【配套K12】山东省2016届高三数学模拟试卷 理(含解析)

合集下载

山东师大附中2016届高三数学最后一模试题理带答案

山东师大附中2016届高三数学最后一模试题理带答案

山东师大附中2016届高三数学最后一模试题(理带答案)2016年山东师大附中高考模拟试题(A卷)数学(理工类)本试卷分第I卷和第Ⅱ卷两部分,共4页,满分150分.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上.2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米规格的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卷面清洁,不折叠,不破损.第I卷(共50分)一、选择题:本大题共10个小题,每小题5分。

共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则等于A.B.C.D.2.已知为虚数单位,,若为纯虚数,则复数的模等于A.B.C.D.3下列说法正确的是A.离散型随机变量,则B.将一组数据中的每个数据都减去同一个数后,平均值与方差均没有变化C.采用系统抽样法从某班按学号抽取5名同学参加活动,学号为的同学均被选出,则该班学生人数可能为60 D.某糖果厂用自动打包机打包,每包的重量服从正态分布,从该糖厂进货10000包,则重量少于96.4kg一般不超过15包4.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如下左图,图中四边形是为体现其直观性所作的辅助线.当其主视图和侧视图完全相同时,它的俯视图可能是[学5.命题,命题,则什么条件A.充分非必要条件B.必要非充分条件C.必要充分条件D.非充分非必要条件6.执行如图所示的程序框图,,则输出的是A.18B.50C.78D.3065.函数的图象如图所示,为了得到的图象,则只要将的图象A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位8.用1,2,3,4,5,6组成数字不重复的六位数,满足1不在左右两端,2,4,6三个偶数中有且只有两个偶数相邻,则这样的六位数的个数为A.432B.288C.216D.1449.设函数,若,,则等于A.B.C.D.310.设函数其中表示不超过的最大整数,如=-2,=1,=1,若直线与函数y=的图象恰有三个不同的交点,则的取值范围是A.B.C.D.第II卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.已知与之间具有很强的线性相关关系,现观测得到的四组观测值并制作了相应的对照表,由表中数据粗略地得到线性回归直线方程为,其中的值没有写上.当等于时,预测的值为12.直线与轴的交点分别为,直线与圆的交点为.给出下面三个结论:①;②;③,则所有正确结论的序号是13.四边形ABCD中,且,则的最小值为14.设、是双曲线的左、右焦点,是双曲线右支上一点,满足(为坐标原点),且,则双曲线的离心率为.15.定义在上的函数满足,的导函数,且恒成立,则的取值范围是三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)在中,角,,的对边分别是,,,已知,.(Ⅰ)求的值;(Ⅱ)若角为锐角,求的值及的面积.17.(本题满分12分)四边形是菱形,是矩形,,是的中点(I)证明:(II)求二面角的余弦值18(本小题满分12分)用部分自然数构造如图的数表:用表示第行第个数(),使得每行中的其他各数分别等于其“肩膀”上的两个数之和,.设第()行的第二个数为,(1)写出第7行的第三个数;(2)写出与的关系并求;(3)设证明:19.(本题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,假设每局比赛中,甲胜乙的概率为,甲胜丙、乙胜丙的概率都为,各局比赛的结果都相互独立,第局甲当裁判.(1)求第局甲当裁判的概率;(2)记前局中乙当裁判的次数为,求的概率分布与数学期望.20(本题满分13分)设函数(I)当时,求证:(II)若函数有两个极值点,求实数的取值范围21(本题满分14分)抛物线的焦点是的顶点,过点的直线的斜率分别是,直线与交于,直线与交于(I)求抛物线的方程,并证明:分别是的中点,且直线过定点(II)①求面积的最小值②设面积分别为,求证:2016年山东师大附中高考模拟试题(A卷)数学(理工类)答案一、选择题:本大题共10小题,每小题5分,共50分. 题号12345678910答案BCDBAADBBD第II卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分. (11)【答案】解析:由已知,,,所以,,当时,.(12)【答案】①③(13)【答案】解析:设相交于O,(14)【答案】5【解析】取的中点,则由,得,即,即,由,设,则,即,由双曲线的定义,得,,则椭圆的离心率(15)【答案】解析:设设,所以三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.(16)解:(Ⅰ)因为,且,所以.--------------------------2分因为,由正弦定理,得.…………………6分(Ⅱ)由得.由余弦定理,得.-------9分解得或(舍负).所以.…………………12分(17)解析:(I)证法一:设,的中点为,因为是的中点,是平行四边形证法二:因为是的中点,(II)设的中点为,是矩形,,,四边形是菱形,以为原点,所在直线为x轴,所在直线为Y轴,所在直线为Z轴建立空间直角坐标系平面的法向量为,平面的法向量为令,设二面角的大小为则(18)解析(1)第7行的第三个数为41;-------------------------------2分(2)由已知得,-------------------------------------4分,又--------------------------------------------7分(3)由(2),-----------------------9分----------------------------------------------------------12分(19)解:(1)第2局中可能是乙当裁判,其概率为,也可能是丙当裁判,其概率为,所以第3局甲当裁判的概率为.……………………6分(2)可能的取值为.……………………7分;……………………8分;……………………9分.……………………10分所以的数学期望.……………………12分(20)(本题满分13分)解(I),只需证:当即可--------------------------------1分所以--------------------------------------------------2分------4分所以当从而当时,------------------6分(II)函数有两个极值点,等价于有两个变号零点即方程有两个不相同的根-----------------------------------7分设,--------9分---------------------------------------10分当有两个交点方程有两个不相同的根,函数有两个极值点----------------------13分(21)解:(1)的顶点,抛物线--------------2分直线,设--------------------------------------①----------------------3分,同理两点的坐标满足方程,--------------------------------5分直线即所以直线过定点----------------------------7分(II)①到直线的距离--------------------------------8分-------------------10分②,设,,,-------------12分所以------------------------------14分。

2016届高考模拟试题及答案_山东省山东师范大学附属中学2016届高三上学期第一次模拟考试数学(理)试题

2016届高考模拟试题及答案_山东省山东师范大学附属中学2016届高三上学期第一次模拟考试数学(理)试题
x
2 y 8x m 2 2m 恒成立,则实数 m x y
2

m
f x1 f x2 g x1 g x2 ,现有如下命题: ,n x1 x2 x1 x2
(1)对于任意不相等的实数 x1 , x2 ,都有 m ; (2)对于任意的 a 及任意不相等的实数 x1 , x2 ,都有 n 0 ; (3)对于任意的 a,存在不相等的实数 x1 , x2 ,使得 m n ; (4)对于任意的 a,存在不相等的实数 x1 , x2 ,使得 m n 。 其中的真命题有_________(写出所有真命题的序号) 。 三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程或演算步骤. 16. (本小题满分 12 分)已知 m 2 cos x
1 时,夹角 的取值范围是 5
C.
3
B.
, 3 2
2 , 2 3
D. 0,

2 3
第 II 卷(非选择题 共 100 分)
二、填空题:本大题共 5 小题,每小题 5 分,共 25 分. 11. 已 知 数 列 an 是 公 差 不 为 零 的 等 差 数 列 , a1 2 , 且
a , g x 2 ln x m . x
(I)已知 m 0 ,若存在 x0 , e ,使 x0 f x0 g x0 ,求 a 的取值范围; e (II)已知 a m 1 , (1)求最大正整数 n,使得对任意 n 1 个实数 xi i 1, 2, , n 1,当xi e 1, 2 时,
x y 3 0.
(I)求函数 f x 的解析式; (II)设 g x ln x,当x 1, 时,求证: g x f x ; (III)已知 0 a b ,求证:

山东省潍坊市2016届高三数学下学期模拟训练试题(五)理

山东省潍坊市2016届高三数学下学期模拟训练试题(五)理

2016年高考模拟训练试题理科数学(五)本试卷共6页,分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第I 卷(选择题共50分)注意事项:1.答卷前,考生务必用0.5毫米规格黑色签字笔将自己的某某、某某号、考试科目填写在规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第Ⅱ卷必须用0.5毫米规格黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后写上新的答案,不得使用涂改液、胶带纸、修正带和其他笔.4.不按以上要求作答以及将答案写在试题卷上的,答案无效。

一、选择题:本大题共10个小题,每小题5分,共50分。

在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.设复数()1=2z bi b R z =+∈且,则复数z 的虚部为 A.3B.3± C.1±D.3i ±2.已知集合{}21log ,1,,12xA y y x xB y y x A B ⎧⎫⎪⎪⎛⎫==>==>⋂=⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A.102⎛⎫ ⎪⎝⎭, B.()01,C.112⎛⎫ ⎪⎝⎭,D.∅ 3.定义22⨯矩阵()12341423a a a a a a a a =-.若()()()sin 3cos 1x f x x ππ⎛⎫-⎪= ⎪+⎝⎭,则()f x 的图象向右平移3π个单位得到的函数解析式为 A.22sin 3y x π⎛⎫=-⎪⎝⎭B.2sin 3y x π⎛⎫=+ ⎪⎝⎭C.2cos y x =D.2sin y x =4.如图是一个几何体的三视图,根据图中的数据,计算该几何体的表面积为A.37πB.35πC.33πD.31π5.在平面直角坐标系中,若220,20,x x y x y ≤⎧⎪+-≥⎨⎪-+≥⎩则()221x y ++的最小值是A.5B.322C.3D.56.点A 是抛物线()21:20C y px p =>与双曲线()22222:10,0x y C a b a b-=>>的一条渐近线的交点,若点A 到抛物线1C 的准线的距离为p ,则双曲线2C 的离心率等于 A.2B.3C.5D.67.如图所示,由函数()sin f x x =与函数()cos g x x =在区间30,2π⎡⎤⎢⎥⎣⎦上的图象所围成的封闭图形的面积为 A.321-B.422-C.2D.228.如图,直角梯形ABCD 中,90,45A B ∠=∠=,底边AB=5,高AD=3,点E 由B 沿折线BC 向点D 移动,EM ⊥AB 于M ,EN AD ⊥与N ,设BM x =,矩形AMEN 的面积为y ,那么y 与x 的函数关系的图像大致是9.已知函数()32123f x x ax bx c =+++有两个极值点1212,112x x x x -<<<<,且,则直线()130bx a y --+=的斜率的取值X 围是A.22,53⎛⎫-⎪⎝⎭B.23,52⎛⎫-⎪⎝⎭ C.21,52⎛⎫-⎪⎝⎭D.22,,53⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭10.已知函数()21,0,log ,0,kx x f x x x +≤⎧=⎨>⎩下列关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的4个判断正确的是 ①当0k >时,有3个零点 ②当0k >时,有2个零点 ③当0k >时,有4个零点 ④当0k >时,有1个零点 A.①④ B.②③ C.①② D.③④第II 卷(非选择题,共100分)二、填空题:本大题共5个小题,每小题5分,共25分.将答案填在题中横线上.11. 已知实数[]2,30x ∈,执行如图所示的程序框图,则输出的x 不小于103的概率是_________.12.公共汽车车门高度是按男子与车门碰头机会不高于0.0228来设计的.设男子身高X 服从正态分布()2170,7N (单位:cm ),参考以下概率()0.6826,P X μσμσ-<≤+=()22P X μσμσ-<≤+0.9544=,()33P X μσμσ-<≤+=0.9974,则车门的高度(单位:cm )至少应设计为________. 13.若()()()()92901292111x m a a x a x a x ++=+++++⋅⋅⋅++,且(0a )()229281393a a a a a ++⋅⋅⋅+-++⋅⋅⋅+=,则实数m 的值是________.14.在ABC ∆中,E 为AC上一点,且4,AC AE P BE =为上一点,(AP mAB nAC m =+>)00n >,,则11m n+取最小值时,向量(),a m n =的模为_________. 15.已知命题:①设随机变量()~0,1N ξ,若()2P p ξ≥=,则()122P p ξ-<<0=-; ②命题“2,10x R x x ∃∈++<”的否定是“2,10x R x x ∀∈++<”; ③在ABC ∆,A B >的充要条件是sin sin A B <;④若不等式3221x x m ++-≥+恒成立,则m 的取值X 围是(),2-∞;⑤若对于任意的()2,430n N n a n a *∈+-++≥恒成立,则实数a 的取值X 围是1,3⎡⎫+∞⎪⎢⎣⎭.以上命题中正确的是_______(填写出所有正确命题的序号).三、解答题:本大题共6个小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16. (本小题满分12分) 设函数()4cos sin cos 216f x x x x πωωω⎛⎫=+-+ ⎪⎝⎭,其中02ω<<. (I )若4x π=是函数()f x 的一条对称轴,求函数周期T ; (II )若函数()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上为增函数,求ω的最大值.右图为某校语言类专业N 名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员为21人.(I )求该专业毕业总人数N 和90~95分数段内的人数n ;(II )现欲将90~95分数段内的6名毕业生分配往甲、乙、丙三所学校,若向学校甲分配两名毕业生,且其中至少有一名男生的概率为35,求n 名毕业生中男、女各几人(男、女人数均至少两人). (III )在(II )的结论下,设随机变量ξ表示n 名毕业生中分配往乙学校的三名学生中男生的人数,求ξ的分布列和数学期望()E ξ.18. (本小题满分12分)如图所示,在四棱锥P ABCD -中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,,//,222,2AB AD AB CD AB AD CD PE BE ⊥====.(I )求证平面EAC ⊥平面PBC ; (II )若二面角P AC E --的余弦值为6,求直线PA 与平面EAC 所成角的正弦值.19. (本小题满分12分)已知数列{}n a 满足()12111,2,232,n n n a a a a a n n N *+-===+≥∈且.(I )设()1n n n b a a n N*+=+∈,求证{}nb 是等比数列;(II )①求数列{}n a 的通项公式; ②求证:对于任意n N *∈都有12212111174n n a a a a -++⋅⋅⋅++<成立.已知椭圆2222:1x y C a b +=与双曲线()2211441x y υυυ+=<<--有公共焦点,过椭圆C 的右顶点B 任意作直线l ,设直线l 交抛物线22y x =于P ,Q 两点,且OP OQ ⊥.(I )求椭圆C 的方程;(II )在椭圆C 上是否存在点(),R m n ,使得直线:1l mx ny +=与圆22:1O x y +=相交于不同的两点M ,N ,且OMN ∆的面积最大?若存在,求出点R 的坐标及对应OMN ∆的面积;若不存在,请说明理由.21. (本小题满分14分) 设函数()ln 1af x x x =+-(a 为常数). (I )若曲线()y f x =在点()()2,2f 处的切线与x 轴平行,某某数a 的值; (II )若函数()(),f x e +∞在内有极值,某某数a 的取值X 围;(III )在(II )的条件,若()()120,1,1,x x ∈∈+∞,求证:()()2112.f x f x e e->+-。

山东省平度市2016届高考数学模拟试题(一)理

山东省平度市2016届高考数学模拟试题(一)理

平 度 市 高 考 模 拟 试 题(一)数学(理)试题本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:(本题共10个小题,每小题5分,共50分,在四个选项中,只有一项是符合要求的)1.设n S 是等差数列{}n a 的前n 项和,5283()S a a =+,则53a a 的值为( ) A.16B. 13C. 35D. 562、如果)(x f '是二次函数, 且)(x f '的图象开口向上,顶点坐标为(1,3), 那么曲线)(x f y =上任一点的切线的倾斜角α的取值X 围是 ( )A .]3,0(πB .)2,3[ππC .]32,2(ππ D .),3[ππ3、在ABC ∆中,3==BC AB ,︒=∠30ABC ,AD 是边BC 上的高,则AC AD ⋅的值等于( ) A .0 B .49C .4D .49-4、已知数列为等比数列,且.64,495==a a ,则=( )A .8B .16±C .16D .8±5、已知等比数列{}n a 的公比2=q ,且462,,48a a 成等差数列,则{}n a 的前8项和为( )A.127 B.255C.511D.10236、已知函数()sin()f x A x ωϕ=+(其中π0,2A ϕ><)的部分图象如右图所示,为了得到()sin 2g x x =的图象,则只需将()f x 的图象( )A.向右平移π6个长度单位 B.向右平移π12个长度单位 C.向左平移π6个长度单位 D.向左平移π12个长度单位7、函数0.5()2|log |1xf x x =-的零点个数为( ) A. 1B.2C. 3D.48、设集合{}2A=230x x x +->,集合{}2B=210,0x x ax a --≤>.若A B 中恰含有一个整数,则实数a 的取值X 围是( ) A .30,4⎛⎫ ⎪⎝⎭ B .34,43⎡⎫⎪⎢⎣⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .()1,+∞ 9、在△ABC 所在平面上有三点P 、Q 、R ,满足,→→→→=++AB PC PB PA→→→→→→→→=++=++CA RC RB RA BC QC QB QA ,,则△PQR 的面积与△ABC 的面积之比为( )A .1:2B .1:3C .1:4D .1:510、定义域为R 的偶函数)(x f 满足对x R ∀∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f ,若函数)1|(|log )(+-=x x f y a 在),0(+∞上至少有三个零点,则a 的取值X 围是 ( ) A .)22,0( B .)33,0( C .)55,0( D .)66,0( 第Ⅱ卷 非选择题 (共100分)二、填空题:(本题共5个小题,每小题5分,共25分. 把每小题的答案填在答题纸的相应位置) 11、已知函数1()(*)n f x x n N +=∈的图象与直线1x =交于点P ,若图象在点P 处的切线与x 轴交点的横坐标为n x ,则12013log x +22013log x +…+20122013log x 的值为。

2016年普通高等学校招生全国统一考试(山东卷)数学模拟试题(理科)及详解答案

2016年普通高等学校招生全国统一考试(山东卷)数学模拟试题(理科)及详解答案
于双曲线渐近线的直线与圆 x2+y2=c2 交于另一点 P,且点 P 在抛物线 y2=4cx 上,则该双
曲线的离心率的平方是________. 15.已知两个正数 a,b,可按规律 c=ab+a+b 推广为一个新数 c,在 a,b,c 三个数中
取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称 为一次操作.若 p>q>0,经过五次操作后扩充得到的数为(q+1)m(p+1)n-1 (m,n 为正整数),
在答题卡和试卷规定的位置上。 2. 第 I 卷每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;如果改动,
用橡皮擦干净后,再选涂其他答案标号、答案写在试卷上无效。 3. 第Ⅱ卷必须用 0.5 毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位
置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂
在答题卡和试卷规定的位置上。
2. 第 I 卷每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;如果改动,
用橡皮擦干净后,再选涂其他答案标号、答案写在试卷上无效。 3. 第Ⅱ卷必须用 0.5 毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位
置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂
2016 年山东卷数学理科模拟试题
第 4页
(共 4 页)
绝密 ★ 启用前
2016 年普通高等学校招生全国统一考试(山东卷)
数学模拟试题(理科)参考答案
本试卷分第Ⅰ卷和第Ⅱ卷两部分,共 4 页。满分 150 分,考试用时 120 分钟。考试结束
后,将本试卷和答题卡一并交回。
注意事项:
1. 答题前,考生务必用 0.5 毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写

山东省菏泽市2016届高三数学一模试卷 理(含解析)

山东省菏泽市2016届高三数学一模试卷 理(含解析)

2016年山东省菏泽市高考数学一模试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.复数z=(i是虚数单位)的共轭复数在复平面内对应的点是()A.(1,1)B.(1,﹣1)C.(﹣1,1)D.(﹣1,﹣1)2.设集合A={y|y=sinx,x∈R},集合B={x|y=lgx},则(∁R A)∩B()A.(﹣∞,﹣1)U(1,+∞)B.[﹣1,1] C.(1,+∞)D.[1,+∞)3.已知函数f(x)的部分图象如图所示,向图中的矩形区域随机投出100粒豆子,记下落入阴影区域的豆子数.通过10次这样的试验,算得落入阴影区域的豆子的平均数约为39,由此可估计的值约为()A. B. C. D.4.圆(x﹣1)2+y2=1被直线分成两段圆弧,则较短弧长与较长弧长之比为()A.1:2 B.1:3 C.1:4 D.1:55.若的展开式中x3项的系数为20,则a2+b2的最小值为()A.1 B.2 C.3 D.46.下列四个判断:①某校高三(1)班的人和高三(2)班的人数分别是m和n,某次测试数学平均分分别是a,b,则这两个班的数学平均分为;②从总体中抽取的样本(1,2.5),(2,3.1),(3,3.6),(4,3.9),(5,4.4),则回归直线y=bx+a必过点(3,3.6);③已知ξ服从正态分布N(1,22),且p(﹣1≤ξ≤1)=0.3,则p(ξ>3)=0.2其中正确的个数有()A.0个B.1个C.2个D.3个7.某几何体的三视图是如图所示,其中左视图为半圆,则该几何体的体积是()A.πB.C.πD.π8.函数y=4cosx﹣e|x|(e为自然对数的底数)的图象可能是()A.B.C.D.9.点A是抛物线C1:y2=2px(p>0)与双曲线C2:(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率等于()A.B.C.D.10.若函数f(x)=1++sinx在区间[﹣k,k](k>0)上的值域为[m,n],则m+n=()A.0 B.1 C.2 D.4二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡上的相应位置. 11.已知命题p:∀x∈R,|1﹣x|﹣|x﹣5|<a,若¬p为假命题,则a的取值范围是.12.a,b,c分别是△ABC角A,B,C的对边,△ABC的面积为,且,则c= .13.如图表示的是求首项为﹣41,公差为2的等差数列前n项和的最小值的程序框图,如果 ②中填a=a+2,则① 可填写.14.若x,y满足不等式组,表示平面区域为D,已知点O(0,0),A(1,0),点M是D上的动点,,则λ的最大值为.15.若函数y=f(x)的导数y′=f′(x)仍是x的函数,就把y′=f′(x)的导数y″=f″(x)叫做函数y=f(x)二阶导数,记做y(2)=f(2)(x).同样函数y=f(x)的n﹣1阶导数的导数叫做y=f(x)的n阶导数,表示y(n)=f(n)(x).在求y=ln(x+1)的n阶导数时,已求得,,根据以上推理,函数y=ln(x+1)的第n阶导数为.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.把答案填在答题卡上的相应位置.16.已知函数.(Ⅰ)求f(x)的最大值;(Ⅱ)求f(x)的图象在y轴右侧第二个最高点的坐标.17.如图,三棱锥A﹣BCD中,△ABC和△BCD所在平面互相垂直,且BC=BD=4,AC=4,CD=4,E,F分别为AC,DC的中点.(Ⅰ)求证:平面ABD⊥平面BCD;(Ⅱ)求二面角E﹣BF﹣C的正弦值.18.某架飞机载有5位空降兵空降到A、B、C三个地点,每位空降兵都要空降到A、B、C中任意一个地点,且空降到每一个地点的概率都是,用ξ表示地点C空降人数,求:(Ⅰ)地点A空降1人,地点B、C各空降2人的概率;(Ⅱ)随机变量ξ的分布列与期望.19.已知数列{b n}的前n项和.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)设数列{a n}的通项,求数列{a n}的前n项和T n.20.在平面直角坐标系xOy中,椭圆C: +=1(a>b>0)的离心率为,直线y=x被椭圆C截得的线段长为.(Ⅰ)求椭圆C的方程;(Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值;(ii)求△OMN面积的最大值.21.已知函数f(x)=ln(x+1)+ae﹣x(a∈R).(Ⅰ)当a=1时,求f(x)的单调区间;(Ⅱ)若f(x)不是单调函数,求实数a的取值范围.2016年山东省菏泽市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.复数z=(i是虚数单位)的共轭复数在复平面内对应的点是()A.(1,1)B.(1,﹣1)C.(﹣1,1)D.(﹣1,﹣1)【考点】复数的代数表示法及其几何意义;复数代数形式的乘除运算.【分析】利用复数的代数形式混合运算化简复数,然后求解即可.【解答】解:复数z===1﹣i,复数的共轭复数在复平面内对应点的坐标(1,1).故选:A.2.设集合A={y|y=sinx,x∈R},集合B={x|y=lgx},则(∁R A)∩B()A.(﹣∞,﹣1)U(1,+∞)B.[﹣1,1] C.(1,+∞)D.[1,+∞)【考点】交、并、补集的混合运算.【分析】求出y=sinx的值域确定出A,找出R中不属于A的部分求出A的补集,求出y=lgx 的定义域确定出B,找出A补集与B的公共部分即可求出所求的集合.【解答】解:由集合A中的函数y=sinx,x∈R,得到y∈[﹣1,1],∴A=[﹣1,1],∴∁R A=(﹣∞,﹣1)∪(1,+∞),由集合B中的函数y=lgx,得到x>0,∴B=(0,+∞),则(∁R A)∩B=(1,+∞).故选C3.已知函数f(x)的部分图象如图所示,向图中的矩形区域随机投出100粒豆子,记下落入阴影区域的豆子数.通过10次这样的试验,算得落入阴影区域的豆子的平均数约为39,由此可估计的值约为()A. B. C. D.【考点】定积分在求面积中的应用;几何概型.【分析】利用阴影部分与矩形的面积比等于落入阴影部分的豆子数与所有豆子数的比,由此求出阴影部分的面积【解答】解:由题意设阴影部分的面积为S,则=,所以S=;故选:D.4.圆(x﹣1)2+y2=1被直线分成两段圆弧,则较短弧长与较长弧长之比为()A.1:2 B.1:3 C.1:4 D.1:5【考点】直线与圆的位置关系.【分析】根据圆的方程求得圆心坐标和半径,进而根据点到直线的距离求得圆心到直线的距离,进而分别求得较短的弧长和较长的弧长的圆心角的关系,答案可得.【解答】解:圆(x﹣1)2+y2=1的圆心为(1,0)到直线x﹣y=0的距离为=,圆的半径为:1,∴弦长为2×=.小扇形的圆心角为:120°,∴较短弧长与较长弧长之比为1:2.故选:A.5.若的展开式中x3项的系数为20,则a2+b2的最小值为()A.1 B.2 C.3 D.4【考点】二项式定理的应用.【分析】运用二项式展开式的通项公式,化简整理,再由条件得到方程,求出r=3,进而得到ab=1,再由重要不等式a2+b2≥2ab,即可得到最小值.【解答】解:的展开式的通项公式为T r+1==,由于x3项的系数为20,则12﹣3r=3,解得,r=3,即有=20,即有ab=1,则a2+b2≥2ab=2,当且仅当a=b,取得最小值2.故选B.6.下列四个判断:①某校高三(1)班的人和高三(2)班的人数分别是m和n,某次测试数学平均分分别是a,b,则这两个班的数学平均分为;②从总体中抽取的样本(1,2.5),(2,3.1),(3,3.6),(4,3.9),(5,4.4),则回归直线y=bx+a必过点(3,3.6);③已知ξ服从正态分布N(1,22),且p(﹣1≤ξ≤1)=0.3,则p(ξ>3)=0.2其中正确的个数有()A.0个B.1个C.2个D.3个【考点】命题的真假判断与应用.【分析】根据加权平均数的公式知①不正确,根据线性回归方程过样本中心点知②不正确,根据随机变量ξ服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P(ξ>3).【解答】解:①当某校高三一班和高三二班的人数分别是m,n,某次测试数学平均分分别是a,b,则这两个班的数学平均分为,故①不正确;②=3, =3.5,根据回归直线y=bx+a必过样本中心点,得到必过(3,3.5),故不正确;③∵随机变量ξ服从正态分布(1,22),∴正态曲线的对称轴是x=1,∵P(﹣1≤ξ≤1)=0.3,∴P(ξ>3)=P(ξ<﹣1)=0.5﹣0.3=0.2.正确故选B7.某几何体的三视图是如图所示,其中左视图为半圆,则该几何体的体积是()A.πB.C.πD.π【考点】由三视图求面积、体积.【分析】根据几何体的三视图,得出该几何体是平放的半圆锥,结和数据求出它的体积即可.【解答】解:根据几何体的三视图,得;该几何体是平放的半圆锥,且圆锥的底面半径为1,母线长为3,∴圆锥的高为=2;∴该几何体的体积为V半圆锥=×π×12×2=π.故选:A.8.函数y=4cosx﹣e|x|(e为自然对数的底数)的图象可能是()A.B.C.D.【考点】函数的图象.【分析】先验证函数y=4cosx﹣e|x|是否具备奇偶性,排除一些选项,在取特殊值x=0时代入函数验证即可得到答案.【解答】解:∵函数y=4cosx﹣e|x|,∴f(﹣x)=4cos(﹣x)﹣e|﹣x|=4cosx﹣e|x|=f(x),函数y=4cosx﹣e|x|为偶函数,图象关于y轴对称,排除BD,又f(0)=y=4cos0﹣e|0|=4﹣1=3,只有A适合,故选:A.9.点A是抛物线C1:y2=2px(p>0)与双曲线C2:(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率等于()A.B.C.D.【考点】双曲线的简单性质.【分析】先根据条件求出店A的坐标,再结合点A到抛物线C1的准线的距离为p;得到=,再代入离心率计算公式即可得到答案.【解答】解:取双曲线的其中一条渐近线:y=x,联立⇒;故A(,).∵点A到抛物线C1的准线的距离为p,∴+=p;∴=.∴双曲线C2的离心率e===.故选:C.10.若函数f(x)=1++sinx在区间[﹣k,k](k>0)上的值域为[m,n],则m+n=()A.0 B.1 C.2 D.4【考点】函数的值域;函数的定义域及其求法.【分析】本题可以先构造奇函数g(x)=+sinx﹣1,由于奇函数图象的对称性,得到函数值域的对称,再对应研究函数f(x)的值域,得到本题结论.【解答】解:记g(x)=+sinx﹣1,∴g(﹣x)==,∴g(﹣x)+g(x)=+sinx﹣1+=0,∴g(﹣x)=﹣g(x).∴函数g(x)在奇函数,∴函数g(x)的图象关于原点对称,∴函数g(x)在区间[﹣k,k](k>0)上的最大值记为a,(a>0),则g(x)在区间[﹣k,k](k>0)上的最小值为﹣a,∴﹣a≤+sinx﹣1≤a,∴﹣a+2≤+sinx+1≤a+2,∴﹣a+2≤f(x)≤a+2,∵函数f(x)=1++sinx在区间[﹣k,k](k>0)上的值域为[m,n],∴m=﹣a+2,n=a+2,∴m+n=4.故选D.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡上的相应位置. 11.已知命题p:∀x∈R,|1﹣x|﹣|x﹣5|<a,若¬p为假命题,则a的取值范围是(4,+∞).【考点】函数恒成立问题.【分析】利用全称命题的否定是特称命题,判断全称命题是证明题,求解即可.【解答】解:命题p:∀x∈R,|1﹣x|﹣|x﹣5|<a,若¬p为假命题,可知全称命题是证明题,即:∀x∈R,|1﹣x|﹣|x﹣5|<a恒成立,因为,|1﹣x|﹣|x﹣5|≤4,所以a>4.则a的取值范围是(4,+∞).故答案为:(4,+∞).12.a,b,c分别是△ABC角A,B,C的对边,△ABC的面积为,且,则c= 2或.【考点】正弦定理.【分析】由已知利用三角形面积公式可求a,利用同角三角函数基本关系式可求cosC的值,利用余弦定理即可解得c的值.【解答】解:∵,S△ABC==absinC=,解得a=2,∴cosC=∴利用余弦定理c2=a2+b2﹣2abcosC,可得:c=,∴解得:c=2或.故答案为:2或.(填写一个不给分)13.如图表示的是求首项为﹣41,公差为2的等差数列前n项和的最小值的程序框图,如果 ②中填a=a+2,则① 可填写a>0 .【考点】程序框图.【分析】由程序设计意图可知,②处应求通项,有a=a+2,又由此数列首项为负数,公差为正数,求前n项和的最小值只需累加至最后一个非正项即可,从而可求①处可填写:a>0.【解答】解:由程序设计意图可知,S表示此等差数列{a n}前n项和,故②处应该填写a=a+2,又因为此数列首项为负数,公差为正数,求前n项和的最小值只需累加至最后一个非正项即可,故①处可填写:a>0.故答案为:a>0.14.若x,y满足不等式组,表示平面区域为D,已知点O(0,0),A(1,0),点M是D上的动点,,则λ的最大值为.【考点】简单线性规划.【分析】作出可行域,由题意和数量积的运算可得λ=,数形结合由斜率的意义求出k=的最小值可得.【解答】解:作出不等式组所对应的可行域D(如图△MNP),由题意可得=(1,0),设M(x,y),则=(x,y),∴可化为x=λ,则λ===,数形结合可知当取区域中的点M(,1)与原点连线的斜率k=取最小值,λ=取最大值=,故答案为:.15.若函数y=f(x)的导数y′=f′(x)仍是x的函数,就把y′=f′(x)的导数y″=f″(x)叫做函数y=f(x)二阶导数,记做y(2)=f(2)(x).同样函数y=f(x)的n﹣1阶导数的导数叫做y=f(x)的n阶导数,表示y(n)=f(n)(x).在求y=ln(x+1)的n阶导数时,已求得,,根据以上推理,函数y=ln(x+1)的第n阶导数为.【考点】导数的运算.【分析】根据导数的计算和归纳推理即可求出答案.【解答】解:求y=ln(x+1)的n阶导数时,已求得,,根据以上推理,函数y=ln(x+1)的第n阶导数为.故答案为:.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.把答案填在答题卡上的相应位置.16.已知函数.(Ⅰ)求f(x)的最大值;(Ⅱ)求f(x)的图象在y轴右侧第二个最高点的坐标.【考点】三角函数中的恒等变换应用;函数y=Asin(ωx+φ)的图象变换.【分析】(Ⅰ)根据三角恒等变换化简f(x)=sin(2x﹣),从而求出f(x)的最大值即可;(Ⅱ)根据函数的表达式得到,令k=1,得,从而得到满足条件的点的坐标.【解答】解:(Ⅰ)由已知,有f(x)=cos x•(sin x+cos x)﹣cos2x+=sin x•cos x﹣cos2x+=sin 2x﹣(1+cos 2x)+=sin 2x﹣cos 2x=sin(2x﹣),所以f(x)的最大值为;(Ⅱ)令2x﹣=,得,令k=1,得.所以f(x)的图象在y轴右侧第二个最高点的坐标是.17.如图,三棱锥A﹣BCD中,△ABC和△BCD所在平面互相垂直,且BC=BD=4,AC=4,CD=4,E,F分别为AC,DC的中点.(Ⅰ)求证:平面ABD⊥平面BCD;(Ⅱ)求二面角E﹣BF﹣C的正弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(Ⅰ)根据面面垂直的判定定理即可证明平面ABD⊥平面BCD;(Ⅱ)建立空间坐标系求出平面的法向量利用向量法即可求二面角E﹣BF﹣C的正弦值.或者根据二面角的定义作出二面角的平面角,结合三角形的边角关系进行求解.【解答】( I)证明由BC=4,,∠ACB=45°,则,显然,AC2=AB2+BC2,所以∠ABC=90°,即AB⊥BC.…又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,AB⊂平面ABC,所以AB⊥平面BCD,…又AB⊂平面ABD,所以平面ABD⊥平面BCD.…(Ⅱ)(方法一)由BC=BD,F分别为DC的中点,知BF⊥DC,由CD=,知,知,所以∠FBC=60°,则∠DBC=120°,…如图,以点B为坐标原点,以平面DBC内与BC垂直的直线为x轴,以BC为y轴,以BA为z轴建立空间坐标系;则B(0,0,0),A(0,0,4),C(0,4,0),E(0,2,2),,,所以,.…显然平面CBF的一个法向量为=(0,0,1),…设平面BEF的法向量为=(x,y,z),由,得其中一个=(,﹣1,1),…设二面角E﹣BF﹣C的大小为θ,则|cosθ|=|cos<,>|=||=,…因此sin θ=,即二面角E﹣BF﹣C的正弦值为.…(方法二)连接BF,由BC=BD,F分别为DC的中点,知BF⊥DC,…如图,在平面ABC内,过E作EG⊥BC,垂足为G,则G是BC的中点,且EG⊥平面BCD.在平面DBC内,过G作GH⊥BF,垂足为H,连接EH.由EG⊥平面BCD,知EG⊥BF,又EH⊥BF,EG∩EH=E,EG,EH⊂平面EHG,所以BF⊥平面EHG,所以∠EHG是二面角E﹣BF﹣C的平面角.…由GH⊥BF,BF⊥DC,则GH∥FC,则EG是△ABC的中位线,所以EG=,…易知HG是△BFC的中位线,所以HG=,…所以,sin∠EHG═,即二面角E﹣BF﹣C的正弦值为.…18.某架飞机载有5位空降兵空降到A、B、C三个地点,每位空降兵都要空降到A、B、C中任意一个地点,且空降到每一个地点的概率都是,用ξ表示地点C空降人数,求:(Ⅰ)地点A空降1人,地点B、C各空降2人的概率;(Ⅱ)随机变量ξ的分布列与期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(I)先求出基本事件的总数,再求出“地点A空降1人,地点B、C各空降2人”包含的基本事件个数,由此能求出所求事件的概率.( II)由题意知随机变量ξ~B(5,),由此能求出随机变量ξ的分布列和数学期望.【解答】解:(I)基本事件的总数为35个,“地点A空降1人,地点B、C各空降2人”包含的基本事件为,…所以所求事件的概率为:;…( II)由题意知随机变量ξ~B(5,),…∴随机变量ξ的所有可能取值为0,1,2,3,4,5,P(ξ=0)==,P (ξ=1)==,P (ξ=2)==,P (ξ=3)==,P (ξ=4)==,P (ξ=5)==,…根据二项分布得数学期望.…19.已知数列{b n }的前n 项和.(Ⅰ)求数列{b n }的通项公式;(Ⅱ)设数列{a n }的通项,求数列{a n }的前n 项和T n .【考点】数列的求和;数列递推式. 【分析】(I )利用递推关系即可得出;(II )=(3n ﹣2)•2n +(﹣1)n •2n .设数列{(3n ﹣2)•2n }的前n项和为A n ,利用“错位相减法”与等比数列的前n 项和公式即可得出;再利用等比数列的前n 项和公式即可得出.【解答】解::(I )∵数列{b n }的前n 项和,∴b 1=B 1==1;当n ≥2时,b n =B n ﹣B n ﹣1=﹣=3n ﹣2,当n=1时也成立.∴b n =3n ﹣2.(II )=(3n ﹣2)•2n +(﹣1)n •2n .设数列{(3n ﹣2)•2n }的前n 项和为A n , 则A n =2+4×22+7×23+…+(3n ﹣2)•2n ,2A n =22+4×23+…+(3n ﹣5)•2n +(3n ﹣2)•2n+1,∴﹣A n=2+3(22+23+…+2n)﹣(3n﹣2)•2n+1=﹣4﹣(3n﹣2)•2n+1=(5﹣3n)•2n+1﹣10,∴A n=(3n﹣5)•2n+1+10.数列{(﹣1)n•2n}的前n项和== [1﹣(﹣2)n].∴数列{a n}的前n项和T n=(3n﹣5)•2n+1+10 [1﹣(﹣2)n].20.在平面直角坐标系xOy中,椭圆C: +=1(a>b>0)的离心率为,直线y=x被椭圆C截得的线段长为.(Ⅰ)求椭圆C的方程;(Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值;(ii)求△OMN面积的最大值.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)由椭圆离心率得到a,b的关系,化简椭圆方程,和直线方程联立后求出交点的横坐标,把弦长用交点横坐标表示,则a的值可求,进一步得到b的值,则椭圆方程可求;(Ⅱ)(i)设出A,D的坐标分别为(x1,y1)(x1y1≠0),(x2,y2),用A的坐标表示B的坐标,把AB和AD的斜率都用A的坐标表示,写出直线AD的方程,和椭圆方程联立后利用根与系数关系得到AD横纵坐标的和,求出AD中点坐标,则BD斜率可求,再写出BD所在直线方程,取y=0得到M点坐标,由两点求斜率得到AM的斜率,由两直线斜率的关系得到λ的值;(ii)由BD方程求出N点坐标,结合(i)中求得的M的坐标得到△OMN的面积,然后结合椭圆方程利用基本不等式求最值.【解答】解:(Ⅰ)由题意知,,则a2=4b2.∴椭圆C的方程可化为x2+4y2=a2.将y=x代入可得,因此,解得a=2.则b=1.∴椭圆C的方程为;(Ⅱ)(i)设A(x1,y1)(x1y1≠0),D(x2,y2),则B(﹣x1,﹣y1).∵直线AB的斜率,又AB⊥AD,∴直线AD的斜率.设AD方程为y=kx+m,由题意知k≠0,m≠0.联立,得(1+4k2)x2+8kmx+4m2﹣4=0.∴.因此.由题意可得.∴直线BD的方程为.令y=0,得x=3x1,即M(3x1,0).可得.∴,即.因此存在常数使得结论成立.(ii)直线BD方程为,令x=0,得,即N().由(i)知M(3x1,0),可得△OMN的面积为S==.当且仅当时等号成立.∴△OMN面积的最大值为.21.已知函数f(x)=ln(x+1)+ae﹣x(a∈R).(Ⅰ)当a=1时,求f(x)的单调区间;(Ⅱ)若f(x)不是单调函数,求实数a的取值范围.【考点】利用导数研究函数的单调性.【分析】(Ⅰ)求出函数定义域,当a=1时,f′(x)=,构造辅助函数h(x)=e x﹣(x+1)(x>﹣1),求单判断h(x)的单调性,求得函数的最小值,即可判断f′(x)≥0,可求f(x)的单调区间;(Ⅱ)由(Ⅰ)可知e x≥x+1,当a≤1时,e x≥a(x+1),f′(x)≥0,函数单调递增,不满足,当a>1时,构造辅助函数g(x)=e x﹣a(x+1)(x>﹣1),求导,利用导数求得函数的单调性,根据函数的单调性求得函数的零点,即可求得函数f(x)的单调区间,即可求得满足题意的a的取值范围.【解答】解:函数函数f(x)=ln(x+1)+ae﹣x(a∈R).定义域为(﹣1,+∞),…==;…(Ⅰ)当a=1时,f′(x)=,令h(x)=e x﹣(x+1)(x>﹣1),则h′(x)=e x﹣1,由h′(x)=0,得x=0,则x∈(﹣1,0)时,h′(x)<0;x∈(0,+∞)时,h′(x)>0,所以h(x)在(﹣1,0)上是减函数,在(0,+∞)上是增函数,所以h(x)≥h(0)=e0﹣1=0,…即f′(x)≥0,所以f(x)在(﹣1,+∞)上是增函数,即f(x)的增区间为(﹣1,+∞).…(Ⅱ)由(Ⅰ)知e x≥x+1,…①当a≤1时,a(x+1)≤x+1,故e x≥a(x+1),于是f′(x)=≥0,则f(x)在(﹣1,+∞)上是增函数,故a≤1不合题意;…②当a>1时,令g(x)=e x﹣a(x+1)(x>﹣1),g′(x)=e x﹣a,由g′(x)=0,得x=lna >0,于是x∈(﹣1,lna)时,g′(x)<0;x∈(lna,+∞)时,g′(x)>0,即所以g(x)在(﹣1,lna)上是减函数,在(lna,+∞)上是增函数,…而g(﹣1)=e﹣1>0,g(lna)=e lna﹣a(lna+1)=﹣alna<0,故g(x)在(﹣1,lna)上存在唯一零点,…设其为x0,则x∈(﹣1,x0)时,g(x)>0,即f′(x)>0;x∈(x0,lna)时,g(x)<0,即f′(x)<0,∴f(x)在(﹣1,x0)上是增函数,在(x0,lna)上是减函数,…∴f(x)不是单调函数,故a>1符合题意.∴实数a的取值范围是(1,+∞).…。

山东省2016届高三数学模拟试卷 理(含解析)

2016年山东省高考数学模拟试卷(理科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,则a的值等于()A.1B.2C.5D.62.已知集合,则集合A的真子集的个数为()A.3B.4C.1D.23.已知函数f(x)=,若f(﹣1)=2f(a),则a的值等于()A.或﹣B. C.﹣D.±4.将800个个体编号为001~800,然后利用系统抽样的方法从中抽取20个个体作为样本,则在编号为121~400的个体中应抽取的个体数为()A.10B.9C.8D.75.“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知直线l的方程为ax+2y﹣3=0,且a∈[﹣5,4],则直线l的斜率不小于1的概率为()A. B. C. D.7.一个空间几何体的三视图如图,其中主视图是腰长为3的等腰三角形,俯视图是边长分别为1,2的矩形,则该几何体的体积等于()A.2B. C. D.8.已知向量,若向量的夹角为φ,则有()A.φ=θB.φ=π﹣θC.φ=θ﹣πD.φ=θ﹣2π9.已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是()A.m>﹣10B.m<﹣10C.m>﹣8D.m<﹣810.在三角形ABC中,角A、B、C的对边分别为a,b,c,且满足==,则=()A.﹣B. C.﹣D.﹣二、填空题(每题5分,满分25分,将答案填在答题纸上)11.阅读如图所示的程序框图,运行相应的程序,输出的结果是.12.从0,2,4中选两个数字,从1,3中选一个数字,组成无重复数字的三位数,其中偶数的个数为.13.若不等式|2x+a|<b的解集为{x|1<x<4},则ab等于.14.若函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),则函数g(x)=log n (x2﹣mx+4)的最大值等于.15.已知双曲线=1(a>0,b>0)的一条渐近线与抛物线y2=2px(p>0)的准线的交点坐标为,且双曲线与抛物线的一个公共点M的坐标(x0,4),则双曲线的方程为.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=cosx[sin(x+)﹣sin(x+)]+.(1)若f(+)=,0<θ<,求tanθ的值;(2)求函数f(x)的最小正周期和单调递增区间.17.在2015年8月世界杯女排比赛中,中国女排以11战10胜1负的骄人战绩获得冠军.世界杯女排比赛,采取5局3胜制,即每场比赛中,最先获胜3局的队该场比赛获胜,比赛结束,每场比赛最多进行5局比赛.比赛的积分规则是:3﹣0或者3﹣1取胜的球队积3分,负队积0分;3﹣2取胜的球队积2分,负队积1分.在本届世界杯中,中国队与美国队在第三轮相遇,根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为.(1)在中国队先输一局的情况下,中国队本场比赛获胜的概率是多少?(2)试求中国队与美国队比赛中,中国队获得积分的分布列与期望.18.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.(1)求证:AE∥平面DCF;(2)若,且=λ,当λ取何值时,直线AE与BF所成角的大小为600?19.已知数列{a n}的前n项和S n=a n+.(1)求数列{a n}的通项公式;(2)若b n=,且数列{b n}的前n项和为T n,求T2n.20.已知椭圆=1(a>b>0)经过点,且离心率等于.(1)求椭圆的方程;(2)若直线l:y=x+m与椭圆交于A,B两点,与圆x2+y2=2交于C,D两点.①当|CD|=2时,求直线l的方程;②若λ=,试求λ的取值范围.21.已知函数f(x)=ln()+(a∈R).(1)若函数f(x)在定义域上是单调递增函数,求实数a的取值范围;(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f(x2)=3?2016年山东省高考数学模拟试卷(理科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,则a的值等于()A.1B.2C.5D.6【考点】复数的代数表示法及其几何意义.【分析】求出对应点的坐标,代入直线方程,然后求解a的值.【解答】解:复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,可得3=a﹣1+2,解得a=2.故选:B.2.已知集合,则集合A的真子集的个数为()A.3B.4C.1D.2【考点】子集与真子集.【分析】先求出集合A,由此能求出集合A的子集的个数.【解答】解:∵集合={2},∴集合A的真子集只有一个为∅.故选:C.3.已知函数f(x)=,若f(﹣1)=2f(a),则a的值等于()A.或﹣B. C.﹣D.±【考点】分段函数的应用.【分析】利用分段函数的表达式建立方程关系进行求解即可.【解答】解:f(﹣1)=(﹣1)2=1,则由f(﹣1)=2f(a),得1=2f(a),即f(a)=,若a>0,由f(a)=得log3a=,得a=,若a<0,由f(a)=得a2=,得a=﹣或(舍),综上a的值等于或﹣,故选:A.4.将800个个体编号为001~800,然后利用系统抽样的方法从中抽取20个个体作为样本,则在编号为121~400的个体中应抽取的个体数为()A.10B.9C.8D.7【考点】系统抽样方法.【分析】根据题意,求出系统抽样的分组组距,再求编号为121~400的个体中应抽取的个体数即可.【解答】解:把这800个个体编上001~800的号码,分成20组,则组距为=40;所以编号为121~400的个体中应抽取的个体数为=7.故选:D.5.“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】等差关系的确定.【分析】数列{a n}成等比数列,公比为q.若a1<0时,则lga n+1没有意义.由数列{lga n+1}成等差数列,则(lga n+1+1)﹣(lga n+1)=为常数,则为非0常数.即可判断出结论.【解答】解:∵数列{a n}成等比数列,公比为q.∴a n=.若a1<0时,则lga n+1没有意义.由数列{lga n+1}成等差数列,则(lga n+1+1)﹣(lga n+1)=为常数,则为非0常数.∴“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的必要不充分条件.故选:B.6.已知直线l的方程为ax+2y﹣3=0,且a∈[﹣5,4],则直线l的斜率不小于1的概率为()A. B. C. D.【考点】直线的斜率.【分析】先求出直线的斜率的范围,再根据几何概型的概率公式计算即可.【解答】解:由ax+2y﹣3=0得到y=﹣x+,故直线的斜率为﹣,∵直线l的斜率不小于1,∴﹣≥1,即a≤﹣2,∵且a∈[﹣5,4],∴﹣5≤a≤﹣2,∴直线l的斜率不小于1的概率为=,故选:C.7.一个空间几何体的三视图如图,其中主视图是腰长为3的等腰三角形,俯视图是边长分别为1,2的矩形,则该几何体的体积等于()A.2B. C. D.【考点】由三视图求面积、体积.【分析】由三视图易得这个几何体是一个四棱锥,四棱锥的底面是一个边长是1、2的长方形,顶点在底面的射影是长边的中点,短侧棱长为:3,求出棱锥的高,即可求解四棱锥的体积.【解答】解:由三视图知,这是一个四棱锥,四棱锥的底面是一个边长是1、2的长方形,顶点在底面的射影是长边的中点,短侧棱长为3,棱锥的高: =2,∴四棱锥的体积是:×1×2×2=.故选:D.8.已知向量,若向量的夹角为φ,则有()A.φ=θB.φ=π﹣θC.φ=θ﹣πD.φ=θ﹣2π【考点】平面向量数量积的运算.【分析】根据向量的夹角公式和两角和的余弦公式以及诱导公式,再根据向量的夹角的范围即可求出.【解答】解:∵向量,∴||==1,||=1, =﹣cosθcos2θ﹣sinθsin2θ=﹣cosθ=cos(π﹣θ),∴cosφ==cos(π﹣θ)=cos(θ﹣π),∵θ∈(π,2π),∴θ﹣π∈(0,π),∴φ=θ﹣π,故选:C.9.已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是()A.m>﹣10B.m<﹣10C.m>﹣8D.m<﹣8【考点】基本不等式.【分析】不等式2x+m+>0化为:2(x﹣1)+>﹣m﹣2,利用基本不等式的性质可得2(x﹣1)+的最小值,即可得出.【解答】解:不等式2x+m+>0化为:2(x﹣1)+>﹣m﹣2,∵x>1,∴2(x﹣1)+≥2×=8,当且仅当x=3时取等号.∵不等式2x+m+>0对一切x∈(1,+∞)恒成立,∴﹣m﹣2<8,解得m>﹣10,故选:A.10.在三角形ABC中,角A、B、C的对边分别为a,b,c,且满足==,则=()A.﹣B. C.﹣D.﹣【考点】正弦定理;余弦定理.【分析】由题意设===k,可得a=6k,b=4k,c=3k,由余弦定理可得cosA,再由正弦定理可得=,代值化简可得.【解答】解:由题意设===k,(k>0),则a=6k,b=4k,c=3k,∴由余弦定理可得cosA===﹣,∴由正弦定理可得====﹣,故选:A.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.阅读如图所示的程序框图,运行相应的程序,输出的结果是11 .【考点】循环结构.【分析】按照循环结构的流程,列举出每个循环的变量的取值,与循环条件对比即可得结果【解答】解:依此程序框图,变量a的变化依次为1,12+2=3,32+2=11不满足循环条件a<10,故输出11故答案为1112.从0,2,4中选两个数字,从1,3中选一个数字,组成无重复数字的三位数,其中偶数的个数为20 .【考点】计数原理的应用.【分析】根据0的特点,分三类进行,当0在个为和十位时,当没有0参与时,根据分类计数原理可得.【解答】解:若三位数的个位为0,则有2×2×A22=8个;若十位为0,则有C21•C21=4个;若这个三位数没有0,则有C21•C21A22=8个.综上,要求的三位偶数的个数为 8+8+4=20个,故答案为:20.13.若不等式|2x+a|<b的解集为{x|1<x<4},则ab等于﹣15 .【考点】绝对值不等式的解法.【分析】解出不等式|2x+a|<b,得到关于a,b的不等式组,求出a,b的值,从而求出ab 即可.【解答】解:∵|2x+a|<b,∴﹣b<2x+a<b,∴﹣a﹣b<2x<b﹣a,∴﹣<x<,由不等式的解集为{x|1<x<4},则,解得:a=﹣5,b=3则ab=﹣15,故答案为:﹣15.14.若函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),则函数g(x)=log n(x2﹣mx+4)的最大值等于﹣1 .【考点】函数与方程的综合运用;函数的最值及其几何意义.【分析】求出m、n,然后利用对数函数的性质,以及二次函数的性质求解函数的最值.【解答】解:函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),可知m=﹣2,n=,函数g(x)=log n(x2﹣mx+4)=log(x2+2x+4)=log [(x+1)2+3]≤﹣1.函数g(x)=log n(x2﹣mx+4)的最大值:﹣1.故答案为:﹣1.15.已知双曲线=1(a>0,b>0)的一条渐近线与抛物线y2=2px(p>0)的准线的交点坐标为,且双曲线与抛物线的一个公共点M的坐标(x0,4),则双曲线的方程为\frac{{x}^{2}}{5}﹣\frac{{y}^{2}}{20}=1 .【考点】双曲线的简单性质.【分析】求得双曲线的渐近线方程和抛物线的准线方程,由题意可得p=, =2,求得M (3,4)代入双曲线的方程,解方程可得a,b,进而得到双曲线的方程.【解答】解:双曲线=1的渐近线方程为y=±x,抛物线y2=2px的准线方程为x=﹣,由题意可得=,即p=,=2,即b=2a①又M的坐标(x0,4),可得16=2px0=x0,解得x0=3,将M(3,4)代入双曲线的方程可得﹣=1②由①②解得a=,b=2,即有双曲线的方程为﹣=1.故答案为:﹣=1.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=cosx[sin(x+)﹣sin(x+)]+.(1)若f(+)=,0<θ<,求tanθ的值;(2)求函数f(x)的最小正周期和单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x﹣),由f(+)=,可解得cosθ,又0<θ<,可由同角三角函数关系式即可求sinθ,tanθ的值.(2)由f(x)=sin(2x﹣),根据周期公式可求T,由2kπ﹣≤2x﹣≤2kπ+,k∈Z可解得单调递增区间.【解答】解:(1)∵f(x)=cosx[sin(x+)﹣sin(x+)]+ =cosx(sinx﹣cosx)+=sin2x﹣cos2x=sin(2x﹣),∵f(+)=,故有: sin[2(+)﹣]=sin(θ+﹣)=sin (θ+)=cosθ=,∴可解得:cosθ=,∵0<θ<,si nθ==,∴tanθ===.(2)∵f(x)=sin(2x﹣),∴T==π.∴由2kπ﹣≤2x﹣≤2kπ+,k∈Z可解得:x∈[kπ﹣,kπ+],k∈Z∴函数f(x)的最小正周期是π,单调递增区间是:x∈[kπ﹣,kπ+],k∈Z.17.在2015年8月世界杯女排比赛中,中国女排以11战10胜1负的骄人战绩获得冠军.世界杯女排比赛,采取5局3胜制,即每场比赛中,最先获胜3局的队该场比赛获胜,比赛结束,每场比赛最多进行5局比赛.比赛的积分规则是:3﹣0或者3﹣1取胜的球队积3分,负队积0分;3﹣2取胜的球队积2分,负队积1分.在本届世界杯中,中国队与美国队在第三轮相遇,根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为.(1)在中国队先输一局的情况下,中国队本场比赛获胜的概率是多少?(2)试求中国队与美国队比赛中,中国队获得积分的分布列与期望.【考点】离散型随机变量的期望与方差;互斥事件的概率加法公式;离散型随机变量及其分布列.【分析】(1)在中国队先输一局的情况下,中国队本场比赛获胜的可能性有两种:连胜3局或前3局两胜1负,第五局胜,由此能求出在中国队先输一局的情况下,中国队本场比赛获胜的概率.(2)中国队与美国队比赛中,中国队获得积分X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出中国队获得积分X的分布列和数学期望EX.【解答】解:(1)∵根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为,∴在中国队先输一局的情况下,中国队本场比赛获胜的概率:p=+=.(2)中国队与美国队比赛中,中国队获得积分X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)=()=,∴中国队获得积分X的分布列为:X 0 1 2 3PEX==.18.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.(1)求证:AE∥平面DCF;(2)若,且=λ,当λ取何值时,直线AE与BF所成角的大小为600?【考点】异面直线及其所成的角;直线与平面平行的判定.【分析】(1)推导出面ABE∥面CDF,由此能证明AE∥面CDF.(2)以C为坐标原点,以CB,CD,CF分别为x,y,z轴建系,利用向量法能求出当λ取1时,直线AE与BF所成角的大小为60°.【解答】证明:(1)∵BE∥CF,AB∥CD,且BE∩AB=B,FC∩CD=C,∴面ABE∥面CDF,又AE⊂面ABE,∴AE∥面CDF.解:(2)∵∠BCF=,且面ABCD⊥面BEFC,∴FC⊥面ABCD以C为坐标原点,以CB,CD,CF分别为x,y,z轴建系,∵,且=λ,∴AB=()λ,∴A(,()λ,0),E(,0,),F(0,0,),B(,0,0),=(0,(1﹣)λ,),=(﹣,0,),∵直线AE与BF所成角的大小为60°,∴cos60°==,由λ>0,解得λ=1,∴当λ取1时,直线AE与BF所成角的大小为60°.19.已知数列{a n}的前n项和S n=a n+.(1)求数列{a n}的通项公式;(2)若b n=,且数列{b n}的前n项和为T n,求T2n.【考点】数列的求和;数列递推式.【分析】(1)由于数列{a n}的前n项和S n=a n+,可得a1+a2=a2+﹣2,解得a1.当n≥2时,S n﹣1=a n﹣1+﹣2,可得:a n=a n﹣a n﹣1+n﹣2﹣[﹣2],化简整理即可得出.(2)b n=,可得b2n﹣==.b2n=.即可得出.1【解答】解:(1)∵数列{a n}的前n项和S n=a n+,∴a1+a2=a2+﹣2,解得a1=3.当n≥2时,S n﹣1=a n﹣1+﹣2,可得:a n=a n﹣a n﹣1+n﹣2﹣[﹣2],解得a n﹣1=n+1.∴a n=n+2,当n=1时也成立.∴a n=n+2.(2)b n=,∴b2n﹣===.1b2n==.∴数列{b n}的前2n项和T2n=+=﹣﹣.20.已知椭圆=1(a>b>0)经过点,且离心率等于.(1)求椭圆的方程;(2)若直线l:y=x+m与椭圆交于A,B两点,与圆x2+y2=2交于C,D两点.①当|CD|=2时,求直线l的方程;②若λ=,试求λ的取值范围.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率公式和点M满足椭圆方程,结合a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(2)①求出O到直线的距离,由圆的弦长公式可得2,解方程可得m的值,进而得到直线的方程;②将直线y=x+m代入椭圆方程,运用判别式大于0,运用韦达定理和弦长公式,再由直线和圆相交的条件和弦长公式,化简整理,即可得到所求范围.【解答】解:(1)由题意可得e==,a2﹣b2=c2,将M的坐标代入椭圆方程,可得+=1,解得a=2,b=c=2,即有椭圆的方程为+=1;(2)①O到直线y=x+m的距离为d=,由弦长公式可得2=2,解得m=±,可得直线的方程为y=x±;②由y=x+m代入椭圆方程x2+2y2=8,可得3x2+4mx+2m2﹣8=0,由判别式为△=16m2﹣12(2m2﹣8)>0,化简可得m2<12,由直线和圆相交的条件可得d<r,即有<,即为m2<4,综上可得m的范围是(﹣2,2).设A(x1,y1),B(x2,y2),可得x1+x2=﹣,x1x2=,即有弦长|AB|=•=•=•,|CD|=2=,即有λ==•=•,由0<4﹣m2≤4,可得≥2,即有λ≥.则λ的取值范围是[,+∞).21.已知函数f(x)=ln()+(a∈R).(1)若函数f(x)在定义域上是单调递增函数,求实数a的取值范围;(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f(x2)=3?【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求得函数的定义域和导函数f′(x),依题意可知f′(x)≥0,在(0,+∞)上恒成立,即a≤在(0,+∞)上恒成立,构造辅助函数,g(x)=,求导,利用导数法求得g(x)的单调区间及最小值,即可求得a的取值范围;(2)由题意可知:函数在定义域上有两个极值点x1,x2,即方程f′(x)=0在(1,+∞)上由两个不同的实根,根据二次函数性质求得a的取值范围,利用韦达定理,求得x1+x2和x1•x2表达式,写出f(x1)+f(x2),根据对数的运算性质求得a的值,判断是否满足a的取值范围.【解答】解:(1)由函数f(x)的定义域为(0,+∞),f′(x)=﹣,依题意可知:f′(x)≥0,在(0,+∞)上恒成立,即a≤在(0,+∞)上恒成立,令g(x)=,g′(x)==,令g′(x)=0,解得x=4,且1<x<4时,g′(x)<0,当x>4时,g′(x)>0,所以g(x)在x=4时取极小值,也为最小值,g(4)=12,故实数a的取值范围是a≤12;(2)f′(x)=﹣=,函数在定义域上有两个极值点x1,x2,即方程f′(x)=0在(1,+∞)上由两个不同的实根,即方程x2+(4﹣a)x+(4+a)=0,在(1,+∞)上由两个不同的实根,∴解得:a≥12,由韦达定理:x1+x2=a﹣4,x1•x2=a+4,于是,f(x1)+f(x2)=ln()++ln()+,=ln[]+a[],=ln[]+a[],=ln()+a(),=,=3,解得a=9,但不满足a>12,所以不存在实数a,使得f(x1)+f(x2)=3.。

山东省威海市2016届高三第二次模拟考试数学(理)试题 Word版含答案

2016年威海市高考模拟考试理科数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共5页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在答题纸规定的位置.第I 卷(选择题 共50分)注意事项:每小题选出答案后,用铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,复数12i z a i -=+的实部与虚部互为相反数,则实数a = (A)-1 (B)1 (C)3 (D) 3-2.已知集合{}2230A x x x =--<,(){}ln 2B x y x ==-,定义{},A B x x R x B -=∈∉且,则A B -= (A)(-1,2) (B) [)2,3 (C)(2,3) (D) (]1,2-3.已知()()2,22a b a b a b ==+⋅-=-,则a b 与的夹角为(A)30° (B)45°(C)60° (D)120° 4.命题p :若22x y ≥,则11gx gy ≥;命题q :若随机变量ξ服从正态分布()()23,,60.72N P σξ≤=,则()00.28P ξ≤=.下列命题为真命题的是(A) p q ∧ (B) p q ⌝∧ (C) p q ∨⌝ (D) p q ⌝∧⌝5.右图所示的程序框图中按程序运行后输出的结果 (A)7 (B)8 (C)9(D)10 6.已知函数()()()2cos 0,0f x x ωθθπω=+<<>为奇函数,其图象与直线y=2相邻两交点的距离为π,则函数()f x (A)在,63ππ⎡⎤⎢⎥⎣⎦上单调递减 (B)在,63ππ⎡⎤⎢⎥⎣⎦上单调递增 第5题图(C)在,64ππ⎡⎤-⎢⎥⎣⎦上单调递减 (D)在,64ππ⎡⎤-⎢⎥⎣⎦上单调递增 7.若对任意实数x 使得不等式23x a x --+≤恒成立,则实数a 的取值范围是(A) []1,5- (B) []2,4- (C) []1,1- (D) []5,1-8.已知等腰ABC ∆满足2AB AC AB ==,点D 为BC 边上一点且AD=BD ,则sin ADB ∠的值为(A) 6(B) 3(C) 3(D) 39.设双曲线()222210,0x y a b a b-=>>的右焦点为F ,过点F 作x 轴的垂线交两渐近线于点A ,B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若()225OP OA OB ,,8u R u λλμλ=+∈+=uu r uuu r uu u r ,则双曲线的离心率为(A)(B)(C) (D) 9810.已知函数()23261x ax f x x ++=+,若存在x N *∈使得()2f x ≤成立,则实数a 的取值范围为(A) [)15,-+∞(B) (,2-∞- (C )(],16-∞- (D) (],15-∞-第II 卷(非选择题共100分)注意事项:1.请用0.5毫米的黑色签字笔将每题的答案填写在答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2.不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效.二、填空题:本大题共5小题,每小题5分,共25分.11.正四棱锥的主视图和俯视图如图所示,其中主视图为边长为1的正三角形,则该正四棱锥的表面积为__________.12.在二项式9nx ⎛ ⎝的展开式中,偶数项的二项式系数之和为256,则展开式中x 的系数为___________.13.若变量,x y 少满足约束条件32930,0x y x y y ≤+≤⎧⎪-+≥⎨⎪≥⎩则z =x +2y 的最大值为__________.14.抛物线()2:20C y px p =>的焦点为F ,O 为坐标原点,M 为C 上一点.若2,MF p MOF =∆的面积为____________.15.已知函数()31,1,1x f x x x x ⎧≥⎪=⎨⎪<⎩,若关于x 的方程()f x x m =+有两个不同的实根,则实数m 的取值范围为___________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知()()()2cos sin cos cos 102f x x x x x πλλ⎛⎫=-+-+> ⎪⎝⎭的最大值为3.(I)求函数()f x 的对称轴;(II)在ABC ∆中,内角A ,B ,C 的对边分别为,,a b c ,且cos cos 2A a B c b=-,若不等式()f B m <恒成立,求实数m 的取值范围.17. (本小题满分12分)已知四棱锥P A B C D -,底面ABCD 为平行四边形,PD ⊥底面ABCD,2,AD PD DC ==E,F 分别为PD ,PC 的中点,且BE 与平面ABCD. (I )求证:平面PAB ⊥平面PBD ;(II )求面PAB 与面EFB 所成二面角的余弦值.18.(本小题满分12分)2015年,威海智慧公交建设项目已经基本完成.为了解市民对该项目的满意度,分别从不同公交站点随机抽取若干市民对该项目进行评分(满分100分),绘制如下频率分布直方图,并将分数从低到高分为四个等级:已知满意度等级为基本满意的有680人.(I)若市民的满意度评分相互独立,以满意度样本估计全市市民满意度.现从全市市民中随机抽取4人,求至少有2人非常满意的概率;(II)在等级为不满意市民中,老年人占13.现从该等级市民中按年龄分层抽取15人了解不满意的原因,并从中选取3人担任整改督导员,记X 为老年督导员的人数,求X 的分布列及数学期望E (X );(III)相关部门对项目进行验收,验收的硬性指标是:市民对该项目的满意指数不低于0.8,否则该项目需进行整改,根据你所学的统计知识,判断该项目能否通过验收,并说明理由.(注:满意指数=100满意程度的平均分)19.(本小题满分12分)设单调数列{}n a 的前n 项和为n S ,2694n n S a n =+-,126,,a a a 成等比数列.(I)求数列{}n a 的通项公式;(II)设()226131n n n b n a -=+⋅,求数列{}n b 的前n 项和n T .20.(本小题满分13分) 已知函数()()()ln 1,, 1.ax f x x g x a x a=+=>+ (I)若函数()()1f x x x =与g 在处切线的斜率相同,求a 的值:(II)设()()()()=,F x f x g x F x -求的单调区间:(III)讨论关于x 的方程()()f x g x =的根的个数.21.(本小题满分14分)已知椭圆()221222:10,,x y C a b F F a b+=>>是左右焦点,A ,B 是长轴两端点,点()12,,P a b F F 与围成等腰三角形,且12PF F S ∆=(I)求椭圆C 的方程;(II)设点Q 是椭圆上异于A ,B 的动点,直线4x QA QB =-与,分别交于M,N 两点. (i)当1QF MN λ=时,求Q 点坐标;(ii)过点M,N ,1F 三点的圆是否经过x 轴上不同于点1F 的定点?若经过,求出定点坐标,若不经过,请说明理由.。

山东省13市2016届高三3月模拟数学理试题分类汇编:导数及其应用

山东省13市2016届高三3月模拟数学理试题分类汇编导数及其应用一、选择、填空题1、(德州市2016高三3月模拟)()f x 是定义在(0,+∞)上单调函数,且对(0,)x ∀∈+∞,都有(()ln )1f f x x e -=+,则方程()'()f x f x e -=的实数解所在的区间是A 、(0,1e ) B 、(1e,1) C 、(1,e ) D 、(e ,3) 2、(菏泽市2016高三3月模拟)若函数()y f x =的导数''()y f x =仍是x 的函数,就把''()y f x =的导数''''()y f x =叫做函数()y f x =二阶导数,记做(2)(2)()y f x =。

同样函数()y f x =的n-1阶导数叫做()y f x =的n 阶导数,表示()()()n n y f x =.在求ln(1)y x =+的n 阶导数时,已求得(2)(3)231112',,,1(1)(1)y y y x x x ⋅==-=-+++(4)4123,...,(1)y x ⋅⋅=-+根据以上推理,函数ln(1)y x =+的第n 阶导数为_________. 3、(临沂市2016高三3月模拟)已知a 是常数,函数3211()(1)232f x x a x ax =+--+的导函数'()y f x =的图像如右图所示,则函数()|2|xg x a =-的图像可能是4、(日照市2016高三3月模拟)设曲线sin y x =上任一点(),x y 处切线斜率为()g x ,则函数()2y x g x =的部分图象可以为5、(泰安市2016高三3月模拟)若函数()32221f x x tx =-++存在唯一的零点,则实数t的取值范围为 ▲ .6、(烟台市2016高三3月模拟)已知()f x 为定义在()0,+∞上的单调递增函数,对任意()0,x ∈+∞,都满足()2log 3f f x x -=⎡⎤⎣⎦,则函数()()()()()2y f x f x f x f x ''=--为的导函数的零点所在区间是A. 102⎛⎫ ⎪⎝⎭,B. 112⎛⎫ ⎪⎝⎭,C. ()12,D. ()23,7、(济南市2016高三3月模拟)设函数()f x '是()f x (x R ∈)的导函数,()01f =,且()()33f x f x '=-,则()()4f x f x '>的解集是A. 43ln ,⎛⎫+∞ ⎪⎝⎭B. 23ln ,⎛⎫+∞ ⎪⎝⎭C.3,⎛⎫+∞ ⎪ ⎪⎝⎭D. e ,⎛⎫+∞ ⎪ ⎪⎝⎭参考答案:1、C2、()()()()11!1.1n n nn y x --=-+ 3、D 4、C5、6、C7、【答案】D【解析】根据()01f =,()()33f x f x '=-,导函数于原函数之间没有用变量x 联系,可知函数与x y e =有关,可构造函数为()321xf x e =-,()()()433f x f x f x '>=+,即()3f x >,3213x e ->,解得23ln x >,故选D二、解答题1、(滨州市2016高三3月模拟) 设函数()()221ln ,f x ax a x x =---,其中.a R ∈(Ⅰ)当0a >时,求函数()f x 的单调递增区间;(Ⅱ)当0a <时,求函数()f x 在区间1,12⎡⎤⎢⎥⎣⎦上的最小值;(Ⅲ)记函数()y f x =的图象为曲线C ,设点()()1122,,,A x y B x y 是曲线C 上不同的两点,点M 为线段AB 的中点,过点M 作x 轴的垂线交曲线C 于点N ,试判断曲线C 在N 处的切线是否平行于直线AB ?并说明理由.2、(德州市2016高三3月模拟)设函数21()ln (0),'(1)0.2f x x ax bx a f =-+>= (I )用含a 的式子表示b ; (II )令F (x )=21()(03)2af x ax bx x x+-+<≤,其图象上任意一点P 00(,)x y 处切线的斜率12k ≤恒成立,求实数a 的取值范围; (III )若a =2,试求()f x 在区间1[,](0)2c c c +>上的最大值。

山东省潍坊市2016届高考模拟训练理科数学试题(四)含答案

2016年高考模拟训练试题理科数学(四)本试卷共5页,分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分共150分.考试时间120分钟.第I 卷(选择题 共50分)注意事项:1.答卷前,考生务必用0.5毫米规格黑色签字笔将自己的姓名、准考证号、考试科目填写在规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号3.第Ⅱ卷必须用0.5毫米规格黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后写上新的答案,不得使用涂改液、胶带纸、修正带和其他笔.4.不按以上要求作答以及将答案写在试题卷上的,答案无效一、选择题:本大题共10个小题,每小题5分.共50分在每小题给出的四个选项中.有且只有一项是符合题目要求的.1.若非空集合{}{}3412,212A x a x a B x x =-≤≤-=-≤≤,则能使A B A ⋂=成立的实数a 的集合是 A.{}36a a ≤≤ B. {}16a a ≤≤ C. {}6a a ≤ D. ∅2.设复数13,z i z =-的共轭复数是z ,则z z=A.B. C. 45 D.13.若02x π<<,则tan 1x x >是sin 1x x >的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.若实数,x y 满足不等式组5,230,10,y x y x y ≤⎧⎪-+≤⎨⎪+-≥⎩则2z x y =+的最大值是A.15B.14C.11D.105.已知直三棱柱111ABC A B C -的各顶点都在球O 的球面上,且1,AB AC BC ===,若球O ,则这个直三棱柱的体积等于A. B. C.2 D.6.按1,3,6,10,15,…的规律给出2014个数,如图是计算这2014个数的和的程序框图,那么框图中判断①处可以填入A. 2014i ≥B. 2014i >C. 2014i ≤D. 2014i <7.将3个不相同的黑球和3个相同白球自左向右排成一排,如果从任何一个位置(含这个位置)开始向右数,数到最末一个球,黑球的个数大于或等于白球的个数,就称这种排列为“有效排列”,则出现有效排列的概率为 A. 12 B. 14 C. 15 D. 1108.已知直线2y x =-与圆22430x y x +-+=及抛物线28y x =的四个交点从上到下依次为A,B,C,D 四点,则AB CD +=A.12B.14C.16D.189.如图,在平面直角坐标系xOy 中,椭圆2212x y +=的左、右焦点分别为12,F F 设A,B 是椭圆上位于x 轴上方的两点,且直线1AF 与直线2BF 平行,2AF 与1BF 交于点P ,且12AF BF =,则直线1AF 的斜率是A. B. C. 2 D.110.定义在()0,+∞上的函数()f x 满足()0f x >,且()()()()230,f x x f x f x x '<<∈+∞对恒成立,其中()()f x f x '为的导函数,则 A. ()()1111628f f << B. ()()111824f f << C.()()111423f f << D.()()111322f f << 第II 卷(非选择题 共100分)注意事项:将第II 卷答案用0.5mm 规格的黑色签字笔答在答题卡的相应位置上.二、填空题:本大题共5小题,每小题5分,共25分.11. 612x ⎫⎪⎭展开式中的常数项是________. 12.如图所示是一个几何体的三视图,则这个几何体外接球的表面积为________.13.设,a b 为单位向量,若向量c 满足()c a b a b -+=-,则c 的最大值是________.14.已知函数()22014141,01,2log , 1.x x f x x x ⎧⎛⎫--+≤≤⎪ ⎪=⎨⎝⎭⎪>⎩若()()(),,,f a f b f c a b c ==互不相等,则a b c ++的取值范围是________.15.定义在R 上的函数()f x 满足条件,存在常数0M >,使()f x M x ≤对一切实数x 恒成立,则称函数()f x 为“V 型函数”.现给出以下函数,其中是“V 型函数”的是______.①()21x f x x x =++;②()()()()20,10;x x x f x f x x ⎧≤⎪=⎨->⎪⎩ ③()f x 是定义域为R 的奇函数,且对任意的12,x x ,都有()()12122f x f x x x -≤-成立.三、解答题:本大题共6小题,满分75分.解答须写出文字说明、证明过程和演算步骤.16. (本小题满分12分)已知函数())2s i n o s 3c o s 0f x x x x ωωω=-> ,直线()12,x x x x y f x ===是图象的任意两条对称轴,且12x x -的最小值为4π. (I)求()f x 的表达式(II)将函数()f x 的图像向右平移8π个单位,再将得到的图像上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数()y g x =的图像,若关于x 的方程()0g x k +=,在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个实数解,求实数k 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年山东省高考数学模拟试卷(理科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,则a的值等于()A.1B.2C.5D.62.已知集合,则集合A的真子集的个数为()A.3B.4C.1D.23.已知函数f(x)=,若f(﹣1)=2f(a),则a的值等于()A.或﹣B. C.﹣D.±4.将800个个体编号为001~800,然后利用系统抽样的方法从中抽取20个个体作为样本,则在编号为121~400的个体中应抽取的个体数为()A.10B.9C.8D.75.“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知直线l的方程为ax+2y﹣3=0,且a∈[﹣5,4],则直线l的斜率不小于1的概率为()A. B. C. D.7.一个空间几何体的三视图如图,其中主视图是腰长为3的等腰三角形,俯视图是边长分别为1,2的矩形,则该几何体的体积等于()A.2B. C. D.8.已知向量,若向量的夹角为φ,则有()A.φ=θB.φ=π﹣θC.φ=θ﹣πD.φ=θ﹣2π9.已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是()A.m>﹣10B.m<﹣10C.m>﹣8D.m<﹣810.在三角形ABC中,角A、B、C的对边分别为a,b,c,且满足==,则=()A.﹣B. C.﹣D.﹣二、填空题(每题5分,满分25分,将答案填在答题纸上)11.阅读如图所示的程序框图,运行相应的程序,输出的结果是.12.从0,2,4中选两个数字,从1,3中选一个数字,组成无重复数字的三位数,其中偶数的个数为.13.若不等式|2x+a|<b的解集为{x|1<x<4},则ab等于.14.若函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),则函数g(x)=log n (x2﹣mx+4)的最大值等于.15.已知双曲线=1(a>0,b>0)的一条渐近线与抛物线y2=2px(p>0)的准线的交点坐标为,且双曲线与抛物线的一个公共点M的坐标(x0,4),则双曲线的方程为.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=cosx[sin(x+)﹣sin(x+)]+.(1)若f(+)=,0<θ<,求tanθ的值;(2)求函数f(x)的最小正周期和单调递增区间.17.在2015年8月世界杯女排比赛中,中国女排以11战10胜1负的骄人战绩获得冠军.世界杯女排比赛,采取5局3胜制,即每场比赛中,最先获胜3局的队该场比赛获胜,比赛结束,每场比赛最多进行5局比赛.比赛的积分规则是:3﹣0或者3﹣1取胜的球队积3分,负队积0分;3﹣2取胜的球队积2分,负队积1分.在本届世界杯中,中国队与美国队在第三轮相遇,根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为.(1)在中国队先输一局的情况下,中国队本场比赛获胜的概率是多少?(2)试求中国队与美国队比赛中,中国队获得积分的分布列与期望.18.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.(1)求证:AE∥平面DCF;(2)若,且=λ,当λ取何值时,直线AE与BF所成角的大小为600?19.已知数列{a n}的前n项和S n=a n+.(1)求数列{a n}的通项公式;(2)若b n=,且数列{b n}的前n项和为T n,求T2n.20.已知椭圆=1(a>b>0)经过点,且离心率等于.(1)求椭圆的方程;(2)若直线l:y=x+m与椭圆交于A,B两点,与圆x2+y2=2交于C,D两点.①当|CD|=2时,求直线l的方程;②若λ=,试求λ的取值范围.21.已知函数f(x)=ln()+(a∈R).(1)若函数f(x)在定义域上是单调递增函数,求实数a的取值范围;(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f(x2)=3?2016年山东省高考数学模拟试卷(理科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,则a的值等于()A.1B.2C.5D.6【考点】复数的代数表示法及其几何意义.【分析】求出对应点的坐标,代入直线方程,然后求解a的值.【解答】解:复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,可得3=a﹣1+2,解得a=2.故选:B.2.已知集合,则集合A的真子集的个数为()A.3B.4C.1D.2【考点】子集与真子集.【分析】先求出集合A,由此能求出集合A的子集的个数.【解答】解:∵集合={2},∴集合A的真子集只有一个为∅.故选:C.3.已知函数f(x)=,若f(﹣1)=2f(a),则a的值等于()A.或﹣B. C.﹣D.±【考点】分段函数的应用.【分析】利用分段函数的表达式建立方程关系进行求解即可.【解答】解:f(﹣1)=(﹣1)2=1,则由f(﹣1)=2f(a),得1=2f(a),即f(a)=,若a>0,由f(a)=得log3a=,得a=,若a<0,由f(a)=得a2=,得a=﹣或(舍),综上a的值等于或﹣,故选:A.4.将800个个体编号为001~800,然后利用系统抽样的方法从中抽取20个个体作为样本,则在编号为121~400的个体中应抽取的个体数为()A.10B.9C.8D.7【考点】系统抽样方法.【分析】根据题意,求出系统抽样的分组组距,再求编号为121~400的个体中应抽取的个体数即可.【解答】解:把这800个个体编上001~800的号码,分成20组,则组距为=40;所以编号为121~400的个体中应抽取的个体数为=7.故选:D.5.“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】等差关系的确定.【分析】数列{a n}成等比数列,公比为q.若a1<0时,则lga n+1没有意义.由数列{lga n+1}成等差数列,则(lga n+1+1)﹣(lga n+1)=为常数,则为非0常数.即可判断出结论.【解答】解:∵数列{a n}成等比数列,公比为q.∴a n=.若a1<0时,则lga n+1没有意义.由数列{lga n+1}成等差数列,则(lga n+1+1)﹣(lga n+1)=为常数,则为非0常数.∴“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的必要不充分条件.故选:B.6.已知直线l的方程为ax+2y﹣3=0,且a∈[﹣5,4],则直线l的斜率不小于1的概率为()A. B. C. D.【考点】直线的斜率.【分析】先求出直线的斜率的范围,再根据几何概型的概率公式计算即可.【解答】解:由ax+2y﹣3=0得到y=﹣x+,故直线的斜率为﹣,∵直线l的斜率不小于1,∴﹣≥1,即a≤﹣2,∵且a∈[﹣5,4],∴﹣5≤a≤﹣2,∴直线l的斜率不小于1的概率为=,故选:C.7.一个空间几何体的三视图如图,其中主视图是腰长为3的等腰三角形,俯视图是边长分别为1,2的矩形,则该几何体的体积等于()A.2B. C. D.【考点】由三视图求面积、体积.【分析】由三视图易得这个几何体是一个四棱锥,四棱锥的底面是一个边长是1、2的长方形,顶点在底面的射影是长边的中点,短侧棱长为:3,求出棱锥的高,即可求解四棱锥的体积.【解答】解:由三视图知,这是一个四棱锥,四棱锥的底面是一个边长是1、2的长方形,顶点在底面的射影是长边的中点,短侧棱长为3,棱锥的高: =2,∴四棱锥的体积是:×1×2×2=.故选:D.8.已知向量,若向量的夹角为φ,则有()A.φ=θB.φ=π﹣θC.φ=θ﹣πD.φ=θ﹣2π【考点】平面向量数量积的运算.【分析】根据向量的夹角公式和两角和的余弦公式以及诱导公式,再根据向量的夹角的范围即可求出.【解答】解:∵向量,∴||==1,||=1, =﹣cosθcos2θ﹣sinθsin2θ=﹣cosθ=cos(π﹣θ),∴cosφ==cos(π﹣θ)=cos(θ﹣π),∵θ∈(π,2π),∴θ﹣π∈(0,π),∴φ=θ﹣π,故选:C.9.已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是()A.m>﹣10B.m<﹣10C.m>﹣8D.m<﹣8【考点】基本不等式.【分析】不等式2x+m+>0化为:2(x﹣1)+>﹣m﹣2,利用基本不等式的性质可得2(x﹣1)+的最小值,即可得出.【解答】解:不等式2x+m+>0化为:2(x﹣1)+>﹣m﹣2,∵x>1,∴2(x﹣1)+≥2×=8,当且仅当x=3时取等号.∵不等式2x+m+>0对一切x∈(1,+∞)恒成立,∴﹣m﹣2<8,解得m>﹣10,故选:A.10.在三角形ABC中,角A、B、C的对边分别为a,b,c,且满足==,则=()A.﹣B. C.﹣D.﹣【考点】正弦定理;余弦定理.【分析】由题意设===k,可得a=6k,b=4k,c=3k,由余弦定理可得cosA,再由正弦定理可得=,代值化简可得.【解答】解:由题意设===k,(k>0),则a=6k,b=4k,c=3k,∴由余弦定理可得cosA===﹣,∴由正弦定理可得====﹣,故选:A.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.阅读如图所示的程序框图,运行相应的程序,输出的结果是11 .【考点】循环结构.【分析】按照循环结构的流程,列举出每个循环的变量的取值,与循环条件对比即可得结果【解答】解:依此程序框图,变量a的变化依次为1,12+2=3,32+2=11不满足循环条件a<10,故输出11故答案为1112.从0,2,4中选两个数字,从1,3中选一个数字,组成无重复数字的三位数,其中偶数的个数为20 .【考点】计数原理的应用.【分析】根据0的特点,分三类进行,当0在个为和十位时,当没有0参与时,根据分类计数原理可得.【解答】解:若三位数的个位为0,则有2×2×A22=8个;若十位为0,则有C21•C21=4个;若这个三位数没有0,则有C21•C21A22=8个.综上,要求的三位偶数的个数为 8+8+4=20个,故答案为:20.13.若不等式|2x+a|<b的解集为{x|1<x<4},则ab等于﹣15 .【考点】绝对值不等式的解法.【分析】解出不等式|2x+a|<b,得到关于a,b的不等式组,求出a,b的值,从而求出ab 即可.【解答】解:∵|2x+a|<b,∴﹣b<2x+a<b,∴﹣a﹣b<2x<b﹣a,∴﹣<x<,由不等式的解集为{x|1<x<4},则,解得:a=﹣5,b=3则ab=﹣15,故答案为:﹣15.14.若函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),则函数g(x)=log n(x2﹣mx+4)的最大值等于﹣1 .【考点】函数与方程的综合运用;函数的最值及其几何意义.【分析】求出m、n,然后利用对数函数的性质,以及二次函数的性质求解函数的最值.【解答】解:函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),可知m=﹣2,n=,函数g(x)=log n(x2﹣mx+4)=log(x2+2x+4)=log [(x+1)2+3]≤﹣1.函数g(x)=log n(x2﹣mx+4)的最大值:﹣1.故答案为:﹣1.15.已知双曲线=1(a>0,b>0)的一条渐近线与抛物线y2=2px(p>0)的准线的交点坐标为,且双曲线与抛物线的一个公共点M的坐标(x0,4),则双曲线的方程为\frac{{x}^{2}}{5}﹣\frac{{y}^{2}}{20}=1 .【考点】双曲线的简单性质.【分析】求得双曲线的渐近线方程和抛物线的准线方程,由题意可得p=, =2,求得M (3,4)代入双曲线的方程,解方程可得a,b,进而得到双曲线的方程.【解答】解:双曲线=1的渐近线方程为y=±x,抛物线y2=2px的准线方程为x=﹣,由题意可得=,即p=,=2,即b=2a①又M的坐标(x0,4),可得16=2px0=x0,解得x0=3,将M(3,4)代入双曲线的方程可得﹣=1②由①②解得a=,b=2,即有双曲线的方程为﹣=1.故答案为:﹣=1.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=cosx[sin(x+)﹣sin(x+)]+.(1)若f(+)=,0<θ<,求tanθ的值;(2)求函数f(x)的最小正周期和单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x﹣),由f(+)=,可解得cosθ,又0<θ<,可由同角三角函数关系式即可求sinθ,tanθ的值.(2)由f(x)=sin(2x﹣),根据周期公式可求T,由2kπ﹣≤2x﹣≤2kπ+,k∈Z可解得单调递增区间.【解答】解:(1)∵f(x)=cosx[sin(x+)﹣sin(x+)]+ =cosx(sinx﹣cosx)+=sin2x﹣cos2x=sin(2x﹣),∵f(+)=,故有: sin[2(+)﹣]=sin(θ+﹣)=sin(θ+)=cosθ=,∴可解得:cosθ=,∵0<θ<,sinθ==,∴tanθ===.(2)∵f(x)=sin(2x﹣),∴T==π.∴由2kπ﹣≤2x﹣≤2kπ+,k∈Z可解得:x∈[kπ﹣,kπ+],k∈Z∴函数f(x)的最小正周期是π,单调递增区间是:x∈[kπ﹣,kπ+],k∈Z.17.在2015年8月世界杯女排比赛中,中国女排以11战10胜1负的骄人战绩获得冠军.世界杯女排比赛,采取5局3胜制,即每场比赛中,最先获胜3局的队该场比赛获胜,比赛结束,每场比赛最多进行5局比赛.比赛的积分规则是:3﹣0或者3﹣1取胜的球队积3分,负队积0分;3﹣2取胜的球队积2分,负队积1分.在本届世界杯中,中国队与美国队在第三轮相遇,根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为.(1)在中国队先输一局的情况下,中国队本场比赛获胜的概率是多少?(2)试求中国队与美国队比赛中,中国队获得积分的分布列与期望.【考点】离散型随机变量的期望与方差;互斥事件的概率加法公式;离散型随机变量及其分布列.【分析】(1)在中国队先输一局的情况下,中国队本场比赛获胜的可能性有两种:连胜3局或前3局两胜1负,第五局胜,由此能求出在中国队先输一局的情况下,中国队本场比赛获胜的概率.(2)中国队与美国队比赛中,中国队获得积分X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出中国队获得积分X的分布列和数学期望EX.【解答】解:(1)∵根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为,∴在中国队先输一局的情况下,中国队本场比赛获胜的概率:p=+=.(2)中国队与美国队比赛中,中国队获得积分X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)=()=,EX==.18.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.(1)求证:AE∥平面DCF;(2)若,且=λ,当λ取何值时,直线AE与BF所成角的大小为600?【考点】异面直线及其所成的角;直线与平面平行的判定.【分析】(1)推导出面ABE∥面CDF,由此能证明AE∥面CDF.(2)以C为坐标原点,以CB,CD,CF分别为x,y,z轴建系,利用向量法能求出当λ取1时,直线AE与BF所成角的大小为60°.【解答】证明:(1)∵BE∥CF,AB∥CD,且BE∩AB=B,FC∩CD=C,∴面ABE∥面CDF,又AE⊂面ABE,∴AE∥面CDF.解:(2)∵∠BCF=,且面ABCD⊥面BEFC,∴FC⊥面ABCD以C为坐标原点,以CB,CD,CF分别为x,y,z轴建系,∵,且=λ,∴AB=()λ,∴A(,()λ,0),E(,0,),F(0,0,),B(,0,0),=(0,(1﹣)λ,),=(﹣,0,),∵直线AE与BF所成角的大小为60°,∴cos60°==,由λ>0,解得λ=1,∴当λ取1时,直线AE与BF所成角的大小为60°.19.已知数列{a n}的前n项和S n=a n+.(1)求数列{a n}的通项公式;(2)若b n=,且数列{b n}的前n项和为T n,求T2n.【考点】数列的求和;数列递推式.【分析】(1)由于数列{a n}的前n项和S n=a n+,可得a1+a2=a2+﹣2,解得a1.当n≥2时,S n﹣1=a n﹣1+﹣2,可得:a n=a n﹣a n﹣1+n﹣2﹣[﹣2],化简整理即可得出.(2)b n=,可得b2n﹣==.b2n=.即可得出.1【解答】解:(1)∵数列{a n}的前n项和S n=a n+,∴a1+a2=a2+﹣2,解得a1=3.当n≥2时,S n﹣1=a n﹣1+﹣2,可得:a n=a n﹣a n﹣1+n﹣2﹣[﹣2],解得a n﹣1=n+1.∴a n=n+2,当n=1时也成立.∴a n=n+2.(2)b n=,∴b2n﹣===.1b2n==.∴数列{b n}的前2n项和T2n=+=﹣﹣.20.已知椭圆=1(a>b>0)经过点,且离心率等于.(1)求椭圆的方程;(2)若直线l:y=x+m与椭圆交于A,B两点,与圆x2+y2=2交于C,D两点.①当|CD|=2时,求直线l的方程;②若λ=,试求λ的取值范围.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率公式和点M满足椭圆方程,结合a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(2)①求出O到直线的距离,由圆的弦长公式可得2,解方程可得m的值,进而得到直线的方程;②将直线y=x+m代入椭圆方程,运用判别式大于0,运用韦达定理和弦长公式,再由直线和圆相交的条件和弦长公式,化简整理,即可得到所求范围.【解答】解:(1)由题意可得e==,a2﹣b2=c2,将M的坐标代入椭圆方程,可得+=1,解得a=2,b=c=2,即有椭圆的方程为+=1;(2)①O到直线y=x+m的距离为d=,由弦长公式可得2=2,解得m=±,可得直线的方程为y=x±;②由y=x+m代入椭圆方程x2+2y2=8,可得3x2+4mx+2m2﹣8=0,由判别式为△=16m2﹣12(2m2﹣8)>0,化简可得m2<12,由直线和圆相交的条件可得d<r,即有<,即为m2<4,综上可得m的范围是(﹣2,2).设A(x1,y1),B(x2,y2),可得x1+x2=﹣,x1x2=,即有弦长|AB|=•=•=•,|CD|=2=,即有λ==•=•,由0<4﹣m2≤4,可得≥2,即有λ≥.则λ的取值范围是[,+∞).21.已知函数f(x)=ln()+(a∈R).(1)若函数f(x)在定义域上是单调递增函数,求实数a的取值范围;(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f(x2)=3?【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求得函数的定义域和导函数f′(x),依题意可知f′(x)≥0,在(0,+∞)上恒成立,即a≤在(0,+∞)上恒成立,构造辅助函数,g(x)=,求导,利用导数法求得g(x)的单调区间及最小值,即可求得a的取值范围;(2)由题意可知:函数在定义域上有两个极值点x1,x2,即方程f′(x)=0在(1,+∞)上由两个不同的实根,根据二次函数性质求得a的取值范围,利用韦达定理,求得x1+x2和x1•x2表达式,写出f(x1)+f(x2),根据对数的运算性质求得a的值,判断是否满足a的取值范围.【解答】解:(1)由函数f(x)的定义域为(0,+∞),f′(x)=﹣,依题意可知:f′(x)≥0,在(0,+∞)上恒成立,即a≤在(0,+∞)上恒成立,令g(x)=,g′(x)==,令g′(x)=0,解得x=4,且1<x<4时,g′(x)<0,当x>4时,g′(x)>0,所以g(x)在x=4时取极小值,也为最小值,g(4)=12,故实数a的取值范围是a≤12;(2)f′(x)=﹣=,函数在定义域上有两个极值点x1,x2,即方程f′(x)=0在(1,+∞)上由两个不同的实根,即方程x2+(4﹣a)x+(4+a)=0,在(1,+∞)上由两个不同的实根,∴解得:a≥12,由韦达定理:x1+x2=a﹣4,x1•x2=a+4,于是,f(x1)+f(x2)=ln()++ln()+,=ln[]+a[],=ln[]+a[],=ln()+a(),=,=3,解得a=9,但不满足a>12,所以不存在实数a,使得f(x1)+f(x2)=3.。

相关文档
最新文档