重庆一中15-16学年度初二上期数学半期考试(含答案)
2021秋重庆一中初二半期数学试卷

323265822重庆一中初2022届2020-2021学年度上期半期考试数学试卷2020.12(全卷共四个大题,满分150分,考试时间120分钟)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D 的四个选项,其中只有一个是正确的,请将正确答案的代号在答.题.卡.中对应的方框涂黑.1.下列实数中,属于无理数的是()22A.B.7C.0.1 D.-32.一次函数y=4x-3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.如图所示,在△ABC中,∠ABC=90°,分别以AB、BC、AC为边向外作正方形,面积分别为225、400、S,则S为()A.175 B.600 C.25 D.625 3 题图4.在平面直角坐标系中,已知点A(2,4),点B(5,4),则线段AB的长度为()A.2 B.3 C.4 D.55.下列计算正确的是()A.+= B.+ 2 =2 C.2 -=1 D.-=6.若函数y=-2x+m-3是y关于x的正比例函数,则m的值为()A.-3 B.1 C.2 D.37.已知一次函数y=kx+b(k≠0)与y=mx+n(m≠0)图象的交点是(1,2),则方程组=kx+b=mx+n的解为()=1A=3=1B=-2=1C=2=2D=1 C y 8.如图,在平面直角坐标系中,△OBC 点O(0,0),B(-8,0),且∠OCB=90°,BC=OC,则点C 关于y 轴对称的点的坐标是()A.(-4,2)B.(-4,3)C.(4,4)D.(-4,4)BxO8 题图9.根据以下程序,当输入x=时,输出结果为()A. B. 2 C. 6 D. 2522522 2 22210.如图所示,在桌面ABCD 上建立平面直角坐标系(每个小正方形的边长为一个单位长度),小球从点P (0,4)出发,撞击桌面边缘(桌壁)发生反弹,反射角等于入射角.若小球以每秒 个单位长度的速度沿图中箭头方向运动,则第82秒时小球所在位置的横坐标为()A .2B .3C .-2D .-3CF EB D A 10 题图-ay =112 题图 16 题图 11.关于x ,y 的二元一次方程组 +2y =的解为正.整.数.,则满足条件的所有整数a 的和为( )5A .1B .-1C .2D .-312.如图,直线AB :y =kx + 3 (k ≠0)分别与x 轴、y 交于A 、B 点,将△ABO 沿AB 边翻折,点O 落到C (4, 2 ),直线CA 与y 轴交于点D ,则BD 的长度为( ) 7A .3+ 3B . 9C . 3+ 3 D . 6 二、填空题:(本题共 6 个小题,每小题 4 分,共 24 分)请把下列各题的正确答案填写在答.题.卡.中对应的横线上.13.64 的算术平方根为.14.将直线 y =3x +1 沿 y 轴向上平移 4 个单位所得到的一次函数解析式为 .15.己知点 P (m +2,8-m )在第四象限,化简 m + 2 - 的结果为.16.如图,在△ABC 中,点 D 是线段 AB 的中点,点 F 将线段 BC 分成 BF :FC =2:3,若四边形 BDEF 的面积是 8,则△CEF 的面积是.17.甲、乙两车在笔直的公路 AB 上行驶,甲车从 A 地,乙车从AB 之间的 C 地同时出发.甲车到达 B 地后立即以原速原路480y (千米)返回 C 地,乙车到达 B 地后停止行驶.在行驶过程中,两车均保持匀速,甲、乙两车之间的距离为 y (千米)与甲车行驶80 的时间 x (小时)之间的关系如图所示,甲、乙两车第二次相 O 遇时,甲车距 A 地千米.4 1317 题图x (小时) 2 2(8 - m )2y B C x O A DA43 2 1 P y B x – 2 ––1O 1 2 34 1–2 –3 D –4 C3– 4–6 54 人数00 908070 6060 50 40 30 20 10 FEG18.如图,在△ABC 中,∠C =30°,点 D 、E 、F 分别在边 BC 、AC 、AB 上,满足 BD =AE =AB ,连接 AD ,BE ,FD ,满足 2∠BDF =∠BAC ,线段 BE 与 FD 交于点 G ,若 BG = 2 ,则 BE =.ABD C18 题图三、解答题:(本大题共2个小题,每小题8分,共16分)请把答案写在答.题.卡.上对应的空白处,解答时每 小题必须给出必要的演算过程或推理步骤.19.计算下列各题:(1) - + 1- - ( 5)2(2) (a 2b - 4ab 2 + b 3 ) ÷ b - (2a + b )220.为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少小时”,共有 4 个选项:A .1.5 小时以上;B .1 至 1.5 小时; C .0.5 至 1 小时;D .0.5 小时以下.根据调查结果绘制了图 1、图 2 两幅不完整的统计图:某校抽取的学生平均每天参加体育活动时间的条形统计图某校抽取的学生平均每天参加体育活动时间的扇形统计图1O A B C D 图 1图 2根据统计图,回答下列问题:(1)请将条形统计图补充完整;(2)扇形统计图中,选项 C 对应的圆心角度数是;(3)若该校有 2000 名学生,你估计该校有多少名学生平均每天参加体育活动的时间在 0.5 小时以下?3 - 8 6 B A 30%C D30203) 四、解答题:(本大题共 6 个小题,21 则至 25 题各 10 分,26 题 12 分,共 62 分)解答时每小题必须给出必要的演算过程或推理步骤.21.如图,点 C 在线段 AE 上,BC //DE ,AC =DE ,BC =CE ,延长 AB 分别交 CD 、ED 于点 G 、F .(1)试说明:AB =CD ;(2)若∠D =30°,∠E =65°,求∠FGC 的度数.21 题图22.在一次函数学习中,我们经历了列表、描点、连线画函数图象,结合图象研究函数性质并对其性质进-1(x <3)行应用的过程.小红对函数 y程并解答.(x ≥3) 的图象和性质进行了如下探究,请同学们认真阅读探究过(1)小红列出了如下表格,请同学们把下列表格补充完整,并在平面直角坐标系中画出该函数的图象;(2)根据函数图象,以下判断该函数性质的说法,正确的有(填正确答案的序号).①函数图象关于 y 轴对称;②此函数无最小值;③当 x <3 时,y 随 x 的增大而增大;当 x ≥3 时,y 的值不变. 1(3)若直线 y = x +b 与函数 y 2-1(x <3)(x ≥ 的图象只.有一个交点,求 b 的值.23.对于一个自然数 m = abc (1≤a ≤9,0≤b ≤9,0≤c ≤9 且 a 、b 、c 均为整数),若 3(a +b )+c 能被 13整除,则称 m 为“友好数”.(1)判断 124,356 是否为“友好数”,请说明理由;(2)求大于 170 且不超过 214 的所有“友好数”.24.某超市购进一款新商品,每件成本 10 元,下图是该商品 11 月份的销售图象,其中图 1 是 11 月份该商品日销售量 y (件)与日期 t (日)的函数关系,图 2 是 11 月份一.件.商品的销售利润 z (元)与日期 t (日)的函数关系(其.中.线.段.C .D .∥.x .轴.).经市场部调研,11 月 6 日和 11 月 30 日共销售 330 件,并 获利 3750 元.(注:日销售利润=日销售量×一件商品的销售利润)(1)求 11 月 6 日和 11 月 30 日这两天分别销售该商品多少件?(2)在 12 月 24 日会员日当天,超市决定对商品进行促销,计划在 11 月 24 日售价的基础上打八折销售,结果当天销量比 11 月 24 日销量提高了 50%,所获得的日销售利润比 11 月 30 日增加了 a %,求 a 的值.y (件) 360O624图 1t (日) 30图 2yB CEAxOD 25.如图,在平面直角坐标系中,直线 l 与 x 轴、y 轴分别交于点 A ,B (0,6),与直线 y =-x +3 交于点C (-1,4),直线 y =-x +3 与 x 轴、y 轴分别交于点D 、E ,连接 AE ,在直线 l 上有一动点 P . (1)求直线 l 的解析式;3(2)若 S △PCE = 2S △ACE ,求满足条件的点 P 坐标;(3)在直线 y =-x +3 上是否存在点 Q ,使△BEQ 为等腰三角形,若存在,请求出点 Q 的坐标;若不存在,请说明理由.备用图yB CEAxO D26.在△ABC 中,∠CBA =2∠A ,CD 平分∠ACB 交 AB 于点 D ,H 为 AC 上一点,E 为射线 CB 上一点,且 CH =CE ,速接 EH .(1)如图 1,若点 E 与点 B 重合,∠A =30°,BC =3,求 AH 的长度;(2)如图 2,若 E 为线段 CB 延长线上一点,EH 交 AB 于点 M ,若 M 为 AB 中点,求证:BD =2BE ;(3)如图 3,若点 E 与点 B 取合,∠ACB =120°,CD 与 EH 交于点 G ,ED =7,AD =a ,点 P ,Q 分别是射线 AB 、AC 上两个动点,当 P ,Q 运动时,直接写出(HP +PQ +QD )2 的最小值(用含 a 的代数式表示).(E )图 1图 3。
【真题】2015-2016学年重庆市荣昌区八年级(上)期末数学试卷及参考答案PDF

2015-2016学年重庆市荣昌区八年级(上)期末数学试卷一、选择题:本大题共12小题,每小题4分,共48分,在每小题的下面,都给出了代号为A、B、C、D四个答案,其中只有一个是正确的,请将你认为正确的答案代号填在答题卡表格中对应的位置.1.(4分)下列长度的各组线段中,能构成三角形的是()A.3,4,5 B.2,2,4 C.1,2,3 D.2,3,62.(4分)计算:m6•m3的结果()A.m18B.m9C.m3D.m23.(4分)下列式子是分式的是()A.B.C.D.4.(4分)若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°5.(4分)把分式(x+y≠0)中的分子、分母同时扩大10倍,那么分式的值()A.不改变B.缩小10倍C.扩大10倍D.改变为原来的6.(4分)如果一个多边形的每一个外角都等于45°,则这个多边形的边数为()A.3 B.4 C.5 D.87.(4分)如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形8.(4分)若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对9.(4分)若3x=2,3y=4,则32x﹣y等于()A.1 B.2 C.4 D.810.(4分)已知x2+kxy+16y2是一个完全平方式,则k的值是()A.8 B.±8 C.16 D.±1611.(4分)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第六个图形中三角形的个数是()A.20 B.26 C.32 D.3812.(4分)四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使三角形AMN周长最小时,则∠AMN+∠ANM的度数为()A.80°B.90°C.100° D.130°二、填空题:本大题共6小题,每小题4分,共24分,在每小题中,请将答案填在提后的横线上.13.(4分)近日,获诺贝尔奖的中国科学家屠呦呦接受央视记者采访时表示,青蒿素挽救数百万人生命,但对青蒿素的研究远远没有结束,“青蒿素抗疟是有效的,但抗疟的机理还没搞清楚,大家能把它搞清楚,这个药才能物尽其用发挥更好作用.”其中疟疾病菌的直径约为0.51微米,也就是0.00000051米,那么数据0.00000051用科学记数法表示为.14.(4分)因式分解:m2﹣n2=.15.(4分)点P坐标是(6,﹣8),则点P关于x轴对称的点的坐标是.16.(4分)已知:如图,△ABC≌△DFE,若∠A=60°,∠E=90°,DE=6cm,则AB= cm.17.(4分)三角形ABC中,AD是中线,且AB=4,AC=6,求AD的取值范围是.18.(4分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠ADB=度.三、解答题:本大题共2小题,每小题7分,共14分,解答时每小题必须给出必要的演算过程或推理步骤.19.(7分)(1)计算:(2x﹣3)(x+4)(2)解方程:.20.(7分)已知:如图,E、F在AC上,AD∥CB,且∠D=∠B,AD=CB,求证:DF=BE.四、解答题:本大题共4小题,每小题10分,共40分,解答时每小题必须给出必要的演算过程或推理步骤.21.(10分)先化简,再求值:(),其中|2x﹣1|+y2+4y+4=0.22.(10分)如图,在△ABC中,∠C=90°,AD平分∠BAC.(1)当∠B=40°时,求∠ADC的度数;(2)若AB=10cm,CD=4cm,求△ABD的面积.23.(10分)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?24.(10分)如图,E、F分别是等边三角形ABC的边AB、AC上的点,且BE=AF,CE、BF交于点P,且EG⊥BF,垂足为G.(1)求证:∠BCE=∠ABF;(2)求证:PE=2PG.五、解答题:本大题共2小题,每小题12分,共24分,解答时每小题必须给出必要的演算过程或演算步骤.25.(12分)先观察下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.26.(12分)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求∠AEB的度数.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E 在同一直线上,CM为△DCE中DE边上的高,连接BE.请求∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.2015-2016学年重庆市荣昌区八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题4分,共48分,在每小题的下面,都给出了代号为A、B、C、D四个答案,其中只有一个是正确的,请将你认为正确的答案代号填在答题卡表格中对应的位置.1.(4分)下列长度的各组线段中,能构成三角形的是()A.3,4,5 B.2,2,4 C.1,2,3 D.2,3,6【解答】解:根据三角形的三边关系,得A、3+4>5,能够组成三角形,故此选项正确;B、2+2=4,不能组成三角形,故此选项错误;C、1+2=3,不能组成三角形,故此选项错误;D、2+3<6,不能组成三角形,故此选项错误.故选:A.2.(4分)计算:m6•m3的结果()A.m18B.m9C.m3D.m2【解答】解:m6•m3=m9.故选:B.3.(4分)下列式子是分式的是()A.B.C.D.【解答】解:A、是单项式,故A错误;B、x2是单项式,故B错误;C、是单项式,故C错误;D、是分式,故D正确;故选:D.4.(4分)若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°【解答】解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选:D.5.(4分)把分式(x+y≠0)中的分子、分母同时扩大10倍,那么分式的值()A.不改变B.缩小10倍C.扩大10倍D.改变为原来的【解答】解:分式(x+y≠0)中的分子、分母同时扩大10倍,那么分式的值不变,故选:A.6.(4分)如果一个多边形的每一个外角都等于45°,则这个多边形的边数为()A.3 B.4 C.5 D.8【解答】解:多边形的边数是:=8,故选D.7.(4分)如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形【解答】解:∵ABCD为矩形∴∠A=∠C,AB=CD∵∠AEB=∠CED∴△AEB≌△CED(故D选项正确)∴BE=DE(故A选项正确)∠ABE=∠CDE(故B选项不正确)∵△EBA≌△EDC,△EBD是等腰三角形∴过E作BD边的中垂线,即是图形的对称轴.(故C选项正确)故选:B.8.(4分)若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对【解答】解:①11cm是腰长时,腰长为11cm,②11cm是底边时,腰长=(26﹣11)=7.5cm,所以,腰长是11cm或7.5cm.故选C.9.(4分)若3x=2,3y=4,则32x﹣y等于()A.1 B.2 C.4 D.8【解答】解:∵3x=2,3y=4,∴原式=(3x)2÷3y=4÷4=1.故选A.10.(4分)已知x2+kxy+16y2是一个完全平方式,则k的值是()A.8 B.±8 C.16 D.±16【解答】解:∵x2+kxy+16y2是一个完全平方式,∴±2×x×4y=kxy,∴k=±8.故选B.11.(4分)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第六个图形中三角形的个数是()A.20 B.26 C.32 D.38【解答】解:结合图形可知,每次变化都是将最右下角的平行四边形由图形1变为图形2,即每次增加6个三角形,故第n个图形内中三角形的个数是6(n﹣1)+2=6n﹣4.将n=6代入可得第六个图形中三角形的个数是6×6﹣4=36﹣4=32(个).故选C.12.(4分)四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使三角形AMN周长最小时,则∠AMN+∠ANM的度数为()A.80°B.90°C.100° D.130°【解答】解:延长AB到A′使得BA′=AB,延长AD到A″使得DA″=AD,连接A′A″与BC、CD分别交于点M、N.∵∠ABC=∠ADC=90°,∴A、A′关于BC对称,A、A″关于CD对称,此时△AMN的周长最小,∵BA=BA′,MB⊥AB,∴MA=MA′,同理:NA=NA″,∴∠A′=∠MAB,∠A″=∠NAD,∵∠AMN=∠A′+∠MAB=2∠A′,∠ANM=∠A″+∠NAD=2∠A″,∴∠AMN+∠ANM=2(∠A′+∠A″),∵∠BAD=130°,∴∠A′+∠A″=180°﹣∠BAD=50°M∴∠AMN+∠ANM=2×50°=100°.故选C.二、填空题:本大题共6小题,每小题4分,共24分,在每小题中,请将答案填在提后的横线上.13.(4分)近日,获诺贝尔奖的中国科学家屠呦呦接受央视记者采访时表示,青蒿素挽救数百万人生命,但对青蒿素的研究远远没有结束,“青蒿素抗疟是有效的,但抗疟的机理还没搞清楚,大家能把它搞清楚,这个药才能物尽其用发挥更好作用.”其中疟疾病菌的直径约为0.51微米,也就是0.00000051米,那么数据0.00000051用科学记数法表示为 5.1×10﹣7.【解答】解:0.00000051=5.1×10﹣7.故答案为:5.1×10﹣7.14.(4分)因式分解:m2﹣n2=(m+n)(m﹣n).【解答】解:原式=(m+n)(m﹣n),故答案为(m+n)(m﹣n).15.(4分)点P坐标是(6,﹣8),则点P关于x轴对称的点的坐标是(6,8).【解答】解:点P坐标是(6,﹣8),则点P关于x轴对称的点的坐标是(6,8),故答案为:(6,8).16.(4分)已知:如图,△ABC≌△DFE,若∠A=60°,∠E=90°,DE=6cm,则AB= 12cm.【解答】解:∵△ABC≌△DFE,∴∠C=∠E=90°,AC=DE=6cm,∵∠A=60°,∴∠B=30°,∴AB=2AC=12cm,故答案为:12.17.(4分)三角形ABC中,AD是中线,且AB=4,AC=6,求AD的取值范围是1<AD<5.【解答】解:延长AD到E,使AD=DE,连接BE,∵AD是BC边上的中线,∴BD=CD,在△ADC和△EDB中,∵,∴△ADC≌△EDB(SAS),∴AC=BE=4,在△ABE中,AB﹣BE<AE<AB+BE,∴6﹣4<2AD<6+4,∴1<AD<5,故答案为:1<AD<5.18.(4分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠ADB= 108度.【解答】解:∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,在△ABD中,∠BDC=∠A+∠ABD=2∠A,在△ABC中,∠A+∠ABC+∠C=180°,∴∠A+2∠A+2∠A=180°,解得∠A=36°,∴∠ADB=180°﹣∠A﹣∠ABD=180°﹣36°﹣36°=108°.故答案为:108.三、解答题:本大题共2小题,每小题7分,共14分,解答时每小题必须给出必要的演算过程或推理步骤.19.(7分)(1)计算:(2x﹣3)(x+4)(2)解方程:.【解答】解:(1)原式=2x2+8x﹣3x﹣12=2x2+5x﹣12;(2)去分母得:7x=5x﹣10,解得:x=﹣5,经检验x=﹣5是分式方程的解.20.(7分)已知:如图,E、F在AC上,AD∥CB,且∠D=∠B,AD=CB,求证:DF=BE.【解答】证明:∵AD∥CB,∴∠A=∠C,在△ADF和△CBE中,,∴△ADF≌△CBE(ASA),∴DF=BE.四、解答题:本大题共4小题,每小题10分,共40分,解答时每小题必须给出必要的演算过程或推理步骤.21.(10分)先化简,再求值:(),其中|2x﹣1|+y2+4y+4=0.【解答】解:原式=•=•=﹣xy.∵|2x﹣1|+y2+4y+4=0,即|2x﹣1|+(y+2)2=0,∴2x﹣1=0,y+2=0,∴x=,y=﹣2,∴原式=﹣×(﹣2)=1.22.(10分)如图,在△ABC中,∠C=90°,AD平分∠BAC.(1)当∠B=40°时,求∠ADC的度数;(2)若AB=10cm,CD=4cm,求△ABD的面积.【解答】解:(1)∵∠C=90°,∠B=40°,∴∠BAC=50°,∵AD平分∠BAC,∴,∴∠ADC=∠B+∠BAD=65°;(2)过D作DE⊥AB于E,∵AD平分∠BAC,∴DE=CD=4,∴S AB•DE=×10×4=20cm2.23.(10分)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得x=5经检验,x=5是原方程的解.所以x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得25a+5(2a+8﹣a)≤670解得a≤21∴荣庆公司最多可购买21个该品牌的台灯.24.(10分)如图,E、F分别是等边三角形ABC的边AB、AC上的点,且BE=AF,CE、BF交于点P,且EG⊥BF,垂足为G.(1)求证:∠BCE=∠ABF;(2)求证:PE=2PG.【解答】解:(1)∵△ABC为等边三角形,∴BC=AB,∠A=∠EBC=60°,在△BCE和△ABF中,,∴△BCE≌△ABF(SAS),∴∠BCE=∠ABF;(2)∵由(1)知∠BCE=∠ABF,又∠PBC+∠ABF=∠ABC=60°,∴∠PBC+∠PCB=60°,∵∠PBC+∠PCB=∠BPE,∴∠BPE=60°,∵EG⊥BF,即∠PGE=90°,∴∠GEP=30°,∴在Rt△BCE中,PE=2PG.五、解答题:本大题共2小题,每小题12分,共24分,解答时每小题必须给出必要的演算过程或演算步骤.25.(12分)先观察下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.【解答】解:(1)原式=1﹣﹣+﹣+﹣+﹣=1﹣=;(2)原式=1﹣﹣+﹣+﹣+…+﹣=1﹣=;(3)=+…+==由=,解得n=17,经检验n=17是方程的根,∴n=17.26.(12分)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求∠AEB的度数.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E 在同一直线上,CM为△DCE中DE边上的高,连接BE.请求∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.【解答】解:(1)∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=60°﹣∠CDB=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.(2)∠AEB=90°,AE=BE+2CM.理由:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.。
八年级上册重庆数学全册全套试卷检测题(Word版 含答案)

八年级上册重庆数学全册全套试卷检测题(Word版含答案)一、八年级数学三角形填空题(难)1.如图,△ABC中,点D、E、F分别在三边上,E是AC的中点,AD、BE、CF交于一点G,BD=2DC,S△GEC=3,S△GDC=4,则△ABC的面积是_____.【答案】30【解析】【分析】由于BD=2DC,那么结合三角形面积公式可得S△ABD=2S△ACD,而S△ABC=S△ABD+S△ACD,可得出S△ABC=3S△ACD,而E是AC中点,故有S△AGE=S△CGE,于是可求S△ACD,从而易求S△ABC.【详解】解:∵BD=2DC,∴S△ABD=2S△ACD,∴S△ABC=3S△ACD.∵E是AC的中点,∴S△AGE=S△CGE.又∵S△GEC=3,S△GDC=4,∴S△ACD=S△AGE+S△CGE+S△CGD=3+3+4=10,∴S△ABC=3S△ACD=3×10=30.故答案为30.【点睛】本题考查了三角形的面积公式、三角形之间的面积加减计算.注意同底等高的三角形面积相等,面积相等、同高的三角形底相等.2.如图,平面内有五个点,以其中任意三个点为顶点画三角形,最多可以画_____个三角形.【答案】10【解析】【分析】以平面内的五个点为顶点画三角形,根据三角形的定义,我们在平面中依次选取三个点画出图形即可解答.【详解】解:如图所示,以其中任意三个点为顶点画三角形,最多可以画10个三角形,故答案为:10.【点睛】本题考查的是几何图形的个数,我们根据三角形的定义,在画图的时候要注意按照一定的顺序,保证不重复不遗漏.3.如图,ABC ∆的面积为1,第一次操作:分别延长AB ,BC ,CA 至点111,,A B C ,使111,,A B AB B C BC C A CA ===,顺次连接111,,A B C ,得到111A B C ∆;第二次操作:分别延长111111,,A B B C C A 至点222,,A B C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接222,,A B C ,得到222A B C ∆,…;按此规律,要使得到的三角形的面积超过2020,最少需经过__________次操作.【答案】4【解析】【分析】连接111,,AC B A C B ,根据两个三角形等底同高可得111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======从而得出第一次操作:11177A B C ABC S S ∆∆==<2020;同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020……直至第四次操作4443334772401A B C A B C S S ∆∆===>2020,即可得出结论.【详解】解:连接111,,AC B A C B∵111,,A B AB B C BC C A CA ===根据等底同高可得:111111111,,C A B C AB ABC A B C A BC ABC B C A B CA ABC S S S S SS S S S ====== ∴111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======∴第一次操作:11177A B C ABC S S ∆∆==<2020同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020第三次操作333222377343A B C A B C S S ∆∆===<2020第四次操作4443334772401A B C A B C S S ∆∆===>2020故要使得到的三角形的面积超过2020,最少需经过4次操作,故答案为:4.【点睛】此题考查的是三角形的面积关系和探索规律,掌握两个三角形等底同高时,面积相等是解决此题的关键.4.△ABC 的两边长为4和3,则第三边上的中线长m 的取值范围是_______. 【答案】1722m << 【解析】【分析】 作出草图,延长AD 到E ,使DE=AD ,连接CE ,利用“边角边”证明△ABD 和△ECD 全等,然后根据全等三角形对应边相等可得CE=AB ,再根据三角形的任意两边之和大于第三边,两边之和小于第三边求出AE 的取值范围,便不难得出m 的取值范围.【详解】解:如图,延长AD 到E ,使DE=AD ,连接CE ,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,AD DEADB EDCBD CD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ECD(SAS),∴CE=AB,∵AB=3,AC=4,∴4-3<AE<4+3,即1<AE<7,∴1722m<<.故答案为:1722m<<.【点睛】本题主要考查倍长中线法构造全等三角形和三边关系,解决本题的关键是要熟练掌握倍长中线法构造全等三角形.5.如图,A、B、C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为D,则∠EBC 的度数为_____.【答案】100°【解析】【分析】根据线段垂直平分线的性质,得BE BA=,根据等腰三角形的性质,得50E A∠=∠=︒,再根据三角形外角的性质即可求解.【详解】∵BD垂直平分AE,∴BE BA =,∴50E A ∠=∠=︒,∴100EBC E A ∠=∠+∠=︒,故答案为100°.【点睛】考查线段垂直平分线的性质以及三角形外角的性质,掌握线段垂直平分线的性质是解题的关键.6.如图所示,将△ABC 沿着DE 翻折,若∠1+∠2=80°,则∠B =_____度.【答案】40.【解析】【分析】利用三角形的内角和和四边形的内角和即可求得.【详解】∵△ABC 沿着DE 翻折,∴∠1+2∠BED =180°,∠2+2∠BDE =180°,∴∠1+∠2+2(∠BED +∠BDE )=360°,而∠1+∠2=80°,∠B +∠BED +∠BDE =180°,∴80°+2(180°﹣∠B )=360°,∴∠B =40°.故答案为:40°.【点睛】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.二、八年级数学三角形选择题(难)7.如图,三角形ABC 中,AB=AC ,D ,E 分别为边AB ,AC 上的点,DM 平分∠BDE,EN 平分∠DEC,若∠DMN=110°,则∠DEA=( )A.40°B.50°C.60°D.70°【答案】A【解析】【分析】由等腰三角形的性质得到∠B=∠C,由角平分线的定义得到∠BDM=∠EDM,∠CEN=∠DEN,根据外角的性质得∠B=∠DMN-∠BDM,∠C=∠ENM-∠CEN,整理可得∠DMN+∠DEN=∠EDM+∠ENM,再根据四边形的内角和可得∠DMN+∠DEN=∠EDM+∠ENM=180°,则∠DEN=70°,故∠DEA=40°.【详解】解:∵AB=AC,∴∠B=∠C,又∵DM平分∠BDE,EN平分∠DEC,∴∠BDM=∠EDM,∠CEN=∠DEN,∵∠B=∠DMN-∠BDM=∠DMN-∠EDM,∠C=∠ENM-∠CEN=∠ENM-∠DEN,∴∠DMN-∠EDM=∠ENM-∠DEN,即∠DMN+∠DEN=∠EDM+∠ENM,∵四边形DMNE内角和为360°,∴∠DMN+∠DEN=∠EDM+∠ENM=180°,∴∠DEN=70°,则∠DEA=180°-2∠DEN=40°.故选A.8.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点.若∠A=60°,则∠BMN的度数为( )A.45°B.50°C.60°D.65°【答案】B【解析】分析:过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF,再根据到角的两边距离相等的点在角的平分线上判断出MN平分∠BMC,然后根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角的三等分求出∠MBC+∠MCB的度数,然后利用三角形内角和定理求出∠BMC的度数,从而得解.详解:如图,过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,∵∠ABC的三等分线与∠ACB的三等分线分别交于点M、N,∴BN平分∠MBC,CN平分∠MCB,∴NE=NG,NF=NG,∴NE=NF,∴MN平分∠BMC,∴∠BMN=12∠BMC,∵∠A=60°,∴∠ABC+∠ACB=180°−∠A=180°−60°=120°,根据三等分,∠MBC+∠MCB=23(∠ABC+∠ACB)=23×120°=80°.在△BMC中,∠BMC=180°−(∠MBC+∠MCB)=180°−80°=100°.∴∠BMN=12×100°=50°;故选:B.点睛:本题考查了三角形的内角和定理:三角形内角和为180°;角平分线的性质:角平分线上的点到角两边的距离相等.熟记性质和定理是解本题的关键.9.已知正多边形的一个外角等于40,那么这个正多边形的边数为()A.6 B.7 C.8 D.9【答案】D【解析】【分析】根据正多边形的外角和以及一个外角的度数,即可求得边数.【详解】正多边形的一个外角等于40,且外角和为360,则这个正多边形的边数是:360409÷=,故选D.【点睛】本题主要考查了多边形的外角和定理,熟练掌握多边形的外角和等于360度是解题的关键.10.一个多边形内角和是900°,则这个多边形的边数是()A.7 B.6 C.5 D.4【解析】【分析】n边形的内角和为(n-2)180°,由此列方程求n的值即可.【详解】设这个多边形的边数为n,则:(n-2)180°=900°,解得n=7.故答案为:A.【点睛】本题考查了多边形的内角和,熟练掌握该知识点是本题解题的关键.11.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠的大小为()244∠=,则1α-A.14B.16C.90α-D.44【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.12.一个多边形的每个内角都等于120°, 则此多边形是( )A.五边形B.七边形C.六边形D.八边形【答案】C【分析】先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°﹣120°=60°,∴边数n=360°÷60°=6.故选C.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.三、八年级数学全等三角形填空题(难)13.如图,C为线段AE上一动点(不与A. E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,一定成立的有________(填序号)【答案】①②③⑤【解析】【分析】①根据全等三角形的判定方法,证出△ACD≌△BCE,即可得出AD=BE.③先证明△ACP≌△BCQ,即可判断出CP=CQ,③正确;②根据∠PCQ=60°,可得△PCQ为等边三角形,证出∠PQC=∠DCE=60°,得出PQ∥AE,②正确.④没有条件证出BO=OE,得出④错误;⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,⑤正确;即可得出结论.【详解】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴AD=BE,结论①正确.∵△ACD≌△BCE,∴∠CAD=∠CBE,又∵∠ACB=∠DCE=60°,∴∠BCD=180°-60°-60°=60°,∴∠ACP=∠BCQ=60°,在△ACP和△BCQ中,ACP BCQCAP CBQAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BCQ(AAS),∴CP=CQ,结论③正确;又∵∠PCQ=60°,∴△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,结论②正确.∵△ACD≌△BCE,∴∠ADC=∠AEO,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,∴结论⑤正确.没有条件证出BO=OE,④错误;综上,可得正确的结论有4个:①②③⑤.故答案是:①②③⑤.【点睛】此题是三角形综合题目,考查了全等三角形的判定和性质的应用、等边三角形的性质和应用、平行线的判定;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.14.如图,Rt△ABC中,∠C=90°.E为AB中点,D为AC上一点,BF∥AC交DE的延长线于点F.AC=6,BC=5.则四边形FBCD周长的最小值是______.【答案】16【解析】四边形FBCD周长=BC+AC+DF;当DF BC⊥时,四边形FBCD周长最小为5+6+5=1615.AD,BE是△ABC的高,这两条高所在的直线相交于点O,若BO=AC,BC=a,CD=b,则AD的长为______.【答案】AD的长为a-b或b-a或a+b或12a或b.【解析】【分析】分别讨论△ABC为锐角三角形时、∠A、∠B、∠C分别为钝角时和∠A为直角时五种情况,利用AAS证明△BOD≌△ACD,可得BD=AD,根据线段的和差关系即可得答案.【详解】①如图,当△ABC为锐角三角形时,∵AD、BE为△ABC的两条高,∴∠CAD+∠AOE=90°,∠CBE+∠BOD=90°,∵∠BOD=∠AOE,∴∠CAD=∠OBD,又∵∠ODB=∠ADC=90°,OB=AC,∴△BOD≌△ACD,∴AD=BD,∵BC=a,CD=b,∴AD=BD=BC-CD=a-b.②如图,当∠B为钝角时,∵∠C+∠CAD=90°,∠O+∠CAD=90°,∴∠C=∠O,又∵∠ADC=∠ODB=90°,OB=AC,∴△BOD≌△ACD,∴BD=AD,∴AD=CD-BC=b-a.③如图,当∠A为钝角时,同理可证:△BOD≌△ACD,∴AD=BC-CD=a-b.④如图,当∠C为钝角时,同理可证:△BOD≌△ACD,∴AD=BD=BC+CD=a+b.⑤当∠B为直角时,点O、D、B重合,OB=0,不符合题意,当∠C为直角时,点O、C、D、E重合,CD=0,不符合题意,如图,当∠A为直角时,点A、E、O重合,∵OB=AC,∠CAB=90°,∴△ABC是等腰直角三角形,∵AD⊥BC,∴AD是Rt△ABC斜边中线,∴AD=AD=12BC=12a=b.综上所述:AD的长为a-b或b-a或a+b或12a或b.故答案为:a-b或b-a或a+b或12a或b【点睛】本题主要考查全等三角形的判定与性质,全等三角形的判定方法有:SSS 、AAS 、ASA 、SAS 、HL 等,注意:SAS 时,角必须是两边的夹角,SSA 和AAA 不能判定两个三角形全等.灵活运用分类讨论的思想是解题关键.16.已知∠ABC=60°,点D 是其角平分线上一点,BD=CD=6,DE//AB 交BC 于点E.若在射线BA 上存在点F ,使DCF BDE S S ∆∆=,请写出相应的BF 的长:BF =_________【答案】23或43.【解析】【分析】过点D 作DF 1∥BE ,求出四边形BEDF 1是菱形,根据菱形的对边相等可得BE=DF 1,然后根据等底等高的三角形的面积相等可知点F 1为所求的点,过点D 作DF 2⊥BD ,求出∠F 1DF 2=60°,从而得到△DF 1F 2是等边三角形,然后求出DF 1=DF 2,再求出∠CDF 1=∠CDF 2,利用“边角边”证明△CDF 1和△CDF 2全等,根据全等三角形的面积相等可得点F 2也是所求的点,然后在等腰△BDE 中求出BE 的长,即可得解.【详解】如图,过点D 作DF 1∥BE ,易求四边形BEDF 1是菱形,所以BE=DF 1,且BE 、DF 1上的高相等,此时S △DCF1=S △BDE ;过点D 作DF 2⊥BD ,∵∠ABC=60°,F 1D ∥BE ,∴∠F 2F 1D=∠ABC=60°,∵BF 1=DF 1,∠F 1BD=12∠ABC=30°,∠F 2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=12×60°=30°,∴∠CDF1=180°-∠BCD=180°-30°=150°,∠CDF2=360°-150°-60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,1212DF DFCDF CDFCD CD⎧⎪∠∠⎨⎪⎩===,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=12×60°=30°,又∵BD=6,∴BE=12×6÷cos30°=3÷3=23,∴BF1=BF2=BF1+F1F2=23+23=43,故BF的长为23或43.故答案为:23或43.【点睛】本题考查全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题关键,(3)要注意符合条件的点F有两个.17.如图,已知AB∥CD,O为∠CAB、∠ACD的角平分线的交点,OE⊥AC于E,且OE=2,CO=3,则两平行线间AB、CD的距离等于________.【答案】4【解析】试题解析:如图,过点O作MN,MN⊥AB于M,交CD于N,∵AB∥CD,∴MN⊥CD,∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,∴OM=OE=2,∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,∴ON=OE=2,∴MN=OM+ON=4,即AB与CD之间的距离是4.点睛:要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.18.如图,在△ABC中,∠B=∠C,BD=CE,BE=CF.若∠A=40°,则∠DEF的度数为____.【答案】70°【解析】由等腰三角形的性质得出∠B=∠C=70°,再根据SAS证得△BDE≌△CEF,得出∠BDE=∠CEF,运用三角形的外角性质得出∠CEF+∠DEF=∠B+∠BDE,即可得出∠DEF=∠B=70°.点睛:此题主要考查了等腰三角形的性质,解题时,利用等腰三角形的性质和三角形全等的判定证得∠BDE=∠CEF,然后根据三角形外角的性质可求解.四、八年级数学全等三角形选择题(难)19.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=12BF;④AE=BG.其中正确的是A.①②B.①③C.①②③D.①②③④【答案】C【解析】【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=12AC,又因为BF=AC所以CE=12AC=12BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°−∠BFD,∠DCA=90°−∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中.∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=12 AC.又由(1),知BF=AC,∴CE=12AC=12BF ;故③正确; 连接CG.∵△BCD 是等腰直角三角形,∴BD=CD.又DH ⊥BC ,∴DH 垂直平分BC.∴BG=CG.在Rt △CEG 中,∵CG 是斜边,CE 是直角边,∴CE<CG.∵CE=AE ,∴AE<BG.故④错误.故选C.【点睛】 本题考查了等腰直角三角形、等腰三角形的判定与性质、全等三角形的判定与性质.此类问题涉及知识点较多,需要对相关知识点有很高的熟悉度.20.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°【答案】B【解析】【分析】 根据SAS 可证得ABC ≌EDC ,可得出BAC DEC ∠∠=,继而可得出答案,再根据邻补角的定义求解.【详解】由题意得:AB ED =,BC DC =,D B 90∠∠==,ABC ∴≌EDC ,BAC DEC ∠∠∴=,12180∠∠+=.故选B .【点睛】本题考查全等图形的知识,比较简单,解答本题的关键是判断出ABC ≌EDC ..21.如图,ABC △是等边三角形,ABD △是等腰直角三角形,∠BAD =90°,AE ⊥BD 于点E .连CD 分别交AE ,AB 于点F ,G ,过点A 做AH ⊥CD 交BD 于点H ,则下列结论:①∠ADC =15°;②AF =AG ;③AH =DF ;④△ADF ≌△BAH ;⑤DF =2EH .其中正确结论的个数为( )A .5B .4C .3D .2【答案】B【解析】【分析】 ①根据△ABC 为等边三角形,△ABD 为等腰直角三角形,可以得出各角的度数以及DA=AC ,即可作出判断;②分别求出∠AFG 和∠AGD 的度数,即可作出判断;④根据三角形内角和定理求出∠HAB 的度数,求证EHG DFA ∠=∠,利用AAS 即可证出两个三角形全等;③根据④证出的全等即可作出判断;⑤证明∠EAH=30°,即可得到AH=2EH ,又由③可知AH DF =,即可作出判断.【详解】①正确:∵ABC △是等边三角形,∴60BAC ︒∠=,∴CA AB =.∵ABD △是等腰直角三角形,∴DA AB =.又∵90BAD ︒∠=,∴150CAD BAD BAC ︒∠=∠+∠=,∴DA CA =,∴()1180150152ADC ACD ︒︒︒∠=∠=-=; ②错误:∵∠EDF=∠ADB-∠ADC=30°∴∠DFE=90°-∠EDF=90°-30°=60°=∠AFG∵∠AGD=90°-∠ADG=90°-15°=75°∠AFG≠∠AGD∴AF≠AG③,④正确,由题意可得45DAF ABH︒∠=∠=,DA AB=,∵AE BD⊥,AH CD⊥.∴180EHG EFG︒∠+∠=.又∵180?DFA EFG∠+∠=,∴EHG DFA∠=∠,在DAF△和ABH中()AFD BHADAF ABH AASDA AB∠=∠⎧⎪∠=∠⎨⎪=⎩∴DAF△≌ABH.∴DF AH=.⑤正确:∵150CAD︒∠=,AH CD⊥,∴75DAH︒∠=,又∵45DAF︒∠=,∴754530EAH︒︒︒∠=-=又∵AE DB⊥,∴2AH EH=,又∵=AH DF,∴2DF EH=【点睛】本题考查了等边三角形的性质,等腰三角形的性质,三角形的内角和定理,三角形外角的性质,全等三角形的判定与性质,综合性较强,属于较难题目.22.已知等边三角形ABC的边长为12,点P为AC上一点,点D在CB的延长线上,且BD=AP,连接PD交AB于点E,PE⊥AB于点F,则线段EF的长为()A.6 B.5C.4.5 D.与AP的长度有关【答案】A【解析】【分析】作DQ⊥AB,交直线AB的延长线于点Q,连接DE,PQ,根据全等三角形的判定定理得出△APE≌△BDQ,再由AE=BQ,PE=QD且PE∥QD,可知四边形PEDQ是平行四边形,进而可得出EF=12AB,由等边△ABC的边长为12可得出DE=6.【详解】解;如图,作DQ⊥AB,交AB的延长线于点F,连接DE,PQ,又∵PE⊥AB于E,∴∠BQD=∠AEP=90°,∵△ABC是等边三角形,∴∠A=∠ABC=∠DBQ=60°,在△APE和△BDQ中,A DBQAEP BQDAP BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APE≌△BDQ(AAS),∴AE=BQ,PE=QD且PE∥QD,∴四边形PEDQ是平行四边形,∴EF=12EQ,∵EB+AE=BE+BQ=AB,∴EF=12AB,又∵等边△ABC的边长为12,∴EF=6.故选:A.【点睛】本题主要考查全等三角形的判定与性质,平行四边形的判定与性质,解此题的关键在于根据题中PE⊥AB作辅助线构成全等的三角形.23.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为()A.2 B.3 C.4 D.5【答案】C【解析】【分析】可延长DE至F,使EF=BC,利用SAS可证明△ABC≌△AEF,连AC,AD,AF,再利用SSS证明△ACD≌△AFD,可将五边形ABCDE的面积转化为两个△ADF的面积,进而求解即可.【详解】延长DE至F,使EF=BC,连AC,AD,AF,在△ABC与△AEF中,=90AB AEABC AEFBC EF⎧⎪∠∠⎨⎪⎩===,∴△ABC≌△AEF(SAS),∴AC=AF,∵AB=CD=AE=BC+DE,∠ABC=∠AED=90°,∴CD=EF+DE=DF,在△ACD与△AFD中,AC AFCD DFAD AD⎧⎪⎨⎪⎩===,∴△ACD≌△AFD(SSS),∴五边形ABCDE的面积是:S=2S△ADF=2×12•DF•AE=2×12×2×2=4.故选C.【点睛】本题主要考查了全等三角形的判定及性质以及三角形面积的计算,正确作出辅助线,利用全等三角形把五边形ABCDE的面积转化为两个△ADF的面积是解决问题的关键.24.如右图,在△ABC中,点Q,P分别是边AC,BC上的点,AQ=PQ,PR⊥AB于R,PS⊥AC于S,且PR=PS,下面四个结论:①AP平分∠BAC;②AS=AR;③BP=QP;④QP∥AB.其中一定正确的是( )A .①②③B .①③④C .①②④D .②③④【答案】C【解析】 试题解析:∵PR ⊥AB 于点R ,PS ⊥AC 于点S ,且PR =PS ,∴点P 在∠BAC 的平分线上,即AP 平分∠BAC ,故①正确;∴∠PAR =∠PAQ ,∵AQ =PQ ,∴∠APQ =∠PAQ ,∴∠APQ =∠PAR ,QP AB ∴, 故④正确;在△APR 与△APS 中,AP AP PR PS =⎧⎨=⎩, (HL)APR APS ∴≌, ∴AR =AS ,故②正确;△BPR 和△QSP 只能知道PR =PS ,∠BRP =∠QSP =90∘,其他条件不容易得到,所以,不一定全等.故③错误.故选C.五、八年级数学轴对称三角形填空题(难)25.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,点E ,F 分别在边AB ,AC 上,将△AEF 沿直线EF 翻折,点A 落在点P 处,且点P 在直线BC 上.则线段CP 长的取值范围是____.【答案】15CP ≤≤【解析】【分析】根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得.如图,当点E与点B重合时,CP的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F与点C重合时,CP的值最大,此时CP=AC,Rt△ABC中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP的最大值为5,所以线段CP长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.26.如图,A,B,C三点在同一直线上,分别以AB,BC(AB>BC)为边,在直线AC的同侧作等边ΔABD和等边ΔBCE,连接AE交BD于点M,连接CD交BE于点N,连接MN. 以下结论:①AE=DC,②MN//AB,③BD⊥AE,④∠DPM=60°,⑤ΔBMN是等边三角形.其中正确的是__________(把所有正确的序号都填上).【答案】①②④⑤【解析】①由三角形ABD与三角形BCE都为等边三角形,利用等边三角形的性质得到两条边对应相等,两个角相等都为60°,利用SAS即可得到三角形ABE与三角形DBC全等即可得结论;②由①中三角形ABE与三角形DBC全等,利用全等三角形的对应角相等得到一对角相等,再由∠ABD=∠EBC=60°,利用平角的定义得到∠MBE=∠NBC=60°,再由EB=CB,利用ASA 可得出三角形EMB与三角形CNB全等,利用全等三角形的对应边相等得到MB=NB,再由∠MBE=60°,利用有一个角为60°的等腰三角形为等边三角形可得出三角形BMN为等边三角形;可得∠BMN=60°,进行可得∠BMN=∠ABD,故MN//AB,从而可判断②,⑤正确;③无法证明PM=PN,因此不能得到BD⊥AE;④由①得∠EAB=∠CDB,根据三角形内角和和外角的性质可证得结论.【详解】①∵等边△ABD和等边△BCE,∴AB=DB,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=120°,在△ABE和△DBC中,∵AB DBABE DBC BE BC⎪∠⎪⎩∠⎧⎨===,∴△ABE≌△DBC(SAS),∴AE=DC,故①正确;∵△ABE≌△DBC,∴∠AEB=∠DCB,又∠ABD=∠EBC=60°,∴∠MBE=180°-60°-60°=60°,即∠MBE=∠NBC=60°,在△MBE和△NBC中,∵AEB DCB EB CBMBE NBC ∠∠∠⎧⎪⎪⎩∠⎨===,∴△MBE≌△NBC(ASA),∴BM=BN,∠MBE=60°,则△BMN为等边三角形,故⑤正确;∵△BMN为等边三角形,∴∠BMN=60°,∵∠ABD=60°,∴∠BMN=∠ABD,∴MN//AB,故②正确;③无法证明PM=PN,因此不能得到BD⊥AE;④由①得∠EAB=∠CDB,∠APC+∠PAC+∠PCA=180°,∴∠PAC+∠PCA=∠PDB+∠PCB=∠DBA=60°,∵∠DPM =∠PAC+∠PCA∴∠DPM =60°,故④正确,故答案为:①②④⑤.【点睛】此题考查了等边三角形的判定与性质,以及全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.27.等腰三角形一边长等于4,一边长等于9,它的周长是__.【答案】22【解析】【分析】等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;【详解】解:因为4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22.故答案为22.【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.28.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA2=4,则△A n B n A n+1的边长为_____.【答案】2n.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2…进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∵∠MON=30°,∵OA2=4,∴OA1=A1B1=2,∴A2B1=2,∵△A2B2A3、△A3B3A4是等边三角形,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2=32,以此类推△A n B n A n+1的边长为 2n.故答案为:2n.【点睛】本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA5=2OA4=4OA3=8OA2=16OA1是解题的关键.29.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.【答案】103或10【解析】【分析】根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,点P在BO上,分别计算,即可得解.【详解】当PO=QO时,△POQ是等腰三角形,如图1所示当点P在AO上时,∵PO=AO-AP=10-2t,OQ=t当PO=QO时,102t t-=解得103 t=当PO=QO时,△POQ是等腰三角形,如图2所示当点P在BO上时∵PO=AP-AO=2t-10,OQ=t当PO=QO时,210t t-=解得10t=故答案为:103或10【点睛】本题考查等腰三角形的性质及动点问题,熟练掌握等腰三角形的性质以及分类讨论思想是解题关键.30.已知,∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A7B7A8的边长为______.【答案】64a【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,根据30°角所对直角边等于斜边的一半得到A2B2=2B1A2,进而得出A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2…从而得到答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°.∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°.又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°.∵∠MON=∠1=30°,∴OA1=A1B1=a,∴A2B1=a.∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°.∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2=16a,以此类推:A7B7=64B1A2=64a.故答案为:64a.【点睛】本题考查了等边三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题的关键.六、八年级数学轴对称三角形选择题(难)31.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有()个.A.5 B.6 C.7 D.8【答案】D【解析】【分析】要使△ABC是等腰三角形,可分三种情况(①若AC=AB,②若BC=BA,③若CA=CB)讨论,通过画图就可解决问题.【详解】①若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点;②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有2个交点(A点除外);③若CA=CB,则点C在AB的垂直平分线上.∵A(0,0),B(2,2),∴AB的垂直平分线与坐标轴有2个交点.综上所述:符合条件的点C的个数有8个.故选D.【点睛】本题考查了等腰三角形的判定、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解决本题的关键.32.如图,∠AOB=60°,点P是∠AOB内的定点且OP=3,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A 36B33C.6 D.3【答案】D【解析】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=12OC=32,CH=3OH=3 2 ,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.33.如图,已知等边△ABC的边长为4,面积为43,点D为AC的中点,点E为BC的中点,点P为BD上一动点,则PE+PC的最小值为()A.3 B.2C.3D.3【答案】C【解析】【分析】由题意可知点A、点C关于BD对称,连接AE交BD于点P,由对称的性质可得,PA=PC,故PE+PC=AE,由两点之间线段最短可知,AE即为PE+PC的最小值.【详解】解:∵△ABC是等边三角形,点D为AC的中点,点E为BC的中点,∴BD⊥AC,EC=2,连接AE,线段AE的长即为PE+PC最小值,∵点E是边BC的中点,∴AE⊥BC,∴PE+PC的最小值是22-=.4223-=22AC E C故选C.【点睛】本题考查的是轴对称-最短路线问题,熟知等边三角形的性质是解答此题的关键.34.如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)【答案】A【解析】试题分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.试题解析:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选A.考点:1.翻折变换(折叠问题);2.正方形的性质;3.坐标与图形变化-平移.35.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠MPN=110°,则∠AOB=()A.35°B.40°C.45°D.50°【答案】A【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质求解.【详解】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∠MPN=110°∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM,同理可得:∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.。
八年级上册重庆数学全册全套试卷检测题(Word版 含答案)

八年级上册重庆数学全册全套试卷检测题(Word版含答案)一、八年级数学三角形填空题(难)1.如图,△ABC中,点D、E、F分别在三边上,E是AC的中点,AD、BE、CF交于一点G,BD=2DC,S△GEC=3,S△GDC=4,则△ABC的面积是_____.【答案】30【解析】【分析】由于BD=2DC,那么结合三角形面积公式可得S△ABD=2S△ACD,而S△ABC=S△ABD+S△ACD,可得出S△ABC=3S△ACD,而E是AC中点,故有S△AGE=S△CGE,于是可求S△ACD,从而易求S△ABC.【详解】解:∵BD=2DC,∴S△ABD=2S△ACD,∴S△ABC=3S△ACD.∵E是AC的中点,∴S△AGE=S△CGE.又∵S△GEC=3,S△GDC=4,∴S△ACD=S△AGE+S△CGE+S△CGD=3+3+4=10,∴S△ABC=3S△ACD=3×10=30.故答案为30.【点睛】本题考查了三角形的面积公式、三角形之间的面积加减计算.注意同底等高的三角形面积相等,面积相等、同高的三角形底相等.2.如图,平面内有五个点,以其中任意三个点为顶点画三角形,最多可以画_____个三角形.【答案】10【解析】【分析】以平面内的五个点为顶点画三角形,根据三角形的定义,我们在平面中依次选取三个点画出图形即可解答.【详解】解:如图所示,以其中任意三个点为顶点画三角形,最多可以画10个三角形,故答案为:10.【点睛】本题考查的是几何图形的个数,我们根据三角形的定义,在画图的时候要注意按照一定的顺序,保证不重复不遗漏.3.如图,ABC ∆的面积为1,第一次操作:分别延长AB ,BC ,CA 至点111,,A B C ,使111,,A B AB B C BC C A CA ===,顺次连接111,,A B C ,得到111A B C ∆;第二次操作:分别延长111111,,A B B C C A 至点222,,A B C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接222,,A B C ,得到222A B C ∆,…;按此规律,要使得到的三角形的面积超过2020,最少需经过__________次操作.【答案】4【解析】【分析】连接111,,AC B A C B ,根据两个三角形等底同高可得111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======从而得出第一次操作:11177A B C ABC S S ∆∆==<2020;同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020……直至第四次操作4443334772401A B C A B C S S ∆∆===>2020,即可得出结论.【详解】解:连接111,,AC B A C B∵111,,A B AB B C BC C A CA ===根据等底同高可得:111111111,,C A B C AB ABC A B C A BC ABC B C A B CA ABC S S S S SS S S S ====== ∴111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======∴第一次操作:11177A B C ABC S S ∆∆==<2020同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020第三次操作333222377343A B C A B C S S ∆∆===<2020第四次操作4443334772401A B C A B C S S ∆∆===>2020故要使得到的三角形的面积超过2020,最少需经过4次操作,故答案为:4.【点睛】此题考查的是三角形的面积关系和探索规律,掌握两个三角形等底同高时,面积相等是解决此题的关键.4.△ABC 的两边长为4和3,则第三边上的中线长m 的取值范围是_______. 【答案】1722m << 【解析】【分析】 作出草图,延长AD 到E ,使DE=AD ,连接CE ,利用“边角边”证明△ABD 和△ECD 全等,然后根据全等三角形对应边相等可得CE=AB ,再根据三角形的任意两边之和大于第三边,两边之和小于第三边求出AE 的取值范围,便不难得出m 的取值范围.【详解】解:如图,延长AD 到E ,使DE=AD ,连接CE ,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,AD DEADB EDCBD CD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ECD(SAS),∴CE=AB,∵AB=3,AC=4,∴4-3<AE<4+3,即1<AE<7,∴1722m<<.故答案为:1722m<<.【点睛】本题主要考查倍长中线法构造全等三角形和三边关系,解决本题的关键是要熟练掌握倍长中线法构造全等三角形.5.如图,A、B、C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为D,则∠EBC 的度数为_____.【答案】100°【解析】【分析】根据线段垂直平分线的性质,得BE BA=,根据等腰三角形的性质,得50E A∠=∠=︒,再根据三角形外角的性质即可求解.【详解】∵BD垂直平分AE,∴BE BA =,∴50E A ∠=∠=︒,∴100EBC E A ∠=∠+∠=︒,故答案为100°.【点睛】考查线段垂直平分线的性质以及三角形外角的性质,掌握线段垂直平分线的性质是解题的关键.6.如图所示,将△ABC 沿着DE 翻折,若∠1+∠2=80°,则∠B =_____度.【答案】40.【解析】【分析】利用三角形的内角和和四边形的内角和即可求得.【详解】∵△ABC 沿着DE 翻折,∴∠1+2∠BED =180°,∠2+2∠BDE =180°,∴∠1+∠2+2(∠BED +∠BDE )=360°,而∠1+∠2=80°,∠B +∠BED +∠BDE =180°,∴80°+2(180°﹣∠B )=360°,∴∠B =40°.故答案为:40°.【点睛】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.二、八年级数学三角形选择题(难)7.如图,三角形ABC 中,AB=AC ,D ,E 分别为边AB ,AC 上的点,DM 平分∠BDE,EN 平分∠DEC,若∠DMN=110°,则∠DEA=( )A.40°B.50°C.60°D.70°【答案】A【解析】【分析】由等腰三角形的性质得到∠B=∠C,由角平分线的定义得到∠BDM=∠EDM,∠CEN=∠DEN,根据外角的性质得∠B=∠DMN-∠BDM,∠C=∠ENM-∠CEN,整理可得∠DMN+∠DEN=∠EDM+∠ENM,再根据四边形的内角和可得∠DMN+∠DEN=∠EDM+∠ENM=180°,则∠DEN=70°,故∠DEA=40°.【详解】解:∵AB=AC,∴∠B=∠C,又∵DM平分∠BDE,EN平分∠DEC,∴∠BDM=∠EDM,∠CEN=∠DEN,∵∠B=∠DMN-∠BDM=∠DMN-∠EDM,∠C=∠ENM-∠CEN=∠ENM-∠DEN,∴∠DMN-∠EDM=∠ENM-∠DEN,即∠DMN+∠DEN=∠EDM+∠ENM,∵四边形DMNE内角和为360°,∴∠DMN+∠DEN=∠EDM+∠ENM=180°,∴∠DEN=70°,则∠DEA=180°-2∠DEN=40°.故选A.8.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点.若∠A=60°,则∠BMN的度数为( )A.45°B.50°C.60°D.65°【答案】B【解析】分析:过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF,再根据到角的两边距离相等的点在角的平分线上判断出MN平分∠BMC,然后根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角的三等分求出∠MBC+∠MCB的度数,然后利用三角形内角和定理求出∠BMC的度数,从而得解.详解:如图,过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,∵∠ABC的三等分线与∠ACB的三等分线分别交于点M、N,∴BN平分∠MBC,CN平分∠MCB,∴NE=NG,NF=NG,∴NE=NF,∴MN平分∠BMC,∴∠BMN=12∠BMC,∵∠A=60°,∴∠ABC+∠ACB=180°−∠A=180°−60°=120°,根据三等分,∠MBC+∠MCB=23(∠ABC+∠ACB)=23×120°=80°.在△BMC中,∠BMC=180°−(∠MBC+∠MCB)=180°−80°=100°.∴∠BMN=12×100°=50°;故选:B.点睛:本题考查了三角形的内角和定理:三角形内角和为180°;角平分线的性质:角平分线上的点到角两边的距离相等.熟记性质和定理是解本题的关键.9.已知正多边形的一个外角等于40,那么这个正多边形的边数为()A.6 B.7 C.8 D.9【答案】D【解析】【分析】根据正多边形的外角和以及一个外角的度数,即可求得边数.【详解】正多边形的一个外角等于40,且外角和为360,则这个正多边形的边数是:360409÷=,故选D.【点睛】本题主要考查了多边形的外角和定理,熟练掌握多边形的外角和等于360度是解题的关键.10.一个多边形内角和是900°,则这个多边形的边数是()A.7 B.6 C.5 D.4【解析】【分析】n边形的内角和为(n-2)180°,由此列方程求n的值即可.【详解】设这个多边形的边数为n,则:(n-2)180°=900°,解得n=7.故答案为:A.【点睛】本题考查了多边形的内角和,熟练掌握该知识点是本题解题的关键.11.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠的大小为()244∠=,则1α-A.14B.16C.90α-D.44【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.12.一个多边形的每个内角都等于120°, 则此多边形是( )A.五边形B.七边形C.六边形D.八边形【答案】C【分析】先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°﹣120°=60°,∴边数n=360°÷60°=6.故选C.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.三、八年级数学全等三角形填空题(难)13.如图,C为线段AE上一动点(不与A. E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,一定成立的有________(填序号)【答案】①②③⑤【解析】【分析】①根据全等三角形的判定方法,证出△ACD≌△BCE,即可得出AD=BE.③先证明△ACP≌△BCQ,即可判断出CP=CQ,③正确;②根据∠PCQ=60°,可得△PCQ为等边三角形,证出∠PQC=∠DCE=60°,得出PQ∥AE,②正确.④没有条件证出BO=OE,得出④错误;⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,⑤正确;即可得出结论.【详解】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴AD=BE,结论①正确.∵△ACD≌△BCE,∴∠CAD=∠CBE,又∵∠ACB=∠DCE=60°,∴∠BCD=180°-60°-60°=60°,∴∠ACP=∠BCQ=60°,在△ACP和△BCQ中,ACP BCQCAP CBQAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BCQ(AAS),∴CP=CQ,结论③正确;又∵∠PCQ=60°,∴△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,结论②正确.∵△ACD≌△BCE,∴∠ADC=∠AEO,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,∴结论⑤正确.没有条件证出BO=OE,④错误;综上,可得正确的结论有4个:①②③⑤.故答案是:①②③⑤.【点睛】此题是三角形综合题目,考查了全等三角形的判定和性质的应用、等边三角形的性质和应用、平行线的判定;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.14.如图,Rt△ABC中,∠C=90°.E为AB中点,D为AC上一点,BF∥AC交DE的延长线于点F.AC=6,BC=5.则四边形FBCD周长的最小值是______.【答案】16【解析】四边形FBCD周长=BC+AC+DF;当DF BC⊥时,四边形FBCD周长最小为5+6+5=1615.AD,BE是△ABC的高,这两条高所在的直线相交于点O,若BO=AC,BC=a,CD=b,则AD的长为______.【答案】AD的长为a-b或b-a或a+b或12a或b.【解析】【分析】分别讨论△ABC为锐角三角形时、∠A、∠B、∠C分别为钝角时和∠A为直角时五种情况,利用AAS证明△BOD≌△ACD,可得BD=AD,根据线段的和差关系即可得答案.【详解】①如图,当△ABC为锐角三角形时,∵AD、BE为△ABC的两条高,∴∠CAD+∠AOE=90°,∠CBE+∠BOD=90°,∵∠BOD=∠AOE,∴∠CAD=∠OBD,又∵∠ODB=∠ADC=90°,OB=AC,∴△BOD≌△ACD,∴AD=BD,∵BC=a,CD=b,∴AD=BD=BC-CD=a-b.②如图,当∠B为钝角时,∵∠C+∠CAD=90°,∠O+∠CAD=90°,∴∠C=∠O,又∵∠ADC=∠ODB=90°,OB=AC,∴△BOD≌△ACD,∴BD=AD,∴AD=CD-BC=b-a.③如图,当∠A为钝角时,同理可证:△BOD≌△ACD,∴AD=BC-CD=a-b.④如图,当∠C为钝角时,同理可证:△BOD≌△ACD,∴AD=BD=BC+CD=a+b.⑤当∠B为直角时,点O、D、B重合,OB=0,不符合题意,当∠C为直角时,点O、C、D、E重合,CD=0,不符合题意,如图,当∠A为直角时,点A、E、O重合,∵OB=AC,∠CAB=90°,∴△ABC是等腰直角三角形,∵AD⊥BC,∴AD是Rt△ABC斜边中线,∴AD=AD=12BC=12a=b.综上所述:AD的长为a-b或b-a或a+b或12a或b.故答案为:a-b或b-a或a+b或12a或b【点睛】本题主要考查全等三角形的判定与性质,全等三角形的判定方法有:SSS 、AAS 、ASA 、SAS 、HL 等,注意:SAS 时,角必须是两边的夹角,SSA 和AAA 不能判定两个三角形全等.灵活运用分类讨论的思想是解题关键.16.已知∠ABC=60°,点D 是其角平分线上一点,BD=CD=6,DE//AB 交BC 于点E.若在射线BA 上存在点F ,使DCF BDE S S ∆∆=,请写出相应的BF 的长:BF =_________【答案】23或43.【解析】【分析】过点D 作DF 1∥BE ,求出四边形BEDF 1是菱形,根据菱形的对边相等可得BE=DF 1,然后根据等底等高的三角形的面积相等可知点F 1为所求的点,过点D 作DF 2⊥BD ,求出∠F 1DF 2=60°,从而得到△DF 1F 2是等边三角形,然后求出DF 1=DF 2,再求出∠CDF 1=∠CDF 2,利用“边角边”证明△CDF 1和△CDF 2全等,根据全等三角形的面积相等可得点F 2也是所求的点,然后在等腰△BDE 中求出BE 的长,即可得解.【详解】如图,过点D 作DF 1∥BE ,易求四边形BEDF 1是菱形,所以BE=DF 1,且BE 、DF 1上的高相等,此时S △DCF1=S △BDE ;过点D 作DF 2⊥BD ,∵∠ABC=60°,F 1D ∥BE ,∴∠F 2F 1D=∠ABC=60°,∵BF 1=DF 1,∠F 1BD=12∠ABC=30°,∠F 2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=12×60°=30°,∴∠CDF1=180°-∠BCD=180°-30°=150°,∠CDF2=360°-150°-60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,1212DF DFCDF CDFCD CD⎧⎪∠∠⎨⎪⎩===,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=12×60°=30°,又∵BD=6,∴BE=12×6÷cos30°=3÷3=23,∴BF1=BF2=BF1+F1F2=23+23=43,故BF的长为23或43.故答案为:23或43.【点睛】本题考查全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题关键,(3)要注意符合条件的点F有两个.17.如图,已知AB∥CD,O为∠CAB、∠ACD的角平分线的交点,OE⊥AC于E,且OE=2,CO=3,则两平行线间AB、CD的距离等于________.【答案】4【解析】试题解析:如图,过点O作MN,MN⊥AB于M,交CD于N,∵AB∥CD,∴MN⊥CD,∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,∴OM=OE=2,∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,∴ON=OE=2,∴MN=OM+ON=4,即AB与CD之间的距离是4.点睛:要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.18.如图,在△ABC中,∠B=∠C,BD=CE,BE=CF.若∠A=40°,则∠DEF的度数为____.【答案】70°【解析】由等腰三角形的性质得出∠B=∠C=70°,再根据SAS证得△BDE≌△CEF,得出∠BDE=∠CEF,运用三角形的外角性质得出∠CEF+∠DEF=∠B+∠BDE,即可得出∠DEF=∠B=70°.点睛:此题主要考查了等腰三角形的性质,解题时,利用等腰三角形的性质和三角形全等的判定证得∠BDE=∠CEF,然后根据三角形外角的性质可求解.四、八年级数学全等三角形选择题(难)19.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=12BF;④AE=BG.其中正确的是A.①②B.①③C.①②③D.①②③④【答案】C【解析】【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=12AC,又因为BF=AC所以CE=12AC=12BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°−∠BFD,∠DCA=90°−∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中.∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=12 AC.又由(1),知BF=AC,∴CE=12AC=12BF ;故③正确; 连接CG.∵△BCD 是等腰直角三角形,∴BD=CD.又DH ⊥BC ,∴DH 垂直平分BC.∴BG=CG.在Rt △CEG 中,∵CG 是斜边,CE 是直角边,∴CE<CG.∵CE=AE ,∴AE<BG.故④错误.故选C.【点睛】 本题考查了等腰直角三角形、等腰三角形的判定与性质、全等三角形的判定与性质.此类问题涉及知识点较多,需要对相关知识点有很高的熟悉度.20.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°【答案】B【解析】【分析】 根据SAS 可证得ABC ≌EDC ,可得出BAC DEC ∠∠=,继而可得出答案,再根据邻补角的定义求解.【详解】由题意得:AB ED =,BC DC =,D B 90∠∠==,ABC ∴≌EDC ,BAC DEC ∠∠∴=,12180∠∠+=.故选B .【点睛】本题考查全等图形的知识,比较简单,解答本题的关键是判断出ABC ≌EDC ..21.如图,ABC △是等边三角形,ABD △是等腰直角三角形,∠BAD =90°,AE ⊥BD 于点E .连CD 分别交AE ,AB 于点F ,G ,过点A 做AH ⊥CD 交BD 于点H ,则下列结论:①∠ADC =15°;②AF =AG ;③AH =DF ;④△ADF ≌△BAH ;⑤DF =2EH .其中正确结论的个数为( )A .5B .4C .3D .2【答案】B【解析】【分析】 ①根据△ABC 为等边三角形,△ABD 为等腰直角三角形,可以得出各角的度数以及DA=AC ,即可作出判断;②分别求出∠AFG 和∠AGD 的度数,即可作出判断;④根据三角形内角和定理求出∠HAB 的度数,求证EHG DFA ∠=∠,利用AAS 即可证出两个三角形全等;③根据④证出的全等即可作出判断;⑤证明∠EAH=30°,即可得到AH=2EH ,又由③可知AH DF =,即可作出判断.【详解】①正确:∵ABC △是等边三角形,∴60BAC ︒∠=,∴CA AB =.∵ABD △是等腰直角三角形,∴DA AB =.又∵90BAD ︒∠=,∴150CAD BAD BAC ︒∠=∠+∠=,∴DA CA =,∴()1180150152ADC ACD ︒︒︒∠=∠=-=; ②错误:∵∠EDF=∠ADB-∠ADC=30°∴∠DFE=90°-∠EDF=90°-30°=60°=∠AFG∵∠AGD=90°-∠ADG=90°-15°=75°∠AFG≠∠AGD∴AF≠AG③,④正确,由题意可得45DAF ABH︒∠=∠=,DA AB=,∵AE BD⊥,AH CD⊥.∴180EHG EFG︒∠+∠=.又∵180?DFA EFG∠+∠=,∴EHG DFA∠=∠,在DAF△和ABH中()AFD BHADAF ABH AASDA AB∠=∠⎧⎪∠=∠⎨⎪=⎩∴DAF△≌ABH.∴DF AH=.⑤正确:∵150CAD︒∠=,AH CD⊥,∴75DAH︒∠=,又∵45DAF︒∠=,∴754530EAH︒︒︒∠=-=又∵AE DB⊥,∴2AH EH=,又∵=AH DF,∴2DF EH=【点睛】本题考查了等边三角形的性质,等腰三角形的性质,三角形的内角和定理,三角形外角的性质,全等三角形的判定与性质,综合性较强,属于较难题目.22.已知等边三角形ABC的边长为12,点P为AC上一点,点D在CB的延长线上,且BD=AP,连接PD交AB于点E,PE⊥AB于点F,则线段EF的长为()A.6 B.5C.4.5 D.与AP的长度有关【答案】A【解析】【分析】作DQ⊥AB,交直线AB的延长线于点Q,连接DE,PQ,根据全等三角形的判定定理得出△APE≌△BDQ,再由AE=BQ,PE=QD且PE∥QD,可知四边形PEDQ是平行四边形,进而可得出EF=12AB,由等边△ABC的边长为12可得出DE=6.【详解】解;如图,作DQ⊥AB,交AB的延长线于点F,连接DE,PQ,又∵PE⊥AB于E,∴∠BQD=∠AEP=90°,∵△ABC是等边三角形,∴∠A=∠ABC=∠DBQ=60°,在△APE和△BDQ中,A DBQAEP BQDAP BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APE≌△BDQ(AAS),∴AE=BQ,PE=QD且PE∥QD,∴四边形PEDQ是平行四边形,∴EF=12EQ,∵EB+AE=BE+BQ=AB,∴EF=12AB,又∵等边△ABC的边长为12,∴EF=6.故选:A.【点睛】本题主要考查全等三角形的判定与性质,平行四边形的判定与性质,解此题的关键在于根据题中PE⊥AB作辅助线构成全等的三角形.23.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为()A.2 B.3 C.4 D.5【答案】C【解析】【分析】可延长DE至F,使EF=BC,利用SAS可证明△ABC≌△AEF,连AC,AD,AF,再利用SSS证明△ACD≌△AFD,可将五边形ABCDE的面积转化为两个△ADF的面积,进而求解即可.【详解】延长DE至F,使EF=BC,连AC,AD,AF,在△ABC与△AEF中,=90AB AEABC AEFBC EF⎧⎪∠∠⎨⎪⎩===,∴△ABC≌△AEF(SAS),∴AC=AF,∵AB=CD=AE=BC+DE,∠ABC=∠AED=90°,∴CD=EF+DE=DF,在△ACD与△AFD中,AC AFCD DFAD AD⎧⎪⎨⎪⎩===,∴△ACD≌△AFD(SSS),∴五边形ABCDE的面积是:S=2S△ADF=2×12•DF•AE=2×12×2×2=4.故选C.【点睛】本题主要考查了全等三角形的判定及性质以及三角形面积的计算,正确作出辅助线,利用全等三角形把五边形ABCDE的面积转化为两个△ADF的面积是解决问题的关键.24.如右图,在△ABC中,点Q,P分别是边AC,BC上的点,AQ=PQ,PR⊥AB于R,PS⊥AC于S,且PR=PS,下面四个结论:①AP平分∠BAC;②AS=AR;③BP=QP;④QP∥AB.其中一定正确的是( )A .①②③B .①③④C .①②④D .②③④【答案】C【解析】 试题解析:∵PR ⊥AB 于点R ,PS ⊥AC 于点S ,且PR =PS ,∴点P 在∠BAC 的平分线上,即AP 平分∠BAC ,故①正确;∴∠PAR =∠PAQ ,∵AQ =PQ ,∴∠APQ =∠PAQ ,∴∠APQ =∠PAR ,QP AB ∴, 故④正确;在△APR 与△APS 中,AP AP PR PS =⎧⎨=⎩, (HL)APR APS ∴≌, ∴AR =AS ,故②正确;△BPR 和△QSP 只能知道PR =PS ,∠BRP =∠QSP =90∘,其他条件不容易得到,所以,不一定全等.故③错误.故选C.五、八年级数学轴对称三角形填空题(难)25.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,点E ,F 分别在边AB ,AC 上,将△AEF 沿直线EF 翻折,点A 落在点P 处,且点P 在直线BC 上.则线段CP 长的取值范围是____.【答案】15CP ≤≤【解析】【分析】根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得.如图,当点E与点B重合时,CP的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F与点C重合时,CP的值最大,此时CP=AC,Rt△ABC中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP的最大值为5,所以线段CP长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.26.如图,A,B,C三点在同一直线上,分别以AB,BC(AB>BC)为边,在直线AC的同侧作等边ΔABD和等边ΔBCE,连接AE交BD于点M,连接CD交BE于点N,连接MN. 以下结论:①AE=DC,②MN//AB,③BD⊥AE,④∠DPM=60°,⑤ΔBMN是等边三角形.其中正确的是__________(把所有正确的序号都填上).【答案】①②④⑤【解析】①由三角形ABD与三角形BCE都为等边三角形,利用等边三角形的性质得到两条边对应相等,两个角相等都为60°,利用SAS即可得到三角形ABE与三角形DBC全等即可得结论;②由①中三角形ABE与三角形DBC全等,利用全等三角形的对应角相等得到一对角相等,再由∠ABD=∠EBC=60°,利用平角的定义得到∠MBE=∠NBC=60°,再由EB=CB,利用ASA 可得出三角形EMB与三角形CNB全等,利用全等三角形的对应边相等得到MB=NB,再由∠MBE=60°,利用有一个角为60°的等腰三角形为等边三角形可得出三角形BMN为等边三角形;可得∠BMN=60°,进行可得∠BMN=∠ABD,故MN//AB,从而可判断②,⑤正确;③无法证明PM=PN,因此不能得到BD⊥AE;④由①得∠EAB=∠CDB,根据三角形内角和和外角的性质可证得结论.【详解】①∵等边△ABD和等边△BCE,∴AB=DB,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=120°,在△ABE和△DBC中,∵AB DBABE DBC BE BC⎪∠⎪⎩∠⎧⎨===,∴△ABE≌△DBC(SAS),∴AE=DC,故①正确;∵△ABE≌△DBC,∴∠AEB=∠DCB,又∠ABD=∠EBC=60°,∴∠MBE=180°-60°-60°=60°,即∠MBE=∠NBC=60°,在△MBE和△NBC中,∵AEB DCB EB CBMBE NBC ∠∠∠⎧⎪⎪⎩∠⎨===,∴△MBE≌△NBC(ASA),∴BM=BN,∠MBE=60°,则△BMN为等边三角形,故⑤正确;∵△BMN为等边三角形,∴∠BMN=60°,∵∠ABD=60°,∴∠BMN=∠ABD,∴MN//AB,故②正确;③无法证明PM=PN,因此不能得到BD⊥AE;④由①得∠EAB=∠CDB,∠APC+∠PAC+∠PCA=180°,∴∠PAC+∠PCA=∠PDB+∠PCB=∠DBA=60°,∵∠DPM =∠PAC+∠PCA∴∠DPM =60°,故④正确,故答案为:①②④⑤.【点睛】此题考查了等边三角形的判定与性质,以及全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.27.等腰三角形一边长等于4,一边长等于9,它的周长是__.【答案】22【解析】【分析】等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;【详解】解:因为4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22.故答案为22.【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.28.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA2=4,则△A n B n A n+1的边长为_____.【答案】2n.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2…进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∵∠MON=30°,∵OA2=4,∴OA1=A1B1=2,∴A2B1=2,∵△A2B2A3、△A3B3A4是等边三角形,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2=32,以此类推△A n B n A n+1的边长为 2n.故答案为:2n.【点睛】本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA5=2OA4=4OA3=8OA2=16OA1是解题的关键.29.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.【答案】103或10【解析】【分析】根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,点P在BO上,分别计算,即可得解.【详解】当PO=QO时,△POQ是等腰三角形,如图1所示当点P在AO上时,∵PO=AO-AP=10-2t,OQ=t当PO=QO时,102t t-=解得103 t=当PO=QO时,△POQ是等腰三角形,如图2所示当点P在BO上时∵PO=AP-AO=2t-10,OQ=t当PO=QO时,210t t-=解得10t=故答案为:103或10【点睛】本题考查等腰三角形的性质及动点问题,熟练掌握等腰三角形的性质以及分类讨论思想是解题关键.30.已知,∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A7B7A8的边长为______.【答案】64a【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,根据30°角所对直角边等于斜边的一半得到A2B2=2B1A2,进而得出A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2…从而得到答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°.∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°.又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°.∵∠MON=∠1=30°,∴OA1=A1B1=a,∴A2B1=a.∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°.∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2=16a,以此类推:A7B7=64B1A2=64a.故答案为:64a.【点睛】本题考查了等边三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题的关键.六、八年级数学轴对称三角形选择题(难)31.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有()个.A.5 B.6 C.7 D.8【答案】D【解析】【分析】要使△ABC是等腰三角形,可分三种情况(①若AC=AB,②若BC=BA,③若CA=CB)讨论,通过画图就可解决问题.【详解】①若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点;②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有2个交点(A点除外);③若CA=CB,则点C在AB的垂直平分线上.∵A(0,0),B(2,2),∴AB的垂直平分线与坐标轴有2个交点.综上所述:符合条件的点C的个数有8个.故选D.【点睛】本题考查了等腰三角形的判定、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解决本题的关键.32.如图,∠AOB=60°,点P是∠AOB内的定点且OP=3,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A 36B33C.6 D.3【答案】D【解析】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=12OC=32,CH=3OH=3 2 ,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.33.如图,已知等边△ABC的边长为4,面积为43,点D为AC的中点,点E为BC的中点,点P为BD上一动点,则PE+PC的最小值为()A.3 B.2C.3D.3【答案】C【解析】【分析】由题意可知点A、点C关于BD对称,连接AE交BD于点P,由对称的性质可得,PA=PC,故PE+PC=AE,由两点之间线段最短可知,AE即为PE+PC的最小值.【详解】解:∵△ABC是等边三角形,点D为AC的中点,点E为BC的中点,∴BD⊥AC,EC=2,连接AE,线段AE的长即为PE+PC最小值,∵点E是边BC的中点,∴AE⊥BC,∴PE+PC的最小值是22-=.4223-=22AC E C故选C.【点睛】本题考查的是轴对称-最短路线问题,熟知等边三角形的性质是解答此题的关键.34.如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)【答案】A【解析】试题分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.试题解析:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选A.考点:1.翻折变换(折叠问题);2.正方形的性质;3.坐标与图形变化-平移.35.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠MPN=110°,则∠AOB=()A.35°B.40°C.45°D.50°【答案】A【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质求解.【详解】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∠MPN=110°∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM,同理可得:∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.。
重庆一中八年级数学上册第十一章《三角形》经典练习题(含答案)

一、选择题1.下列命题中,是假命题的是()A.直角三角形的两个锐角互余B.在同一个平面内,垂直于同一条直线的两条直线平行C.同旁内角互补,两直线平行D.三角形的一个外角大于任何一个内角D 解析:D【分析】利用三角形外角的性质、平行线的性质及直角三角形的性质分别判断后即可确定正确的选项.【详解】解:A. 直角三角形的两个锐角互余,正确,是真命题;B. 在同一个平面内,垂直于同一条直线的两条直线平行,正确,是真命题;C. 同旁内角互补,两直线平行,正确,是真命题;D. 三角形的一个外角大于任何一个内角,错误,是假命题;故选:D.【点睛】本题考查了命题与定理的知识,三角形外角的性质、平行线的性质及直角三角形的性质,熟悉相关性质是解题的关键.2.下列说法正确的是()A.射线AB和射线BA是同一条射线B.连接两点的线段叫两点间的距离C.两点之间,直线最短D.七边形的对角线一共有14条D解析:D【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解.【详解】解:A、射线AB和射线BA是不同的射线,故本选项不符合题意;B、连接两点的线段的长度叫两点间的距离,故本选项不符合题意;C、两点之间,线段最短,故本选项不符合题意;D 、七边形的对角线一共有7(73)142条,正确故选:D【点睛】本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键.3.下列长度的三条线段能构成三角形的是()A.1,2,3B.5,12,13C.4,5,10D.3,3,6B解析:B【分析】根据三角形的三边关系进行分析判断即可.【详解】解:根据三角形任意两边的和大于第三边,得A中,1+2=3,不能组成三角形;B中,5+12=17>13,能组成三角形;C中,4+5=9<10,不能够组成三角形;D中,3+3=6,不能组成三角形.故选:B.【点睛】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.4.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是()A.12 B.10 C.9 D.6D解析:D【分析】要先根据题意,画出图形,通过对图形观察,思考,得出需要小木棍的根数,然后图形对比,选出最少需要小木棍的根数.【详解】图1没有共用部分,要6根小木棍,图2有共用部分,可以减少小木棍根数,仿照图2得到图3,要7根小木棍,同法搭建的图4,要9根小木棍,如按图5摆放,外围大的等边三角形,可以得到5个等边三角形,要9根小木棍,如按图6摆成三棱锥(西面体)就可以得到4个等边三角形,∴搭建4个等边三角形最少需要小木棍6根.故选:D【点睛】此题考查的是组成图形的边的条数,解答此题需要灵活利用立体空间思维解答.5.内角和为720°的多边形是().A.三角形B.四边形C.五边形D.六边形 D解析:D【分析】根据多边形内角和的计算方法(n-2)•180°,即可求出边数.【详解】解:依题意有(n-2)•180°=720°,解得n=6.该多边形为六边形,故选:D.【点睛】本题考查了多边形的内角和,利用多边形的内角和计算公式正确计算是解题关键.6.下列长度(单位:cm)的三条线段能组成三角形的是()A.13,11,12 B.3,2,1 C.5,12,7 D.5,13,5A解析:A【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【详解】解:根据三角形的三边关系,A、11+12>13,能组成三角形,符合题意;B、1+2=3,不能组成三角形,不符合题意;C、5+7=12,不能组成三角形,不符合题意;D、5+5<13,不能组成三角形,不符合题意;故选A.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.a b,含30角的直角三角板按如图所示放置,顶点A在直线a上,斜边7.已知直线//BC与直线b交于点D,若135∠=︒,则2∠的度数为()A.35︒B.45︒C.65︒D.75︒C解析:C【分析】如图,根据三角形外角的性质可得出∠3,再根据平行线的性质可得出∠2.【详解】解:如图,∠=︒,∠B=30°∵135∴∠3=∠1+∠B=35°+30°=65°a b∵//∴∠2=∠3=65°故选:C【点睛】此题考查了平行线的性质以及三角形外角的性质.解题时注意掌握平行线的性质以及三角形外角的性质的应用.8.如图,△ABC中AC边上的高是哪条垂线段.()A .AEB .CDC .BFD .AF C解析:C【分析】 根据三角形的高的定义,△ABC 中AC 边上的高是过B 点向AC 作的垂线段,即为BF .【详解】解:∵BF ⊥AC 于F ,∴△ABC 中AC 边上的高是垂线段BF .故选:C .【点睛】本题考查了三角形的高的定义,关键是根据从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高解答.9.如图,已知,,90,//AD BC FG BC BAC DE AC ⊥⊥∠=︒.则结论①//FG AD ;②DE 平分ADB ;③B ADE ∠=∠;④CFG BDE ∠+∠90=︒.正确的是( )A .①②③B .①②④C .①③④D .②③④C解析:C【分析】根据,,AD BC FG BC ⊥⊥得到FG ∥AD ,判断①正确;根据∠ADE+∠BDE=90°,∠B+∠BDE=90°,得到③正确;根据//DE AC , 证明∠BDE=∠C ,进行角的代换证明∠BDE+∠CFG=90°,得到④正确; 证明∠ADE+∠BDE=90°,判断②不正确.【详解】解:∵,,AD BC FG BC ⊥⊥∴∠FGB=∠ADB=90°,∴FG ∥AD ,∠ADE+∠BDE=90°,故①正确;∵DE ∥AC ,∴∠DEB=∠CAB=90°,∴∠B+∠BDE=90°,∴B ADE ∠=∠,∴③正确;∵//DE AC ,∴∠BDE=∠C ,∵∠FGC=90°,∴∠C+∠CFG=90°,∴∠BDE+∠CFG=90°,∴④正确;∵∠ADB=90°,∴∠ADE+∠BDE=90°,∴②不正确;故选:C.【点睛】本题考查了直角三角形两锐角互余,同角(等角)的余角相等,平行线的判定等知识,熟知相关定理是解题关键.的边AC上的高是()10.如图所示,ABCA.线段AE B.线段BA C.线段BD D.线段DA C解析:C【分析】根据三角形的高解答即可,三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.【详解】A.线段AE是△ABC的边BC上的高,故不符合题意;B.线段BA不是任何边上的高,故不符合题意;C.线段BD是△ABC的边AC边上的高,故符合题意;D.线段DA是△ABD的边BD上的高,故不符合题意;故选C.【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.二、填空题11.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线11【分析】先根据题意求出多边形的边数再根据从n边形一个顶点出发共有(n-3)条对角线即可解答【详解】设多边形的边数为n则有(n-2)•180+360=2520解得:n=1414-3=11即从这个多解析:11【分析】先根据题意求出多边形的边数,再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答.【详解】设多边形的边数为n ,则有(n -2)•180+360=2520,解得:n =14,14-3=11,即从这个多边形的一个顶点出发共有11条对角线,故答案为11.【点睛】本题考查了多边形的内角和与外角和、多边形的对角线,得到多边形的边数是解本题的关键.12.从一个多边形的一个顶点出发,一共可作9条对角线,则这个多边形的内角和是_________度.1800【分析】设多边形边数为n 根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9计算出n 的值再根据多边形内角和(n-2)•180°可得答案【详解】设多边形边数为n 由题意得:n-3=9n解析:1800【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9,计算出n 的值,再根据多边形内角和(n-2)•180°可得答案.【详解】设多边形边数为n ,由题意得:n-3=9,n=12,内角和:()1221801800-⨯︒=︒.故答案为:1800.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n 边形从一个顶点出发可引出(n-3)条对角线,多边形内角和公式(n-2)•180°.13.如图,ACD ∠是ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A ,设=A θ∠,则2=A ∠___________,=n A ∠___________.【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ∠A1CD=∠A1+∠A1BC 根据角平分线的定义可得∠A1BC=∠ABC ∠A1CD=∠ACD 整理得到∠A1=∠A 同理可得∠A2=∠A1从而判断 解析:4θ 2nθ 【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,整理得到∠A 1=12∠A ,同理可得∠A 2=12∠A 1,从而判断出后一个角是前一个角的12,然后表示出∠A n 即可得答案. 【详解】∵ACD ∠是ABC 的外角,∠A 1CD 是△A 1BC 的外角,∴∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,∵ABC ∠的平分线与ACD ∠的平分线交于点1A ,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , ∴∠A 1=12∠A , 同理可得∠A 2=12∠A 1=14∠A , ∵∠A=θ,∴∠A 2=4θ, 同理:∠A 3=12∠A 2=382θθ=, ∠A 4=12∠A 3=4162θθ= ……∴∠A n =2n θ.故答案为:4θ,2nθ 【点睛】 本题考查了三角形的外角性质及角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和;熟记性质并准确识图,求出后一个角是前一个角的12是解题的关键. 14.如果点G 是ABC ∆的重心,6AG =,那么BC 边上的中线长为_______________________.【分析】根据三角形的重心到一顶点的距离等于到对边中点距离的2倍求得DG=3继而求得边上的中线长为9【详解】∵三角形的重心到顶点的距离是其到对边中点的距离的2倍∴DG=AG=×6=3∴AD=AG+GD 解析:9【分析】根据三角形的重心到一顶点的距离等于到对边中点距离的2倍求得DG=3,继而求得BC 边上的中线长为9.【详解】∵三角形的重心到顶点的距离是其到对边中点的距离的2倍,∴DG=12AG=12×6=3, ∴AD=AG+GD=6+3=9.即BC 边上的中线长为9.故答案为:9.【点睛】本题考查的是三角形重心的性质,熟知三角形的重心到顶点的距离是其到对边中点的距离的2倍是解决问题的关键.15.如图所示,在ABC 中,80A ∠=︒,延长BC 到D ,ABC ∠与ACD ∠的平分线相交于1A 点,1A BC ∠与1A CD ∠的平分线相交于A 点,依此类推,4A BC ∠与4A CD ∠的平分线相交于5A 点,则5A ∠的度数是_________.5度【分析】由∠A1CD=∠A1+∠A1BC ∠ACD=∠ABC+∠A 而A1BA1C 分别平分∠ABC 和∠ACD 得到∠ACD=2∠A1CD ∠ABC=2∠A1BC 于是有∠A=2∠A1同理可得∠A1=2∠A解析:5度【分析】由∠A 1CD=∠A 1+∠A 1BC ,∠ACD=∠ABC+∠A ,而A 1B 、A 1C 分别平分∠ABC 和∠ACD ,得到∠ACD=2∠A 1CD ,∠ABC=2∠A 1BC ,于是有∠A=2∠A 1,同理可得∠A 1=2∠A 2,即∠A=22∠A 2,因此推出∠A=25∠A 5,而∠A=80°,即可求出∠A 5.【详解】解:∵A 1B 、A 1C 分别平分∠ABC 和∠ACD ,∴∠ACD=2∠A 1CD ,∠ABC=2∠A 1BC ,∵∠A 1CD=∠A 1+∠A 1BC ,∠ACD=∠ABC+∠A ,∴∠A=2∠A 1同理可得∠A 1=2∠A 2,即∠A=22∠A 2,…,∴∠A=25∠A 5,∵∠A=80°,∴∠A 5=80°÷32=2.5°.故答案为:2.5°.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了三角形的外角性质以及角平分线性质.16.如图,在ABC 中,点D 、E 、F 分别是边BC 、AD 、CE 上的中点,则6ABC S =,则BEF S =△______.【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可【详解】解:∵BD=DC ∴S △ABD=S △ADC=×6=3(cm2)∵AE=DE ∴S △AEB=S △AEC=×3=(cm2)∴S △BEC 解析:32【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可.【详解】解:∵BD=DC ,∴S △ABD =S △ADC =12×6=3(cm 2), ∵AE=DE ,∴S △AEB =S △AEC =12×3=32(cm 2), ∴S △BEC =6-3=3(cm 2),∵EF=FC ,∴S △BEF =12×3=32(cm 2), 故答案为32. 【点睛】 本题考查三角形的面积,三角形的中线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.如图,把ABC 折叠,点B 落在P 点位置,若12120∠+∠=︒,则B ∠=______.60°【分析】先根据折叠的性质得∠3=∠4∠5=∠6再利用平角的定义得∠3+∠4+∠1=180°∠5+∠6+∠2=180°根据等式的性质得到2∠4+∠1+2∠6=360°把∠1+∠2=120°代入得解析:60°【分析】先根据折叠的性质得∠3=∠4,∠5=∠6,再利用平角的定义得∠3+∠4+∠1=180°,∠5+∠6+∠2=180°,根据等式的性质得到2∠4+∠1+2∠6=360°,把∠1+∠2=120°代入得到∠4+∠6=120°,然后根据三角形内角和定理可计算出∠B 的度数.【详解】∵把△ABC 的∠B 折叠,点B 落在P 的位置,∴∠3=∠4,∠5=∠6,∵∠3+∠4+∠1=180°,∠5+∠6+∠2=180°,∴2∠4+∠1+∠2+2∠6=360°,而∠1+∠2=120°,∴∠4+∠6=120°,∵∠4+∠6+∠B =180°,∴∠B =180°−120°=60°.故答案为60°.【点睛】本题考查了三角形内角和定理,也考查了折叠的性质,“数形结合”是关键.18.如图中,36B ∠=︒,76C ∠=︒,AD 、AF 分别是ABC 的角平分线和高,DAF ∠=________.【分析】根据三角形内角和定理及角平分线的性质求出∠BAD 度数再由三角形内角与外角的性质可求出∠ADF 的度数由AF ⊥BC 可求出∠AFD=90°再由三角形的内角和定理即可解答【详解】∵AF 是的高∴在中∴ 解析:20︒【分析】根据三角形内角和定理及角平分线的性质求出∠BAD 度数,再由三角形内角与外角的性质可求出∠ADF 的度数,由AF ⊥BC 可求出∠AFD=90°,再由三角形的内角和定理即可解答.【详解】∵AF 是ABC 的高,∴90AFB ∠=︒,在Rt ABF 中,36B ∠=︒,∴90BAF B ∠=︒-∠9036=︒-︒54=︒.又∵在ABC 中,36B ∠=︒,76C ∠=︒,∴18068BAC B C ∠=︒-∠-∠=︒,又∵AD 平分BAC ∠, ∴11683422BAD CAD BAC ∠=∠=∠=⨯=︒, ∴DAF BAF BAD ∠=∠-∠5434=︒-︒ 20=︒.故答案为:20︒.【点睛】本题考查了三角形内角和定理、三角形的高线、及三角形的角平分线等知识,难度中等. 19.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.10或50【分析】分点P在AB的上方点P在AB与CD的中间点P在CD的下方三种情况再分别根据平行线的性质三角形的外角性质求解即可得【详解】由题意分以下三种情况:(1)如图点P在AB的上方;(2)如图解析:10或50【分析】分点P在AB的上方、点P在AB与CD的中间、点P在CD的下方三种情况,再分别根据平行线的性质、三角形的外角性质求解即可得.【详解】由题意,分以下三种情况:(1)如图,点P在AB的上方,∠=︒∠=︒,BPD PBA30,20∴∠=∠+∠=︒,150BPD PBAAB CD,//CDP∴∠=∠=︒;150(2)如图,点P在AB与CD的中间,延长BP,交CD于点E,∠=︒,AB CD PBA//,20∴∠=∠=︒,BED PBA20∠=︒,BPD30∴∠=∠-∠=︒;CDP BPD BED10(3)如图,点P在CD的下方,∠=︒,//,20AB CD PBA∴∠=∠=︒,120PBA30BPD ∠=︒,13030CDP BPD CDP ∴∠=∠+∠=∠+︒>︒与120∠=︒不符,即点P 不可能在CD 的下方;综上,10CDP ∠=︒或50CDP ∠=︒,故答案为:10或50.【点睛】本题考查了平行线的性质、三角形的外角性质,依据题意,正确分三种情况讨论是解题关键.20.把一副直角三角板按如图所示的方式摆放在一起,其中90C =∠,90F ∠=,30D ∠=,45A ∠=,则12∠+∠等于___________度.210【分析】由题意得:∠1=∠D+∠DGA ∠2=∠F+∠FHB 然后由对顶角相等的性质得∠1=∠D+CGH ∠2=∠F+∠CHG 最后由直角三角形两锐角互余的性质可以算出∠1+∠2的值【详解】解:如图给解析:210【分析】由题意得:∠1=∠D+∠DGA ,∠2=∠F+∠FHB ,然后由对顶角相等的性质得∠1=∠D+CGH ,∠2=∠F+∠CHG ,最后由直角三角形两锐角互余的性质可以算出∠1+∠2的值 .【详解】解:如图,给两三角板的两个交点标上G 、H 符号,则∠1=∠D+∠DGA=∠D+CGH ,∠2=∠F+∠FHB=∠F+∠CHG ,∴∠1+∠2=∠D+CGH+∠F+∠CHG=∠D+∠F+(CGH+∠CHG )=30°+90°+90°=210°,故答案为210 .【点睛】本题考查直角三角形的应用,灵活运用直角三角形两锐角互余、三角形的外角性质和对顶角相等的定理求解是解题关键.三、解答题21.如图,直线//PQ MN ,点C 是PQ 、MN 之间(不在直线PQ ,MN 上)的一个动点.(1)如图1,若∠1与∠2都是锐角,请写出∠C 与∠1,∠2之间的数量关系并说明理由.(2)把Rt △ABC 如图2摆放,直角顶点C 在两条平行线之间,CB 与PQ 交于点D ,CA 与MN 交于点E ,BA 与PQ 交于点F ,点G 在线段CE 上,连接DG ,有∠BDF =∠GDF ,求AEN CDG∠∠的值. (3)如图3,若点D 是MN 下方一点,BC 平分∠PBD ,AM 平分∠CAD ,已知∠PBC =25°,求∠ACB +∠ADB 的度数.解析:(1)12C ∠=∠+∠,理由见解析;(2)12;(3)75︒. 【分析】(1)过C 作//l MN ,标注字母,如图1所示,根据平行线公理证明//l PQ ,再根据平行线的性质即可求解.(2)先证明∠GDF =∠PDC ,可得∠CDG +2∠PDC =180°,即∠PDC =1902CDG ︒-∠,再证明∠AEN =∠CEM 90PDC =︒-∠,再代入AEN CDG∠∠计算即可得到答案; (3)利用角平分线的定义与平行线的性质求解:∠ADB =50BKA MAD CAM ∠-∠=︒-∠,再利用(1)的结论可得,∠ACB =∠PBC +∠CAM ,从而可得答案.【详解】解:(1)∠C =∠1+∠2,证明:过C 作//l MN ,标注字母,如图1所示,∵//l MN ,∴∠4=∠2(两直线平行,内错角相等),∵//l MN ,//PQ MN ,∴//l PQ ,∴∠3=∠1(两直线平行,内错角相等),∴∠3+∠4=∠1+∠2,∴12DCE ∠=∠+∠;(2)如图2,∵∠BDF =∠GDF ,∠BDF =∠PDC ,∴∠GDF =∠PDC ,∵∠PDC +∠CDG +∠GDF =180°,∴∠CDG +2∠PDC =180°,∴∠PDC =1902CDG ︒-∠, 由(1)可得,∠PDC +∠CEM =∠C =90°,∠AEN =∠CEM ,1909090122CDG AEN CEM PDC CDG CDG CDG CDG ⎛⎫︒-︒-∠ ⎪∠∠︒-∠⎝⎭∴====∠∠∠∠; (3)如图3,标注字母,∵BC 平分∠PBD ,AM 平分∠CAD ,∠PBC =25°,∴∠PBD =2∠PBC =50°,∠CAM =∠MAD ,∵//PQ MN ,∴BKA ∠=∠PBD =50°,∴∠ADB =5050BKA MAD MAD CAM ∠-∠=︒-∠=︒-∠,由(1)可得,∠ACB =∠PBC +∠CAM ,∴∠ACB +∠ADB =∠PBC +∠CAM 50255075CAM +︒-∠=︒+︒=︒.【点睛】本题考查的是平行公理的应用,平行线的性质,角平分线的定义,平角的定义,三角形的外角的性质,掌握以上知识是解题的关键.22.如图,在五边形ABCDE 中,∠A+∠B+∠E=310°,CF 平分∠DCB ,FC 的延长线与五边形ABCDE 外角平分线相交于点P ,求∠P 的度数解析:∠P=25°.【分析】延长ED ,BC 相交于点G .由四边形内角和可求∠G=50°,由三角形外角性质可求∠P 度数.【详解】解:延长ED ,BC 相交于点G .在四边形ABGE 中,∵∠G=360°-(∠A+∠B+∠E )=50°,∴∠P=∠FCD-∠CDP=12(∠DCB-∠CDG ) =12∠G=12×50°=25°. 【点睛】本题考查了三角形内角和定理,三角形角平分线性质,外角的性质,熟练运用外角的性质是本题的关键.23.如图,在平面内有三个点、、A B C(1)根据下列语句画图:①连接AB ;②作直线BC ;③作射线AC ,在AC 的延长线上取一点D 使得CD CB =,连接BD ;(2)比较,,AB BD AB BC CD AD +++的大小关系.解析:(1)见解析;(2)AB BC CD AB BD AD ++>+>【分析】(1)①按要求作图;②按要求作图;③按要求作出射线AC ,然后以点C 为圆心,BC 为半径画弧,交射线AC 于点D ,连接BD ;(2)结合图形,根据三角形两边之和大于第三边进行分析比较.【详解】解:(1)①如图,线段AB 即为所求;②如图,直线BC 即为所求;③如图,射线AC ,点D ,线段BD 即为所求(2)如图,在△BCD 中,BC+CD >BD∴AB BC CD AB BD ++>+在△ABD 中,AB+BD >AD∴AB BC CD AB BD AD ++>+>【点睛】本题考查基本作图及三角形三边关系,正确理解几何语言并掌握三角形三边关系是解题关键.24.如图,在ABC 中,30A ∠=︒,80ACB ∠=︒,ABC 的外角CBD ∠的平分线BE 交AC 的延长线于点E .(1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F ,求F ∠的度数.解析:(1)55CBE ∠=︒;(2)25F ∠=︒.【分析】(1)利用三角形的外角性质和角的平分线性质求解即可;(2)根据三角形外角的性质和两直线平行,同位角相等求解.【详解】(1)在ABC 中,30A ∠=︒,80ACB ∠=︒,3080110CBD A ACB ∴∠=∠+∠=︒+︒=︒, BE 是CBD ∠的平分线,111105522CBE CBD ∴∠=∠=⨯︒=︒; (2)80ACB ∠=︒,55CBE ∠=︒,805525CEB ACB CBE ∴∠=∠--︒∠=︒=︒,//DF BE ,25F CEB ∴∠=∠=︒.【点睛】本题考查了运用三角形外角性质,角平分线性质,平行线的性质求角的度数,熟练并灵活运用这些性质是解题的关键.25.如图,已知点D ,E 分别在ABC 的边AB ,AC 上,//DE BC .(1若80ABC ∠=︒,40AED ∠=︒,求A ∠的度数:(2)若180BFD CEF ∠+∠=︒,求证:EDF C ∠=∠.解析:(1)60A ∠=︒;(2)证明见解析.【分析】(1)根据平行线的性质可得80ADE ABC ∠=∠=︒,再根据三角形内角和定理即可求得A ∠的度数;(2)根据三角形外角的性质可得BFD EDF DEF ∠=∠+∠,再结合180BFD CEF ∠+∠=︒可得180EDF DEC ∠+∠=︒,根据两直线平行同旁内角互补即可证明结论.【详解】解:(1)∵//DE BC ,80ABC ∠=︒,∴80ADE ABC ∠=∠=︒,∵40AED ∠=︒,∴18060AE A ADE D ∠=︒-∠=∠-︒;(2)∵BFD EDF DEF ∠=∠+∠,180BFD CEF ∠+∠=︒,∴180EDF DEF CEF ∠+∠+∠=︒,即180EDF DEC ∠+∠=︒,∵//DE BC ,∴180C DEC ∠+∠=︒,∴EDF C ∠=∠.【点睛】本题考查三角形外角的性质,平行线的性质,三角形内角和定理.能正确理解定理,根据图形得出角度之间的关系是解题关键.26.如图,将△ABC 沿着平行于BC 的直线DE 折叠,点A 落到点A ′,若∠C =125°,∠A =20°,求∠BD A ′的度数.解析:110°【分析】利用翻折变换的性质以及三角形内角和定理求出∠BDE ,∠A′DE ,即可解决问题.【详解】∵∠A +∠B +∠C =180°,∠A =20°,∠C =125°,∴∠B =35°,∵DE ∥BC ,∴∠ADE =∠B =35°,∠BDE +∠B =180°,∴∠BDE =180−∠B =180°−35°=145°,∵△ADE 沿DE 折叠成△A′DE ,∴∠A′DE =∠ADE =35°,∴∠BDA′=∠BDE−∠A′DE =145°−35°=110°.【点睛】本题考查三角形内角和定理,翻折变换的性质以及平行线的性质,解题的关键是熟练掌握翻折变换的性质,属于中考常考题型.27.如图,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,60BAC ∠=︒,70C ∠=︒.求EAD ∠和∠BOE 的度数.解析:10EAD ∠=︒,55BOE ∠=︒【分析】根据三角形内角和定理求出∠BAC=180°-60°-70°=50°,再由AE 是角平分线,求出∠EAC=12∠BAC=30°,由AD 是高,求出∠CAD=90°-∠C=20°,最后即可求出∠EAD=∠EAC-∠CAD=10°;根据角平分线的性质,得∠OAB=12∠BAC ,∠OBA=12∠ABC ,所以∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC )=12(180°-∠C )=12×(180°-70°)=55°. 【详解】解:∠B AC =60°,∠C =70°∴∠ABC =180°−∠ABC −∠C =180°−60°-70°=50°,∵AE 是角平分线,∴∠EAC =12∠BAC =12×60°=30°, ∵AD 是高,∴∠ADC =90°,∴∠CAD =90°−∠C =90°−70°=20°,∴∠DAE =∠EAC −∠CAD =30°−20°=10°;∵AE ,BF 是角平分线,∴∠OAB =12∠BAC ,∠OBA =12∠ABC , ∴∠BOE =∠OAB +∠OBA =12(∠BAC +∠ABC )=12(180°−∠C )=12×(180°−70°) =55°. 【点睛】本题考查了三角形内角和定理、角平分线性质,解题的关键是明确题意,找出所求问题需要的条件.28.如图,175,2105,C D ∠=︒∠=︒∠=∠.(1)判断AC 与DF 的位置关系,并说明理由;(2)若C ∠比A ∠大25°,求F ∠的度数.解析:(1)//AC DF ,理由见解析;(2)40︒.【分析】(1)先根据平行线的判定可得//BD CE ,再根据平行线的性质可得D CEF ∠=∠,然后根据等量代换可得C CEF ∠=∠,最后根据平行线的判定即可得;(2)设A x ∠=,从而可得25C x ∠=+︒,再根据三角形的外角性质可求出x 的值,然后根据平行线的性质即可得.【详解】(1)//AC DF ,理由如下:175,2105∠=︒∠=︒,12180∴∠+∠=︒,//BD CE ∴,D CEF ∴∠=∠,又C D ∠=∠,C CEF ∴∠=∠,//AC DF ∴;(2)设A x ∠=,则25C x ∠=+︒,由三角形的外角性质得:2A C ∠=∠+∠,即10525x x ︒=++︒,解得40x =︒,即40A ∠=︒,由(1)已证://AC DF ,40F A ∴∠=∠=︒.【点睛】本题考查了平行线的判定与性质、三角形的外角性质等知识点,熟练掌握平行线的判定与性质是解题关键.。
2015-2016学年重庆市江津实验中学八年级(上)第一次段考数学试卷(含解析)

2015-2016学年重庆市江津实验中学八年级(上)第一次月考数学试卷(考试时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.如图所示,图中三角形的个数共有()A.1个B.2个C.3个D.4个2.下列线段不能构成三角形的是()A.2cm,3dm,4cm B.3m,4m,5mC.1cm,3dm,3dm D.2,5,63.如图,CD、CE、CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.BA=2BF B.∠ACE=∠ACBC.AE=BE D.CD⊥AB4.三角形的一个外角小于与它相邻的内角,这个三角形是()A.直角三角形B.钝角三角形C.锐角三角形D.不确定5.如图,△ABC≌△DEF,BE=2,AE=1,则BD的长是()A.5 B.4 C.3 D.26.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为()A.①②③④B.①③④C.①②④D.②③④7.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE8.如图,已知∠A=∠D,∠1=∠2,那么要得到△ABC≌△DEF,还应给出的条件是()A.∠E=∠B B.ED=BC C.AB=EF D.AF=CD9.下列结论错误的是()A.全等三角形对应边上的高相等B.全等三角形对应边上的中线相等C.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等D.两个直角三角形中,两个锐角相等,则这两个三角形全等10.已知△DEF≌△ABC,AB=AC,且△ABC的周长是23cm,BC=4cm,则△DEF的边长中必有一边等于()A.9.5cm B.9.5cm或9cm C.9cm D.4cm或9cm11.在△ABC中,∠B,∠C的平分线交于点O,D是外角与内角平分线交点,E是外角平分线交点,若∠BOC =120°,则∠D=()A.15°B.20°C.25°D.30°12.多边形的内角中,锐角的个数最多有()A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)13.木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即图中AB、CD两个木条),这样做根据的数学道理是.14.每个内角都为170°的多边形为边形.15.如图,已知△ABC≌△ADE,若AB=7,AC=4,则BE的值为.16.如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是.17.如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=115°,∠DAC=30°,求∠DGB的度数.18.如图,如果AE∥DF,求∠A+∠B+∠C+∠D=.三、解答题(共78分)19.(7分)如图,AC=AD,BC=BD,求证:△ABC≌△ABD.20.(7分)△ABC中,∠B=∠A+20°,∠C=∠B+10°,求△ABC各内角的度数.21.(10分)已知:如图,点A,D,C在同一直线上,AB∥EC,AC=CE,∠B=∠EDC.求证:BC=DE.22.(10分)如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.23.(10分)请证明:五边形的内角和为540o.(要求:画出图形,写出已知,求证,证明)24.(10分)如图,AD是△ABC的中线,BE是△ABD的中线.(1)在△BED中作BD边上的高.(图上保留痕迹)(2)若△ABC的面积为40,BD=8,则点E到BC边的距离为多少?25.(12分)已知:如图,在四边形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC 于点E.求证:(1)△BFC≌△DFC;(2)BC=CE+AD.26.(12分)直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,如图1,分别过点A和B作AD⊥直线l于点D,BE⊥直线l于点E.△ACD与△CBE是否全等,并说明理由;(2)当AC=8cm,BC=6cm时,如图2,点B与点F关于直线l对称,连接BF、CF(BF⊥直线l,BC=CF).点M是AC上一点,点N是CF上一点,分别过点M、N作MD⊥直线l于点D,NE⊥直线l于点E.点M从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C.点N从F点出发,以每秒3cm的速度沿F→C→B→C→F路径运动,终点为F.点M、N同时开始运动,各自达到相应的终点时停止运动.设运动时间为t秒,请求出所有使△MDC与△CEN全等的t的值.1.【解答】解:BC上有3条线段,所以有三个三角形.故选C.2.【解答】解:A、3dm=30cm,∵2+4<30,∴不能构成三角形,故本选项正确;B、∵3+4>5,∴能构成三角形,故本选项错误;C、3dm=30cm,∵30+4>30,∴能构成三角形,故本选项错误;D、∵2+5>6,∴能构成三角形,故本选项错误.故选:A.3.【解答】解:∵CD,CE,CF分别是△ABC的高、角平分线、中线,∴CD⊥AB,∠ACE=∠ACB,AB=2BF,无法确定AE=BE.故选:C.4.【解答】解:因为三角形的一个外角与它相邻的内角和为180°,而题中说这个外角小于它相邻的内角,所以可知与它相邻的这个内角是一个大于90°的角即钝角,则这个三角形就是一个钝角三角形.故选:B.5.【解答】解:∵△ABC≌△DEF,∴BA﹣AE=DE﹣AE,∴BD=BE+AE+AD=2+1+2=5,故选:A.6.【解答】解:由全等三角形的概念可知:全等的图形是完全重合的,所以①全等图形的形状相同、大小相等是正确的;重合则对应边、对应角是相等的,周长与面积也分别相等,所以①②③④都正确的故选:A.7.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,AD的对应边是AE而非DE,所以D错误.故选:D.8.【解答】解:∵AF=CD∴AC=DF∴△ABC≌△DEF∴AF=CD故选:D.9.【解答】解:根据全等三角形的性质可知:A、B的结论均正确;根据全等三角形的判定定理可知:C选项符合ASA或AAS的条件,因此结论也正确;故选:D.10.【解答】解:∵BC=4cm,∴腰长AB=×(23﹣4)=9.2cm,∴△DEF的边长中必有一边等于9.5cm.故选:A.11.【解答】解:∵BO平分∠ABC,CO平分∠ACB,∴∠ABC=2∠1,∠ACB=2∠2,∴4∠2+2∠1+∠A=180°,又∵∠2+∠1+∠BOC=180°,∴∠BOC=90°+∠A=120°,∵∠DCF=∠D+∠DBC,∠ACF=∠ABC+∠A,BD平分∠ABC,DC平分∠ACF,∴2∠D+2∠DBC=∠ABC+∠A,∵∠A=60°,故选:D.12.【解答】解:因为多边形的外角和是360度,在外角中最多有三个钝角,如果超过三个则和一定大于360度,多边形的内角与外角互为邻补角,则外角中最多有三个钝角,内角中就最多有3个锐角.故选:C.13.【解答】解:结合图形,为防止变形钉上两条斜拉的木板条,构成了三角形,所以这样做根据的数学道理是三角形的稳定性.故答案为:三角形的稳定性.14.【解答】解:由题意可得:180°•(n﹣2)=170°•n,解得n=36.故多边形是三十六边形.15.【解答】解:∵△ABC≌△ADE,∴AB=AD=7,AC=AE=4,故答案为:3.16.【解答】解:AC=DE,理由是:∵AB⊥DC,在Rt△ABC和Rt△DBE中,∴Rt△ABC≌Rt△DBE(HL).故答案为:AC=DE.17.【解答】解:∵△ABC≌△ADE,∴∠B=∠D=25°,∠ACB=∠E=115°,∵∠DAC=30°,∴∠DGF=180°﹣∠D﹣∠DFG=70°.故答案为:70°.18.【解答】解:∵∠DMN是△CDM的外角,∴∠C+∠D=∠DMN.∴∠DMN=∠ANB.∴∠A+∠B+∠C+∠D=180°.故答案为:180°.19.【解答】证明:在△ABC和△ABD中∴△ABC≌△ABD(SSS).20.【解答】解:∵∠B=∠A+20°,∠C=∠B+10°,∴∠C=∠A+20°+10°=∠A+30°,所以,∠A+∠A+20°+∠A+30°=180°,所以,∠B=+20°=,∠C=+30°=.21.【解答】证明:∵AB∥EC,∴∠A=∠DCE,∴△ABC≌△CDE,∴BC=DE.22.【解答】证明:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°.∴△ABD≌△ACE(AAS).∴BD=CE.23.【解答】解:已知:如图,五边形 ABCDE.求证:∠A+∠B+∠C+∠D+∠E=540°.形成三个三角形:△ABC,△ACD,△ADE,由于三角形内角和是 180°,∴∠A+∠B+∠C+∠D+∠E=180°×3=540°,所以五边形 ABCDE 的内角和等于 180°×3=540°.24.【解答】解:(1)如图所示:∴S△ABD=S△ABC,∴S△BED=S△ABD,∴△EBD的面积是40÷8=10,∴×8•EH=10,即点E到BC边的距离为.25.【解答】证明:(1)∵CF平分∠BCD,∴∠BCF=∠DCF,,(2)∵△BFC≌△DFC,又∵∠BFG=∠DFE,∴BG=DE,∴四边形ABGD是平行四边形,AD=BG,∴BC=CE+DE=CE+AD.26.【解答】解:(1)△ACD≌△CBE,理由如下:∵∠ACB=90°,∵AD⊥直线l,∴∠DAC=∠ECB,,(2)由题意得,CF=BC=6cm,∴当CM=CN时,△MDC≌△CEN,解得,t=﹣1,不合题意,解得,t=5.5,解得,t=5,解得,t=6.5,综上所述,当t=3.5秒或8秒或6.5秒时,△MDC≌△CEN。
重庆XX中学2016-2017学年八年级上期中数学试卷含答案解析
2016-2017学年重庆XX中学八年级(上)期中数学试卷一、选择题(共12小题,每小题4分,满分48分)1.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.2.下列运算正确的是()A.3a2•a3=3a6B.5x4﹣x2=4x2C.(2a2)3•(﹣ab)=﹣8a7b D.2x2÷2x2=03.下列说法正确的是()①用一张相纸冲洗出来的10张1寸相片是全等形;②我国国旗上的4颗小五角星是全等形;③所有的正方形是全等形;④全等形的面积一定相等.A.1个B.2个C.3个D.4个4.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或205.王老师一块教学用的三角形玻璃不小心打破了,他想再到玻璃店划一块同样大小的三角形玻璃,为了方便他只要带哪一块就可以()A.③B.②C.①D.都不行6.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°7.如图,直线l是一条河,A、B两地相距5km,A、B两地到l的距离分别为3km、6km,欲在l上的某点M处修建一个水泵站,向A、B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是()A. B.C.D.8.通过计算几何图形的面积可表示一些代数恒等式,右图可表示的代数恒等式是()A.(a﹣b)2=a2﹣2ab+b2B.2a(a+b)=2a2+2abC.(a+b)2=a2+2ab+b2 D.(a+b)(a﹣b)=a2﹣b29.已知(5﹣3x+mx2﹣6x3)(1﹣2x)的计算结果中不含x3的项,则m的值为()A.3 B.﹣3 C.﹣D.010.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个B.1个C..2个D..3个11.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB 上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°12.为了求1+2+22+23+…+22008+22009的值,可令S=1+2+22+23+…+22008+22009,则2S=2+22+23+24+…+22008+22009+22010,因此2S﹣S=22010﹣1,所以1+2+22+23+…+22009=22010﹣1.仿照以上推理计算出1+5+52+53+…52009的值是()A.52010+1 B.52010﹣1 C.D.二、填空题(共6小题,每小题4分,满分24分)13.用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠D′O′C′=∠DOC,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是(写出全等的简写).14.已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为.15.如图,已知△ABC中,AC+BC=24,AO、BO分别是角平分线,且MN∥BA,分别交AC于N、BC于M,则△CMN的周长为.16.已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为.17.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为.18.如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=10cm,OC=6cm.F是线段OA上的动点,从点O出发,以1cm/s的速度沿OA方向作匀速运动,点Q在线段AB上.已知A、Q两点间的距离是O、F两点间距离的a倍.若用(a,t)表示经过时间t(s)时,△OCF、△FAQ、△CBQ中有两个三角形全等.请写出(a,t)的所有可能情况.三、解答题(共8小题,满分78分)19.如图,已知AB=AC,∠1=∠2,∠B=∠C,则BD=CE.请说明理由:解:∵∠1=∠2∴∠1+∠BAC=∠2+ .即=∠DAB.在△ABD和△ACE中,∠B=(已知)∵AB=(已知)∠EAC=(已证)∴△ABD≌△ACE()∴BD=CE()20.a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O 点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置,不写作法,保留痕迹.21.将4个数a,b,c,d排成2行2列,两边各加一条竖线记成,定义=ad﹣bc,上述记号叫做二阶行列式,若=5x,求x的值.22.如图,已知△ABC的三个顶点在格点上.(1)作出与△ABC关于x轴对称的图形△A1B1C1;(2)求出A1,B1,C1三点坐标;(3)求△ABC的面积.23.(1)计算:(﹣x)2•x3•(﹣2y)3+(2xy)2•(﹣x)3•y(2)已知2m=,32n=2.求23m+10n的值.24.如图,△ABC中,∠BAC=110°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)如果BC=10cm,求△DAF的周长.25.(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD;(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.26.阅读理解如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C 的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠B n A n C的平分线A n B n折叠,点+1B n与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC 顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C 重合.探究发现(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?(填“是”或“不是”).(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为.应用提升(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.2016-2017学年重庆十八中八年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.2.下列运算正确的是()A.3a2•a3=3a6B.5x4﹣x2=4x2C.(2a2)3•(﹣ab)=﹣8a7b D.2x2÷2x2=0【考点】单项式乘单项式;合并同类项;整式的除法.【分析】根据整式的各种运算法则逐项分析即可.【解答】解:A、3a2•a3=3a5≠3a6,故A错误;B、5x4﹣x2不是同类项,所以不能合并,故B错误;C、(2a2)3•(﹣ab)=﹣8a7b,计算正确,故C正确;D、2x2÷2x2=1≠0,计算错误,故D错误;故选:C.3.下列说法正确的是()①用一张相纸冲洗出来的10张1寸相片是全等形;②我国国旗上的4颗小五角星是全等形;③所有的正方形是全等形;④全等形的面积一定相等.A.1个B.2个C.3个D.4个【考点】全等图形.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:能够完全重合的两个图形叫做全等形.①正确,用一张相纸冲洗出来的10张1寸相片,各相片可以完全重合,故是全等形;②正确,我国国旗上的4颗小五角星是全等形;③错误,所有的正方形边长不一定一样,故不能完全重合,不能称都是全等形;④正确,全等形可以完全重合,故其面积一定相等.∴共有三个正确,故选C.4.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20【考点】等腰三角形的性质;三角形三边关系.【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.5.王老师一块教学用的三角形玻璃不小心打破了,他想再到玻璃店划一块同样大小的三角形玻璃,为了方便他只要带哪一块就可以()A.③B.②C.①D.都不行【考点】全等三角形的应用.【分析】此题是一道开放性题,实则还是考查学生对三角形全等的判定方法的掌握情况.此处可以运用排除法进行分析.【解答】解:①块,它只保留了原来的一个角,那么这样去配也有很大的难度;②块,因为它只是其中不规则的一块,如果仅凭这一块不能配到与原来一样大小的三角形玻璃;③块,它保留了原来的一条边和两个角,这正好符合全等三角形的判定中的ASA;所以应该带第③块去.故选A.6.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°【考点】全等三角形的性质;三角形内角和定理.【分析】根据已知数据找出对应角,根据全等得出∠A=∠D=50°,∠F=∠C=72°,根据三角形内角和定理求出即可.【解答】解:∵△ABC和△DEF全等,AC=DF=b,DE=AB=a,∴∠1=∠B,∠A=∠D=50°,∠F=∠C=72°,∴∠1=180°﹣∠D﹣∠F=58°,故选B.7.如图,直线l是一条河,A、B两地相距5km,A、B两地到l的距离分别为3km、6km,欲在l上的某点M处修建一个水泵站,向A、B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是()A. B.C.D.【考点】轴对称-最短路线问题;垂线段最短.【分析】作点A关于直线l的对称点,再把对称点与点B连接,根据轴对称确定最短路线问题,交点即为所求点M.【解答】解:根据最短路线问题,B选项图形方案符合.故选B.8.通过计算几何图形的面积可表示一些代数恒等式,右图可表示的代数恒等式是()A.(a﹣b)2=a2﹣2ab+b2B.2a(a+b)=2a2+2abC.(a+b)2=a2+2ab+b2 D.(a+b)(a﹣b)=a2﹣b2【考点】单项式乘多项式.【分析】由题意知,长方形的面积等于长2a乘以宽(a+b),面积也等于四个小图形的面积之和,从而建立两种算法的等量关系.【解答】解:长方形的面积等于:2a(a+b),也等于四个小图形的面积之和:a2+a2+ab+ab=2a2+2ab,即2a(a+b)=2a2+2ab.故选:B.9.已知(5﹣3x+mx2﹣6x3)(1﹣2x)的计算结果中不含x3的项,则m的值为()A.3 B.﹣3 C.﹣D.0【考点】多项式乘多项式.【分析】把式子展开,找到所有x3项的所有系数,令其为0,可求出m的值.【解答】解:∵(5﹣3x+mx2﹣6x3)(1﹣2x)=5﹣13x+(m+6)x2+(﹣6﹣2m)x3+12x4.又∵结果中不含x3的项,∴﹣2m﹣6=0,解得m=﹣3.故选B.10.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个B.1个C..2个D..3个【考点】全等三角形的判定.【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积==AC•BD,故③正确;故选D.11.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB 上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°【考点】轴对称-最短路线问题.【分析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=DM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.12.为了求1+2+22+23+…+22008+22009的值,可令S=1+2+22+23+…+22008+22009,则2S=2+22+23+24+…+22008+22009+22010,因此2S﹣S=22010﹣1,所以1+2+22+23+…+22009=22010﹣1.仿照以上推理计算出1+5+52+53+…52009的值是()A.52010+1 B.52010﹣1 C.D.【考点】规律型:数字的变化类.【分析】仔细阅读题目中示例,找出其中规律,求解本题.【解答】解:根据题中的规律,设S=1+5+52+53+ (52009)则5S=5+52+53+…+52009+52010,所以5S﹣S=4S=52010﹣4,所以S=.故选C.二、填空题(共6小题,每小题4分,满分24分)13.用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠D′O′C′=∠DOC,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是SSS(写出全等的简写).【考点】全等三角形的判定.【分析】1、以O为圆心,任意长为半径用圆规画弧,分别交OA、OB于点C、D;2、任意画一点O’,画射线O'A',以O'为圆心,OC长为半径画弧C'E,交O'A'于点C';3、以C'为圆心,CD长为半径画弧,交弧C'E于点D';4、过点D'画射线O'B',∠A'O'B'就是与∠AOB相等的角.则通过作图我们可以得到OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等.【解答】解:OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等.故填SSS.14.已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为3:2.【考点】角平分线的性质.【分析】本题需先利用角平分线的性质可知点D到AB、AC的距离相等,即两三角形的高相等,观察△ABD与△ACD,面积比即为已知AB、AC的比,答案可得.【解答】解:∵AD是△ABC的角平分线,∴点D到AB的距离等于点D到AC的距离,又∵AB:AC=3:2,则△ABD与△ACD的面积之比为3:2.故答案为:3:2.15.如图,已知△ABC中,AC+BC=24,AO、BO分别是角平分线,且MN∥BA,分别交AC于N、BC于M,则△CMN的周长为24.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据AO、BO分别是角平分线和MN∥BA,求证△AON和△BOM为等腰三角形,再根据AC+BC=24,利用等量代换即可求出△CMN的周长【解答】解:AO、BO分别是角平分线,∴∠OAN=∠BAO,∠ABO=∠OBM,∵MN∥BA,∴∠AON=∠BAO,∠MOB=∠ABO,∴AN=ON,BM=OM,即△AON和△BOM为等腰三角形,∵MN=MO+ON,AC+BC=24,∴△CMN的周长=MN+MC+NC=AC+BC=24.故答案为:24.16.已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为25.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.【解答】解:∵点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),∴,解得:,则a b的值为:(﹣5)2=25.故答案为:25.17.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为63°或27°.【考点】等腰三角形的性质.【分析】分锐角三角形和钝角三角形两种情况,利用等腰三角形的性质和三角形内角和定理即可求出它的底角的度数.【解答】解:在三角形ABC中,设AB=AC,BD⊥AC于D.①若是锐角三角形,∠A=90°﹣36°=54°,底角=÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=÷2=27°.所以等腰三角形底角的度数是63°或27°.故答案为:63°或27°.18.如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=10cm,OC=6cm.F是线段OA上的动点,从点O出发,以1cm/s的速度沿OA方向作匀速运动,点Q在线段AB上.已知A、Q两点间的距离是O、F两点间距离的a倍.若用(a,t)表示经过时间t(s)时,△OCF、△FAQ、△CBQ中有两个三角形全等.请写出(a,t)的所有可能情况(1,4),(,5),(0,10).【考点】全等三角形的判定与性质;坐标与图形性质.【分析】分类讨论:①当△COF和△FAQ全等时,得到OC=AF,OF=AQ或OC=AQ,OF=AF,代入即可求出a、t的值;②同理可求当△FAQ和△CBQ全等时a、t的值,③△COF和△BCQ不全等,④F,Q,A三点重合,此时(0,10)综合上述即可得到答案.【解答】解:①当△COF和△FAQ全等时,OC=AF,OF=AQ或OC=AQ,OF=AF,∵OC=6,OF=t,AF=10﹣t,AQ=at,代入得:或,解得:t=4,a=1,或t=5,a=,∴(1,4),(,5);②同理当△FAQ和△CBQ全等时,必须BC=AF,BQ=AQ,10=10﹣t,6﹣at=at,此时不存在;③因为△CBQ最长直角边BC=10,而△COF的最长直角边不能等于10,所以△COF和△BCQ不全等,④F,Q,A三点重合,此时△COF和△CBQ全等,此时为(0,10)故答案为:(1,4),(,5),(0,10).三、解答题(共8小题,满分78分)19.如图,已知AB=AC,∠1=∠2,∠B=∠C,则BD=CE.请说明理由:解:∵∠1=∠2∴∠1+∠BAC=∠2+ ∠BAC.即∠EAC=∠DAB.在△ABD和△ACE中,∠B=∠C(已知)∵AB=AC(已知)∠EAC=∠DAB(已证)∴△ABD≌△ACE(ASA)∴BD=CE(全等三角形的对应边相等)【考点】全等三角形的判定与性质.【分析】根据等式的性质得:∠EAC=∠DAB,再根据ASA证明△ABD≌△ACE,得出BD=CE.【解答】解:∵∠1=∠2,∴∠1+∠BAC=∠2+∠BAC,即∠EAC=∠DAB,在△ABD和△ACE中,∵,∴△ABD≌△ACE(ASA),∴BD=CE(全等三角形的对应边相等).故答案为:∠BAC,∠EAC,∠C,AC,∠DAB,ASA,全等三角形的对应边相等.20.a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O 点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置,不写作法,保留痕迹.【考点】线段垂直平分线的性质;角平分线的性质.【分析】连接MN,先画出a、b两线所组成的角的平分线,然后再画出线段MN的中垂线.这两条直线的交点即为所求.【解答】解:①以A为圆心,以任意长为半径画圆,分别交铁路a和公路b于点B、C;②分别以B、C为圆心,以大于BC为半径画圆,两圆相交于点D,连接AD,则直线AD即为∠BAC的平分线;③连接MN,分别以M、N为圆心,以大于MN为半径画圆,两圆相交于E、F,连接EF,则直线EF即为线段MN的垂直平分线;④直线EF与直线AD相交于点O,则点O即为所求点.21.将4个数a,b,c,d排成2行2列,两边各加一条竖线记成,定义=ad﹣bc,上述记号叫做二阶行列式,若=5x,求x的值.【考点】多项式乘多项式;解一元一次方程.【分析】根据新定义列出一元一次方程,解方程得到答案.【解答】解:由题意得(x+2)(x﹣2)﹣(x﹣3)(x+1)=5x,解得x=﹣.22.如图,已知△ABC的三个顶点在格点上.(1)作出与△ABC关于x轴对称的图形△A1B1C1;(2)求出A1,B1,C1三点坐标;(3)求△ABC的面积.【考点】作图-轴对称变换.【分析】(1)根据关于x轴对称的点的坐标特点画出△A1B1C1即可;(2)根据各点在坐标系中的位置写出A1,B1,C1三点坐标即可;=正方形的面积减去三个顶点上三角形的面积即可.(3)根据S△ABC【解答】解:(1)如图所示;(2)由图可知,A1(﹣2,﹣3),B1(﹣3,﹣1),C1(﹣1,﹣1);=2×2﹣×1×1﹣×1×2﹣×1×2(3)S△ABC=4﹣﹣1﹣1=.23.(1)计算:(﹣x)2•x3•(﹣2y)3+(2xy)2•(﹣x)3•y(2)已知2m=,32n=2.求23m+10n的值.【考点】整式的混合运算—化简求值.【分析】(1)先算乘方,再算乘法,最后合并即可;(2)先变形求出25n=2,再把23m+10n=23m•210n变形得出(2m)3•(25n)2,代入求出即可.【解答】解:(1)原式=﹣x2•x3•8y3﹣4x2y2•x3•y=﹣8x5y3﹣4x5y3=﹣12x5y3;(2)∵32n=2,∴25n=2,∵2m=,∴23m+10n=23m•210n=(2m)3•(25n)2=()3•22=即23m+10n的值是.24.如图,△ABC中,∠BAC=110°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)如果BC=10cm,求△DAF的周长.【考点】线段垂直平分线的性质.【分析】(1)根据三角形内角和定理可求∠B+∠C;根据垂直平分线性质,DA=BD,FA=FC,则∠EAD=∠B,∠FAC=∠C,得出∠DAF=∠BAC﹣∠EAD﹣∠FAC=110°﹣(∠B+∠C)求出即可.(2)由(1)中得出,AD=BD,AF=FC,即可得出△DAF的周长为BD+FC+DF=BC,即可得出答案.【解答】解:(1)设∠B=x,∠C=y.∵∠BAC+∠B+∠C=180°,∴110°+∠B+∠C=180°,∴x+y=70°.∵AB、AC的垂直平分线分别交BA于E、交AC于G,∴DA=BD,FA=FC,∴∠EAD=∠B,∠FAC=∠C.∴∠DAF=∠BAC﹣(x+y)=110°﹣70°=40°.(2)∵AB、AC的垂直平分线分别交BA于E、交AC于G,∴DA=BD,FA=FC,∴△DAF的周长为:AD+DF+AF=BD+DF+FC=BC=10(cm).25.(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD;(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【考点】全等三角形的判定与性质.【分析】(1)可通过构建全等三角形来实现线段间的转换.延长EB到G,使BG=DF,连接AG.目的就是要证明三角形AGE和三角形AEF全等将EF转换成GE,那么这样EF=BE+DF了,于是证明两组三角形全等就是解题的关键.三角形ABE和AEF中,只有一条公共边AE,我们就要通过其他的全等三角形来实现,在三角形ABG和AFD中,已知了一组直角,BG=DF,AB=AD,因此两三角形全等,那么AG=AF,∠1=∠2,那么∠1+∠3=∠2+∠3=∠EAF=∠BAD.由此就构成了三角形ABE和AEF全等的所有条件(SAS),那么就能得出EF=GE了.(2)思路和作辅助线的方法与(1)完全一样,只不过证明三角形ABG和ADF全等中,证明∠ABG=∠ADF时,用到的等角的补角相等,其他的都一样.因此与(1)的结果完全一样.(3)按照(1)的思路,我们应该通过全等三角形来实现相等线段的转换.就应该在BE上截取BG,使BG=DF,连接AG.根据(1)的证法,我们可得出DF=BG,GE=EF,那么EF=GE=BE﹣BG=BE﹣DF.所以(1)的结论在(3)的条件下是不成立的.【解答】证明:(1)延长EB到G,使BG=DF,连接AG.∵∠ABG=∠ABC=∠D=90°,AB=AD,∴△ABG≌△ADF.∴AG=AF,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF=∠BAD.∴∠GAE=∠EAF.又AE=AE,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.(3)结论EF=BE+FD不成立,应当是EF=BE﹣FD.证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵AB=AD,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.26.阅读理解如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C 的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠B n A n C的平分线A n B n折叠,点+1B n与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC 顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C 重合.探究发现(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?是(填“是”或“不是”).(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C.应用提升(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.【考点】翻折变换(折叠问题).【分析】(1)在小丽展示的情形二中,如图3,根据根据三角形的外角定理、折叠的性质推知∠B=2∠C;(2)根据折叠的性质、根据三角形的外角定理知∠A1A2B2=∠C+∠A2B2C=2∠C;根据四边形的外角定理知∠BAC+2∠B﹣2C=180°①,根据三角形ABC的内角和定理知∠BAC+∠B+∠C=180°②,由①②可以求得∠B=3∠C;利用数学归纳法,根据小丽展示的三种情形得出结论:∠B=n∠C;(3)利用(2)的结论知∠B=n∠C,∠BAC是△ABC的好角,∠C=n∠A,∠ABC是△ABC 的好角,∠A=n∠B,∠BCA是△ABC的好角;然后三角形内角和定理可以求得另外两个角的度数可以是4、172;8、168;16、160;44、132;88°、88°.【解答】解:(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是△ABC的好角;理由如下:小丽展示的情形二中,如图3,∵沿∠BAC的平分线AB1折叠,∴∠B=∠AA1B1;又∵将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合,∴∠A1B1C=∠C;∵∠AA1B1=∠C+∠A1B1C(外角定理),∴∠B=2∠C,∠BAC是△ABC的好角.故答案是:是;(2)∠B=3∠C;如图所示,在△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分,将余下部分沿∠B2A2C的平分线A2B3折叠,点B2与点C重合,则∠BAC是△ABC的好角.证明如下:∵根据折叠的性质知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1 B1C=∠A1A2B2,∴根据三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;∵根据四边形的外角定理知,∠BAC+∠B+∠AA1B1﹣∠A1 B1C=∠BAC+2∠B﹣2∠C=180°,根据三角形ABC的内角和定理知,∠BAC+∠B+∠C=180°,∴∠B=3∠C;由小丽展示的情形一知,当∠B=∠C时,∠BAC是△ABC的好角;由小丽展示的情形二知,当∠B=2∠C时,∠BAC是△ABC的好角;由小丽展示的情形三知,当∠B=3∠C时,∠BAC是△ABC的好角;故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C;(3)由(2)知设∠A=4°,∵∠C是好角,∴∠B=4n°;∵∠A是好角,∴∠C=m∠B=4mn°,其中m、n为正整数得4+4n+4mn=180∴如果一个三角形的最小角是4°,三角形另外两个角的度数是4、172;8、168;16、160;44、132;88°、88°.2016年11月21日。
重庆南开中学 2015-2016学年 八年级上 期中试卷
2015-2016学年重庆市南开中学八年级(上)期中数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卷上对应的表格中.1.(4分)实数,π﹣2,2.1010010001…(相邻两个1之间依次多一个0)中,无理数有()A.4个B.3个C.2个D.1个2.(4分)下列各组数中,不能作为直角三角形三边长的是()A.8,15,17B.5,12,13C.2,3,4D.7,24,25 3.(4分)在平面直角坐标系中,点(2,﹣4)在()A.第一象限B.第二象限C.第三象限D.第四象限4.(4分)若关于x的二元一次方程kx+3y=5有一组解是,则k的值是()A.1B.﹣1C.0D.25.(4分)已知点A(a+1,1),点B(3,﹣1),且A、B关于x轴对称,则a的值为()A.﹣3B.3C.﹣2D.26.(4分)二元一次方程组的解为,则一次函数y=5﹣x与y=2x﹣1的交点坐标为()A.(2,3)B.(3,2)C.(﹣2,3)D.(2,﹣3)7.(4分)已知直线l平行于直线y=﹣2x,且过点(4,5),则l的解析式为()A.y=2x+13B.y=2x﹣13C.y=﹣2x+13D.y=﹣2x﹣13 8.(4分)如图为一次函数y=kx+b的图象,则一次函数y=bx+k的图象大致是()A.B.C.D.9.(4分)如图,Rt△ABC中,∠ACB=90°,∠A=30°,BC=3,D点在AB上且AD=AB,那么CD的长是()A.2B.C.4D.210.(4分)若直线y=k1x+1与y=k2x﹣4的交点在x轴上,那么等于()A.4B.﹣4C.D.11.(4分)如图,一只蚂蚁以均匀的速度沿台阶A→B→C→D→E爬行,那么蚂蚁爬行的高度h与时间t的函数图象大致是()A.B.C.D.12.(4分)如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→…,则2015分钟时粒子所在点的横坐标为()A.886B.903C.946D.990二、填空题:(本大题共8个小题,每小题4分,共32分)在每个小题中,请把正确答案直接填在答题卷上相应的横线上.13.(4分)比较大小:3.(填“>”、“<”或“=”)14.(4分)函数y=中,自变量x的取值范围为.15.(4分)已知2y﹣3x=4,则y可用含x的式子表示为y=.16.(4分)图中的甲、乙、丙三个天平,其中甲、乙天平已保持左右平衡,现要使丙天平也平衡,则在天平右盘中放入的砝码应是克.17.(4分)如图,在平面直角坐标系中点A(﹣3,1),点B(1,2),一束光线从点A处沿直线射出经x轴反射后,正好经过点B,则光线从A到B所经过路程为.18.(4分)如图,Rt△AOC在平面直角坐标系中,OC在y轴上.OC=2,OA=5.将△AOC沿OB翻折使点A恰好落在y轴上的点A′的位置,则AB=.19.(4分)在平面直角坐标系内,A、B、C三点的坐标分别是A(5,0)、B(0,3)、C(10,3),O为坐标原点,点E在线段BC上,若△AEO为等腰三角形,点E的坐标为.20.(4分)我校初二年级数学兴趣社的一位同学放假期间对小区某停车库进行了调查研究,发现该车库有四个出入口,每天早晨7点开始对外停车且此时车位空置率为80%.在每个出入口的车辆数均是匀速变化的情况下,如果开放1个进口和3个出口,6个小时车库恰好停满;如果开放2个进口和2个出口,2个小时车库恰好停满.开学后,由于小区人数增多,早晨7点时的车位空置率变为70%.又因为车库改造,只能开放1个进口和2个出口,则从早晨7点开始经过小时车库恰好停满.三、计算题:(本大题共2个小题,21题8分,22题12分,共20分)解答时每小题必须给出必要的演算过程.21.(8分)计算:(1)|﹣2|×(3﹣π)0+(﹣1)2015×(2).22.(12分)解方程组:(1)(2)(3).四、解答题:(本大题共5个小题,23题8分,24题10分,25题10分,26题10分,27题12分,共50分)解答时每小题必须给出必要的演算过程或推理步骤.23.(8分)王教授在本市车展期间购置了一辆涡轮增压轿车,该车在市效路段和高速路段的每公里耗油量有所不同.第1次王教授开了10公里市郊路和40公里高速路,耗油4.2升;第2次王教授开了20公里市郊路和60公里高速路,耗油6.8升.(1)请分别求出该车在市郊路段和高速路段上的每公里耗油量;(2)周六时,王教授准备从家出发到景区游玩,其间共有80公里市路,120公里高速路,现车内余油20升.问王教授能否不加油从家直接开到景区?请说明理由.24.(10分)如图,直线y1=﹣x+2与x轴、y轴分别交于点A和点B,直线y2过原点O且与直线y1=﹣x+2交于点.(1)求点A和点B坐标;(2)求出直线y2的解析式;(3)根据图象可知:当x时,y1>y2,y1=﹣x+2.25.(10分)某知名品牌在甲、乙两地的新店同时开张,乙店经营不久为了差异营销而进行了品牌升级,因此停业了一段时间,随后继续营业,第40天结束时两店销售总收入为2100百元.甲、乙两店自开张后各自的销售收入y(百元)随时间x(天)的变化情况如图所示,请根据图象解决下列问题:(1)乙店停业了天;(2)求出图中a的值;(3)求出在第几天结束时两店收入相差150百元?26.(10分)四边形ABCD中,AC、BD相交于点O,∠BAD=90°且AB=AD,CD⊥BC,∠ACB=45°,AC=BC.(1)求证:△DCA≌△OCB;(2)若AC=4,求出四边形ABCD的面积.27.(12分)如图,平面直角坐标系中,直线AB的解析式为y=,与x轴、y轴分别交于点B、D.直线AC与x轴、y轴分别交于点C、E,.(1)若OG⊥CE于G,求OG的长度;(2)求四边形ABOE的面积;(3)已知点F(5,0),在△ABC的边上取两点P,Q,是否存在以O、Q、P为顶点的三角形与△OFP全等,且这两个三角形在OP的异侧?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.2015-2016学年重庆市南开中学八年级(上)期中数学试卷参考答案一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卷上对应的表格中.1.B;2.C;3.D;4.A;5.D;6.A;7.C;8.B;9.B;10.D;11.B;12.D;二、填空题:(本大题共8个小题,每小题4分,共32分)在每个小题中,请把正确答案直接填在答题卷上相应的横线上.13.>;14.x≠5;15.;16.18;17.5;18.;19.(2.5,3)或(4,3)或(1,3)或(9,3);20.4.2;三、计算题:(本大题共2个小题,21题8分,22题12分,共20分)解答时每小题必须给出必要的演算过程.21.;22.;四、解答题:(本大题共5个小题,23题8分,24题10分,25题10分,26题10分,27题12分,共50分)解答时每小题必须给出必要的演算过程或推理步骤.23.;24.<;25.10;26.;27.;。
八年级上册重庆数学全册全套试卷检测题(Word版 含答案)
∴180°﹣∠GBA=180°﹣∠ACB,
即∠ABG=∠ACN,
∵∠GAN=∠GBO,
∴∠AGB=∠ANC,
在△ABG与△ACN中,
,
∴△ABH≌△ACN(AAS),
∴BF=CN,
∴NB﹣HB=NB﹣CN=BC=2OB,
∵OB=2
∴NB﹣FB=2×2=4(是定值),
即当点H在GB的延长线上运动时,NB﹣HB的值不会发生变化.
八年级上册重庆数学全册全套试卷检测题(Word版 含答案)
一、八年级数学全等三角形解答题压轴题(难)
1.如图1,在平面直角坐标系中,点D(m,m+8)在第二象限,点B(0,n)在y轴正半轴上,作DA⊥x轴,垂足为A,已知OA比OB的值大2,四边形AOBD的面积为12.
(1)求m和n的值.
(2)如图2,C为AO的中点,DC与AB相交于点E,AF⊥BD,垂足为F,求证:AF=DE.
∴
∴
∴
(3)连接MI、NI
∵I为△MON内角平分线交点,
∴NI平分∠MNO,MI平分∠OMN,
(3)如图3,点G在射线AD上,且GA=GB,H为GB延长线上一点,作∠HAN交y轴于点N,且∠HAN=∠HBO,求NB﹣HB的值.
【答案】(1) (2)详见解析;(3)NB﹣FB=4(是定值),即当点H在GB的延长线上运动时,NB﹣HB的值不会发生变化.
【解析】
【分析】
(1)由点D,点B的坐标和四边形AOBD的面积为12,可列方程组,解方程组即可;
(3)将 绕点 逆时针旋转一定的角度,如图3所示,(1)中的“ 为等腰直角三角形”成立吗?请说明理由.
【答案】(1)详见解析;(2)是,证明详见解析;(3)成立,证明详见解析.
初中数学八年级上学期期末重庆市第一中学考试数学考试题考试卷及答案(Word版)
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx 题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:在平面直角坐标系中,点P(3,1)所在象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限试题2:下列各数中,即大于2又小于3的数是()A. B. C. D .试题3:在图1右侧的四个滑雪人中,不能由图1滑雪人经过旋转或平移得到的是()试题4:在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个 B.22个、21个 C.20个、21个 D.20个、22个试题5:某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y (升)与从注水开始所经历的时间x(分)之间的函数关系对应的图象大致为()评卷人得分试题6:已知一次函数的图象经过点(,),且函数的值随的增大而减小,则的值为()A. B. C. D .或试题7:已知,,均为实数,若,.下列结论不一定正确的是()A. B. C. D.试题8:关于的不等式和的解集相同,则的值为()A. B. C. D .试题9:已知和是二元一次方程的两个解,则一次函数的解析式为() A. B.C.D.试题10:如图,把放在平面直角坐标系内,其中,BC=5,点A、B的坐标分别为(1,0),(4,0),将沿轴向右平移,当点C落在直线上时,线段AC扫过的面积为()A. B. 12 C.16 D.18试题11:设min表示,两个数中的最小值,例如min,min,则关于的一次函数可以表示为()A. B. C.D.试题12:如图,一个质点在第一象限及轴、轴上运动,在第一秒钟,它从原点运动到,然后接着按图中箭头所示方向运动,即,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是()A.(0,9) B.(9,0) C.(0,8) D.( 8,0)试题13:的立方根是____________.试题14:在平面直角坐标系中,已知点A(3,2),AC⊥x轴,垂足为C,则C点坐标为_________.试题15:若1、2、x、5、7五个数的平均数为4,则x的值是____________.试题16:当实数的取值范围使得有意义时,在函数中的取值范围是___________.试题17:如图,已知直线交坐标轴分别于点A(,),B(,)两点,则关于的一元一次不等式的解集为__________.试题18:如图,O是等边△ABC中一点,OA=2,OB=3,∠AOB=150°,∠BOC=115°,将△AOB绕点B顺时针旋转60°至,下列说法中:①OC的长度是;②;③;④以线段OA、OB、OC为边构成的三角形的各内角大小分别为90°,55°,35°;⑤旋转到的过程中,边所扫过区域的面积是.说法正确的序号有______________.试题19:试题20:解方程组试题21:解不等式组:,并把解集在数轴上表示出来.试题22:若,为实数,且满足.求的值.试题23:作图题:(不要求写作法)如图,在平面直角坐标系中,△的三个顶点的坐标别为A,B,C.(1)将△先向右平移3个单位,再向下平移4个单位,则得到△,请直接写点的坐标_________;若把△看成是由△经过一次平移得到的(即从到方向平移),请直接写出这一次平移的距离.(2)在正方形网格中作出△绕点O顺时针旋转90°后得到的△.试题24:为参加重庆一中教师元旦晚会演出,初二年级老师欲租用男、女演出服装若干套以供跳舞用.已知5套男装和8套女装租用一天共需租金510元,6套男装和10套女装租用一天共需630元.(1)租用男装、女装一天的价格分别是多少?(2)该节目原计划由6名男教师和17名女教师完成,后因节目需要,将其中3名女教师由扮演舞者角色转向歌手角色,歌手服装每套租用一天的价格比已选定女装价格贵20%,求在演出当天租用服装实际需支付租金多少?试题25:如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG.求证:(1)AD=AG;(2)AD⊥AG.试题26:古巴国家芭蕾舞团作为世界芭蕾舞团之一,将于2015年携亚洲巡演版特别纪念版《天鹅湖》首次到访山城,届时,重庆市民将领略“世界第一黑天鹅”的迷人风采.某票务网站抢得商机拿到了亲子套票和VIP专享票的销售权.但由于票价较高,该票务网站准备用不超过105000元购进这两种票共150张票,其中亲子套票每张订购价550元,VIP专享票每张订购价800元,亲子套票每张票价600元,VIP专享票每张票价880元,预计销售额不低于114640元.设亲子套票购进张,票务网站的总利润为(元).(1)请你设计出该票务网站的订购方案有哪几种?(2)求出总利润为(元)与订购亲子套票(张)的函数关系式,并利用函数关系式说明哪种方案的利润最大,最大利润是多少元?试题27:如图,直线与轴交于点(,),直线与轴、轴分别交于、两点,并与直线相交于点,若.(1)求点的坐标;(2)求出四边形的面积;(3)若为轴上一点,且为等腰三角形,求点的坐标.试题28:阅读以下材料:在平面直角坐标系中,表示一条直线;以二元一次方程的所有解为坐标的点组成的图形就是一次函数的图象,它也是一条直线.不仅如此,在平面直角坐标系中,不等式表示一个平面区域,即直线以及它左侧的部分,如图①;不等式也表示一个平面区域,即直线以及它下方的部分,如图②.而既不表示一条直线,也不表示一个区域,它表示一条折线,如图③.根据以上材料,回答下列问题:(1)请直接写出图④表示的是____________________ _____的平面区域;(2)如果x,y满足不等式组,请在图⑤中用阴影表示出点(x,y)所在的平面区域,并求出阴影部分的面积S1;(3)在平面直角坐标系中,若函数与的图象围成一个平面区域,请直接用含的式子表示该平面区域的面积S2,并写出实数的取值范围.试题1答案:A试题2答案:D试题3答案:D试题4答案:CB试题6答案: A试题7答案: B试题8答案: C试题9答案: D试题10答案: B试题11答案: C试题12答案: C试题13答案: 2试题14答案:试题15答案: 5试题16答案:试题18答案:试题19答案:试题20答案:试题21答案:试题22答案:试题23答案:试题24答案:试题26答案:试题28答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆一中初2017级15-16学年度上期半期考试 数学试卷2015.11 (本试卷满分150分,考试时间120分钟) 一、选择题:(本大题共12个小题,没小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将各小题所选答案的代号填入表格内. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B C C A B D C A C A C A 1. 8的立方根是()
A.32 B.2 C.32 D.2 2. 如图,在平面直角坐标系中,小猫遮住的点的坐标可能是()
A.(-2,1) B.(2,3) C.(3,-5) D.(-6,-2)
3. 下列方程是二元一次方程的是()
A.xy-1=2 B.210xx C.113xy D.
2yx
2题图 4题图
4. 如图,在△ABC中,∠C=90°,AB的垂直平分线交AB于D点,交BC于E点,连接
AE,若CE=5,AC=12,则BE的长是()
A.13 B.17 C.7 D.12 5. 下列不等式中,可以用如图表示其解集的是()
A.21xx> B.
21xx
<
C.21xx> D.
12xx<
6. 下列根式不是最简二次根式的是()
A.1a B.21x C.24b D.
0.1y
yxO
E
D
C
AB
210-1-27. 要使式子24x有意义,那么x的取值范围在数轴上表示出来,正确的是()
A. B.
C. D. 8. 若x>y>0,则下列不等式不一定成立的是()
A.xzyz> B.xzyz> C.11xy< D.
2xxy>
9. 已知关于x,y的二元一次方程组323223xymxym的解适合方程x-y=4,则m的值为
() A.1 B.2 C.3 D.4 10. 点A(a,3),点B(2,b)关于y轴对称,则a+b的算术平方根为()
A.1 B.2 C.1 D.-1
11. 已知不等式组026xax>有解,则a的取值范围()
A.3a> B.3a C.3a< D.
3a
12. 如右图,在平面直角坐标系上有个点A(-1,0),点A
第1次向上跳动1个单位至点1A(-1,1),紧接着第2次向
右跳动2个单位至点2A(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,„,依此规律跳动下去,点A第2015
次跳动至点2015A的坐标是( ) A.(504,1008) B.(-504,1007)
C.(503,1007) D.(-503,1008)
二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将每小题的正确答案填在下列表格内.
题号 1 2 3 4 5 6 答案 2 1 50°或80° 4 5 21
13. 4= .
10-1-2-310-1-2-310-1-2-310-1-2-314. 不等式-2x+3>0的正整数解是 .
15. 已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为_______.
16. 已知二元一次方程22yx的一个解是byax,其中,0a,则
______236ba
17. 已知11xx,那么xx1的值为________.
18. 甲乙两人骑自行车在一个环形公路内进行拉力测试,两人从同一地点同时出发,乙迅速
超过甲,在第6分钟时甲提速,在第8分钟时,甲追上乙并且开始超过乙,在第15分钟时,甲再次追上乙。已知两人都是匀速,那么如果甲不提速,乙首次超过甲会在第______分钟. 三、解答题:(本大题2个小题,19题6分,20题12分,共18分)解答时必须给出必要的演算过程或推理步骤.
19. 计算:
82120151102015
【解析】222
20. ⑴解二元一次方程组82332yxyx ⑵
12153
121<315xx
xx
【解析】⑴21xy;12x. 四、解答题(本大题4个小题,21题8分,22题10分,23题8分,24题10分,共36分)解答时每小题必须给出必要的演算过程或推理步骤. 21. 列二元一次方程组节应用题:
某小型工厂要用190张彩纸制作礼盒,每张彩纸可以做盒身8个,或者做盒底22个,如果一个盒身和2个盒底配成一个食品礼盒,那么用多少张做盒身,多少张做盒底,才能使做成的盒身盒底正好配套? 【解析】110张做盒身,80张做盒底.
22. 2015年8月31日,重庆一中寄宿学校迎来了2018级新生。为了保证新生顺利入学,
我校在校园内设立了团员“迎新接待站”,并向家长和学生提供“学校建筑分布图,协助新生完成报到流程,尽全力提供周到的服务。如图为分布图的一部分,方格纸中每个小方格都是长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆位置坐标为B(-2,-1),解答以下问题: ⑴在图中找到坐标系中的原点,并建立直角坐标系; ⑵若体育馆的坐标为C(1,-3),食堂坐标为D(2,0),请在图中标出体育馆和食堂的位置; ⑶顺次连接教学楼、图书馆、食堂得到四边形ABCD,求四边形ABCD的面积.
【解析】⑴省略; ⑵省略; ⑶10. 23. 如图,在矩形纸片中,AD=10,AB=4,点F为BC上的中点,把矩形纸片ABCD延EF折叠,使点B落在边AD上的B′处,点A落在A′处,求EF的长度.
【解析】25 24. 阅读理解,我们把 abcd称作二阶行列式,规定它的运算法则为 abadbccd,例如
2 3253424 5,请根据阅读理解解答下列各题:
⑴24 361 22=; ⑵计算:1 25 697 983 47 899 100
⑶已知实数a,b满足行列式2 15 1aaba,则代数式2222abab的值. 【解析】⑴24 361242364333312 22 ⑵原式=14235867971009899 =252222个 =50 ⑶由题可知222115aaabaaabba,
∴原式=222225292222222baabab. 五、解答题:(本大题2个小题,第25题12分,第26题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤. 25. 在正方形ABCD中,连接AC,取AC的中点E点,连接DE,点F在CD边上,连接
AF. ⑴如图1,若DG是△ADF的中线,且DG=5,DF=6,求CF的长; ⑵如图2,若DG是△ADF的高,延长DG交AC于点H.点F是CD边上的中点,连接FH,求证:DH+FH=AF; ⑶如图3,若DG是△ADF的高,延长DG交AC于点H .点F是CD边上的动点,连接EG.当点F在CD边上(不含端点)运动时,∠EGH的大小是否改变,如果不变,请求出∠EGH的度数;如果要变,请说明理由.
【解析】⑴∵四边形ABCD是正方形, ∴AD=CD,∠ADC=90°, ∵DG是△ADF的中线,且DG=5, ∴在Rt△ADF中, AF=2DG=10, ∴在Rt△ADF中,
22221068ADAFDF
,
∴CF=CD-DF=AD-DF=862. ⑵如图,延长DH交BC于点M, ∵四边形ABCD是正方形, ∴AD=CD=BC=AB,∠ADC=∠BDC=90°, ∴△ADC和△ABC为等腰直角三角形, ∴∠ACD=∠ACB=45°, ∵DG⊥AF, ∴∠CDM+∠AFD=90°, ∵∠AFD+∠DAF=90°, ∴∠CDM=∠DAF, 在△ADF和△DCM中,
DAFCDMADDCADFDCM
∴△ADF≌△DCM(ASA),
25题图1GE
DA
BCF25题图2H
GEDABCF
25题图3H
G
E
DA
BCF
MHGEDABCF