从三次数学危机——看数学的发展
数学的三次危机研究体会600字

数学的三次危机研究体会600字数学的三次危机是指公元十九世纪末和二十世纪初,数学领域内的一系列重要问题的解决所带来的一次变革。
这三次危机分别是实数概念的建立、集合论的发展以及公理化方法的推广。
经历这三次危机,数学发生了深刻的变革,推动了数学的进一步发展,同时也带来了一些新的问题和挑战。
实数概念的建立是数学的第一次危机。
在十九世纪初,数学家们对实数的概念模糊不清,无法准确地描述实数的性质和运算规则。
这一问题在十九世纪末得到了解决,数学家们通过引入实数的完备性概念,建立了实数的严格定义和运算规则。
这一解决方案为数学的进一步发展奠定了基础,使得数学能够更加准确地描述和分析现实世界中的问题。
集合论的发展是数学的第二次危机。
在十九世纪末,数学家们开始研究集合论,试图将数学建立在更为严谨的基础之上。
然而,集合论的发展引发了一系列的悖论和矛盾,使得数学陷入了困境。
数学家们通过对集合论的重新定义和公理化,解决了这一危机,并建立了现代数学的基础。
集合论的发展为数学提供了一种统一的框架,使得不同领域的数学可以通过集合论的语言和方法进行描述和推理。
公理化方法的推广是数学的第三次危机。
在公元二十世纪初,数学家们开始关注数学的基础理论和逻辑基础,试图通过公理化方法来建立数学的一致性和完备性。
然而,数学的公理化过程却引发了一系列的矛盾和困难,使得数学的基础受到了挑战。
数学家们通过对公理化方法的改进和扩展,解决了这一危机,并为数学的发展开辟了新的道路。
公理化方法的推广使得数学的推理和证明更加严谨和准确,推动了数学的进一步发展。
通过对数学的三次危机的研究,我深刻认识到数学的发展是一个不断变革和进步的过程。
数学家们在解决问题的过程中,不断地发现新的问题和困难,并通过创新和改进来解决这些问题。
数学的发展离不开数学家们的智慧和努力,同时也需要数学家们对数学的思考和反思。
只有不断地改进和完善,数学才能够更好地为人类社会的发展和进步做出贡献。
数学的三次危机——第一次数学危机

数学的三次危机——第一次数学危机从哲学上来看,矛盾是无处不存在的,即便以确定无疑著称的数学也不例外。
数学中有大大小小的许多矛盾,例如正与负、加与减、微分与积分、有理数与无理数、实数与虚数等等。
在整个数学发展过程中,还有许多深刻的矛盾,例如有穷与无穷、连续与离散、存在与构造、逻辑与直观、具体对象与抽象对象、概念与计算等等。
在数学史上,贯穿着矛盾的斗争与解决。
当矛盾激化到涉及整个数学的基础时,就会产生数学危机。
而危机的解决,往往能给数学带来新的内容、新的发展,甚至引起革命性的变革。
数学的发展就经历过三次关于基础理论的危机。
一、第一次数学危机从某种意义上来讲,现代意义下的数学,也就是作为演绎系统的纯粹数学,来源予古希腊毕达哥拉斯学派。
它是一个唯心主义学派,兴旺的时期为公元前500年左右。
他们认为,万物皆数 (指整数),数学的知识是可靠的、准确的,而且可以应用于现实的世界,数学的知识由于纯粹的思维而获得,不需要观察、直觉和日常经验。
整数是在对于对象的有限整合进行计算的过程中产生的抽象概念。
日常生活中,不仅要计算单个的对象,还要度量各种量,例如长度、重量和时间。
为了满足这些简单的度量需要,就要用到分数。
于是,如果定义有理数为两个整数的商,那么由于有理数系包括所有的整数和分数,所以对于进行实际量度是足够的。
有理数有一种简单的几何解释。
在一条水平直线上,标出一段线段作为单位长,如果令它的定端点和右端点分别表示数0和1,则可用这条直线上的间隔为单位长的点的集合来表示整数,正整数在0的右边,负整数在0的左边。
以q为分母的分数,可以用每一单位间隔分为q等分的点表示。
于是,每一个有理数都对应着直线上的一个点。
古代数学家认为,这样能把直线上所有的点用完。
但是,毕氏学派大约在公元前400年发现:直线上存在不对应任何有理数的点。
特别是,他们证明了:这条直线上存在点p不对应于有理数,这里距离op等于边长为单位长的正方形的对角线。
(整理)数学史上的三次危机.

数学史上的三次危机张清利第一次数学危机在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。
因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。
它是在公元前5世纪或6世纪的某一时期由毕达哥拉斯学派的成员首先获得的。
这是数学史上的一个里程碑。
毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为q p /的形式,也就是说不存在作为公共度量单位的线段。
后来,又发现数轴上还存在许多点也不对应于任何有理数。
因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。
例如, ,22,8,6,2等都是无理数。
无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。
事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。
第一次数学危机表明,当时希腊的数学已经发展到这样的阶段:1. 数学已由经验科学变为演绎科学;2. 把证明引入了数学;3. 演绎的思考首先出现在几何中,而不是在代数中,使几何具有更加重要的地位。
这种状态一直保持到笛卡儿解析几何的诞生。
中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。
即算术阶段。
希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里士多得的逻辑体系, 而成为现代科学的始祖。
在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。
总之,第一次数学危机是人类文明史上的重大事件。
无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。
首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。
论数学史上的三次危机

论数学史上的三次危机提到数学,我有一种感觉,数学是自然中最基础的学科,它是所有科学之父,没有数学,就不可能有其他科学的产生。
就人类发展史而言,数学在其中起的作用是巨大的,难怪有人说数学是人类科学中最美的科学。
但在数学的发展史中,并不是那么一帆风顺的,其中历史上曾发生过三大危机,危机的发生促使了数学本生的发展,因此我们应该辨证地看待这三大危机。
人类数学史上出现过三次“危机”,这实际上是数学发展中三次伟大的突破,都是人们认识领域中的变革性发展,都是人们头脑中数学认识结构的转换。
第一次数学危机使数系扩展了,万物皆数的整数算术观念被动摇了,世界上竟存在着不能用整数表示的、不可通约的非比实数,被认为是“异物”的东西,成了新体系中合理的“存在物”。
第二次数学危机是方法论的领域扩大了,确立了一种崭新的“分析方法”。
“分析”的结果及“运算”或“证明”的结果有着同等程度的确定性。
第二次数学危机先后沿续一百多年,无非是为“分析”结果的确定性寻找基础,寻求证明和建立“分析”的步骤程序。
这在数学发展史上被称之为“分析中注入严密性”。
第三次数学危机是人的认知领域扩展到无穷,扩大了人们的思维方式,通过对一系列悖论的研究,确立了关于无穷运算的规则。
人类对数的认识经历了一个不断深化的过程,在这一过程中数的概念进行了多次扩充及发展。
其中无理数的引入在数学上更具有特别重要的意义,它在西方数学史上曾导致了一场大的风波,史称“第一次数学危机”。
第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。
这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。
当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。
该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。
数学史上一共发生过三次危机,都是怎么回事

数学史上一共发生过三次危机,都是怎么回事?在数学历史上,有三次大的危机深刻影响着数学的发展,三次数学危机分别是:无理数的发现、微积分的完备性、罗素悖论。
第一次数学危机第一次数学危机发生在公元400年前,在古希腊时期,毕达哥拉斯学派对“数”进行了定义,认为任何数字都可以写成两个整数之商,也就是认为所有数字都是有理数。
但是该学派的一个门徒希帕索斯发现,边长为“1”的正方形,其对角线“√2”无法写成两个整数的商,由此发现了第一个无理数。
毕达哥拉斯的其他门徒知道后,为了维护门派的正统性,把希帕索斯杀害了,并抛入大海之中,看来古人也是解决不了问题时,先解决提出问题的人。
即便如此,无理数的发现很快引起了一场数学革命,史称第一次数学危机,这危机影响数学史近两千年的时间。
第二次数学危机微积分是一项伟大的发明,牛顿和莱布尼茨都是微积分的发明者,两人的发现思路截然不同;但是两人对微积分基本概念的定义,都存在模糊的地方,这遭到了一些人的强烈反对和攻击,其中攻击最强烈的是英国大主教贝克莱,他提出了一个悖论:从微积分的推导中我们可以看到,△x在作为分母时不为零,但是在最后的公式中又等于零,这种矛盾的结果是灾难性的,很长一段时间内数学家都找不到解决办法。
直到微积分发明100多年后,法国数学家柯西用极限定义了无穷小量,才彻底解决了这个问题。
第三次数学危机数学家总有一个梦想,试图建立一些基本的公理,然后利用严格的数理逻辑,推导和证明数学的所有定理;康托尔发明集合论后,让数学家们看到了曙光,法国科学家庞加莱认为:我们可以借助结合论,建造起整座数学大厦。
正在数学家高兴之时,英国哲学家、逻辑学家罗素,提出了一个惊人的悖论——罗素悖论:罗素悖论通俗描述为:在某个城市中,有一位名誉满城的理发师说:“我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。
”那么请问理发师自己的脸该由谁来刮?罗素悖论的提出,引发了数学上的又一次危机,数学家辛辛苦苦建立的数学大厦,最后发现基础居然存在缺陷,数学家们纷纷提出自己的解决方案;直到1908年,第一个公理化集合论体系的建立,才弥补了集合论的缺陷。
三次数学危机

站在危机中看未来——三次数学危机极其对数学的影响数学的发展并不是一帆风顺的,历史上数学一共经历了三次危机。
第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。
这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。
当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。
该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为l的正方形的对角线长度既不是整数,也不是整数的比所能表示。
希伯索斯的发现被认为是“荒谬”和违反常识的事。
它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。
使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。
这场危机通过在几何学中引进不可通约量概念而得到解决。
两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。
正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。
很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。
不可通约量的研究开始于公元前4世纪的欧多克斯,其成果被欧几里得所吸收,部分被收人他的《几何原本》中。
这次数学危机对希腊数学产生了决定性的影响。
首先,希腊人得出直觉、经验都不是绝对可靠的,推理论明才是可靠的,因而希腊人此后更加重视逻辑,并在亚里士多德手中完成了古典逻辑学。
其次,由于整数及其比不能包括一切几何量,但几何量却可以表示一切数,因此希腊人认为几何较之算术占着更重要的地位。
在其后的希腊数学中,这种几何对算术的优势支配了希腊数学一千年。
希帕索斯的发现导致了第一次数学危机,然而为了解决这一危机,却又导致了古希腊古典逻辑学与公理几何学的诞生。
浅谈数学发展史中的三次危机
浅谈数学发展史中的三次危机摘要:在数学发展的历史长河中,危机与发展是并存的。
在数学发展史中出现了三次危机,人们通过对危机的探索,最终消除了它,并促进了数学的不断发展和进步。
第一次数学危机是人们对万物皆数的误解,随着无理数的发现进而度过了把第一次数学危机。
第二次数学危机是人们对无穷小的误解,而微积分的出现产生了一种新的方法——分析法,分析法是算和证的结合,是通过无穷趋近而确定某一结果。
罗素悖论的发现,导致了数学史上的第三次危机。
为了探求其根源和解决难题的途径,数学界、逻辑界进行了不懈的探讨,提出了一系列解决方案,并在不知不觉中大大推动了数学和逻辑学的发展。
归根结底,导致三次危机的原因,是由于人的认识。
关键词:危机;万物皆数;无穷小;分析方法;集合一、前言历史上,数学的发展又顺利也有曲折。
打的挫折也可以叫做危机。
危机也意味着挑战,危机的解决就意味着进步。
所以,危机往往是数学发展的先导。
数学发展史上有三次数学危机。
每一次危机,都是数学的基本部分受到质疑。
实际上,也恰恰是这三次危机,引发了数学上的三次思想解放,大大推动了数学科学的发展。
二、无理数的发现---第一次数学危机大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。
当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。
他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。
这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。
到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。
他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。
数学史上的三次危机
数学史上的三次危机从哲学上来看,矛盾是无处不存在的,即便以确定无疑著称的数学也不例外。
数学中有大大小小的许多矛盾,例如正与负、加与减、微分与积分、有理数与无理数、实数与虚数等等。
在整个数学发展过程中,还有许多深刻的矛盾,例如有穷与无穷、连续与离散、存在与构造、逻辑与直观、具体对象与抽象对象、概念与计算等等。
在数学史上,贯穿着矛盾的斗争与解决。
当矛盾激化到涉及整个数学的基础时,就会产生数学危机。
而危机的解决,往往能给数学带来新的内容、新的发展,甚至引起革命性的变革。
数学的发展就经历过三次关于基础理论的危机。
一、第一次数学危机从某种意义上来讲,现代意义下的数学,也就是作为演绎系统的纯粹数学,来源予古希腊毕达哥拉斯学派。
它是一个唯心主义学派,兴旺的时期为公元前500年左右。
他们认为,“万物皆数”(指整数),数学的知识是可靠的、准确的,而且可以应用于现实的世界,数学的知识由于纯粹的思维而获得,不需要观察、直觉和日常经验。
整数是在对于对象的有限整合进行计算的过程中产生的抽象概念。
日常生活中,不仅要计算单个的对象,还要度量各种量,例如长度、重量和时间。
为了满足这些简单的度量需要,就要用到分数。
于是,如果定义有理数为两个整数的商,那么由于有理数系包括所有的整数和分数,所以对于进行实际量度是足够的。
有理数有一种简单的几何解释。
在一条水平直线上,标出一段线段作为单位长,如果令它的定端点和右端点分别表示数0和1,则可用这条直线上的间隔为单位长的点的集合来表示整数,正整数在0的右边,负整数在0的左边。
以q为分母的分数,可以用每一单位间隔分为q等分的点表示。
于是,每一个有理数都对应着直线上的一个点。
古代数学家认为,这样能把直线上所有的点用完。
但是,毕氏学派大约在公元前400年发现:直线上存在不对应任何有理数的点。
特别是,他们证明了:这条直线上存在点p不对应于有理数,这里距离op等于边长为单位长的正方形的对角线。
于是就必须发明新的数对应这样的点,并且因为这些数不可能是有理数,只好称它们为无理数。
从我国数学的发展看三次数学危机
从我国数学的发展看三次数学危机从我国数学的发展看三次数学危机1 引言数学中有大大小小的许多矛盾,比如正与负、加法与减法、微分与积分、有理数与无理数、实数与虚数等等。
但是整个数学发展过程中还有许多深刻的矛盾,例如有穷与无穷,连续与离散,乃至存在与构造,逻辑与直观,具体对象与抽象对象,概念与计算等等。
在整个数学发展的历史上,贯穿着矛盾的斗争与解决。
而在矛盾激化到涉及整个数学的基础时,就产生数学危机。
整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。
2 三次数学危机第一次数学危机发生在古希腊,源于毕达哥拉斯的以数为基础的宇宙模型和数是可公度的信条。
毕达哥拉斯认为,事物的本质是由数构成的,并以数为基础,构造了宇宙模型[1].在毕达哥拉斯看来,数就是整数或整数之比。
但这一信条后来遇到了困难。
因为有些数是不可公度的。
这一矛盾,导致了毕达哥拉斯关于数的信条的破产,并进一步导致了毕达哥拉斯以数为基础的宇宙模型的破产。
这在当时产生的震动太大了,因此历史上称之为第一次数学危机。
17、18世纪关于微积分发生的激烈的争论,被称为“第二次数学危机”[2].在17世纪晚期,形成了微积分学。
牛顿和莱布尼茨被公认为微积分的奠基者。
他们的功绩主要在于把各种有关问题的解法统一成微积分,有明确的计算步骤,微分法和积分法互为逆运算[3].由于新诞生的微积分方法中隐含着逻辑推理上的严重缺陷,导致了“无穷小悖论”[4].当时牛顿等人不能自圆其说,而且,其后一百年间的数学家也未能有力的回答贝克莱的质问,由此而引起数学界甚至哲学界长达一个半世纪的争论,造成“第二次数学危机”.19世纪末分析严格化的最高成就--集合论,似乎给数学家们带来了一劳永逸摆脱基础危机的希望。
庞加莱甚至在1900年巴黎国际数学大会上宣称:“现在我们可以说,完全的严格性已经达到了!”[5]但就在第二年,一场摇撼整个数学大厦基础的暴风雨来临了,英国数学家罗素以一个简单明了的集合论“悖论”打破了人们的上述希望,引起了关于数学基础的`新争论。
数学史上的三次危机及对数学发展的影响
《校园百家讲坛》演讲稿数学史上的三次危机及对数学发展的影响主讲卢伯友一引言“校园百家讲坛”很早就邀请我,要我给同学们讲点什么,因为这个讲坛的神圣性和严肃性,我一直没有敢答应下来。
今天,站在这个讲坛上,我仍然感到诚惶诚恐的。
讲什么呢?从哪儿开始呢?我一直思考着这个问题。
国学大师王国维在《人间词话》中说过:“诗人对宇宙人生,须入乎其内,又须出乎其外。
入乎其内,故能写之。
出乎其外,故能观之。
入乎其内,故有生气。
出乎其外,故有高致。
”同学们平时听课、读书、做习题是入乎其内,今天听讲座是出乎其外,两者相互相成。
只知入乎其内,那是见木不见林,常常会迷失方向。
所以,还要辅助以出乎其外,站出来作高瞻远瞩。
正所谓“风声、雨声、读书声、声声入耳;家事、国事、天下事,事事关心!”整个人类文明的历史就像长江的波浪一样,一浪高过一浪,滚滚向前,科学巨人们站在时代的潮头,以他们的勇气、智慧和勤劳把人类的文明从一个高潮推向另一个高潮。
我们认为,整个人类文明可以分为三个层次:(1) 以锄头为代表的农耕文明;(2) 以大机器流水线作业为代表的工业文明; (3) 以计算机为代表的信息文明。
数学在这三个文明中都是深层次的动力,其作用一次比一次明显。
基于此原因,我今天演讲的题目是:数学史上的三次危机及对数学发展的影响古人讲,欲穷千里目,更上一层楼。
今天,我们站在历史的角度,剖析历史上发生的三次数学危机及其对数学发展的重要影响,让同学们不仅从数学自身的思想方法和应用的角度,而且从文化和历史的高度审视数学的全貌和美丽。
赞美数学思想的博大精深,赞美由数学文化引出的理性精神,以及在理性精神的指导下,人类文明的蓬勃发展。
二数学史上的三次危机及对数学发展的影响1毕达哥拉斯与第一次数学危机1.1第一次数学危机的内容毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。
他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。
由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一切事物都可以归结为整数和整数之比
毕达哥拉斯学派所承认的数仅限于有理数。 同时,毕达哥拉斯学派认为点是位置的单 位元素,这样,在几何学上的一个自然结 论就是,任意两条线段都是可公度的,也 就是说,对任意给定的两条线段,都可以 找到第三条线段,以它为单位线段能将给 定的那两条线段划分为整数份。
当毕达哥拉斯学派研究等腰直角三角形的时候, 矛盾出现了 :
于是 4 2 2 2
2 2 2
这与它们互素的最初假设矛盾。
c不能表示成两个整数的比,或者说,
2 是不可公度的。
按照今天的说法,毕达哥拉斯学派发现 2 是无理数。 相传毕达哥拉斯学派的一个成员希帕苏斯 (Hippasus, ca.470.BC)在该学派的一次海上 泛舟集会中首先做出了这一发现。 当他把自己的发现公之于众的时候,惊恐不 已的其他成员把他抛进了大海。
在等腰直角三角形中
a b 1
c 2
c2 a2 b2 2
c是一个实实在在的线段长,但它能不能表 示成整数的比呢?
若它可表示为两个整数的比,不妨设 c
是互素的整数 。
则有 c
c 2
2 2 2
2
为偶数
不妨设 2
也是偶数。
3、数学危机
没有“数学革命”,并不等于数学在其发展
过程中就是一帆风顺的
因为数学总是在一定的基础上发展起来的。
随着人们处理问题的深度和广度发生变化, 原来的基础假定往往会遇到根本性的困难。 这时候就产生了所谓的“数学危机”。
许多人并不赞成使用危机这个词。
因为它们并没有阻碍数学的发展,相反,通 过对这些危机的解决,促进了数学的完善与 发展。
毕达哥拉斯学派认为“万物皆数” (Everything is number)
这个学派的一位晚期成员菲洛劳斯(Philolaus, ca.390.BC)曾经说过:“人们所知道的一切 事物都包含数;因此,没有数就既不可能表达、 也不可能理解任何事物。” 这个学派的一位晚期成员菲洛劳斯(Philolaus, ca.390.BC)曾经说过:“人们所知道的一切事 物都包含数;因此,没有数就既不可能表达、也 不可能理解任何事物。”
在这个学派兴盛的时期,学派内部的各种发现往往 秘而不宣,并且大家习惯于把各这些发现都归结在 领袖毕达哥拉斯的名下。 毕达哥拉斯学派对数学最重要的贡献之一是证明 了毕达哥拉斯定理(在中国被称为勾股定理), 即:直角三角形斜边长度的平方等于二直角边长 度的平方和。 据说当时的人们为了庆祝发现这个定理,曾经宰 了100头牛来拜祭天神。
三次数学危机
无理数的发现
微积分的基础问题:无穷小是零吗? 集合论悖论
1. 第一次数学危机
1.1 无理数的发现
古希腊的毕达哥拉斯(Pythagoras, ca.560ca.480.BC)学派从毕达哥拉斯开始,一直延 续到公元前四世纪中叶。
这个学派是一种宗教式的秘密结社,致力 于哲学和数学的研究。相传,“哲学”和 “数学”这两个词就是它创造的,原意分 别指“智力爱好”和“可学到的知识”。
从三次数学危机 看数学的发展
人类对世界的认识,波浪式的前进,螺旋式
的上升。
科学,在否定之否定中发展。
在数学发展的过程中,人的认识是不断 深化的. 在各个历史阶段,人的认识又有一定的局 限性和相对性.当一种"反常"现象用当时 的数学理论解释不了,并且因此影响到数 学的基础时,我们就说数学发生了危机.
ቤተ መጻሕፍቲ ባይዱ
数学的发展与自然科学的发展
1、 科学革命
在科学史上,对于特别重大的知识更新和观 念突破 。 这种知识的变革具有颠覆性,是在否定原有 知识体系的基础上重新建立知识的大厦。
例如哥白尼革命以日心说挑战传统的地心说,
取缔了人们赋予地球的神圣地位;
牛顿革命建立了天体力学体系,统一了天上
和人间的机械力学现象;
1.2 芝诺悖论
对毕达哥拉斯学派的哲学和数学的另一个致 命打击来自古希腊伊利亚(Elea)学派的代 表人物芝诺(Zeno, ca.495-430.BC)。 芝诺提出过四个著名的悖论
阿基里斯追龟说
阿基里斯(Achilles)是希腊神话中的神行太
保,跑得非常快,但是芝诺论证说阿基里斯 如果和乌龟赛跑,它将永远也追不上乌龟。 他论证到,如果设乌龟先于阿基里斯一段距 离,那么当阿基里斯到达乌龟的起跑点时, 乌龟也爬过了一段距离;当阿基里斯又追完 这段距离时,乌龟又向前跑了一段;如此以 至无穷。虽然这一连串的距离越来越小,但 它们的数目是无穷的,所以阿基里斯永远也 追不上乌龟。
阿基里斯
阿基里斯是希腊联军里最英勇善战的骁将,也是荷马 史诗Iliad里的主要人物之一。传说他是希腊密耳弥多 涅斯人的国王珀琉斯和海神的女儿西蒂斯所生的儿子。 阿基里斯瓜瓜坠地以后,母亲想使儿子健壮永生,把 他放在火里锻炼,又捏着他的脚踵倒浸在冥河(Styx) 圣水里浸泡。因此阿基里斯浑身象钢筋铁骨,刀枪不 入,只有脚踵部位被母亲的手捏住,没有沾到冥河圣 水,成为他的唯一要害。在特洛伊战争中,阿基里斯 骁勇无敌,所向披靡,杀死了特洛伊主将,著名英雄 赫克托耳(Hector),而特洛伊的任何武器都无法伤害 他的身躯。后来,太阳神阿波罗(Apollo)把阿基里斯 的弱点告诉了特洛伊王子帕里斯,阿基里斯终于被帕 里斯诱到城门口,用暗箭射中他的脚踵,负伤而死。
达尔文革命通过自然选择和生存斗争学说,
取消了人类与其它生物的本质区别;
爱因斯坦建立的狭义和广义相对性原理,否
定了长期以来关于绝对时间和绝对空间的基 本假定。
2、 数学和自然科学发展的不同
从知识体系上来讲,数学理论总是在原有的
基础上进行扩充,新增的部分与原来的体系 总是融为一体。 换而言之, 数学理论的重大发展,一般都不是对原有理 论的根本否定,而是对原有理论体系的某种 推广 。 一般来说,并没有“数学革命”这种说法。
4、数学危机和科学革命的共性
二者都体现了人类直觉与理性的消长。 直觉是一种富有创造性的思维方式,人类一
直相信自己的直觉;但是历史发展表明,直 觉经常是和理性相对立的。 科学革命的进程和数学危机的解决过程,大 体上都是理性战胜直觉的一个过程。科学中 的理性主义正是通过对直觉的怀疑与否定才 得以确立其至高无上的地位。从这一点上来 看,数学危机和科学革命又是一致的。
毕达哥拉斯学派把抽象的数作为万物的本 原,他们研究数的目的并不是为了应用, 而是试图通过揭示数的奥秘来探索宇宙的 永恒真理。 “万物皆数”是整个毕达哥拉斯学派的一 种信念,是这个学派的宗教、哲学和数学 的基础。而不可公度的无理数的发现彻底 粉碎了他们的基本信念,使整个学派失去 了赖以存在的基础。
之后,人们又陆续发现了许多其它的无理数。 这些无理数被毕达哥拉斯学派隐瞒了将近一 百年,最后终于被菲洛劳斯等人公布于世。