吉林省长市农安县九年级数学第一次综合测试题(扫描版) 华东师大版

合集下载

2021华东师大版初中数学中考复习综合检测试卷(共4套)(含部分答案解析)

2021华东师大版初中数学中考复习综合检测试卷(共4套)(含部分答案解析)

2021华东师大版初中数学中考复习综合检测试卷(一)一、选择题(本题有10小题,每题3分,共30分)1.若a是无理数,则下列各数中,一定是有理数的是()A.﹣a B.a2C.D.a02.如图生活垃圾分类标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.在2,﹣3,4,﹣5这四个数中,所得的积最大的是()A.20B.﹣20C.15D.84.某在线教育集团2﹣6月份在线教育的收入情况如图所示,则这几个月收入的众数是()A.120B.l25C.l30D.l355.如图所示,己知AB∥CD,EF平分∠CEG,则∠GFE的度数为()A.20°B.40°C.50°D.60°6.将一张正方形纸片按如图步骤,通过折叠得到图④,在CA,沿该虚线剪去一个角,剩余部分展开铺平后得到的图形不可能是()A.B.C.D.7.甲在市场上先a元/只价格买了4只鸡,再b元/只买了3只,后来他以,结果发现赚钱了,赚钱的原因是()A.a<b B.a=bC.a>b D.与a,b大小无关8.如图,在点E,F,G,H中(m<O)和y=n(x+2)(n>O)图象的交点不可能是()A.点G B.点H C.点E D.点F9.如图,若△ABC内一点P,满足∠PAB=∠PBC=∠PCA=α,得到如下两个结论:①若∠BAC=90°,则必有∠APC=90°,则必有∠APB=∠BPC.对于这两个结论,下列说法正确的是()A.①对,②错B.①错,②对C.①,②均错D.①,②均对10.若关于x的一元二次方程(x﹣2)(x﹣3)=m有实数根x1,x2,且x1<x2有下列结论:①x1=2,x2=3;②m>﹣;③当m>0时,x1<2<3<x2;④二次函数y=(x﹣x1)(x﹣x2)+m图象与x轴交点的坐标为(2,0)和(3,0).其中一定成立的结论是()A.①③④B.②③④C.②③D.②④二、填空题(本题有6小题,每题4分,共24分)11.因式分解:2x2﹣18=.12.说明命题“若a>b,则a2>b2“是假命题的反例是.13.在平面直角坐标系中,将点A(﹣2,3)向右平移3个单位长度后.14.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中,随机抽取一张,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜,则乙获胜.这个游戏.(填“公平“或“不公平“)15.如图1,将一个边长为a的正方形纸片剪去两个小长方形,得到图2(图3),若图3的长方形的周长为3a,则b可表示为(用a的代数式表示)16.如图,在四边形ABCD中,AB=4,AD=DC.(1)若∠DAB=75°,则四边形ABCD的面积是;(2)四边形ABCD对角线BD的最大值是.三、解答题(本题有8小题,共66分)17.计算:(﹣)﹣2﹣(π﹣3.14)0+﹣2sin45°.18.解不等式组:,并将解集表示在数轴上.19.图①、图②反映的是某综合商场今年1﹣5月份的商品销售额统计情况,商场1﹣5月份销售总额一共是370万元.观察图①和图②,解答下面问题:(1)请补全图①.(2)商场服装部5月份的销售额是多少万元?(3)小华观察图②后认为,5月份服装部的销售额比4月份减少了.你同意他的看法吗?为什么?20.如图均是4×4的正方形网格,各小正方形的顶点称为格点,按要求作以格点A为顶点的四边形.21.甲、乙两人早上8:00分别从A.B两地同时出发,沿同一条路线前往图书馆C.乙从B地步行出发,甲骑自行车从A地出发途经B地,维修耽误了1h.结果他俩11:00同时到图书馆C.下图是他们距离A地的路程y(km)关于所用时间刻的的函数图象.请根据图中信息(1)甲开始修车时,两人相距多少?(2)甲修车后追赶,何时与乙的距离是3.5km?22.⊙O是△ABC的外接圆,AB=AC,过点A作AE∥BC,过点C作CH⊥BE于点H,交直线AE于点D.(1)求证:DE是⊙O的切线.(2)己知BC=4,tan∠D=,求DE的长度.23.如图,过反比例函数y=(k>O,x>O)图象上的点P作两坐标轴的垂线,B,与反比例函数y=相交于点E(1)若PE=3AE,求k的值;(2)当k=6时,是否是定值,若是,请说明理由.(3)试用k的代数式表示△PEF面积.24.如图,矩形ABCD中,E是CD的中点,延长AF交射线CB于点G,BC=nCG.(1)当点G在BC上时:①求证:GF=GC.②用含n的代数式表示的值.(2)设射线EF交线段AB于点H,若CD=8,HE=5FH2021华东师大版初中数学中考复习综合检测试卷(二)一、选择题(本大题共有10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应的位置上)1.数1,0, ,|﹣2|中最大的是()A.1B.0C. D.|﹣2|2.为稳定就业,省人社厅以“职等你来、就业同行”为行动主题共计举办线上线下招聘会2771场,累计万家用人单位提供就业岗位万个,将数据万用科学记数法表示为()A.B.C.D.3.计算(+)=()A.+B.+C.+D.+4.某班有6个学习小组,每个小组的人数分别为5、6、5、4、7、5,这组数据的中位数是()A.5B.6C.5.5D.4.55.如图是由6个相同的小正方体搭成的几何体,若去掉上层的一个小正方体,则下列说法正确的是()A.主视图一定变化B.左视图一定变化C.俯视图一定变化D.三种视图都不变化6.一副直角三角板如图放置,其中∠F=∠ACB=90°,∠D=45°,∠B=60°,AB∥DC,则∠CAE的度数为()A.25°B.20°C.15°D.10°7.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为()A.(,﹣1)B.(1,﹣)C.(,﹣)D.(﹣,)8.如图,四边形ABCD内接于半径为3的⊙O,CD是直径,若∠ABC=110°,则扇形AOD的面积为()A.πB.πC.πD.2π9.如图,已知△ABC中,AB=AC=2,∠B=30°,P是BC边上一个动点,过点P 作PD⊥BC,交△ABC其他边于点D.若设PB为x,△BPD的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.10.如图,中,,,,,为,边上的两个动点,且,为中点,则的最小值为()A.B.C.D.二、填空题(本大题共有8小题,第11-12小题,每小题3分,第13-18小题,每小题4分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应的位置上)11.计算:|3﹣π|+( )﹣1=.12.已知ab=7,a+b=2,则多项式a2b+ab2﹣20的值为.13.我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x斗,行酒为y斗,根据题意,可列方程组为.14.关于x的分式方程 腐 方腐 㠱 腐的解为非负数,则a的取值范围是.15.已知α、β是一元二次方程x2+x﹣1=0的两根,则α2+2a+β﹣1=.16.如图,在四边形ABCD中,E、F分别是AB、AD的中点.若EF=2,BC=5,CD=3,则cosC的值为_______.17.在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1,2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点垂直起飞到达点A处,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,点B为CD 的中点,则2号楼的高度为(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39tan67°≈2.36)18.如图,点A,B为反比例函数y㠱k x在第一象限上的两点,AC⊥y轴于点C,BD⊥x轴于点D,若B点的横坐标是A点横坐标的一半,且图中阴影部分的面积为k﹣2,则k=.三、解答题(本大题共有8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.先化简、再求值: 腐 腐 ͸腐 腐 腐 腐 腐,其中x=2.20.一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从口袋中任意摸出1个球,恰好摸到红球的概率是;(2)先从口袋中随机摸出一个球,不放回,再从中口袋中随机摸出一个球.请用列举法(画树状图或列表)求摸出一个红球和一个白球的概率.21.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从五个种类中选择一类),并将调查结果绘制成不完整的统计图.种类A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)根据统计图信息,求A类对应扇形圆心角α的度数,补全条形统计图;(3)该市约有10万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.22.已知:如图,在△ABC中,∠C=90°.(1)作图题:在AC边上,找一个点D,使点D到AB的距离等于DC,下列选项中,选出作法正确的;①取AC的中点D;②用尺规作角B的平分线,交AC于点D;③用尺规作AB边的中垂线,交AC或其延长线于点D;(2)在(1)的条件下,若AB=5,AC=4,求CD的长.23.如图1,已知直线:分别交,轴于,两点,点在轴负半轴上,且.(1)求直线的解析式;(2)如图2,点是线段上一点,若,求点的坐标.24.已知二次函数y=ax2+bx 的图象与y轴交于点B.(1)若二次函数的图象经过点A(1,1),①二次函数的对称轴为直线x=1,求此二次函数的解析式;②对于任意的正数a,当x>n时,y随x的增大而增大,请求出n的取值范围.(2)若二次函数的图象的对称轴为直线x=﹣1,且直线y=2x﹣2与直线l也关于直线x =﹣1对称,且二次函数的图象在﹣5<x<﹣4这一段位于直线l的上方,在1<x<2这一段位于直线y=2x﹣2的下方,求此二次函数的解析式.25.在边长为5的正方形ABCD中,点E在边CD所在直线上,连接BE,以BE为边,在BE 的下方作正方形BEFG,并连接AG.(1)如图1,当点E与点D重合时,AG=;(2)如图2,当点E在线段CD上时,DE=2,求AG的长;(3)若AG㠱DE的长.26.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)小红猜想:对角线互相平分的“等邻边四边形”是菱形.她的猜想正确吗?请说明理由.(3)如图2,小红作了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC 沿∠ABC的平分线BB′方向平移得到△A′B′C′,连接AA′,BC′.小红要使得平移后的四边形ABC′A′是“等邻边四边形”,应平移多少距离(即线段B′B的长)?2021华东师大版初中数学中考复习综合检测试卷(三)一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,有且只有一个答案是正确的)1.﹣4的相反数是()A. B.4C. D.﹣42.我国北斗公司在2020年发布了一款代表国内卫星导航系统最高水平的芯片,该芯片的制造工艺达到了0.000000022米.用科学记数法表示0.000000022为()A.22×10﹣10B.2.2×10﹣10C.2.2×10﹣9D.2.2×10﹣83.下列计算正确的是()A.a3•a4=a12B.(3x)3=9x3C.(b3)2=b5D.a10÷a2=a8 4.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是()A.B.C.D.5.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x1+x2=()A.﹣2B.2C.3D.﹣36.将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CED=46°,那么∠BAF的度数为()A.48°B.16°C.14°D.32°7.如图,将矩形OABC置于平面直角坐标系中,点A的坐标为(8,0),点D在BC上,且CD=2,将矩形OABC沿AD折叠,使点B落在点E处,DE与y轴交于M点,点M 恰好为DE中点,连接OE,则OE的长度()A.2 B.2͸C.2 D.28.甲、乙两人以相同的路线前往距离单位10千米的培训中心参加学习,图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(千米)随时间t(分钟)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了6千米后遇到甲;④乙出发6分钟后追上甲.其中正确的有()A.4个B.3个C.2个D.1个二、填空题(本题共8小题,每小题3分,共24分)9.函数y㠱 腐 腐的自变量x的取值范围是.10.(π﹣1)0﹣tan60°=.11.若ab=3,a﹣b=5,则2a2b﹣2ab2=.12.一组数据1,1,x,2,4,5的平均数是3,则这组数据的中位数是.13.如图,圆锥底面半径为rcm,母线长为5cm,侧面展开图是圆心角等于216°的扇形,则该圆锥的底面半径r为cm.14.如图,矩形OABC在平面直角坐标系中的位置如图所示,点B(﹣3,5),点D在线段AO上,且AD=2OD,点E在线段AB上,当△CDE的周长最小时,点E的坐标为.15.如图,点C在反比例函数y㠱 腐(x<0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为 ,则k的值为.16.若x=﹣m和x=m﹣4时,多项式ax2+bx+4a+1的值相等,且m≠2.当﹣1<x<2时,存在x的值,使多项式ax2+bx+4a+1的值为3,则a的取值范围是.三.解答题(共9小题,满分72分)17.(6分)解不等式组: 腐 >腐 .18.(6分)先化简,再求值:( 方方 方方 ) 方 ,其中a=2.19.(6分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使得CF=BE,连接DF,(1)求证:四边形AEFD是矩形;(2)连接OE,若AB=13,OE㠱 ,求AE的长.20.(7分)新华商场销售某种商品,每件进货价为40元,市场调研表明:当销售价为80元时,平均每天能售出20件;在每件盈利不少于25元的前提下,经过一段时间销售,当销售价每降低1元时,平均每天就能多售出2件.(1)若降价2元,则平均每天销售数量为件;(2)当每件商品定价多少元时,该商场平均每天销售某种商品利润达到1200元?21.(8分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:成绩分组频数频率50≤x<6080.1660≤x<7012a70≤x<80■0.580≤x<9030.0690≤x≤100b c合计■1(1)写出a,b,c的值;(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.22.(7分)如图,在一次综合实践活动中,小亮要测量一楼房的高度,先在坡面D处测得楼房顶部A的仰角为30°,沿坡面向下走到坡脚C处,然后在地面上沿CB向楼房方向继续行走10米到达E处,测得楼房顶部A的仰角为60°.已知坡面CD=10米,山坡的坡度i=1: (坡度是指坡面的铅直高度与水平宽度的比).(1)求点D离地面高度(即点D到直线BC的距离);(2)求楼房AB高度.(结果保留根式)23.(8分)如图,AB是⊙O的直径,点C在⊙O上,点E是 的中点,延长AC交BE 的延长线于点D,点F在AB的延长线上,EF⊥AD,垂足为G.(1)求证:GF是⊙O的切线;(2)求证:CE=DE;(3)若BF=1,EF㠱 ,求⊙O的半径.24.(10分)某商店销售一种商品,小明经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)607080周销售量y(件)1008060周销售利润w(元)200024002400注:周销售利润=周销售量×(售价﹣进价)(1)①求y关于x的函数解析式.(不要求写出自变量的取值范围)②该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过70元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1600元,求m的值.25.(14分)如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c 经过点O ,B (3,﹣3 ),与x 轴相交于点A (4,0).(1)求抛物线的解析式;(2)点N 在抛物线上,抛物线的对称轴上是否存在点M ,使得以O 、B 、M 、N 为顶点的四边形为平行四边形,若存在,请求出点M 的坐标,若不存在,请说明理由;(3)点C 为抛物线上的一个动点且位于直线OB 的下方,过点C 作CD ∥OB 交抛物线于点D ,连接OC 、BC 、BD ,S △BOC =3S △BCD ,点P 是x 轴上一动点,连接PC 、PD ,请求出△PCD 周长的最小值.2021华东师大版初中数学中考复习综合检测试卷(四)附答案一、选择题(每小题3分,共30分)1.抛物线y =2(x -3)2+4的顶点坐标是(A )A .(3,4)B .(-3,4)C .(3,-4)D .(2,4)2.(2018·重庆中考B 卷)下列调查中,最适合采用全面调查(普查)的是(D )A .对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影《厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查3.(2018·广西南宁中考)将抛物线y=12x2-6x+21向左平移2个单位后,得到新抛物线的表达式为(D)A.y=12(x-8)2+5B.y=12(x-4)2+5C.y=12(x-8)2+3D.y=12(x-4)2+34.若⊙O的半径为5,圆心O的坐标为(3,4),点P的坐标为(6,9),则点P与⊙O的位置关系是(C)A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.点P在⊙O上或⊙O外5.(2019·河南郑州模拟)从某公司3000名职工中随机抽取30名职工,每个职工周阅读时间(单位:min)依次为:周阅读时间(单位:min)61~7071~8081~9091~100101~110人数369102则该公司所有职工中,周阅读时间超过一个半小时的职工人数约为(A) A.1200B.1500C.1800D.21006.二次函数y=-x2+bx+c的图象如图所示.若点A(x1,y1),B(x2,y2)在此函数图象上,且x1<x2<1,则y1与y2的大小关系是(B)A.y1≤y2B.y1<y2C.y1≥y2D.y1>y2第6题图第7题图7.如图,四边形ABCD 为⊙O 的内接四边形,延长AB 与DC 相交于点G ,AO ⊥CD ,垂足为点E ,连结BD .若∠GBC =50°,则∠DBC 的度数为(C )A .50°B .60°C .80°D .90°8.(2018·山东青岛中考)已知一次函数y =ba x +c 的图象如图,则二次函数y =ax 2+bx +c 在平面直角坐标系中的图象可能是(A )9.如图,⊙O 的外切正六边形AB CDEF 的边长为2,则图中阴影部分的面积为(A )A.3-π2B.3-2π3C .23-π2D .23-2π3第9题图第10题图10.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y =-1400(x -80)2+16,桥拱与桥墩AC 的交点C 恰好在水面,有AC ⊥x 轴.若OA =10m ,则桥面离水面的高度AC 为(B )A .16940m B.174m C .16740m D.154m 二、填空题(每小题3分,共15分)11.(2019·河南周口期末)为了解2019届本科生的就业情况,某网站对2019届本科生的签约情况进行了网络调查,至3月底,参与网络调查的12000人中,只有5005人已与用人单位签约.在这个网络调查中,样本容量是__12__000__.12.如图,A ,B ,C ,D 是⊙O 上的四个点,AB ︵=BC ︵.若∠AOB =58°,则∠BDC =__29__度.第12题图13.(2019·山东泰安中考)若二次函数y =x 2+bx -5的对称轴为直线x =2,则关于x 的方程x 2+bx -5=2x -13的解为__x 1=2,x 2=4__.14.(2019·河南南阳三模)如图,在边长为2的正方形ABCD 中,以点D 为圆心、AD 的长为半径画弧,再以BC 为直径画半圆.若阴影部分①的面积为S 1,阴影部分②的面积为S 2,则S 2-S 1的值为__3π2-4__.第14题图第15题图15.函数y =x 2+bx +c 与y =x 的图象如图所示,有以下结论:①b 2-4c >0;②b +c +1=0;③3b +c +6=0;④当1<x <3时,x 2+(b -1)x +c <0.其中正确的有__2__个.三、解答题(共8小题,满分75分)16.(8分)如图,AB 为⊙O 的弦,AB =8,OC ⊥AB 于点D ,交⊙O 于点C ,且CD =1,求⊙O 的半径.解:如图,连结OA .∵OC ⊥AB ,∴AD =DB =12AB =4.设⊙O 的半径为r ,在Rt △OAD 中,OA 2=AD 2+OD 2,∴r 2=(r -1)2+42,整理,得2r =17,∴r =172,∴⊙O 的半径是172.17.(9分)已知抛物线y =-12x 2+bx +c 经过点(1,0)(1)求该抛物线的函数表达式;(2)将抛物线y =-12x 2+bx +c 平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.解:(1)把点(1,0)y =-12x 2+bx +c ,-12+b +c =0,=32,=-1,=32,∴该抛物线的函数表达式为y =-12x 2-x +32(2)∵y =-12x 2-x +32=-12(x +1)2+2,∴顶点坐标为(-1,2),∴一种平移方法是先向右平移1个单位,再向下平移2个单位得到的函数表达式为y =-12x 2,其顶点恰好落在原点.18.(9分)(2019·山东威海中考)在画二次函数y =ax 2+bx +c (a ≠0)的图象时,甲写错了一次项的系数,列表如下:x …-10123…y 甲…63236…乙写错了常数项,列表如下:x …-10123…y 乙…-2-12714…通过上述信息,解决以下问题:(1)求原二次函数y =ax 2+bx +c (a ≠0)的表达式;(2)对于二次函数y =ax 2+bx +c (a ≠0),当x __≥-1__时,y 的值随x 值的增大而增大;(3)若关于x 的方程ax 2+bx +c =k (a ≠0)有两个不相等的实数根,求k 的取值范围.解:(1)由甲同学的错误可知c =3.由乙同学提供的数据选x =-1,y =-2;x =0,y =-1;x =1,y =2,得-b +c =-2,=-1,+b +c =2,=1,=2,=-1,∴原二次函数为y =x 2+2x +3.(3)方程ax 2+bx +c =k (a ≠0)有两个不相等的实数根,即x 2+2x +3-k =0有两个不相等的实数根,∴Δ=4-4(3-k )>0,∴k >2.19.(9分)(2018·浙江温州中考)如图,D 是△ABC 的BC 边上一点,连结AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在圆上(1)求证:AE =AB ;(2)若∠CAB =90°,cos ∠ADB =13,BE =2,求BC 的长.解:(1)证明:由翻折的性质得∠AED =∠ACD ,AE =AC .∵∠ABD =∠AED ,∴∠ABD =∠ACD ,∴AB =AC ,∴AE =AB .(2)如图,过点A 作AH ⊥BE 于点H .∵AB =AE ,BE =2,∴BH =EH =1.∵∠ABE =∠AEB =∠ADB ,cos ∠ADB =13,∴cos ∠ABE =cos ∠ADB =13,∴BH AB =13,∴AC =AB =3.∵∠BAC =90°,AC =AB ,∴BC =3 2.20.(9分)(2019·辽宁锦州中考)为了响应“学习强国,阅读兴辽”的号召,某校鼓励学生利用课余时间广泛阅读,学校打算购进一批图书.为了解学生对图书类别的喜欢情况,校学生会随机抽取部分学生进行问卷调查,规定被调查学生从“文学、历史、科学、生活”中只选择自己最喜欢的一类,根据调查结果绘制了下面不完整的统计图.请根据图表信息,解答下列问题:(1)此次共调查了学生__200__人;(2)请通过计算补全条形统计图;(3)若该校共有学生2200人,请估计这所学校喜欢“科学”类图书的学生人数.解:(1)78÷39%=200(人),故答案为200.(2)历史:200×33%=66(人),科学:200-78-66-24=32(人),补全条形统计图如图所示:(3)2200×32200=352(人).答:该校2200名学生中喜欢“科学”类图书的大约有352人.21.(10分)(2019·山东潍坊中考)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000 kg,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元;(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300kg;若每千克的平均销售价每降低3元,每天可多卖出180kg.设水果店一天的利润为w元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其他费用忽略不计)解:(1)设这种水果今年每千克的平均批发价是x 元,则去年每千克的平均批发价为(x +1)元.由题意得今年的批发销售总额为10×(1+20%)=12(万元),则120000x -100000x +1=1000,整理得x 2-19x -120=0,解得x =24或x =-5(不合题意,舍去).答:这种水果今年每千克的平均批发价是24元.(2)设每千克的平均销售价为m 元.由题意得w =(m -180+-60m 2+4200m -66240=-60(m -35)2+7260.∵a =-60<0,∴抛物线开口向下,∴当m =35时,w 最大=7260.答:当每千克的平均销售价为35元时,该水果店一天的利润最大,最大利润是7260元.22.(10分)(2019·江苏扬州广陵区三模)如图,AB 是⊙O 的切线,切点为B ,AO 与⊙O 交于点C ,点D 在AB 上,DC =DB .(1)求证:CD 是⊙O 的切线;(2)若AD =2BD ,CD =2,求由线段BD ,CD 及BC ︵所围成的阴影部分的面积.解:(1)证明:如图,连结OB ,OD .∵AB 是⊙O 的切线,切点为B ,∴OB ⊥AB .在△OBD 和△OCD =OC ,=OD ,=CD ,∴△OBD ≌△OCD (SSS),∴∠OCD =∠OBD=90°,∴CD 是⊙O 的切线.(2)∵DB =DC ,AD =2BD ,CD =2,∴DB =2,AD =4,AD =2DC ,∴AB =DB +AD =6.∵∠OCD =90°,∴∠ACD =90°,∴sin A =CD AD =12,∴∠A =30°,∴∠AOB =60°,∴tan A =OBAB=33,∴OB =33×6=23,∴S 阴影=2S △BOD -S 扇形OBC =2×12×2×23-60×π×(23)2360=43-2π.23.(11分)如图,抛物线y =x 2+bx +c 与x 轴交于A (-1,0),B (3,0)两点,顶点M 关于x 轴的对称点是M ′.(1)求抛物线的表达式;(2)若直线AM ′与此抛物线的另一个交点为C ,求△CAB 的面积;(3)是否存在过A ,B 两点的抛物线,其顶点P 关于x 轴的对称点为Q ,使得四边形APBQ 为正方形?若存在,求出此抛物线的表达式;若不存在,请说明理由.解:(1)将A ,B 1)2-b +c =0,2+3b +c =0,=-2,=-3,所以抛物线的表达式为y =x 2-2x -3.(2)将抛物线的表达式化为顶点式,得y =(x -1)2-4,所以M 点的坐标为(1,-4),M ′点的坐标为(1,4).设直线AM ′的表达式为y =kx +b ,将A ,M ′点的坐标k +b =0,+b =4,=2,=2,所以直线AM ′的表达式为y =2x +2.联立得=2x +2,=x 2-2x -3,1=-11=0,2=5,2=12,则C 点坐标为(5,12).所以S △CAB =12×[3-(-1)]×12=24.(3)存在.理由如下:由四边形APBQ 是正方形,A (-1,0),B (3,0),得P (1,-2),Q (1,2)或P (1,2),Q (1,-2).①当顶点为P (1,-2)时,设抛物线的表达式为y =a (x -1)2-2,将A 点坐标代入函数表达式,得a(-1-1)2-2=0,解得a=12,所以抛物线的表达式为y=12(x-1)2-2;②当顶点为P(1,2)时,设抛物线的表达式为y=a(x-1)2+2,将A点坐标代入函数表达式,得a(-1-1)2+2=0,解得a=-12,所以抛物线的表达式为y=-12(x-1)2+2.综上所述,所求抛物线的表达式为y=12(x-1)2-2或y=-12(x-1)2+2.。

华东师大版九年级数学上册第一次月考考试题(可打印)

华东师大版九年级数学上册第一次月考考试题(可打印)

华东师大版九年级数学上册第一次月考考试题(可打印)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是()A.2 B.12C.﹣2 D.12-2.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±3 3.已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1 B.2 C.22 D.304.若实数a、b满足a2﹣8a+5=0,b2﹣8b+5=0,则1111b aa b--+--的值是()A.﹣20 B.2 C.2或﹣20 D.1 25.菱形不具备的性质是()A.四条边都相等 B.对角线一定相等C.是轴对称图形 D.是中心对称图形6.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是( )A.c<﹣3 B.c<﹣2 C.c<14D.c<17.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.如图,已知BD是ABC的角平分线,ED是BC的垂直平分线,90BAC∠=︒,3AD=,则CE的长为()A .6B .5C .4D .339.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)181__________.2.分解因式:3244a a a -+=__________.3.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是__________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:11322x x x -=---2.先化简,再求值:233()111a a a a a -+÷--+,其中a=2+1.3.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)连接DE ,若AD=2AB ,求证:DE ⊥AF .4.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.6.去年在我县创建“国家文明县城”行动中,某社区计划将面积为23600m的一块空地进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.8倍,如果两队各自独立完成面积为2450m区域的绿化时,甲队比乙队少用4天.甲队每天绿化费用是1.05万元,乙队每天绿化费用为0.5万元.(1)求甲、乙两工程队每天各能完成多少面积(单位:2m)的绿化;(2)由于场地原因,两个工程队不能同时进场绿化施工,现在先由甲工程队绿化若干天,剩下的绿化工程由乙工程队完成,要求总工期不超过48天,问应如何安排甲、乙两个工程队的绿化天数才能使总绿化费用最少,最少费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、C5、B6、B7、D8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、2(2)a a ;3、k <44、425、x=26、2.5×10-6三、解答题(本大题共6小题,共72分)1、无解2、3、详略.4、(1)2(2)略5、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)36、(1)甲、乙两工程队每天各完成绿化的面积分别是90m 2、50m 2;(2)甲队先做30天,乙队再做18天,总绿化费用最少,最少费用是40.5万元.。

吉林省长春市名校调研九级2025届九年级数学第一学期期末学业水平测试试题含解析

吉林省长春市名校调研九级2025届九年级数学第一学期期末学业水平测试试题含解析

吉林省长春市名校调研九级2025届九年级数学第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.已知二次函数y =ax 2+bx+c 的x 、y 的部分对应值如表:则该函数的对称轴为( ) A .y 轴B .直线x =12C .直线x =1D .直线x =322.已知OA ,OB 是圆O 的半径,点C ,D 在圆O 上,且//OA BC ,若26ADC ∠=︒,则B 的度数为( )A .30B .42︒C .46︒D .52︒3.如图,该几何体的主视图是( )A .B .C .D .4.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则( ) A .摸出黑球的可能性最小 B .不可能摸出白球 C .一定能摸出红球D .摸出红球的可能性最大5.在Rt ABC ,90C ∠=,3sin 5B =,则sin A 的值是( ) A .35B .4 5C .5 3D .5 46.根据下表中的二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴( ).………… A .只有一个交点B .有两个交点,且它们分别在轴两侧C .有两个交点,且它们均在轴同侧D .无交点7.已知22m y x =是关于x 的反比例函数,则( ) A .12m =B .12m =-C .0m ≠D .m 为一切实数8.某班7名女生的体重(单位:kg )分别是35、37、38、40、42、42、74,这组数据的众数是( ) A .74B .44C .42D .409.若y=(2-m)22m x -是二次函数,则m 等于( ) A .±2B .2C .-2D .不能确定10.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( ) A .0B .±1C .1D .1-二、填空题(每小题3分,共24分)11.如图,平行四边形ABCD 的顶点C 在y 轴正半轴上,CD 平行于x 轴,直线AC 交x 轴于点E ,BC AC ⊥,连接BE ,反比例函数ky x=()0x >的图象经过点D .已知3BCE S ∆=,则k 的值是________.12.在Rt △ABC 中,斜边AB=4,∠B=60°,将△ABC 绕点B 旋转60°,顶点C 运动的路线长是 (结果保留π). 13.从长度为2cm 、4cm 、6cm 、8cm 的4根木棒中随机抽取一根,能与长度为3cm 和5cm 的木棒围成三角形的概率为_____.14.底角相等的两个等腰三角形_________相似.(填“一定”或“不一定”)15.如图,某园林公司承担了绿化某社区块空地的绿化任务,工人工作一段时间后,提高了工作效率.该公司完成的绿化面积S (单位:2)m 与工作时间t (单位: h )之间的函数关系如图所示,则该公司提高工作效率前每小时完成的绿化面积是____________2m .16.在国家政策的宏观调控下,某市的商品房成交均价由去年10月份的7000元/m 2下降到12月份的5670元/m 2,则11、12两月平均每月降价的百分率是_____.17.如图所示,半圆O 的直径AB=4,以点B 为圆心,23为半径作弧,交半圆O 于点C ,交直径AB 于点D ,则图中阴影部分的面积是_____________.18.若m 是方程22310x x -+=的根,则2692019m m ++-的值为__________. 三、解答题(共66分)19.(10分)如图,已知点B 的坐标是(-2,0),点C 的坐标是(8,0),以线段BC 为直径作⊙A ,交y 轴的正半轴于点D ,过B 、C 、D 三点作抛物线. (1)求抛物线的解析式;(2)连结BD ,CD ,点E 是BD 延长线上一点,∠CDE 的角平分线DF 交⊙A 于点F ,连结CF ,在直线BE 上找一点P ,使得△PFC 的周长最小,并求出此时点P 的坐标;(3)在(2)的条件下,抛物线上是否存在点G ,使得∠GFC=∠DCF ,若存在,请直接..写出点G 的坐标;若不存在,请说明理由.20.(6分)数学兴趣小组几名同学到某商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在40~70元之间,若以每箱70元销售平均每天销售30箱,价格每降低1元平均每天可多销售3箱.现该商场要保证每天盈利900元,同时又要使顾客得到实惠,那么每箱售价为多少元?21.(6分)如图,在□ABCD 中, F 是AD 上一点,且3AF DF ,BF 与CD 的延长线交点E . (1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为1,求□ ABCD 的面积.22.(8分)如图,在△A BC 中,点D 在AB 边上,∠ABC =∠ACD , (1)求证:△A BC ∽△ACD (2)若AD =2,AB =5.求AC 的长.23.(8分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱. (1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式. (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?24.(8分)用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,“幸福”小区为了方便住在A 区、B 区、和C 区的居民(A 区、B 区、和C 区之间均有小路连接),要在小区内设立物业管理处P .如果想使这个物业管理处P 到A 区、B 区、和C 区的距离相等,应将它建在什么位置?请在图中作出点P .25.(10分)将一副直角三角板按右图叠放. (1)证明:△AOB ∽△COD ; (2)求△AOB 与△DOC 的面积之比.26.(10分)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD 沿x轴正方向平移的距离.参考答案一、选择题(每小题3分,共30分)1、B【分析】根据表格中的数据可以写出该函数的对称轴,本题得以解决.【详解】解:由表格可得,该函数的对称轴是:直线x=011 22 +=,故选:B.【点睛】本题考查二次函数的性质,解题的关键是熟练运用二次函数的性质,本题属于基础题型.2、D【分析】连接OC ,根据圆周角定理求出∠AOC ,再根据平行得到∠OCB ,利用圆内等腰三角形即可求解. 【详解】连接CO , ∵26ADC ∠=︒∴∠AOC=252ADC ∠=︒ ∵//OA BC∴∠OCB=∠AOC=52︒ ∵OC=BO , ∴B =∠OCB=52︒ 故选D.【点睛】此题主要考查圆周角定理,解题的关键是熟知圆的基本性质及圆周角定理的内容. 3、C【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【详解】解:从正面看易得是1个大正方形,大正方形左上角有个小正方形. 故答案选:C . 【点睛】本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,难度适中. 4、D【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案. 【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球, ∴摸出黑球的概率是223, 摸出白球的概率是123, 摸出红球的概率是2023,∵123<223<2023, ∴从中任意摸出1个球,摸出红球的可能性最大;故选:D . 【点睛】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等. 5、B【分析】根据互余两角三角函数的关系:sin 2A+sin 2B=1解答. 【详解】∵在Rt △ABC 中,∠C =90︒, ∴∠A +∠B =90︒, ∴sin 2A+sin 2B=1,sin A >0, ∵sin B =35, ∴sin A =2315-()=45. 故选B. 【点睛】本题考查互余两角三角函数的关系. 6、B【分析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断. 【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上 则该二次函数的图像与轴有两个交点,且它们分别在轴两侧 故选B. 【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成. 7、B【分析】根据题意得,21m =- ,即可解得m 的值. 【详解】∵22my x =是关于x 的反比例函数∴21m =- 解得12m =-故答案为:B . 【点睛】本题考查了反比例函数的性质以及定义,掌握反比例函数的指数等于1- 是解题的关键.8、C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C. 考点:众数. 9、C【解析】分析:根据二次函数的定义,自变量指数为2,且二次项系数不为0,列出方程与不等式求解则可. 解答:解:根据二次函数的定义,得:m 2-2=2 解得m=2或m=-2 又∵2-m≠0 ∴m≠2∴当m=-2时,这个函数是二次函数. 故选C . 10、D【分析】根据一元二次方程的定义,再将0x =代入原式,即可得到答案.【详解】解:∵关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =, ∴210a -=,10a -≠, 则a 的值为:1a =-. 故选D . 【点睛】本题考查一元二次方程,解题的关键是熟练掌握一元二次方程的定义.二、填空题(每小题3分,共24分) 11、1【分析】设D 点坐标为(m ,n ),则AB =CD =m ,由平行四边形的性质可得出∠BAC =∠CEO ,结合∠BCA =∠COE =90°,即可证出△ABC ∽△ECO ,根据相似三角形的性质可得出BC•EC =AB•CO =mn ,再根据S △BCE =3,即可求出k =1,此题得解.【详解】解:设D 点坐标为(m ,n ),则AB =CD =m , ∵CD 平行于x 轴,AB ∥CD , ∴∠BAC =∠CEO . ∵BC ⊥AC ,∠COE =90°, ∴∠BCA =∠COE =90°, ∴△ABC ∽△ECO ,∴AB:CE=BC:CO,∴∴BC•EC=AB•CO=mn.∵反比例函数y=kx(x>0)的图象经过点D,∴k=mn=BC•EC=2S△BCE=1.故答案为:1.【点睛】本题考查了反比例函数图象上点的坐标特征、平行四边形的性质以及相似三角形的判定与性质,由△ABC∽△ECO得出k=mn=BC•EC是解题的关键.12、23π.【解析】试题分析:将△ABC绕点B旋转60°,顶点C运动的路线长是就是以点B为圆心,BC为半径所旋转的弧,根据弧长公式即可求得.试题解析:∵AB=4,∴BC=2,所以弧长=602180π⨯=23π.考点:1.弧长的计算;2.旋转的性质.13、1 2【分析】根据三角形的三边关系得出第三根木棒长度的取值范围,再根据概率公式即可得出答案.【详解】∵两根木棒的长分别是3cm和5cm,∴第三根木棒的长度大于2cm且小于8cm,∴能围成三角形的是:4cm、6cm的木棒,∴能围成三角形的概率是:21 =42,故答案为12.【点睛】本题主要考查三角形的三边关系和概率公式,求出三角形的第三边长的取值范围,是解题的关键.14、一定【分析】根据等腰三角形的性质得到∠B=∠C,∠E=∠F,根据相似三角形的判定定理证明.【详解】如图:∵AB=AC ,DE=EF , ∴∠B=∠C ,∠E=∠F , ∵∠B=∠E ,∴∠B=∠C=∠E=∠F , ∴△ABC ∽△DEF , 故答案为一定. 【点睛】本题考查的是相似三角形的判定、等腰三角形的性质,掌握两组角对应相等的两个三角形相似是解题的关键. 15、100【分析】利用待定系数法求出提高效率后S 与t 的函数解析式,由此可得2t =时,S 的值,然后即可得出答案. 【详解】由题意,可设提高效率后得S 与t 的函数解析式为=+S kt b将(4,500)和(5,650)代入得45005650k b k b +=⎧⎨+=⎩解得150100k b =⎧⎨=-⎩因此,S 与t 的函数解析式为150100S t =- 当2t =时,1502100200S =⨯-=则该公司提高工作效率前每小时完成的绿化面积2200100()2m = 故答案为:100. 【点睛】本题考查了一次函数的实际应用,依据图象,利用待定系数法求出函数解析式是解题关键. 16、10%【分析】设11、12两月平均每月降价的百分率是x ,那么11月份的房价为7000(1−x ),12月份的房价为7000(1−x )2,然后根据12月份的价格即可列出方程解决问题.【详解】解:设11、12两月平均每月降价的百分率是x , 由题意,得:7000(1﹣x )2=5670,解得:x 1=0.1=10%,x 2=1.9(不合题意,舍去).故答案为:10%.【点睛】本题是一道一元二次方程的应用题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.17、33π- 【解析】解:连接OC ,CB ,过O 作OE ⊥BC 于E ,∴BE =12BC =1232⨯=3.∵OB =12AB =2,∴OE =1,∴∠B =30°,∴∠COA =60°,=()DOC OBC AOC AOC DBC S S S S S S ∆-=--阴影扇形扇形扇形 =2260230(23)1(231)3603602ππ⨯⨯--⨯⨯ =2(3)3ππ-- =33π-.故答案为33π-.18、1 【分析】根据一元二次方程的解的定义即可求出答案.【详解】由题意可知:2m 2−3m+1=0,∴2m 2−3m =-1∴原式=-3(2m 2−3m )+2019=1.故答案为:1.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.三、解答题(共66分)19、(1)213442y x x =-++;(2)428,55⎛⎫ ⎪⎝⎭P ;(3)129646,,(721,3221)⎛-+-- ⎝⎭G G 【分析】(1)由BC 是直径证得∠OCD=∠BDO,从而得到△BOD ∽△DOC,根据线段成比例求出OD 的长, 设抛物线解析式为y=a(x+2)(x-8),将点D 坐标代入即可得到解析式;(2)利用角平分线求出45CDF ,得到90CAF ,从而得出点F 的坐标(3,5),再延长延长CD 至点C ',可使CD C D,得到C'(-8,8),求出C'F的解析式,与直线BD的交点坐标即为点P,此时△PFC的周长最小;(3)先假设存在,①利用弧等圆周角相等把点D、F绕点A顺时针旋转90︒,使点F与点B重合,点G与点Q重合,则Q 1(7,3),符合1CQ DF,求出直线FQ1的解析式,与抛物线的交点即为点G1,②根据对称性得到点Q2的坐标,再求出直线FQ2的解析式,与抛物线的交点即为点G2,由此证得存在点G.【详解】(1)∵以线段BC为直径作⊙A,交y轴的正半轴于点D,∴∠BDO+∠ODC=90︒,∵∠OCD+∠ODC=90︒,∴∠OCD=∠BDO,∵∠DOC=∠DOB=90︒,∴△BOD∽△DOC,∴OB OD OD OC,∵B(-2,0),C(8,0),∴28OD OD,解得OD=4(负值舍去),∴D(0,4)设抛物线解析式为y=a(x+2)(x-8), ∴4=a(0+2)(0-8),解得a=14 -,∴二次函数的解析式为y=14-(x+2)(x-8),即213442y x x=-++.(2)∵BC为⊙A的直径,且B(-2,0),C(8,0),∴OA=3,A(3,0),∴点E是BD延长线上一点,∠CDE的角平分线DF交⊙A于点F,∴11904522CDF CDE,连接AF,则224590CAF CDF,∵OA=3,AF=5∴F(3,5)∵∠CDB=90︒,∴延长CD 至点C ',可使CDC D , ∴C '(-8,8),连接C 'F 叫BE 于点P ,再连接PF 、PC ,此时△PFC 的周长最短,解得C 'F 的解析式为3641111yx , BD 的解析式为y=2x+4,可得交点P 428(,)55.(3)存在;假设存在点G ,使∠GFC=∠DCF ,设射线GF 交⊙A 于点Q,①∵A(3,0),F(3,5),C(8,0),D(0,4),∴把点D 、F 绕点A 顺时针旋转90︒,使点F 与点B 重合,点G 与点Q 重合,则Q 1(7,3),符合1CQ DF , ∵F(3,5),Q 1(7,3),∴直线FQ 1的解析式为11322y x , 解21132213442y x y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩,得114696x y ⎧=+⎪⎨-=⎪⎩,224696x y ⎧=⎪⎨+=⎪⎩(舍去), ∴G 196(46,)2;②Q 1关于x 轴对称点Q 2(7,-3),符合2CQ DF ,∵F(3,5),Q 2(7,3),∴直线FQ 2的解析式为y=-2x+11,解221113442y x y x x =-+⎧⎪⎨=-++⎪⎩,得1173x y ⎧=⎪⎨=--⎪⎩,2273x y ⎧=⎪⎨=-+⎪⎩, ∴G 2(721,3221)综上,存在点G 96(46,)2或(721,3221),使得∠GFC=∠DCF.【点睛】 此题是二次函数的综合题,(1)考查待定系数法求函数解析式,需要先证明三角形相似,由此求得线段OD 的长,才能求出解析式;(2)考查最短路径问题,此问的关键是求出点F 的坐标,由此延长CD 至点C ',使CD C D ,得到点C '的坐标从而求得交点P 的坐标;③是难点,根据等弧所对的圆心角相等将弧DF 旋转,求出与圆的交点Q 1坐标,从而求出直线与抛物线的交点坐标即点G 的坐标;再根据对称性求得点Q 2的坐标,再求出直线与抛物线的交点G 的坐标.20、当每箱牛奶售价为50元时,平均每天的利润为900元.【解析】试题分析:本题可设每箱牛奶售价为x 元,则每箱赢利(x-40)元,平均每天可售出(30+3(70-x ))箱,根据每箱的盈利×销售的箱数=销售这种牛奶的盈利,据此即可列出方程,求出答案.试题解析:设每箱售价为x 元,根据题意得:(x -40)[30+3(70-x )]=900化简得:x ²-120x +3500=0 解得:x 1=50或x 2=70(不合题意,舍去)∴ x =50答:当每箱牛奶售价为50元时,平均每天的利润为900元21、(1)证明见解析;(2)24【分析】(1)利用平行线的性质得到∠ABF=∠E ,即可证得结论;(2)根据平行线的性质证明△ABF ∽△DEF ,即可求出S △ABF =9 ,再根据AD=BC=4DF ,求出S △CBE =16,即可求出答案.【详解】证明:(1)在□ABCD 中,∠A=∠C ,AB ∥CD ,∴∠ABF=∠E ,∴△ABF ∽△CEB ;(2)在□ABCD 中,AD ∥BC ,∴△DEF ∽△CEB ,又∵△ABF ∽△CEB∴ △ABF ∽△DEF ,∵AF=3DF ,△DEF 的面积为1,∴S △ABF =9 ,∵AD=BC=4DF ,∴S △CBE =16,∴□ABCD 的面积=9+15=24.【点睛】此题考查平行四边形的性质,相似三角形的判定及性质.22、(1)详见解析;(2)10【分析】(1)根据∠ABC=∠ACD ,∠A=∠A 即可证明,(2)由上一问列出比例式,代入求值即可.【详解】证明:(1)∵∠ABC=∠ACD ,∠A=∠A∴△ABC ∽△ACD(2)解:△ABC ∽△ACD∴AC AB AD AC= ∵AD=2, AB=5 ∴AC 52AC = ∴AC= 10【点睛】本题考查了相似三角形的判定和性质,属于简单题,列比例式是解题关键.23、(1)3240y x =-+;(2)233609600w x x =-+-,5055x ;(3)当每箱苹果的销售价为55元时,可以获得最大利润,最大利润为1125元.【分析】(1)根据题意找到平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式;(2)根据题意找到平均每天销售利润W (元)与销售价x (元/箱)之间的函数关系式;(3)根据二次函数解析式求最值【详解】解:(1)由题意,得()90350y x =--,化简,得3240y x =-+.(2)由题意,得()()240324033609600w x x x x =--+=-+-,5055x . (3)233609600w x x =-+-.∵0a <,∴抛物线开口向下.当60x =时,w 有最大值.又当5055x 时,w 随x 的增大而增大,∴当55x =元时,w 的最大值为1125元.∴当每箱苹果的销售价为55元时,可以获得最大利润,最大利润为1125元.【点睛】本题考查了二次函数的实际应用和求最值,其中:利润=(售价-进价)×销量24、见解析【分析】物业管理处P 到B ,A 的距离相等,那么应在BA 的垂直平分线上,到A ,C 的距离相等,应在AC 的垂直平分线上,那么到A 区、B 区、C 区的距离相等的点应是这两条垂直平分线的交点;【详解】解:如图所示:【点睛】本题主要考查了作图—应用与设计作图,掌握作图—应用与设计作图是解题的关键.25、 (1)见解析;(2)1:1【分析】(1)推出∠OCD =∠A ,∠D =∠ABO ,就可得△AOB ∽△COD ;(2)设BC =a ,则AB =a ,BD =2a ,由勾股定理知:CD 3,得AB :CD =13比.【详解】解:(1)∵∠ABC =90°,∠DCB =90°∴AB ∥CD ,∴∠OCD =∠A ,∠D =∠ABO ,∴△AOB ∽△COD(2)设BC =a ,则AB =a ,BD =2a由勾股定理知:CD =223BD BC =-= a ∴AB :CD =1:3 ∴△AOB 与△DOC 的面积之比等于1:1.【点睛】考核知识点:相似三角形的判定和性质.理解相似三角形的判定和性质是关键.26、(1)k =32;(2)菱形ABCD 平移的距离为203. 【分析】(1)由题意可得OD =5,从而可得点A 的坐标,从而可得k的值; (2)将菱形ABCD 沿x 轴正方向平移,使得点D 落在函数32y x =(x >0)的图象D’点处,由题意可知D’的纵坐标为3,从而可得横坐标,从而可知平移的距离.【详解】(1)过点D 作x 轴的垂线,垂足为F ,∵ 点D 的坐标为(4,3), ∴ OF =4,DF =3,∴ OD =5, ∴ AD =5,∴ 点A 坐标为(4,8), ∴ k =xy=4×8=32,∴ k =32;(2)将菱形ABCD 沿x 轴正方向平移,使得点D 落在函数32y x =(x >0)的图象D’点处,过点D’做x 轴的垂线,垂足为F’.∵DF =3,∴D’F’=3,∴点D’的纵坐标为3,∵点D’在32y x =的图象上,∴ 3 =32x ,解得x =323, 即323220,4,333OF FF '=∴'=-=∴菱形ABCD 平移的距离为203.考点:1.勾股定理;2.反比例函数;3.菱形的性质;4.平移.。

吉林省长市九台区九年级数学上学期期中教学质量测试试

吉林省长市九台区九年级数学上学期期中教学质量测试试

(第6题)2016-2017学年度第一学期期中教学质量测试九年级数学试卷一、选择题(每小题3分,共24分)1. 使二次根式3-x有意义的x的取值范围是()(A).x≠ 3 (B).x>3 (C).x≥3 (D).x ≤32. 方程2265x x-=的二次项系数、一次项系数、常数项分别为()(A). 6,2,5 (B). 2,-6,-5 (C). 2,-6,5 (D). -2,6,-53.4.若关于x的一元二次方程22(+3)25)70m x m m x m+--+-=(有一解是1,则m的值为()(A)3±.(B)3-.(C)3.(D)23-.5.下列说法正确的是()(A)两个矩形一定相似. (B) 两个菱形一定相似.(C)两个等腰三角形一定相似. (D) 两个等边三角形一定相似.6.如图,在比例尺为1∶150 000的某城市地图上,若量得A、B两所学校的距离是4.2cm,则A、B两所学校的实际距离是()(A)630米.(B)6300米.(C)8400米.(D)4200米.7.如图, AD∥BE∥CF,直线l1、l2F,若AB=3,BC=6,DF=6,则DE的长等于()(A)2.(B)3.(C)4.(D)6.(第14题)8.如图,在平面直角坐标系中,点A 在△ODC 的OD 边上,AB ∥DC 交OC 于点B .若点A 、B 的坐标分别为(2,3)、(2,1),点C 的横坐标为2(0)m m >,则点D 的坐标为( )(A) (2m ,m ). (B) (2m ,2m ). (C) (2m ,3m ). (D) (2m ,4m ).二、填空题(每小题3分,共18分)9.的结果是 . 10. 比较大小:,“<”或“=”) 11.一元二次方程23x x =的解是 .12.不解方程23540x x +-=,可以判断它的根的情况是_________.13.已知32a b =,那么a b b-等于 . 14.如图,点D 、E 、F 分别为△ABC 三边AB 、BC 、AC 的中点,若△DEF 的周长为8,则△ABC 的周长为 .三、解答题(本大题共11小题,共78分)15.(5分)计算:.16.(5分)实数a 、b.F EBD ACb a17.(6分)用配方法解方程:24+10x x -=.18.(6分)用公式法解方程:2420x x +-=.19.(7分)近年来网上购物交易额呈逐渐增加趋势.据报道,某网上商城2013年的交易额是25亿元,2015年达到了49亿元.这两年的交易额平均年增长的百分率是多少?若该网上商城2016年的交易额以这个百分率增长,预计到2016年底交易额将达到多少亿元?20.(7分)如图,E 是矩形ABCD 的边CB 的中点,AF ⊥DE 于点F ,AB =3,AD =4.求点A 到直线DE 的距离.21.(7分)如图,在△ABC 中,点D 是边AB 的四等分点,DE ∥AC ,DF ∥BC ,AC =8,BC =12.求四边形DECF 的周长.ABCDFE FBA EDC22.(7分)如图,方格纸中每个小正方形的边长均为1,△A 1B 1C 1和△A 2B 2C 2的顶点都在方格纸的格点上.(1)求△A 1B 1C 1和△A 2B 2C 2的面积比.(2)点A 1、D 、E 、F 、G 、H 是△A 1B 1C 1边上的6个格点,请在这6个格点中选取3个点作为三角形的顶点,使构成的三角形与△A 2B 2C 2相似(要求写出2个符合条件的三角形,并分别在图1和图2中将相应三角形涂黑,不必说明理由).图1 图223.(8分)已知关于x 的方程2224+2)210x k x k -++=(. (1)当k 取何值时,方程有两个不相等的实数根? (2)当k 取何值时,方程有两个相等的实数根? (3)当k 取何值时,方程没有实数根?2C 1B2C 1B24.(8分)问题探究:如图①,四边形 ABCD是正方形,BE⊥BF,BE=BF,求证:△ABE≌△CBF方法拓展:如图②,ABCD是矩形,BC=2AB,BF⊥BE,BF=2BE,若矩形ABCD的面积为40,△ABE的面积为4,求阴影部分图形的面积解:探究:拓展:25.(12分)如图,在矩形ABCD中,AB=12cm,BC=8cm .点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动。

吉林省长地区九年级数学下学期教学质量检测试卷 华东

吉林省长地区九年级数学下学期教学质量检测试卷 华东

B AFDCBα吉林省长春地区2012—2013年度下学期教学质量检测九年级数学题号 一 二 三 四 五 总分 得分112x -x 应满足的条件是 ( ) A. 12x =B. 12x ≤C. 12x <D. 12x ≥ 2.已知方程02222=+-m x x 有两个实数根,则()21-m 的化简结果是( )A. 1-mB. 1+mC. m -1D. ()1-±m3.如图,A 、B 是数轴上的两点,在线段AB 上任意取一点C ,则点C 到表示-1的点的距离不大于2的概率是( )A. 21B. 32C. 43D. 544.如图,在 ABCD 中,AE ∶EB=1∶2,若26cm S AEF =∆,则CDF S ∆等于 ( ) A. 542cm B. 182cm C. 122cm D. 242cm5.如图,两条宽都为1的纸条交叉重叠地放在一起,且它们的夹角为α,则它们重叠部分的面积为 ( ) A.αsin 1 B. αcos 1C. αsinD. 1 6.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D = 35°,则∠OAC 的度数是( )A .35°B . 55°C .65°D .70°第4题 第5题 7.二次函数c bx ax y ++=2(0≠a )的图像如图所示,其对 称轴为1=x ,有如下结论:①1<c ②02=+b a ③ac b 42< ④若方程02=++c bx ax 的两个根为1x 、2x ,则221=+x x 。

则正确的结论是( )A. ①②B. ①③C. ②④D. ③④第7题(区)县 乡(镇) 学校 班级 姓名 考号密 封 线 AB· O第6题D E F G C B AxD 8.如图,等边△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C 的方向运动,到达点C 时停止,设运动时间为x (s),2PC y =,则y 关于x 的函数的图像大致为( )二.填空题(每题3分,共18分)9.如图,DE 是△ABC 的中位线,F 是DE 的中点,C F 的延长线交AB 于点G ,则AG ∶GD 的值为________________.10.如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则OBC ∠cos 的值是________________.11.如图,两圆相交于A 、B 两点,小圆经过大圆的圆心O,点C 、D 分别在两圆上,若 ∠ACB=40°,则∠ADB 的度数为__________. 12.若△ABC 的周长为20cm ,面积为322cm ,则△ABC 的内切圆半径为____________. 13.已知圆⊙A 的半径为2,⊙B 的半径为3,圆心A 的坐标是(0,2),圆心B 的坐标为(4,-1),则⊙A 与⊙B 的位置关系为______________.14.在综合实践课上,小明用纸板制作一个圆锥形漏斗模型,它的底面半径为6cm ,高为8cm ,则这个圆锥漏斗的侧面积是___________.第9题 第10题 第11题三.解答题(15题4分,16~19题,每题5分,共24分)15.计算:⑴ 12+(3-π)0-2sin60° ⑵ 2×32+(2-1)216.现有点数为2、3、4、5的四张牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为偶数的概率是多少? (列表或画树状图)A .B .D .C第8题C .1260 2.51.5217.为了减轻学生的作业负担,九台市教育局规定:初中学段学生每晚的作业总量不超过1.5小时。

吉林省长春市2018届九年级数学上学期期末基础教育质量监测试题(扫描版) 华东师大版

吉林省长春市2018届九年级数学上学期期末基础教育质量监测试题(扫描版) 华东师大版

吉林省长春市2018届九年级数学上学期期末基础教育质量监测试题答案B 'A 'BC A一、选择题(本大题共8道小题,每小题4分,共32分)1.B 2.A 3.D 4.A 5.C 6.C 7.B 8.B 二、填空题(本大题共4道小题,每小题4分,共16分) 9.21≤<x 10.()23y x x - 11.③②④① 12.521 三、解答题(本大题共8小题,共72分) 13.()10330sin 2201731-+︒--+-π 31212131+⨯-+=(4分) 311131+-+= 32=. (6分) 14.(6分)15.(1)∵四边形ABCD 为矩形,∴AB =DC ,∠A =∠D =90°. (2分) ∵点E 是边AD 的中点,∴AE =DE . (3分) ∴DCE ABE ∆∆≌. (4分) (2)∵四边形ABCD 为矩形,∴AD =BC ,∠A =90°.∵BC =2AB , ∴AD =2AB . ∵AD =2AE , ∴AE =AB .∴∠AEB =∠ABE =45°. (6分) 同理可得∠DEC =45°.∴∠BEC =180°-∠AEB -∠DEC=180°-45°-45°.∴∠BEC =90°. (7分)16.(1)设购进篮球x 个,购进排球y 个.依题意,得()()⎩⎨⎧=-+-=+.26050608095,20y x y x (2分)解得⎩⎨⎧==.8,12y x (4分)答:购进篮球12个,购进排球8个. (2)设销售6个排球的利润与销售a 个篮球的利润相等.ABC DE依题意,得()()a 809550606-=-⨯. (6分) 解得4=a . (7分) 答:销售6个排球的利润与销售4个篮球的利润相等.17.(1)2014 2014 (2分)(2)2015 (4分) (3)2011 2014 (6分) (4)0.985 (8分) 18.(1)将B (4,1)代入x k y =得:14=k. ∴k =4.∴xy 4=. 将B (4,1)代入y =mx +5得:1=4m +5,∴m =-1.∴y =-x +5. (4分)(2)在xy 4=中,令x =1,解得y =4.∴A (1,4).∴24121=⨯⨯=S . (6分)(3)作点A 关于y 轴的对称点N ,则()4,1-N .连结BN 交y 轴于点P ,点P 即为所求. (7分)设直线BN 的关系式为y =kx +b ,由⎩⎨⎧=+-=+.4,14b k b k 得⎪⎪⎩⎪⎪⎨⎧=-=.517,53b k∴51753+-=x y . (9分)∴点P 的坐标为⎪⎭⎫⎝⎛517,0. (10分)19.参考方案一作参考方案二1120.(1)点⎪⎭⎫ ⎝⎛234,的矩形域如图所示. (3分) 12 (6分)(2)由题意得:[]{}1214=+⨯b .[]31=+b .[]2=b . (8分) b 的取值范围为32<≤b .(10分) (3)325<<m . (14分)。

吉林省长春市九年级数学上学期期中试题(扫描版)华东师大版(new)

吉林省长春市2018届九年级数学上学期期中试题
尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。

This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档