得函数的值
域为 {2,3,4,5,6} . (2)(配方法 )y= x2- 2x+3=(x- 1)2+2,由 x∈[0,3),再结合函数的图
象[ 如图 (1)],可得函数的值域为 [2,6).
t- 4
2+
,由 8
t
15 ≥0,再结合函数的图象 [如图 (2)],可得函数的值域为 8 ,+∞ .
[典例 ] 下列各组函数:
3.相等函数的判断
马鸣风萧萧整理
》》》》》》》》》积一时之跬步 臻千里之遥程《 《《《《《《《《《《《
x2- x ① f(x)= x , g(x)= x- 1;
x
x
② f(x)= x , g(x)=
(1)∞是一个符号,而不是一个数; (2)以“-∞”或“+∞”为区间的一端时,这一端必须用小括号.
【优化课堂】高一数学人教A版必修1 学案:第一章 1.2.1 函数的概念 Word版含答案[ 高考]
![【优化课堂】高一数学人教A版必修1 学案:第一章 1.2.1 函数的概念 Word版含答案[ 高考]](https://img.taocdn.com/s3/m/35b09323763231126edb11ac.png)
1.2函数及其表示1.2.1函数的概念[学习目标] 1.进一步体会函数是描述变量之间的依赖关系的重要数学模型.能用集合与对应的语言刻画出函数,体会对应关系在刻画数学概念中的作用.(重点、难点)2.了解构成函数的要素,会求一些简单函数的定义域和值域(重点).3.能够正确使用区间表示数集.(易混点)一、函数的有关概念f,使对于集合A中的任意的一个数x,在集合B中都有唯一确定的数f(x)和它对应结论称f:A―→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A 相关概念定义域x的取值范围A值域函数值的集合{}f(x)|x∈A二、两个函数相等的条件1.定义域相同;2.对应关系完全一致.三、区间的概念及表示1.一般区间的表示设a,b∈R,且a<b,规定如下:2.特殊区间的表示1.判断(正确的打“√”,错误的打“×”) (1)函数的定义域和值域一定是无限集合.( )(2)根据函数有定义,定义域中的一个x 可以对应着不同的y .( ) (3)f (a )表示当x =a 时函数f (x )的值,是一个常量.( ) 【答案】 (1)× (2)× (3)√ 2.已知f (x )=x +1,则f (3)=( )A .2B .4C .±6D .10 【解析】 ∵f (x )=x +1,∴f (3)=3+1=2.【答案】 A 3.函数f (x )=11-2x有定义域是________(用区间表示). 【解析】 由题意,需1-2x >0,解得x <12.故f (x )的定义域为⎝⎛⎭⎫-∞,12. 【答案】 ⎝⎛⎭⎫-∞,12 4.集合{}x |1<x ≤10用区间表示为________. 【解析】 集合{}x |1<x ≤10用区间表示为(1,10]. 【答案】 (1,10]预习完成后,请把你认为难以解决的问题记录在下面的表格中(1)(2014·长沙高一检测)设M =x -2≤x ≤2,N =}y 0≤y ≤2,函数y =f (x )的定义域为M ,值域为N ,对于下列四个图象,可作为函数y =f (x )的图象为( )(2)下列函数中,f (x )与g (x )相等的是( ) A .f (x )=x ,g (x )=(x )2 B .f (x )=x ,g (x )=x 2 C .f (x )=x +2,g (x )=x 2-4x -2D .f (x )=x ,g (x )=3x 3 (3)判断下列对应是否为函数. ①A =R ,B =R ,f :x →y =1x 2;②A =N ,B =R ,f :x →y =±x ; ③A =N ,B =N *,f :x →y =|x -2|;④A ={1,2,3},B =R ,f (1)=f (2)=3,f (3)=4.【解析】 (1)由函数定义可知任意作一条直线x =a 与函数图象至多有一个交点,故选项C 错误.由题设定义域中有元素-2,2知选项A 错误.由值域为{}y |0≤y ≤2知选项B 错误. (2)对于A ,f (x )=x 的定义域为R ,g (x )=(x )2的定义域为{}x |x ≥0,两函数的定义域不相同,所以不是相等函数;对于B ,g (x )=x 2=|x |,与f (x )=x 的对应关系不相同,所以不是相等函数;对于C ,g (x )=x 2-4x -2=x +2(x ≠2),与f (x )=x +2的定义域不同,所以不是相等函数;对于D ,g(x)=3x3=x,与f(x)=x的对应关系和定义域都相同,所以是相等函数,故选D.【答案】(1)D(2)D(3)①因为A=R,B=R,对于A中的元素x=0,在对应关系f:x→y=1x2之下,在B 中没有元素与之对应,因而不能构成函数.②对于A中的元素,如x=9,y的值为y=±9=±3,即在对应关系f之下,B中有两个元素与之对应,不符合函数定义,故不能构成函数.③对于A中的元素x=2,在对应关系f的作用下,|2-2|=0∉B,从而不能构成函数.④依题意,f(1)=f(2)=3,f(3)=4,即A中的每一个元素在对应关系f之下,在B中都有唯一的元素与之对应,虽然B中有很多元素在A中无元素与之对应,但依函数的定义,仍能构成函数.1.判断一个对应关系是否为函数的步骤:(1)判断A,B是否是非空数集;(2)判断A中任一元素在B中是否有元素与之对应;(3)判断A是任一元素在B中是否有唯一确定的元素与之对应.2.判断函数是否相同的步骤:(1)看定义域是否相同;(2)看对应关系是否相同;(3)下结论.(1)f(x)=1x-2;(2)f(x)=3x+2;(3)f(x)=x+1+12-x.【思路探究】解答本题可根据函数解析式的结构特点,构造使解析式有意义的不等式(组),进而解不等式求解.【解】 (1)∵x ≠2时,分式1x -2有意义,∴这个函数的定义域是{}x |x ≠2. (2)∵3x +2≥0,即x ≥-23时,根式3x +2才有意义,∴这个函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥-23. (3)∵要使函数有意义,必须⎩⎪⎨⎪⎧x +1≥02-x ≠0⇒⎩⎪⎨⎪⎧x ≥-1,x ≠2.∴这个函数的定义域是{}x |x ≥-1且x ≠2.1.求解析式给出的函数的定义域就是求使函数表达式有意义的自变量的取值集合.已知函数y =f (x ):(1)若f (x )为整式,则定义域为R ;(2)若f (x )为分式,则定义域是使分母不为零的实数的集合;(3)若f (x )是偶次根式,那么函数的定义域是根号内的式子不小于零的实数的集合; (4)若f (x )是由几个部分的数字式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合;5.若f (x )是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.(2014·济宁高一检测)函数y =1-x2x 2-3x -2定义域为( )A .(-∞,1]B .(-∞,2]C.⎝⎛⎭⎫-∞,12∪⎝⎛⎭⎫-12,1 D.⎝⎛⎫-∞,-12∪⎝⎛⎦⎤-12,1 【解析】 要使函数y =1-x 2x 2-3x -2有意义,则⎩⎪⎨⎪⎧1-x ≥0,2x 2-3x -2≠0,即⎩⎪⎨⎪⎧x ≤1,x ≠-12且x ≠2,所以x ≤1且x ≠-12,故选D.【答案】 Df (2x +1)的定义域;(2)已知函数f (2x +1)的定义域为[1,3],求函数f (x )的定义域.【思路探究】 (1)函数f (2x +1)的自变量是x ,而非2x +1,解不等式1≤2x +1≤3即可.(2)函数f (2x +1)的自变量是x ,本题实质是知1≤x ≤3,求2x +1的取值范围. 【解】 (1)∵函数f (x )的定义域为[1,3],即x ∈[1,3],函数f (2x +1)中2x +1的范围与函数f (x )中x 的范围相同,∴2x +1∈[1,3],∴x ∈[0,1], 即函数f (2x +1)的定义域是[0,1]. (2)∵x ∈[1,3],∴2x +1∈[3,7], 即函数 f (x )的定义域是[3,7].若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出;若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.已知函数f (x )的定义域为(0,1),则f (2x )的定义域为__________.【解析】 因为f (x )的定义域为(0,1),所以要使f (2x )有意义,须使0<2x <1,即0<x <12,所以函数f (2x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12.【答案】 ⎝⎛⎭⎫0,12已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R).(1)求f (2),g (2)的值; (2)求f [g (3)]的值.【思路探究】 (1)令x =2代入f (x ),g (x )→得出f (2),g (2) (2)求g (3)→求f [g (3)] 【解】 (1)∵f (x )=11+x ,∴f (2)=11+2=13, 又∵g (x )=x 2+2,∴g (2)=22+2=6.(2)g (3)=32+2=11,∴f [g (3)]=f (11)=11+11=112.1.f (x )表示自变量为x 的函数,如f (x )=2x ,而f (a )表示的是当x =a 时的函数值,如f (x )=2x 中f (3)=2×3=6.2.求f {f [f (x )]}时,一般要遵循由里到外的原则.在题设条件不变的情况下,求g [f (3)]的值. 【解】 ∵f (3)=11+3=14, ∴g [f (3)]=g ⎝⎛⎭⎫14=⎝⎛⎭⎫142+2=3316.1.函数的本质:两个非空数集间的一种确定的对应关系.由于函数的定义域和对应关系一经确定,值域随之确定,所以判断两个函数是否相等,只须两个函数的定义域和对应关系一致即可.2.f(x)是函数符号,f表示对应关系,“y=f(x)”为“y是x的函数”这句话的数学表示,它仅仅是函数符号,并不表示“y等于f 与x的乘积”.3.对于用关系式表示的函数.如果没有给出定义域,那么就认为函数的定义域是指使函数表达式有意义的自变量取值的集合,这是求某函数定义域的依据.相等函数判断中的误区下列各组函数相等函数的是()A.y=x+1与y=x2-1 x-1B.y=|x|+1和y=(x-1)2+1 C.y=2x和y=2x(x≤0) D.y=x2+1和y=t2+1【易错分析】 易失分点一:忽视函数定义域,误认为y =x 2-1x -1=x +1,而误选A.易失分点二:忽视对应关系,误认为定义域和值域相同就是相等函数,而误选B. 【防范措施】 1.判断函数相等时,对较为复杂的函数解析式的化简要慎重,注意其等价性,本例对选项A 中第二个函数解析式的化简易把定义域扩大,由解析式相同而误认为是相等函数.2.定义域相同,并且对应关系完全一致的两个函数才相等.【解析】 A 错误,由于函数y =x 2-1x -1中要求x -1≠0,即x ≠1,故两个函数的定义域不同,故不表示相等函数.B 错误,虽然定义域和值域相同,但对应关系不相同,因而不是相等函数.C 错误,显然定义域不同,因此不是相等函数.D 正确,虽然表示自变量的字母不同,但它们定义域和对应关系相同,因此是相等函数. 【答案】 D——[类题尝试]————————————————— 下列各组中的两个函数为相等函数的是( ) A .f (x )=x +1·x -1,g (x )=(x +1)(x -1) B .f (x )=(2x -5)2,g (x )=2x -5 C .f (x )=1-x x 2+1与g (x )=1+x x 2+1D .f (x )=(x )4x 与g (t )=⎝⎛⎭⎫t t 2 【解析】 A 中,f (x )=x +1·x -1的定义域为{x |x ≥1},g (x )=(x +1)(x -1)的定义域为{x |x ≥1或x ≤-1},它们的定义域不相同;B 中,f (x )=(2x -5)2的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥52,g (x )=2x -5的定义域为R ,定义域不同,不是相等函数.C 中,f (x )=1-xx 2+1与g (x )=1+xx 2+1的对应关系不同,不相等.D 中,f (x )=(x )4x =x (x>0)与g (x )=⎝⎛⎭⎫t t 2=t (t >0)的定义域与对应关系都相同,它们相等.【答案】 D。
新人教A版必修1高中数学§1.2.1函数的定义学案

高中数学 §1.2.1函数的定义学案 新人教A 版必修1学习目标:1、能够正确使用“区间”的符号表示某些函数的定义域;2、了解构成函数的要素;3、会求一些简单函数的定义域。
学习重点:函数的概念及求函数的定义域 学习难点: 求函数的定义域 知识链接:一、函数的定义:设A 、B 是 的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x ,在集合B 中都有 确定的数f(x)和它对应。
那么就称f:A →B 为从集合A 到集合B 的一个函数,记作y=f(x), x ∈A 其中x 叫做自变量,自变量x 的取值范围A 叫做 ,与x 的值相对应的值y 叫做函数值,函数值的集合{f(x)︳x ∈A}叫做 。
注意1、 A 、B 必须是 的数集;且对于集合A 中的任意一个数x ,在集合B 中只有有 确定的数f(x)和它对应;2、f(x)的符号含义:y=f(x)为“y 是x 的函数”的数学表示,仅是一个函数符号,表示集合A 到集合B 的一个特殊对应,并非表示f(x)是f 与x 相乘 ;3、函数必须具备三个要素: 、 、 缺一不可。
是两个实数,且a的集合叫 区间;满足不等式a<x<b 的实数x 的集合叫 区间;满足不等式a ≤x<b 或a 〈x ≤b 的实数x 的集合都叫区间. 实数集R 用区间表示为 ,其中“∞”读“无穷大”; “-∞”读“负无穷大”;“+∞”读“正无穷大”.例题剖析: 例1、已知函数(1)求函数的定义域; (2)求 的值; (3)当a>0时,求f(a), f(a-1)的值。
例2、求下列函数的定义域(1)1()47f x x =+ (2)()1f x = (3)3()4xf x x =-1()2f x x =+2(3),()3f f -小结:1、求函数定义域的规则:①整式:②分式:③偶次根式:④零次幂式:⑤如果f(x)是由几个部分的数学式子构成的2、求定义域步骤:列不等式(组)→解不等式(组)当堂检测:1. 函数2,{2,1,0,1,2}y x x=∈--的值域是 .2. 函数2yx=-的定义域是(用区间表示)3.下列图形哪个可以表示函数的图象?。
函数的概念(单元教学设计)高中数学人教A版2019必修第一册
《函数的概念及其表示》单元教学设计一、内容及其解析(一)内容1 函数的三个要素:定义域,值域,对应关系2 “对应说”的函数概念3 函数的表示法:解析法,图象法,表格法4 分段函数的概念及表示(二)内容解析1. 内容本质:两个数集之间建立对应关系(单射)是函数概念的本质,用集合语言和对应关系刻画函数概念是数学抽象素养得到提升的重要标志。
用解析式、图象与表格等不同方法表示函数,是进一步理解函数、认识函数对应关系f的重要过程,也是数学思维的重要特征。
2 蕴含的思想方法运用函数观察、研究事物的运动与变化及其规律是一种重要的思想,因此,函数思想自然是函数概念与表示教学中最重要的数学思想;在函数的表示中,函数不同表示法之间的转化渗透着数形结合的思想;同时,函数与方程、不等式之间的相互转化,蕴含着等价转化的思想。
3 知识知识的上下位关系:函数是数学的核心概念,是刻画客观世界中运动变化规律的重要数学模型。
在高中阶段,函数不仅贯穿数学学习的始终,而且是学习方程、不等式、数列、导数等内容的工具和基础,在物理、化学、生物等其它领域也有广泛的应用;在高等数学和实际应用中,函数是基本数学对象,是数学建模的重要模型。
4 育人价值:函数所蕴含的集合间的“对应”是一种重要的数学思想与方法,这种思想方法帮助人们在不同事物之间建立联系,并运用这种联系去研究、发现事物变化的规律,掌握事物本身的性质,这对于提高人们的思想认识,指导日常行为有着重要的意义与价值,函数的表示是数学表示的典范,除帮助人们提高抽象能力外,其本质也是建立具体函数到数学符号之间的对应,可以帮助学生进一步体会函数思想的本质,发展学生的数学抽象与直观想象素养.5 教学重点:实例归纳概括函数的基本特征,建立用集合与对应的语言刻画概念,选择适当的方法表示函数二、目标及其解析(一)单元目标1在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用。
2019人教A版数学必修一1.2.1《函数的概念》(2课时)导学案
2019人教A版数学必修一1.2.1《函数的概念》(2课时)导学案。
二、教学重点与难点:重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;三、学法学法:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节课的教学目标 .四、学习流程(一)、知识连线1、初中学过了哪些的函数概念?2、函数的有关概念:(1)、函数的定义域、值域设A、B是非空的数集,如果按照某种确定的_________,使对于集合A中的___________在集合B中都有___________和它对应,那么就称f:A→B为_____________的一个函数,记作__________ , x∈A,其中x叫做自变量,_____________ 叫做函数的定义域,与x 的值相对应的y值叫做函数值,_________________________________叫做函数的值域。
(2)、一个函数的构成要素:__________ , __________ , __________ 。
(3)、相等函数:如果两个函数的__________相同,并且_________完全一致,我们就称这两个函数相等,3、区间的概念:(这里的实数a与b叫做相应区间的__________ )4、无穷大的概念:(二)、知识演练5、求下列函数的定义域:(1)、f ( x ) = 2x (2)、f (x ) = 24++x x (3)、()f x=(4)、xx y -+=2)1(0 (5)、f ( x ) = 2x -76、求下列函数的值域:(1)、f ( x ) = 2x -1 (2))40(12)(≤≤-=x x x f (3)、f ( x ) =x 2-6x +77、设函数f ( x )=x 2+b x +c ,且f ( 3 )=0, f ( 1 )=0 ,则f (-1 )= ______ A 、0 B 、8 C 、222+a D 、2622+-a a 8、下列各组函数表示同一函数的是( )A 、0)(,1)(x x g x f == B 、11)(,1)(2--=+=x x x g x x fC 、22)(,4)(2+-=-=x x x g x x f D 、R R g X x f ππ2)(,2)(==(三)、知识提升 9、若21)(xx x f +=,则=)1(x f ( ) A 、f (x ) B 、)(1x f C 、-f (x ) D 、f (-x ) 10、已知函数f (x )的定义域是[0,2],则f (2x-1)的定义域为______11、设f ( x )=若f ( x )=10,求x 的值。
新教材高中数学第三章函数的概念与性质 单调性与最大小值第2课时函数的最大小值学案新人教A版必修第一册
第2课时函数的最大(小)值课程标准(1)理解函数的最大值和最小值的概念及其几何意义.(2)能借助函数的图象和单调性,求一些简单函数的最值.(3)能利用函数的最值解决有关的实际应用问题.新知初探·课前预习——突出基础性教材要点要点函数的最大值与最小值助学批注批注❶函数的最值与值域的关系:(1)函数的值域一定存在,函数的最值不一定存在.(2)若函数的最值存在,则最值一定是值域中的元素.(3)若函数的值域是开区间,则函数无最值;若函数的值域是闭区间,则闭区间的端点值就是函数的最值.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)任何函数都有最大(小)值.( )(2)如果一个函数有最大值,那么最大值是唯一的.( )(3)函数f(x)取最大值时,对应的x可能有无限多个.( )(4)如果f(x)的最大值、最小值分别为M,m,则f(x)的值域为[m,M].( )2.函数f(x)=1x在[1,+∞)上( )A.有最大值无最小值B.有最小值无最大值C.有最大值也有最小值D.无最大值也无最小值3.函数f(x)=-2x+1(x∈[-2,2])的最小、最大值分别为( )A.3,5B.-3,5C.1,5D.-5,34.函数f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是________.题型探究·课堂解透——强化创新性题型 1 利用函数的图象求函数的最值例1 已知函数f(x)={x2−x,0≤x≤22x−1,x>2,求函数f(x)的最大值、最小值.方法归纳图象法求最值的一般步骤巩固训练1 若x∈R,f(x)是y=2-x2,y=x这两个函数中的较小者,则f(x)的最大值为( )A.2B.1C.-1D.无最大值题型 2 利用函数的单调性求最值.例2 已知函数f(x)=2x+1x+1(1)判断函数在区间(-1,+∞)上的单调性,并用定义证明你的结论;(2)求该函数在区间[2,4]上的最大值和最小值.方法归纳函数的最大(小)值与单调性的关系(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间[a,b]上的最小(大)值是f(a),最大(小)值是f(b).(2)若函数f(x)在区间[a,b]上是增(减)函数,在区间[b,c]上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),最小(大)值是f(a)与f(c)中较小(大)的一个.在区间[2,6]上的最大值和最小值.巩固训练2 求函数y=2x−1题型 3 求二次函数的最值例3 (1)已知函数f(x)=x2-2x-3,若x∈[0,2],求函数f(x)的最值.(2)求函数f(x)=x2-2x+2在区间[t,t+1]上的最小值g(t).(3)已知函数f(x)=x2-ax+1,求f(x)在[0,1]上的最大值.方法归纳求二次函数最值问题的解题策略一般都是讨论函数的定义域与对称轴的位置关系,往往分三种情况:(1)定义域在对称轴左侧;(2)对称轴在定义域内;(3)定义域在对称轴右侧.在讨论时可结合函数图象,便于分析、理解.巩固训练3 已知二次函数f(x)=-x2+2ax-a在区间[0,1]上有最大值2,求实数a的值.第2课时 函数的最大(小)值新知初探·课前预习[教材要点]要点≤ ≥ f (x 0)=M 纵坐标 纵坐标[基础自测]1.答案:(1)× (2)√ (3)√ (4)×2.解析:函数f (x )=1x 是反比例函数,当x ∈(0,+∞)时,函数图象下降,所以在[1,+∞)上f (x )单调递减,f (1)为f (x )在[1,+∞)上的最大值,函数在[1,+∞)上没有最小值.答案:A3.解析:因为f (x )=-2x +1(x ∈[-2,2])是单调递减函数,所以当x =2时,函数的最小值为-3.当x =-2时,函数的最大值为5.答案:B4.解析:由图象知点(1,2)是最高点,点(-2,-1)是最低点, ∴y max =2,y min =-1. 答案:-1,2题型探究·课堂解透例1 解析:作出f (x )的图象如图:由图象可知,当x =2时,f (x )取最大值2;当x =12时,f (x )取最小值-14.所以f (x )的最大值为2,最小值为-14.巩固训练1 解析:在同一坐标系中,作出函数的图象(如图中的实线部分), 则f (x )max =f (1)=1. 答案:B例2 解析:(1)f (x )在(-1,+∞)上单调递增,证明如下:任取-1<x 1<x 2, 则f (x 1)-f (x 2)=2x 1+1x 1+1−2x 2+1x 2+1=x 1−x 2(x 1+1)(x 2+1),因为-1<x 1<x 2⇒x 1+1>0,x 2+1>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0⇒f (x 1)<f (x 2), 所以f (x )在(-1,+∞)上单调递增. (2)由(1)知f (x )在[2,4]上单调递增, 所以f (x )的最小值为f (2)=2×2+12+1=53,最大值f (4)=2×4+14+1=95.巩固训练2 解析:设x 1,x 2是区间[2,6]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=2x1−1−2x 2−1=2(x 2−x 1)(x1−1)(x 2−1)由于2<x 1<x 2<6, 得x 2-x 1>0,(x 1-1)(x 2-1)>0,于是f (x 1)-f (x 2)>0,f (x 1)>f (x 2) 所以,函数y =2x−1在区间[2,6]上单调递减.x =2时取最大值,最大值是2,在x =6时取最小值,最小值为25.例3 解析:(1)∵函数f (x )=x 2-2x -3开口向上,对称轴x =1,∴f (x )在[0,1]上单调递减,在[1,2]上单调递增,且f (0)=f (2).图1∴f (x )max =f (0)=f (2)=-3,f (x )min =f (1)=-4. (2)当t +1<1,即t <0时,函数图象如图1所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为g (t )=f (t +1)=t 2+1; 当t >1时,函数图象如图2所示,图2图3函数f (x )在区间[t ,t +1]上为增函数,所以最小值为g (t )=f (t )=t 2-2t +2.当t ≤1≤t +1,即0≤t ≤1时, 函数图象如图3所示,最小值为g (t )=f (1)=1,综上所述,g (t )={t 2+1,t <01,0≤t ≤1t 2−2t +2,t >1.(3)因为函数f (x )=x 2-ax +1的图象开口向上,其对称轴为x =a2,当a 2≤12,即a ≤1时,f (x )的最大值为f (1)=2-a ;当a 2>12,即a >1时,f (x )的最大值为f (0)=1. 综上f (x )max ={2−a ,a ≤11,a >1.巩固训练3 解析:f(x)=-(x-a)2+a2-a,对称轴为x=a.(1)当a<0时,f(x)在[0,1]上单调递减,∴f(0)=2,即a=-2.(2)当a>1时,f(x)在[0,1]上单调递增,∴f(1)=2,即a=3.(3)当0≤a≤1时,f(x)在[0,a]上单调递增,在[a,1]上单调递减, ∴f(a)=2,即a2-a=2,解得a=2或a=-1,与0≤a≤1矛盾.综上a=-2或a=3.。
人教版高中数学必修1学案:1.2.1函数的概念(2)
1.2.1函数的概念(2)一、三维目标:知识与技能:进一步体会函数概念;了解构成函数的要素;能够正确使用“区间”的符号表示某些集合。
过程与方法:了解构成函数的三要素,会求一些简单函数的定义域和值域。
掌握判别两个函数是否相等的方法。
情感态度与价值观:激发学习兴趣,培养审美情趣。
二、学习重、难点:重点:用区间符号正确表示数的集合,求简单函数定义域和值域及函数相等的判断。
难点:求函数定义域和值域。
三、学法指导:阅读教材, 熟练使用“区间”的符号表示函数的定义域和值域。
四、知识链接:1. 写出函数的定义:注:(1)对应法则f(x)是一个函数符号,表示为“y 是x 的函数”,绝对不能理解为“y 等于f 与x 的乘积”,在不同的函数中,f 的具体含义不一样;y=f(x)不一定是解析式,在不少问题中,对应法则f 可能不便使用或不能使用解析式,这时就必须采用其它方式,如数表和图象,在研究函数时,除用符号f(x)表示外,还常用g(x)、F(x)、G(x)等符号来表示;f(a)是常量,f(x)是变量,f(a)是函数f(x)中当自变量x=a 时的函数值。
(2)定义域是自变量x 的取值范围;(3)值域是全体函数值所组成的集合,在大多数情况下,一旦定义域和对应法则确定,函数的值域也随之确定。
2.集合的表示方法有: 。
五、学习过程:A 问题1. 区间的概念 (1)满足不等式b x a ≤≤的实数x 的集合叫做 ,表示为 ;(2)满足不等式b x a <<的实数x 的集合叫做 ,表示为 ;(3)满足不等式b x a <≤的实数x 的集合叫做 ,表示为 ;(4)满足不等式b x a ≤<的实数x 的集合叫做 ,表示为 ;在数轴上,这些区间都可以用一条以a 和b 为端点的线段来表示,在图中,用 表示包括在区间内的端点,用 表示不包括在区间内的端点;实数集R 也可以用区间表示为 ,“∞”读作“ ”,“-∞”读作“ ”,“+∞”读作“ ”,还可以把满足x ≥a, x>a, x ≤b, x<b 的实数x 的集合分别表示为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.1 函数的概念学习目标:1.进一步体会函数是描述变量之间的依赖关系的重要数学模型.能用集合与对应的语言刻画出函数,体会对应关系在刻画数学概念中的作用.(重点、难点)2.了解构成函数的要素,会求一些简单函数的定义域和值域.(重点)3.能够正确使用区间表示数集.(易混点)[自主预习·探新知]1.函数的概念(2)f(x)与f(a)有何区别与联系?[提示](1)这种看法不对.符号y=f(x)是“y是x的函数”的数学表示,应理解为x是自变量,它是关系所施加的对象;f 是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y是自变量的函数,当x允许取某一具体值时,相应的y值为与该自变量值对应的函数值.y=f(x)仅仅是函数符号,不表示“y等于f与x的乘积”.在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等来表示函数.(2)f(x)与f(a)的区别与联系:f(a)表示当x=a时,函数f(x)的值,是一个常量,而f(x)是自变量x的函数,一般情况下,它是一个变量,f(a)是f(x)的一个特殊值,如一次函数f(x)=3x +4,当x=8时,f(8)=3×8+4=28是一个常数.2.区间及有关概念(1)一般区间的表示设a,b∈R,且a<b,规定如下:(2)“∞”是数吗?如何正确使用“∞”?[提示](1)不是任何数集都能用区间表示,如集合{0}就不能用区间表示.(2)“∞”读作“无穷大”,是一个符号,不是数.以“-∞”或“+∞”作为区间一端时,这一端必须是小括号.[基础自测]1.思考辨析(1)任何两个集合之间都可以建立函数关系.( )(2)根据函数的定义,定义域中的任何一个x可以对应着值域中不同的y.( )(3)在函数的定义中,集合B是函数的值域.( )[答案](1)×(2)×(3)×2.函数y=1x+1的定义域是( )A.[-1,+∞)B.[-1,0) C.(-1,+∞) D.(-1,0) C[由x+1>0得x>-1.所以函数的定义域为(-1,+∞).]3.若f(x)=11-x2,则f(3)=________.【导学号:37102085】-18[f(3)=11-9=-18.]4.集合{x|x≤-2}用区间可表示为________.(-∞,-2] [{x|x≤-2}表示小于等于-2的数组成的集合,即用区间表示为(-∞,-2].][合作探究·攻重难]函数的概念(1)判断下列对应是不是从集合A到集合B的函数.①A=N,B=N*,对应法则f:对集合A中的元素取绝对值与B中元素对应;②A={-1,1,2,-2},B={1,4},对应法则f:x→y=x2,x∈A,y∈B;③A={-1,1,2,-2},B={1,2,4},对应法则f:x→y=x2,x∈A,y∈B;④A={三角形},B={x|x>0},对应法则f:对A中元素求面积与B中元素对应.(2)下列各组函数是同一函数的是( )①f(x)=-2x3与g(x)=x-2x;②f(x)=x与g(x)=x2;③f(x)=x0与g(x)=1x0;④f(x)=x2-2x-1与g(t)=t2-2t-1.A.①②B.①③C.③④ D.①④[解](1)①对于A中的元素0,在f的作用下得0,但0不属于B,即A中的元素0在B中没有元素与之对应,所以不是函数.②对于A中的元素±1,在f的作用下与B中的1对应,A中的元素±2,在f的作用下与B中的4对应,所以满足A中的任一元素与B中唯一元素对应,是“多对一”的对应,故是函数.③对于A中的任一元素,在对应关系f的作用下,B中都有唯一的元素与之对应,如±1对应1,±2对应4,所以是函数.④集合A不是数集,故不是函数.(2)C[①f(x)=-2x3=|x|-2x与y=x-2x的对应法则和值域不同,故不是同一函数.②g(x)=x2=|x|与f(x)=x的对应法则和值域不同,故不是同一函数.③f(x)=x0与g(x)=1x0都可化为y=1且定义域是{x|x≠0},故是同一函数.④f(x)=x2-2x-1与g(t)=t2-2t-1的定义域都是R,对应法则也相同,而与用什么字母表示无关,故是同一函数.由上可知是同一函数的是③④.故选C.]A,A中任意一元素在是函数关系,“一对多”的不是函数关系[跟踪训练]1.下列四个图象中,不是函数图象的是( )【导学号:37102086】A B C DB[根据函数的定义知:y是x的函数中,x确定一个值,y就随之确定一个值,体现在图象上,图象与平行于y轴的直线最多只能有一个交点,对照选项,可知只有B不符合此条件.故选B.]求函数值设f (x )=2x 2+2,g (x )=1x +2, (1)求f (2),f (a +3),g (a )+g (0)(a ≠-2),g (f (2)). (2)求g (f (x )).思路探究:(1)直接把变量的取值代入相应函数解析式,求值即可; (2)把f (x )直接代入g (x )中便可得到g (f (x )). [解] (1)因为f (x )=2x 2+2, 所以f (2)=2×22+2=10,f (a +3)=2(a +3)2+2=2a 2+12a +20.因为g (x )=1x +2,所以g (a )+g (0)=1a +2+10+2=1a +2+12(a ≠-2). g (f (2))=g (10)=110+2=112. (2)g (f (x ))=1fx +2=12x 2+2+2=12x 2+4. 已知x 的表达式时,只需用f a 的值求g a 的值应遵循由里往外的原则[跟踪训练]2.已知f (x )=x 3+2x +3,求f (1),f (t ),f (2a -1)和f (f (-1))的值.【导学号:37102087】[解] f (1)=13+2×1+3=6;f (t )=t 3+2t +3;f (2a -1)=(2a -1)3+2(2a -1)+3=8a 3-12a 2+10a ; f (f (-1))=f ((-1)3+2×(-1)+3)=f (0)=3.求函数的定义域 [探究问题]1.已知函数的解析式,求其定义域时,能否可以对其先化简再求定义域? 提示:不可以.如f (x )=x +1x 2-1.倘若先化简,则f (x )=1x -1,从而定义域与原函数不等价. 2.若函数y =f (x )的定义域是[0,+∞),那么函数y =f (x +1)的定义域是什么?提示:函数y =f (x )的定义域是[0,+∞),所以令x +1≥0,解得x ≥-1,所以函数y =f (x +1)的定义域是[-1,+∞).3.若函数y =f (x +1)的定义域是[1,2],这里的“[1,2]”是指谁的取值范围?函数y =f (x )的定义域是什么?提示:[1,2]是自变量x 的取值范围. 函数y =f (x )的定义域是x +1的范围[2,3].求下列函数的定义域 (1)f (x )=2+3x -2; (2)f (x )=(x -1)0+2x +1; (3)f (x )=3-x ·x -1;(4)f (x )=x +2x +1-1-x .思路探究:要求函数的定义域,只需分母不为0,偶次方根中被开方数大于等于0即可. [解] (1)当且仅当x -2≠0,即x ≠2时, 函数y =2+3x -2有意义, 所以这个函数的定义域为{x |x ≠2}.(2)函数有意义,当且仅当⎩⎪⎨⎪⎧x -1≠0,2x +1≥0,x +1≠0,解得x >-1且x ≠1,所以这个函数的定义域为{x |x >-1且x ≠1}.(3)函数有意义,当且仅当⎩⎪⎨⎪⎧3-x ≥0,x -1≥0,解得1≤x ≤3,所以这个函数的定义域为{x |1≤x ≤3}.(4)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0,解得x ≤1且x ≠-1,即函数定义域为{x |x ≤1且x ≠-1}.若x 是分式,则应考虑使分母不为零若x 是偶次根式,则被开方数大于或等于零若x 是指数幂,则函数的定义域是使幂运算有意义的实数集合若x 是由几个式子构成的,则函数的定义域是几个部分定义域的交集若x 是实际问题的解析式,则应符合实际问题,使实际问题有意义[当 堂 达 标·固 双 基]1.已知函数f (x )=3x,则f ⎝ ⎛⎭⎪⎫1a =( )A.1aB.3aC .aD .3aD [f ⎝ ⎛⎭⎪⎫1a =3a ,故选D.] 2.下列表示的是y 关于x 的函数的是( )【导学号:37102088】A .y =x 2B .y 2=x C .|y |=xD .|y |=|x |A [结合函数的定义可知A 正确,选A.] 3.下列函数中,与函数y =x 相等的是( ) A .y =(x )2B .y =x 2C .y =|x |D .y =3x 3D [函数y =x 的定义域为R ;y =(x )2的定义域为[0,+∞);y =x 2=|x |,对应关系不同;y =|x |对应关系不同;y =3x 3=x ,且定义域为R .故选D.] 4.将函数y =31-1-x的定义域用区间表示为________.(-∞,0)∪(0,1] [由⎩⎨⎧1-x ≥0,1-1-x ≠0,解得x ≤1且x ≠0,用区间表示为(-∞,0)∪(0,1].] 5.已知函数f (x )=x +1x,(1)求f (x )的定义域; (2)求f (-1),f (2)的值;(3)当a ≠-1时,求f (a +1)的值.【导学号:37102089】[解] (1)要使函数f (x )有意义,必须使x ≠0, ∴f (x )的定义域是(-∞,0)∪(0,+∞). (2)f (-1)=-1+1-1=-2,f (2)=2+12=52.(3)当a ≠-1时,a +1≠0, ∴f (a +1)=a +1+1a +1.。