第2讲 拟合与插值

合集下载

离散数据的曲线拟合

离散数据的曲线拟合

按(2.5.3)有
5
2.5 1.875 a0 4.31
2.5 1.875 1.5625 a1 3.27
1.875 1.5625 1.3828 a2 2.7975
解此方程组得 a0* 0.1214, a1* 0.5726, a2* 1.2114。从而,拟合多项式为
n
ak* * ( x ) ,
使得
k 0
n
n
i [ yi
i0
* ( x)]2

min
( x )
i[ yi
i0
( x)]2
(2.5.1)
则称 *( x)为离散数据{ xi , yi }mi0在子空间 中带权 {i }mi0 的最小二乘拟合。
函数 ( x)在离散点处的值为
这是一种特定的线性模型,因此可用上面讨论的方法求解。子空间 得基
函数为 k ( x) xk , k 0,1, , n。
例 2.13 用多项式拟合表2-7中的离散数据。
表2-7
i
0
1
2
3
4
xi 0.00 0.25 0.50 yi 0.10 0.35 0.81
0.75 1.09
1.00 1.96
此时,对应的法方程为
k0
k ,k ak y,k , k 0,1,, n。 它的解为ak y,k k ,k , k 0,1,, n。
由于按法方程2.5.3有
y,
j

n

ak

k
,
j


,

j
,
k0
第二章 插值与拟合
即 y , j 0, j 0,1,, n。因而平方误差为

2.4 正交多项式和最佳平方逼近

2.4 正交多项式和最佳平方逼近
的正交多项式。前几个Laguerre多项式如下:
dn Ln ( x ) e x n ( x n e x ) dx
第二章 插值与拟合
L2 ( x ) x 2 4 x 2, L3 ( x ) x 3 9 x 2 18 x 6, L4 ( x ) x 4 16 x 3 72x 2 96 x 24 L4 ( x ) x 5 25x 4 200x 3 600x 2 600x 120
() (sinix, cos jx) 0, i , j 1,2,, n 3
() (, dx 2 ; 4 11 )


(1, sinix ) 0, (1, cosix ) 0, i 1,, n。
第二章 插值与拟合
正交多项式的三项递推公式:
n 设 {k ( x)}k 0 为 a,b]具有权函数 ( x) 的正交多项式组,i ( x) [

0,当i j , 且i , j 1 ()(cosix, cos jx ) cosix cos jxdx 1 ; ,当i j 0 0, 当i j , 且i , j 1 () (sinix, sin jx ) 2 ; , 当i j 0
(2)
1 连续区间上正交多项式
0, i j (第二章 i , j ) 插值与拟合 ai 0, i j
连续区间上的正交多项式的概念与离散 点集上的正交多项式概念相似,只要将内积 的定义作相应的改变 。 定义2.10 函数f (x)和 g (x)在连续意义下的内积定义为
( f , g ) ( x) f ( x) g ( x)dx, f , g C[a, b]
特别地,
第二章 插值与拟合

数值计算04-插值与拟合

数值计算04-插值与拟合

二维插值的定义
第一种(网格节点):
y
O
x
已知 mn个节点 其中 互不相同,不妨设
构造一个二元函数
通过全部已知节点,即
再用
计算插值,即
第二种(散乱节点):
y



0
x
已知n个节点
其中 互不相同,
构造一个二元函数
通过全部已知节点,即
再用
计算插值,即
最邻近插值
y
( x1 , y2 ) ( x2 , y2 )
( x1 , y1 ) ( x2 , y1 )

x
O
注意:最邻近插值一般不连续。具有连续性的最简单 的插值是分片线性插值。
分片线性插值
速度最快,但平滑性差
linear
占有的内存较邻近点插值方法多,运算时间 也稍长,与邻近点插值不同,其结果是连续 的,但在顶点处的斜率会改变 运算时间长,但内存的占有较立方插值方法 要少,三次样条插值的平滑性很好,但如果 输入的数据不一致或数据点过近,可能出现 很差的插值结果 需要较多的内存和运算时间,平滑性很好 二维插值函数独有。插值点处的值和该点值 的导数都连续
x=0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 y=0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
海拔高度数据为: z=89 90 87 85 92 91 96 93 90 87 82 92 96 98 99 95 91 89 86 84 82 84 96 98 95 92 90 88 85 84 83 81 85 80 81 82 89 95 96 93 92 89 86 86 82 85 87 98 99 96 97 88 85 82 83 82 85 89 94 95 93 92 91 86 84 88 88 92 93 94 95 89 87 86 83 81 92 92 96 97 98 96 93 95 84 82 81 84 85 85 81 82 80 80 81 85 90 93 95 84 86 81 98 99 98 97 96 95 84 87 80 81 85 82 83 84 87 90 95 86 88 80 82 81 84 85 86 83 82 81 80 82 87 88 89 98 99 97 96 98 94 92 87

插值与拟合算法分析

插值与拟合算法分析

插值与拟合算法分析在数学与计算机科学领域,插值与拟合算法是两种常用的数据处理技术。

插值算法通过已知数据点之间的内插来估算未知数据点的值,而拟合算法则通过求取最佳拟合曲线或函数来逼近已知数据点。

本文将对插值与拟合算法进行详细分析,并比较它们在不同应用中的优缺点。

一、插值算法插值算法主要用于通过已知数据点之间的内插来估算未知数据点的值。

常用的插值算法包括拉格朗日插值、牛顿插值、样条插值等。

这些算法根据插值函数的不同特点,适用于不同类型的数据处理。

1. 拉格朗日插值拉格朗日插值是一种基于代数多项式的插值方法。

它通过构造一个全局多项式函数来拟合已知数据点,并推导出未知数据点的估算值。

拉格朗日插值算法具有简单易懂、计算效率高等优点,但在处理大量数据点时可能会出现龙格现象,导致插值结果有一定误差。

2. 牛顿插值牛顿插值是一种基于差商的插值方法。

它通过计算差商的递推关系,构造一个分段多项式函数来拟合已知数据点。

相比于拉格朗日插值,牛顿插值算法具有更高的数值稳定性和精度,并且可以方便地进行动态插值。

3. 样条插值样条插值是一种基于分段函数的插值方法。

它将整个数据区间划分为若干小段,并使用不同的插值函数对每一段进行插值。

样条插值算法通过要求插值函数的高阶导数连续,能够更好地逼近原始数据的曲线特征,因此在光滑性较强的数据处理中常被使用。

二、拟合算法拟合算法主要用于通过最佳拟合曲线或函数来逼近已知数据点。

常用的拟合算法包括最小二乘拟合、多项式拟合、非线性拟合等。

这些算法可以使拟合曲线与已知数据点尽可能地接近,从而进行更精确的数据分析和预测。

1. 最小二乘拟合最小二乘拟合是一种通过最小化残差平方和来求取最佳拟合曲线的方法。

它利用数据点与拟合曲线的差异来评估拟合效果,并通过求取最小残差平方和的参数值来确定拟合曲线的形状。

最小二乘拟合算法广泛应用于线性回归和曲线拟合等领域。

2. 多项式拟合多项式拟合是一种通过多项式函数来逼近已知数据点的方法。

数学建模精选经典课件之插值与拟合

数学建模精选经典课件之插值与拟合

可以看出这些点大致分 布在一条直线附近。
我们不妨用插值法,和拟合法两种方法对比 的看看他们的图像,找出他们的差别。
对这样的数据采用上一节介绍的插值方法近 似求描述物理规律的解析函数,必然存在下 列缺点:
在一个包含有很多数据点的区间内构 造插值函数,必然使用高次多项式。而 高次插值多项式是不稳定的。
700 850 950 1010 1070 1550 980
通过此例对最近邻点插值、双线性插值方法和双三次插值 方法的插值效果进行比较。
散乱节点定义
已知n个节点
其中
互不相同,
构造一个二元函数
通过全部已知节点,即
再用
计算插值,即
Matlab中网格节点插值的函数
cz=griddata(x0,y0,z0,cx,cy,’method’)
插值&拟合
一.插值法(内插,外插)
内插:是数学领域数值分析中的通过已知的离散数据 求未知数据的过程或方法。
在这里我们所讲的插值法指的就是内插法!
二.拟合法
科学和工程问题可以通过诸如采样、实验等方法获 得若干离散的数据,根据这些数据,我们往往希望得到 一个连续的函数(也就是曲线)或者更加密集的离散方 程与已知数据相吻合,这过程就叫做拟合 (fitting)。
数据的插值与拟合问题在很多赛题中都有应用。
与图形有关的问题很多和插值与拟合有关系,例如98 年美国赛的A题,生物组织切片的三位插值处理,94 年的A题逢山开路,山体海拔高度的插值计算。2001 年的公交调度拟合问题,2003年的饮酒驾车拟合问题, 2005年的雨量预报的评价的插值计算。甚至是上次的 东北三省赛的A题人口预测问题也涉及到了拟合计算。
互不相xj
xn

02插值与拟合习题课

02插值与拟合习题课

①Newton 前插公式
N n ( x) N n ( x0 th) f ( x0 ) t f 0 t (t 1) 2 f0 2 t (t 1) (t n 1) n f0 n!
fi f xi h f ( xi ) , m fi m1 fi 1 m1 fi
n
( x xn 1 )
f [ x1,x2 , , xn ]
f ( xi ) , n ( x) ( x x1 )( x x2 ) ( x ) i 1 n i
( x xn )
则当 k=n 时,由定义有 f x1 , x2 , xn f x0 , x1 , f [x , x , , x ]
k f x = x 尝试选 ,则有
n f ( xi ) n xik xik f [ x1 , x2 ,, xn ] a0 i 1 ( x ) i 1 ( x ) i 1 f ( x ) n i n i i n
故有
xik 1 f [ x1 , x2 ,, xn ] i 1 f ( x ) a0 i
六、当插值节点 {xk } 是等距节点时,有 xk x0 kh ,则 Newton 插值公式可以演变成 为 Newton 前插公式和 Newton 后插公式两个 公式,其用于等距节点插值时更为简单。通 常对等距插值问题, 当要计算的 x 值靠近 x0 时,用 Newton 前插公式,而当 x 靠近 xn 时, 用 Newton 后插值公式。 下面是这 2 个差分公式的形式,请给出这些 差分公式的推导过程
f i m1 f i m1 f i 1
x xn th, t [n,0] 。
七、求 a, b, c 的值,使积分

第九章插值与拟合

第九章 插值与拟合插值:求过已知有限个数据点的近似函数。

拟合:已知有限个数据点,求近似函数,不要求过已知数据点,只要求在某种意义下它在这些点上的总偏差最小。

插值和拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同的。

而面对一个实际问题,究竟应该用插值还是拟合,有时容易确定,有时则并不明显。

§1 插值方法下面介绍几种基本的、常用的插值:拉格朗日多项式插值、牛顿插值、分段线性插值、Hermite 插值和三次样条插值。

1.1 拉格朗日多项式插值 1.1.1 插值多项式用多项式作为研究插值的工具,称为代数插值。

其基本问题是:已知函数)(x f 在区间],[b a 上1+n 个不同点n x x x ,,,10 处的函数值)(i i x f y =),,1,0(n i =,求一个至多n 次多项式n n n x a x a a x +++= 10)(ϕ (1)使其在给定点处与)(x f 同值,即满足插值条件),,1,0()()(n i y x f x ii i n ===ϕ (2))(x n ϕ称为插值多项式,),,1,0(n i x i =称为插值节点,简称节点,],[b a 称为插值区间。

从几何上看,n 次多项式插值就是过1+n 个点))(,(i i x f x ),,1,0(n i =,作一条多项式曲线)(x y n ϕ=近似曲线)(x f y =。

n 次多项式(1)有1+n 个待定系数,由插值条件(2)恰好给出1+n 个方程⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n n n n n n nn nn yx a x a x a a y x a x a x a a y x a x a x a a 22101121211*********(3)记此方程组的系数矩阵为A ,则是范德蒙特(Vandermonde)行列式。

当n x x x ,,,10 互不相同时,此行列式值不为零。

实验四 数据插值与拟合 共50页PPT资料


代数多项式插值是最常用的插值方式,其内容也 是最丰富的,它又可分为以下几种插值方式:
(1)非等距节点插值,包括拉格朗日插值、利用 均差的牛顿插值和埃特金插值;
(2)非等距节点插值,包括利用差分的牛顿插值 和高斯插值等;
(3)在插值中增加了导数的Hermite(埃尔米特) 插值;
(4)分段插值,包括分段线性插值、分段Hermite (埃尔米特)插值和样条函数插值;
同‘pchip’,三次Hermite多项式插值
1.Linear(分段线性插值)
它值的。算在法区是间在[xi,每xi+个1]上小的区子间插[xi值,xi+多1]项上式采为用:简单的线性插
F ix xi x xii 1 1f(xi)xx i 1 xx ii f(xi 1)
(1)nearest方法速度最快,占用内存最小,但一般 来说误差最大,插值结果最不光滑;
(2)spline三次样条插值是所有插值方法中运行耗 时最长的,其插值函数以及插值函数的一阶、二阶 导函数都连续,因此是最光滑的插值方法,占用内 存上比cubic方法小,但当已知数据点不均匀分布时 可能出现异常结果。
由此整个区间[xi,xi+1]上的插值函数为:
n
F(x) Fili(x) i1
其中 li ( x) 定义如下:
li
(x)


x
xi x
xi
xi1
xi1 xi1
xi1
, ,
x x
[xi1, xi ](i [xi , xi1](i

0略去) 0略去)
(5)反插值。 按被插值函数的变量个数还可把插值法分为一元
插值和多元插值。

实验报告—拟合与插值

实验报告七拟合与插值一、曲线拟合1、多项式拟合【示例】以下步骤可对二维数据作多项式拟合。

已知:数据横坐标:a=[1 2 5 7 11 12];数据纵坐标:b=[ 32.78 32.65 27.25 25.55 19.24 14.65];【解】先将数据绘制成散点图:a=[1 2 5 7 11 12]; b=[ 32.78 32.65 27.25 25.55 19.24 14.65];plot(a,b, '-o') % 绘图,线型为实线,点型为空心圆点,颜色为默认的蓝色。

观察绘制出来的图形,大致在一条直线上,所以用一次多项式(直线)拟合:p= polyfit(a,b,1); y1=p (1)*a+p (2); % 线性拟合。

polyfit命令中的数字“1”表示用一次多项式。

% p是向量,各分量表示多项式从高到低的各个系数;y1是用这些系数构造的多项式的值。

hold on; plot(a,y1,'r') % 绘制图形,观察拟合效果。

颜色为红色。

也可以试着用三次多项式来拟合:q= polyfit(a,b,3); y2= q(1)*a.^3+q(2)*a.^2+q(3)*a+ q(4); % 3次多项式拟合hold on; plot(a,y2,'k') % 绘制曲线,观察拟合效果。

颜色为黑色。

【要求】执行以上命令,并仿照示例,对下列数据作多项式拟合,写出拟合多项式:数据横坐标:x=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20];数据纵坐标:y= [70.2 41.6 -9.1 -52 -100 -67.4 -112 -166 -104 -168 -103 -128 -90.5 -52.1 -10.4 60.6 85.9 153 199 301];024681012141618202、一般的最小二乘拟合【示例1】已知数据横、纵坐标分别为x =1:0.5:10; y=[0.84 2.24 3.64 3.74 1.2701 -4.29 -12.11 -19.79 -23.97 -21.34 -10.06 9.09 32.19 52.76 63.32 57.69 33.38 -6.78 -54.40];并已知该组数据满足 12sin()ay x a x =,其中12,a a 为待定系数。

数学建模讲座(五)插值和拟合


Lagrange插值法的缺点 插值法的缺点
多数情况下,Lagrange插值法效果是不错的, 但随着节点数n的增大,Lagrange多项式的次 数也会升高,可能造成插值函数的收敛性和 稳定性变差。如龙格(Runge)现象。 在[-1,1]上用n+1个等距节点作插值多项式 Ln(x),使得它在节点处的值与函数y = 1/(1+25x2) 在对应节点的值相等,当n增大时,插值多项 式在区间的中间部分趋于y(x),但对于满足条 件0.728<|x|<1的x, Ln(x)并不趋于y(x)在对应 点的值,产生了Runge现象。 现象。 现象
三次样条
即 Si(x)=aix3+bix2+cix+di i=0,1,…,n xi-1≤x ≤xi (4n个变量) 需要4n个方程 (n+1个方程) S(xi) = yi i=0,1,…,n Si(xi)= Si+1(xi) i=1,…,n-1 在xi连续 (n-1个方程) Si/(xi)= Si+1/(xi) i=1,…,n-1 在xi连续(n-1个方程) Si//(xi)= Si+1 //(xi) i=1,…,n-1 在xi连续(n-1个方程) 再加两个条件 S//(x0)= S //(xn)=0 自然边界条件(2个方程) 可以证明:满足上述 个线性方程组有唯一解 满足上述4n个线性方程组有唯一解 满足上述 个线性方程组有唯一解。
n I (x) = ∑ y l (x) n ii i =0
可以证明:In(x) →f(x)
1.3 三次样条
设在区间[a,b]上,已给n+1个互不相同的节点 a=x0<x1<…<xn=b 而函数y = f(x)在这些节点的值f(xi)=yi,i=0,1,…,n.如 果分段函数S(x)满足下列条件,就称S(x)为f(x)在点x0, x1,…,xn的三次样条插值函数. (1) S(x)在子区间[xi,xi+1]的表达式Si(x)都是次数 为3的多项式; (2)S(xi) = yi; (3) S(x)在区间[a,b]上有连续的二阶导数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档