电化学基本原理与应用-第10章
10章-电解与极化作用

13. 2 分(4934)4934已知φ (Fe2+/Fe)= -0.440 V, φ (Cu2+/Cu) = 0.337 V,在25℃, p 时,以Pt 为阴极,石墨为阳极,电解含有FeCl2(0.01 mol·kg-1)和CuCl2(0.02 mol·kg-1)的水溶液,若电解过程不断搅拌溶液,且超电势可忽略不计,则最先析出的金属是______。
15. 2 分(4890)4890采用三电极装置研究超电势时, 一般采用鲁金毛细管, 其作用为________________,采用搅拌其作用为_______________________________。
17. 2 分(4920)4920在锌电极上,H2的超电势为0.75 V,电解一含Zn2+的浓度为1×10-5 mol·kg-1的溶液,为了不使H2(g) 析出,问溶液的pH 值应控制在__________ 。
已知25℃时,φ (Zn2+/Zn)= -0.763 V 。
18. 2 分(4884)4884从能量的利用上看,超电势的存在有其不利的方面。
但在工业及分析等方面,超电势的现象也被广泛的应用, 试举出二个利用超电势的例子_________________________,_______________________________________。
2. 5 分(4908)4908某含有Ag+,Ni2+ ,Cd2+ (活度均为1)离子的pH = 2 的溶液,电解时, H2与各金属在阴极析出的先后顺序为________、________、_________、__________。
(已知φ (Ag+/Ag)= 0.799 V,φ (Ni2+/Ni)= -0.23 V,φ (Cd2+/Cd)= -0.402 V 。
H2在Ag 上超电势η=0.20 V,在Ni 上, η=0.24 V,在Cd 上, η=0.30 V)20. 5 分(4951)4951当锌、铜分别从摩尔浓度的水溶液中沉积时,最小析出电势是多少? 当浓度都是0.01 mol·dm-3时, 相应析出电势是什么? 设活度系数均为1 。
(整理)第十章电解与极化作用练习题与答案(2)

第10章电解与极化作用练习题二、单选题:1.298K,p下,试图电解HCl溶液(a = 1)制备H2和Cl2,若以Pt作电极,当电极上有气泡产生时,外加电压与电极电位关系:(A)V(外) = φ(Cl-/Cl2) -φ(H+/H2) ;(B)V(外)>φ(Cl-/Cl2)-φ(H+/H2) ;(C) V(外)≥φ(Cl2,析) -φ(H2,析) ;(D)V(外)≥φ(Cl-/Cl2) -φ(H+/H2) 。
2.25℃时,用Pt作电极电解a(H+) = 1的H2SO4溶液,当i = 52 ×10-4A·cm-2时,2Hη= 0,2Oη= 0.487V. 已知φ(O2/H2O) = 1.229V,那么分解电压是:(A) 0.742 V ;(B) 1.315 V ;(C) 1.216 V ;(D) 1.716 V 。
3.下列两图的四条极化曲线中分别代表原电池的阴极极化曲线和电解池的阳极极化曲线的是:(A) 1、4;(B) 1、3;(C) 2、3;(D) 2、4。
8.在极化曲线的测定中,参比电极的作用是:(A) 与待测电极构成闭合回路,使电流通过电解池;(B) 作为理想的极化电极;(C) 具有较小的交换电流密度和良好的电势稳定性;(D) 近似为理想不极化电极,与被测电极构成可逆原电池 .10.分别用(1)铂黑电极,(2)光亮铂电极,(3)铁电极,(4)汞电极,电解硫酸溶液,若电极极片的大小和外加电压相同,则反应速度次序是:(A) (4) > (3) > (2) > (1) ;(B) (2) > (1) > (3) > (4) ;(C) (1) > (2) > (3) > (4) ;(D) (4) > (2) > (3) > (1) 。
12.当原电池放电,在外电路中有电流通过时,其电极电势的变化规律是:(A) 负极电势高于正极电势;(B) 阳极电势高于阴极电势;(C) 正极可逆电势比不可逆电势更正;(D) 阴极不可逆电势比可逆电势更正。
电化学

例:电位滴定法确定酸碱滴定的终点
乌梅
【含量测定】
取本品最粗粉约4g,精密称定,置锥形瓶中, 精密加水100ml,加热回流4小时,放冷,滤过, 弃去初滤液,收集续滤液。精密量取续滤液 20ml,加水至80ml,照电位滴定法,用氢氧化 钠滴定液滴定,即得。
本品含有机酸以枸橼酸计,不得少于15.0%。
5
§1 基本原理 一、Nernst方程
注 意: cOx、cRed 包括了所有参加电极反应的物质 固体或液体的活度定为1
6
二、化学电池
(一)分类(根据电极反应是否能自发进行) 1.原电池:将化学能转化为电能的装置(自发进行) 应用:直接电位法,电位滴定法 2.电解池:将电能转化为化学能的装置(非自发进行) 应用:永停滴定法
电流取决于浓度较低的 一方
37
二、基本概念 1、可逆电对:I2/I- ,外加很小电压就能电解
不可逆电对:S4O62-/ S2O32-,外加很大电压才能电解 2、可逆电对:电流取决于浓度小的型体
[Ox]=[Red]时电流最大 不可逆电对:无电流
38
三、分类: 根据滴定过程的电流变化,分为3种类型
VSP
Fe3+ + e → Fe2+
( ) f = f q + 0.059 lg aFe3+ aFe2+
应用:测定氧化型、还原型浓度或比值
10
4.膜电极(离子选择电极) 以固体膜或液体膜为传感体,用以指示溶 液中某种离子浓度的电极 应用:测定某种特定离子 例:测量溶液pH用的玻璃电极;各种离子选择 性电极
40
小结 玻璃电极的使用注意事项 pH计的使用步骤 电位法指示终点的原理(内插法) 永停滴定法终点的确定
第十章电位分析

玻璃电极
待测液┇┇KCl(饱和)│Hg2Cl2│Hg (+) 甘汞电极
25℃,电池电动势ECell为: ECell = SCE- 玻 = SCE – ( AgCl/Ag+ 膜)
在测定条件下, SCE及 AgCl/Ag,可视为常数,合并 为K,于是上式写为:
,
实际 位电 Ox/极 Red电 为纵
坐标,则得到一 ,条 其直 斜S线 率 RT,当aOx 1时, nF aRed
截距 Ox/Red O x/Red。
三、实验中电极性质和名称
1. 指示电极和工作电极
在零电流条件下,能反映溶液中待测离子的活度或 浓度的电极,在测试过程中,溶液主体浓度不发生变化 的电极称为指示电极。
玻璃膜内、外表面的性质基本相同,则k1=k2 , a’1 = a’2
膜 = 外 - 内 = 0.059 lg( a1 / a2)
由式可知,如果a1= a2 ,则理论上膜=0,但实际上 膜≠0,此时的电位称为不对称电位不对称。
产生的原因: 玻璃膜内、外表面含钠量、表面张力及 机械 和化学损伤的细微差异所引起的(玻璃膜内、外表面 的性质不完全相同)。长时间浸泡后恒定(1~30mV)。
水化层表面可视作阳离子交换剂。溶液中H+经水化层扩 散至干玻璃层,干玻璃层的阳离子向外扩散以补偿溶出的离 子,离子的相对移动产生扩散电位。 两者之和构成膜电位。
放入待测溶液,玻璃膜两侧电解质的浓度或组成不同, 因此在膜与溶液的界面上,离子选择性和强制性的扩散,膜 两边交换、扩散离子数目不同,破坏电荷分布的均匀性,形 成双电层,在膜的两侧产生两个相界电位: 外、内,产生 电位差 。
仪器分析-第10章 电位分析法

Instrumental Analysis第10章电位分析法10-4直接电位法y104 直接电位法电位滴定法y10-5 电位滴定法y10-6 电位分析法的应用5.掌握电位滴定法的测定原理和应用。
10‐1 概述电位分析法——是利用电极电电位分析法位与化学电池电解质溶液中某种组分活度(浓度)的对应关系而实现定量测定的一种电化学分析法。
学分析法●理论基础——Nernst方程式电位分析法特点电位法特点(1)灵敏度高(2)选择性好(3)仪器简单、操作方便,易于实现自动化(4)应用广泛()应用广泛10‐2 离子选择性电极Ion-Selective Electrodes (ISE)一、离子选择性电极的定义、结构和分类1、定义离子选择性电极是一种以电位法测定某些特定离子活度的指示电极。
其电极电位与溶液中给定离子活度的对数呈线性关系。
、离子选择牲电极的基本构造2、离子选择电造二、离子选择性电极的电位1、膜电位——离子选择电极膜电位是膜内扩散电位和膜与电解质溶液形成的内外界面的界面电位的代数和。
扩散电位——在两种不同离子或离子相同而活度不同的液液界面上,由于离子自由扩散速率离的不同所形成液接电位,称为扩散电位。
界面电位——膜与溶液接触时,膜相中可活动的离子与溶液中的某些离子有选择的发生互相作用,这种强制性和选择性的作用,从而造成两相界面的电荷分布不均匀产生双电层形成两相界面的电荷分布不均匀,产生双电层形成电位差,这种电位称为界面电位或相间电位。
膜电位——是膜内扩散电位和膜与电解质溶液形成的内外界面的界面电位的代数和。
三、玻璃膜电极1、pH玻璃电极的结构1pH玻璃电极的结构a a.单玻璃电极b.复合电极2、pH玻璃电极的响应机理pH玻璃电极膜电位形成示意图3、pH玻璃电极的特性(1)钠差(碱差)和酸差钠差——在pH≻9或含Na+浓度较高的溶液中,测得的pH比实际值偏低,引入的误差称为钠差(或碱差)。
酸差——在pH≺1或较高酸性条件下,测得的pH比实际值偏高,引入的误差称为酸差。
物理化学(第五版傅献彩)第10_电解与极化作用

无电流
ϕ可逆
= ϕy Ag+ |Ag
−
RT F
ln
1 aAg+
有电流
ϕ不可逆
= ϕy Ag+ |Ag
−
RT F
ln
1 aAg+ , e
η阴
= ϕ可逆
− ϕ不可逆
=
RT F
ln aAg+ aAg+ , e
>0
aAg+ , e < aAg+ ϕ不可逆 < ϕ可逆
阳极上的情况类似,但 ϕ不可逆 > ϕ可逆
的金属先在阴极析出,这在电镀工业上很重要 例如,利用氢的超电势,控制溶液的pH,实
现镀 Zn,Sn,Ni,Cr 等
25
阴极上发生还原反应
发生还原 (1) 金属离子 的物质: (2) 氢离子 (中性水溶液 aH+ = 10−7 ) 判断在阴极上首先析出何种物质,应把各 种可能还原的物质的电极电势求出来(气 体要考虑超电势,金属可不考虑超电势)
2H+ + 2e- = H2
ϕ可逆
=ϕΟ H+ |H2
− RT 2F
ln
pH2 / p Ο a2
H+
= −0.059pH = −0.414V
ϕ不可逆 = ϕ可逆 −η = −0.414V − 0.584V = −0.998V
Zn2+ + 2e- = Zn
ϕ可逆
=ϕΟ Zn2+ |Zn
− RT 2F
1 ln
=−
RT 2F
ln
aH2 a2
H+
−ηH2
设 pH2 = p Ο
电化学原理及应用
第4章电化学原理及应用(讲授5学时)Chapter 4 Electrochemistry本章教学内容:原电池与电极电势。
能斯特方程式的应用。
E与△r G m的关系。
氧化还原反应方向的判断。
用△r Gθm,Eθ与Kθ估计氧化还原反应进行的程度。
化学电源,蓄电池、新型燃料电池、高能电池、电解、电镀、电抛光、电解加工,金属的腐蚀及防护。
本章教学要求:(1)了解电极电势的概念,能用能斯特方程式进行有关计算(2)能应用电极电势的数据判断氧化剂还原剂的相对强弱及氧化还原反应自发进行的方向和程度。
了解摩尔吉布斯焓变与原电池电动势,标准摩尔吉布斯自由能变与氧化还原反应平衡常数的关系。
(3)了解电解、电镀、电抛光的基本原理,了解它们在工程上的应用。
(4)了解金属腐蚀及防护原理.本章教学重点:a)原电池的组成、半反应式以及电极类型;b)电极电势的概念,能斯特方程式及电极电势的应用;c)电解基本原理及应用,电镀、电抛光、电解加工;d)金属腐蚀及防护原理。
本章习题:P97 1, 2, 5, 6, 7, 9, 10概述电化学反应可分为两类:(1)利用自发氧化还原反应产生电流(原电池),反应△G<0,体系对外做功。
(2)利用电能促使非自发氧化还原反应发生(电解),反应△G>0,环境对体系做功。
4.1 原电池(Electrochemical cell)任何自发进行的氧化还原(oxidation-reduction)反应,只要设计适当,都可以设计成原电池用以产生电流。
4.1.1 原电池的结构与工作原理Zn(s)+Cu2+(aq)=Zn2+(aq)+Cu(s)结构图:P75图4-1负极Zn(s)→Zn2+(aq)+2e-(Oxidation)正极Cu2+(aq)+2e-→Cu(s) (Reduction)总反应:Zn(s)+ Cu2+(aq) →Zn2+(aq)+ Cu(s)原电池的符号(图式)(cell diagram)表示:如铜-锌原电池, :Zn∣ZnSO4(c1)┊┊CuSO4(c2)∣Cu规定(1)负极(anode)在左边,正极(Cathode)在右边,按实际顺序从左至右依次排列出各个相的组成及相态;(2)用单实竖线表示相界面,用双虚竖线表示盐桥;(3)溶液注明浓度,气体注明分压;(4)若溶液中含有两种离子参加电极反应,可用逗号隔开,并加上惰性电极.4.1.2 电极类型按氧化态、还原态物质的状态分类:·第一类,金属、或吸附了气体的惰性金属放在含该元素离子的溶液中·第二类,金属难溶盐(难溶氧化物)·第三类,电极为惰性材料,运输电子。
10电位分析法
电位分析法
复合式pH玻璃电极 玻璃电极 复合式
为简化测定操作,推出了复合式pH玻璃电极:将pH玻 璃电极与外参比电极结合在一起。 结构特点:内外两个参比电极间的电位差恒定;外参比 电极通过多孔的陶瓷塞与未知pH的待测液相接触,构 成一个化学电池。 使用后清洗完毕,应浸在以AgCl饱和的KCl溶液中。
Θ H+ 0 0
+ M
电位分析法
误差
′ ϕ =ϕ + .0592lg(α + α 0 K
Θ 0 0 H+ H+
+ M
)
表 : 试 中α 低 α 高 , 明 当 液 且 时
+ M
ϕ受 影 变 而 可 略 α 响 大 不 忽 ,
0
+ M
使 表 的pH明 偏 , 入 误 称 碱 差 得 征 显 低 引 的 差 为 误 。 在 酸 件 , 于 分 的 度 小 α也 小 高 条 下 由 水 子 活 变 , 减 ,
ϕOx
Re d
=ϕ
O Ox/Red
R T + ln aOx nF
电位分析法
电极电位目前无法测量一个单独电极的绝对电位。 电位分析中,由两个电极组成电池。
指示电极:被测试液中某种离子的活度 指示电极 参比电极:提供电位标准 参比电极 极化电极:电位随外加电压的改变而改变 极化电极 去极化电极:电极电位完全保持恒定。 去极化电极
电位分析法
玻璃电极使用前,必须在水溶液 中浸泡至少24h以进行活化。 水浸泡后,表面的Na+与水中的 H+ 交换, 表面形成水合硅胶 层。 水合硅胶层与溶液的界面间由于 离子交换产生电位差。
电位分析法
玻璃膜电位
玻璃电极使用前,必须在水溶液中浸泡活化 活化, 玻璃电极使用前 , 必须在水溶液中浸泡 活化 , 生成 三层结构 结构, 三层结构,即中间的干玻璃层和两边的水化硅胶层
华东理工大学现代基础化学课后习题解答第10章
2
= -0.700 V 9、求下列电极在 25℃时的电极反应的电势。
(1) 101.3 kPa 的 H2(g)通入 0.10 mol⋅L −1的 HCl 溶液中;
(2) 在 1L 上述(1)的溶液中加入 0.1 mol 固体 NaOH; (3) 在 1L 上述(1)的溶液中加入 0.1 mol 固体 NaAc。(忽略加入固体引起的溶液体积变化)。
− 3
+
H
+
→Zn
2+
+
NH
+ 4
+ H2O
(4) Ag +
+
NO
− 3
+
H
+
→Ag
+
+
NO
+
H2O
(5) Cl2 + OH − →Cl − + ClO − + H2O
(6)
Al
+
NO
− 3
+
OH
−
+
H2O→[Al(OH)4]
−
+
NH3
解: (1) 2KMnO4 + 5K2SO3 + 3H2SO4 = 6K2SO4 + 2MnSO4 + 3H2O (2) 5NaBiO3(s) + 2MnSO4 + 16HNO3 = 2HMnO4 + 5Bi(NO3)3 + 2Na2SO4 + NaNO3 + 7H2O
7、根据电对 Cu 2+ /Cu、Fe 3+ /Fe 2+ 、Fe 2+ /Fe 的电极反应的标准电势值,指出下列各 组物质中哪些可以共存,哪些不能共存,并说明理由。
第八、九、十章电化学习题及参考答案
第八、九、十章电化学习题及参考答案一、选择题1.下列溶液中哪个溶液的摩尔电导最大:( )A. 0.1 mol·dm−3 KCl 水溶液B. 0.001 mol·dm−3 HCl 水溶液C. 0.001 mol·dm−3 KOH 水溶液D. 0.001 mol·dm−3 KCl 水溶液2.在一定温度和较小的浓度情况下,增大强电解质溶液的浓度,则溶液的电导率κ与摩尔电导Λm 变化为:( )A. κ增大,Λm 增大B. κ增大,Λm 减少C. κ减少,Λm 增大D. κ减少,Λm 减少3.分别将CuSO4、H2SO4、HCl、NaCl 从0.1 mol·dm−3降低到0.01 mol·dm−3,则Λm 变化最大的是:( )A. CuSO4B. H2SO4C. NaClD. HCl4.用同一电导池测定浓度为0.01 和0.10 mol·dm−3 的同一电解质溶液的电阻,前者是后者的10 倍,则两种浓度溶液的摩尔电导率之比为:( )A. 1 : 1B. 2 : 1C. 5 : 1D. 10 : 15.在Hittorff 法测迁移数的实验中,用Ag 电极电解AgNO3 溶液,测出在阳极部AgNO3 的浓度增加了x mol,而串联在电路中的Ag 库仑计上有y mol 的Ag析出, 则Ag+离子迁移数为:( ) A. x/y B. y/x C. (x-y)/x D. (y-x)/y6.用同一电导池分别测定浓度为0.01 mol/kg 和0.1 mol/kg 的两个电解质溶液,其电阻分别为1000 Ω和500 Ω,则它们依次的摩尔电导率之比为:( )A. 1 : 5B. 5 : 1C. 10 : 5D. 5 : 107.在10 cm3浓度为1 mol·dm−3的KOH 溶液中加入10 cm3水,其电导率将:( )A. 增加B. 减小C. 不变D. 不能确定8.下列电解质水溶液中摩尔电导率最大的是:( )A. 0.001 mol/kg HAcB. 0.001 mol/kg KClC. 0.001 mol/kg KOHD. 0.001 mol/kg HCl 9.浓度均为m 的不同价型电解质,设1-3 价型电解质的离子强度为I1,2-2 价型电解质的离子强度为I2,则:( )A. I1 < I2B. I1 = I2C. I1= 1.5I2D. 无法比较I1 和I2 大小10.在25℃,0.002 mol/kg 的CaCl2 溶液的离子平均活度系数(γ±)1,0.02 mol/kg CaSO4 溶液的离子平均活度系数(γ±)2,那么:( )A. (γ±)1 < (γ±)2B. (γ±)1 > (γ±)2C. (γ±)1 = (γ±)2D. 无法比较大小11.下列电解质溶液中,离子平均活度系数最大的是:( )A. 0.01 mol/kg NaClB. 0.01 mol/kg CaCl2C. 0.01 mol/kg LaCl3D. 0.01 mol/kg CuSO4 12.0.001 mol/kg K2SO4 和0.003 mol/kg 的Na2SO4 溶液在298 K 时的离子强度是:( )A. 0.001 mol/kgB. 0.003 mol/kgC. 0.002 mol/kgD. 0.012 mol/kg13.下列说法不属于可逆电池特性的是:( )A. 电池放电与充电过程电流无限小B. 电池的工作过程肯定为热力学可逆过程C. 电池内的化学反应在正逆方向彼此相反D. 电池所对应的化学反应Δr G m = 014.下列电池中,哪个电池的电动势与Cl−离子的活度无关?( )A. Zn│ZnCl2(aq)│Cl2(g)│PtB. Zn│ZnCl2(aq)‖KCl(aq)│AgCl(s)│AgC. Ag│AgCl(s)│KCl(aq)│Cl2(g)│PtD. Hg│Hg2Cl2(s)│KCl(aq)‖AgNO3(aq)│Ag15.下列电池中,哪个电池反应不可逆:( )A. Zn|Zn2+||Cu2+| CuB. Zn|H2SO4| CuC. Pt,H2(g)|HCl(aq)|AgCl,AgD. Pb,PbSO4|H2SO4|PbSO4,PbO216.下列反应AgCl(s) + I−→AgI(s) + Cl−其可逆电池表达式为:( )A. AgI(s) |I−| Cl−| AgCl(s)B. AgI(s) | I−|| Cl−| AgCl(s)C. Ag(s),AgCl(s) | Cl−|| I−| AgI(s),Ag(s)D. Ag(s),AgI(s) | I−|| Cl−| AgCl(s),Ag(s)17.电池电动势与温度的关系为:E/V=1.01845−4.05×10-5(t/℃-20)−9.5×10-7(t/℃-20)2, 298 K 时电池可逆放电,则:( )A. Q > 0B. Q < 0C. Q = 0D. 不能确定18.某燃料电池的反应为:H2(g) +O2(g) → H2O(g) 在400 K 时的Δr H m 和Δr S m分别为−251.6 kJ/mol 和−50 J/(K·mol),则该电池的电动势为:( )A. 1.2 VB. 2.4 VC. 1.4 VD. 2.8 V19.若某电池反应的热效应是负值,那么此电池进行可逆工作时,与环境交换的热:( ) A. 放热 B. 吸热 C. 无热 D. 无法确定20.某电池在标准状况下,放电过程中,当Q r = −200 J 时,其焓变ΔH 为:( )A. ΔH = −200 JB. ΔH < −200 JC. ΔH = 0D. ΔH> −200 J21.有两个电池,电动势分别为E1 和E2:H2(p)│KOH(0.1 mol/kg)│O2(p) E1H2(p)│H2SO4(0.0l mol/kg)│O2(p) E2 比较其电动势大小:( )A. E1< E2B. E1> E2C. E1= E2D. 不能确定22.在恒温恒压条件下,以实际工作电压E′放电过程中,电池的反应热Q 等于:( )A. ΔH −zFE′B. ΔH + zFE′C. TΔSD. TΔS −zFE′23.已知:(1) Cu│Cu2+(a2)‖Cu2+(a1)│Cu 电动势为E1(2) Pt│Cu2+(a2),Cu+(a')‖Cu2+(a1),Cu+(a')│Pt 电动势为E2,则:( )A. E1= E2B. E1 = 2 E2C. E1 < E2D. E1≥E224.在298 K 将两个Zn(s)极分别浸入Zn2+离子活度为0.02 和0.2 的溶液中,这样组成的浓差电池的电动势为:( )A. 0.059 VB. 0.0295 VC. −0.059 VD. (0.059lg0.004) V25.巳知下列两个电极反应的标准还原电势为:Cu2++ 2e →Cu,Ψ= 0.337 VCu++ e →Cu,Ψ= 0.521 V,由此求算得Cu2+ + e →Cu+的Ψ等于:( )A. 0.184 VB. −0.184 VC. 0.352 VD. 0.153 V26.电池Pb(Hg)(a1)│Pb2+(aq)│Pb(Hg)(a2) 要使电动势E>0, 则两个汞齐活度关系为:( ) A. a1>a2 B. a1= a2 C. a1<a2 D. a1 与a2 可取任意值27.下列电池中,液体接界电位不能被忽略的是:( )A. Pt,H2(p1)|HCl(m1)|H2(p2),PtB. Pt,H2(p1)|HCl(m1)|HCl(m2)|H2(p2), PtC. Pt,H2(p1)|HCl(m1)||HCl(m2)|H2(p2),PtD. Pt,H2(p1)|HCl(m1)|AgCl,Ag−Ag,AgCl|HCl(m2)|H2(p2),Pt 28.测定溶液的p H 值的最常用的指示电极为玻璃电极, 它是:( )A. 第一类电极B. 第二类电极C. 氧化还原电极D. 氢离子选择性电极29.已知298 K 时,Ψ(Ag+,Ag)=0.799 V, 下列电池的E 为0.627 V,Pt, H2│H2SO4(aq)│Ag2SO4(s)│Ag(s) 则Ag2SO4 的活度积为:( )A. 3.8×10−7B. 1.2×10−3C. 2.98×10−3D. 1.52×10−630. 当电池的电压小于它的开路电动势时,则表示电池在:( )A. 放电B. 充电C. 没有工作D. 交替地充放电31.下列两图的四条极化曲线中分别代表原电池的阴极极化曲线和电解池的阳极极化曲线的是:( )A. 1、4B. 1、3C. 2、3D. 2、432.在电解硝酸银溶液的电解池中,随着通过的电流加大,那么:( )A. 阴极的电势向负方向变化B. 阴极附近银离子浓度增加C. 电解池电阻减小D. 两极之间的电势差减少33.电极电势E 的改变可以改变电极反应的速度,其直接的原因是改变了:( )A. 反应的活化能B. 电极过程的超电势C. 电极与溶液界面双电层的厚度D. 溶液的电阻34.用铜电极电解CuCl2 的水溶液,在阳极上会发生:( )A. 析出氧气B. 析出氯气C. 析出铜D. 铜电极溶解35.25℃时, H2 在锌上的超电势为0.7 V,Ψ(Zn2+/Zn) = −0.763 V,电解一含有Zn2+(a=0.01) 的溶液,为了不使H2 析出,溶液的p H 值至少应控制在( )A. p H > 2.06B. p H > 2.72C. p H > 7.10D. p H > 8.0236.通电于含有相同浓度的Fe2+, Ca2+, Zn2+, Cu2+的电解质溶液, 已知:Ψ(Fe2+/Fe) = −0.440 V,Ψ(Ca2+/Ca) = −2.866 V,Ψ(Zn2+/Zn) = −0.7628 V,Ψ(Cu2+/Cu) = 0.337 V 当不考虑超电势时, 在电极上金属析出的次序是:( )A. Cu →Fe →Zn →CaB. Ca →Zn →Fe →CuC. Ca →Fe →Zn →CuD. Ca →Cu →Zn →Fe37.用Pt 电极电解CdSO4 溶液时,决定在阴极上是否发生浓差极化的是:( )A. 在电极上的反应速率(若不存在浓差极化现象)B. Cd2+从溶液本体迁移到电极附近的速率C. 氧气从SO42−溶液本体到电极附近的速率D. OH−从电极附近扩散到本体溶液中的速率. 38.298 K、0.1 mol/dm3 的HCl 溶液中,氢电极的热力学电势为−0.06 V,电解此溶液时,氢在铜电极上的析出电势E(H2)为:( )A. 大于−0.06 VB. 等于−0.06 VC. 小于−0.06 VD. 不能判定参考答案1.B2.B3.A4.A5.D6.B7.B8.D9.C 10.B 11.A12.D 13.D 14.C 15.B 16.D 17.B 18.A 19.D 20.B21.C22.B 23.A 24.B 25.D 26.A 27.B 28.D 29.D 30.A 31.B32.A 33.A 34.D 35.A 36.A 37.D 38.C二、计算题:1. 某电导池中充入0.02 mol·dm-3的KCl溶液,在25℃时电阻为250 Ω,如改充入6×10-5mol·dm-3NH3·H2O溶液,其电阻为105 Ω。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②可得到收率和纯度都较高的产品。控制电极电 位和选择适当的电极、溶剂等方法,使反应按 人们所希望的方向进行,故反应选择性高,副 反应较少。
③电化学反应产物容易分离和收集,环境污染 少。电子是最干净的化学试剂,在反应体系中 除原料和生成物外通常不含其他反应试剂。
④便于自动控制,并且可连续运转。电化学过程 的电参数(电流、电压) 易于实现数据采集、过 程自动化与控制。
10.1.1 基本原理
阴极反应:
2H2O + 2e → H2 + 2OH- φ0=-0.828V Na+ + OH- → NaOH
阳极反应:
2Cl- - 2e → Cl2
φ0=1.3583V
2NaCl +2H2O → Cl2 + 2NaOH + H2
副反应:4OH- - 4e → 2H2O + O2 φ0=0.401V 2H2O –4e → O2 + 4H+ φ0=1.229V
10.1.1 基本原理
其他可能的不利副反应: Cl2 + H2O → HCl + HClO 2HClO + NaClO → NaClO3 + HCl Cl2 + 2e- → 2Cl-(阴极还原) Cl2 + 2Na-Hg → 2NaCl + 2Hg HCl + Na-Hg → NaCl + Hg +1/2H2 2HClO + 2Hg → (HgCl)2O + H2O (HgCl)2O + 2HCl → 2HgCl2 + H2O
电化学方法的优点:
①由更强力的手段促使氧化还原反应发生,通
常能使反应在室温下进行。通过调节电极电 位,可改变电极反应速度。根据计算,改变 电位l V,活化能将降低40kJ,可使反应速 度增加107倍,相当于升温300℃ 。因此,电 合成工业一般都在常温常压下进行,不需特 别的加热、加压设备。对节约能源,降低设 备投资都有利。
第10章
电化学工业
主要内容
10.1 氯碱工业 10.2 电解冶金
电化学工业是指采用电化学的方法进行
产品生产的工业领域,包括:无机物的电合 成、有机物的电合成、金属的电解冶炼等。 本质上说,都是通过消耗电能而得到化学能 的过程,因此都属于电解过程。
目前最重要的电化学工业是氯碱工业,
氯碱也是世界上产量最大的电解产品,世界 年产量达到5000万吨以上。电解冶金则是冶 金工业中大规模提取金属的主要方法之一, 其中电解铝为第二大电化学工业。
以下情况可考虑采用电合成方法: ①没有已知的化学方法;
②已知化学方法步骤多或产率低; ③化学方法采用的试剂价格太责; ④现有化学方法工艺流程大批量生产有困
难,或经济不合算,或污染问题未解 决。
10.1 氯碱工业
10.1.1 基本原理 10.1.2 理论分解电压与槽压 10.1.3 电解工艺
10.1.1 基本原理
1990年日本旭硝子公司已开发了直接生产 浓度达50%的烧碱的离子交换膜。
10.1.1 基本原理
与隔膜法和水银法相比,离子交换膜法 具有突出的优点,不仅产品质量高、能耗 低,而且可免除隔膜法使用石棉、水银法使 用汞造成的公害及环境行染,因而成为现代 氯碱工业发展的方向,发展迅速。
10.1.1 基本原理
(3)离子交换膜法 离子膜电解法是氯碱工业在70年代中期推
出的一种新工艺,其原理如图所示。
10.1.1 基本原理
该方法的关键是使用对离子具有选择透过 性的离子交换膜,在氯碱工业采用的是全氟阳 离子交换膜。
它只允许Na+由阳极区进入阴极区,却不 允许OH-、Cl- 及水分子通过,这样不仅使两 极产物隔离,避免了导致电流效率下降的各种 副反应,而且能从阴极区直接获得高纯(含盐 仅30ppm)、高浓度(一般为32~35%)的烧碱。
(2)汞阴极法 阴极反应:
Na+ + Hg + e- → Na-Hg φ0=-1.868V 在解汞室中:
2Na-Hg+2H2O=2Hg+2Na++2OH- + H2 阳极反应:
2Cl- - 2e → Cl2 2NaCl +2H2O → Cl2 + 2NaOH + H2
副反应:4OH- - 4e → 2H2O + O2
NaClO在阴极还原:
NaClO + H2 → NaCl + H2O
10.1.1 基本原理
副反应的结果: ①消耗了产品,Cl2、H2、NaOH; ②生成了不需要的物质,降低了产品的纯
度,消耗了电能。
所以实际生产工艺中采用了各种方 法,来降低副反应,提高能量的效率,达 到尽可能高的经济效益。
10.1.1 基本原理
10.1.1 基本原理
副反应的结果: ①消耗部分电流,降低了电流效率; ②电解室生成了H2,降低了Cl2的纯度,造
成了不安全因素。
由于在解汞室中生成NaOH和H2,所以 可以得到高浓度的NaOH(浓度可达 45%),高纯度(没有Cl2引起的污染,含盐 仅50ppm)。但Hg对环境和工人身体的危害 需要严格控制。
10.1.1 基本原理
其他可能的不利副反应:
溶 液
Cl2 + H2O → HCl + HClO
中 的
NaOH + HClO → NaClO + H2O
均 相
NaOH + HCl → NaCl + H2O 2HClO + NaClO → NaClO3 + HCl
反 应
ቤተ መጻሕፍቲ ባይዱ
ClO-在阳极氧化:
6ClO- + 6OH- → 2ClO3- + 4Cl- + 3/2O2 +3H2O + 6e-
传统的电解食盐水制取氯碱主要采用 隔膜法和汞阴极法两种工艺,现代又发展 了离子(交换)膜法电解工艺。这些都已 实现工业化应用。
现代又开发了SPE(固体聚合物电解 质)电解工艺和采用固体电解质隔膜的熔 盐电解工艺。但这两种工艺还处于发展阶 段。
(1)隔膜法:
10.1.1 基本原理
隔膜法电解食盐水制Cl2和碱(NaOH)的原理图
电化学方法的不足:
①消耗大量电能。 例如生产每吨铝消耗电能 约15000kWh,每吨烧碱耗电约3000kWh, 每吨电解锌耗电约6000kWh。因此,在目 前能源较紧张的条件下,较难全面地、大 规模地发展电化学工业。
②电解槽结构复杂,生产能力不高,以及电极 活性不易维持。
③对工作人员的技术和管理水平要求都较高。 以保证长期、稳定、连续地生产。