与圆有关的计算公式九年级
(完整版)北师大版数学初中九年级下册第三章圆的知识点归纳

《圆》章节知识点复习一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系<⇒点C在圆内;1、点在圆内⇒d r=⇒点B在圆上;2、点在圆上⇒d r>⇒点A在圆外;3、点在圆外⇒d r三、直线与圆的位置关系>⇒无交点;1、直线与圆相离⇒d r=⇒有一个交点;2、直线与圆相切⇒d r<⇒有两个交点;3、直线与圆相交⇒d r四、圆与圆的位置关系>+;外离(图1)⇒无交点⇒d R r=+;外切(图2)⇒有一个交点⇒d R r-<<+;相交(图3)⇒有两个交点⇒R r d R r=-;内切(图4)⇒有一个交点⇒d R r<-;内含(图5)⇒无交点⇒d R r五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
九年级数学圆知识点总结北师大版

九年级数学圆知识点总结北师大版点的连线与切线所夹角为直角.1.垂径定理及推论:在一个圆中,如果一条直线通过圆心且垂直于另一条直线,则这条直线被称为垂径,而另一条直线被称为弦。
根据垂径定理,垂径平分弦,并且中垂定理、中径定理和弧径定理都可以由垂径定理推导而来。
2.平行线夹弧定理:当两条平行弦穿过一个圆时,它们所夹的弧是相等的。
3.“角、弦、弧、距”定理:在同一个圆或等圆中,如果两个角相等,则它们所对的弦也相等;如果两个弦相等,则它们所对的角也相等;如果两个角相等,则它们所对的弧也相等;如果两个弧相等,则它们所对的角也相等;如果两个弦的弦心距相等,则它们也相等。
4.圆周角定理及推论:圆周角的度数等于它所对的弧的度数的一半;一条弧所对的圆周角等于它所对的圆心角的一半;如果两个弧相等,则它们所对的角也相等;如果两个角相等,则它们所对的弧也相等;如果一个三角形的一条边的中线等于这条边的一半,则这个三角形是直角三角形。
5.圆内接四边形性质定理:圆内接四边形的对角线互补,并且任何一个外角都等于它的内对角。
6.切线定理及性质:如果一条直线通过圆的外部一点并且与圆相切,则这条直线被称为切线。
根据切线定理,经过半径的外端并且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点且垂直于切线的直线必经过圆心。
7.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等;圆心和这一点的连线与切线所夹角为直角。
点的连线平分两条切线的夹角。
因为AB是切线,所以OC垂直于AB。
(3)几何表达式举例:因为PA、PB是切线,所以PA=PB。
因为PO过圆心,所以∠APO=∠BPO。
弦切角定理及其推论:(1)弦切角等于它所夹的弧对的圆周角;(2)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等;(3)弦切角的度数等于它所夹的弧的度数的一半。
(如图)相交弦定理及其推论:(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等;(2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项。
九年级下册数学圆相关知识点总结

九年级下册数学圆相关知识点总结数学是一门抽象的学科,其中的圆是一个非常重要的几何概念。
我们通过学习九年级下册数学,可以掌握许多关于圆的知识点。
本文将对这些知识点进行总结,帮助大家更好地理解圆的性质和应用。
一、圆的基本概念圆是由平面上任意一点到定点的距离都相等的点的集合。
其中,定点称为圆心,距离称为半径。
圆用圆心O和半径r表示为Γ(O, r)。
二、圆的性质1. 圆的直径和半径之间的关系:圆的直径是通过圆心的任意两点的线段。
直径的长度等于半径的长度的两倍,即d = 2r。
2. 圆心角和弧度制:圆心角是指以圆心为顶点的两条半径所夹的角。
圆心角的大小等于它所对应的弧长所占据的圆周的比例。
我们常用弧度制来度量圆心角,其中一个圆心角所对应的弧长等于圆的半径。
3. 弧和弧长:弧是圆上任意两点之间的一段弧线。
弧长是弧上的一段弧线的长度。
弧长的计算公式是l = rθ,其中l代表弧长,r代表半径,θ代表圆心角的弧度制表示。
4. 圆的周长和面积:圆的周长是圆周上的一段完整的弧线的长度,用C表示。
圆的周长计算公式是C = 2πr,其中π约等于3.14。
圆的面积是圆内部所有点与圆心之间的距离和,用A表示。
圆的面积计算公式是A = πr²。
三、弦和切线的性质1. 弦的性质:弦是连接圆上任意两点的线段。
圆上的弦的中点连线垂直于弦。
同样长度的弦,离圆心越远弧度越大。
2. 切线的性质:切线是与圆相切于圆上一点的直线。
切线与半径的夹角是90°。
同一条切线两点到圆心的距离相等。
圆的半径与切线相交的点,与半径所对应的弧角度相等。
四、圆与多边形的关系1. 正多边形和圆的关系:正多边形是指所有边和角都相等的多边形。
规则的正多边形能够内接于一个圆,且正多边形的边数越多,内接圆的半径越大。
2. 圆与正多边形的周长和面积:圆与正多边形的周长之间满足的关系式是:n ×弦长 = C,其中n代表正多边形的边数。
圆与正多边形的面积之间满足的关系式是:n ×弦长 × r/2 = A。
九年级上圆的知识点总结

九年级上圆的知识点总结圆是初中数学中的一个重要内容,在九年级上册的数学学习中占据着重要的地位。
以下是对九年级上册圆的相关知识点的总结。
一、圆的基本概念1、圆的定义圆是平面内到一定点的距离等于定长的点的集合。
这个定点称为圆心,定长称为半径。
2、圆的表示方法通常用符号“⊙”表示圆,其后加上圆心的字母,如⊙O 表示以点 O 为圆心的圆。
3、弦连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径,直径是圆中最长的弦。
4、弧圆上任意两点间的部分叫做圆弧,简称弧。
弧分为优弧(大于半圆的弧)、劣弧(小于半圆的弧)。
5、等圆与等弧能够重合的两个圆叫做等圆。
在同圆或等圆中,能够互相重合的弧叫做等弧。
二、圆的基本性质1、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
3、弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。
推论 1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
三、点与圆的位置关系设圆的半径为 r,点到圆心的距离为 d,则有:1、点在圆外⇔ d > r ;2、点在圆上⇔ d = r ;3、点在圆内⇔ d < r 。
四、直线与圆的位置关系1、直线与圆的位置关系有三种:相交、相切、相离。
(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线。
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,唯一的公共点叫做切点。
九年级圆的基础知识点、经典例题及课后习题

圆【知识梳理】1.圆的有关概念和性质(1) 圆的有关概念①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
上述五个条件中的任何两个条件都可推出其他三个结论。
③弧、半圆、优弧、劣弧:,简称弧.,用符号“⌒”表示,弧:圆上任意两点间的部分叫做圆弧..以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”。
半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆..优弧:大于半圆的弧叫做优弧..。
(为了区别优弧和劣弧,优弧用三个字劣弧:小于半圆的弧叫做劣弧..母表示。
)④弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧...⑦圆心角:顶点在圆心的角叫做圆心角...⑧弦心距:从圆心到弦的距离叫做弦心距....(3)对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。
圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。
九年级下册数学圆的知识点

九年级下册数学圆的知识点【九年级下册数学圆的知识点】数学是一门以逻辑严谨和推理为基础的学科,而数学的各个分支中,圆是一个重要且基础的概念。
在九年级下册数学学习中,圆的知识点是必须掌握的内容。
本文将为大家介绍九年级下册数学中关于圆的重要知识点。
一、圆的定义与性质1. 圆的定义:圆是平面上所有与圆心距离相等的点的轨迹。
2. 圆的元素:圆心、半径和直径。
圆心是平面上距离圆上任意一点的距离都相等的点;半径是连接圆心和圆上任意一点的线段;直径是通过圆心的,并且两个端点在圆上的线段,直径是半径的两倍。
3. 圆的性质:每条半径都相等;直径是任意圆周上两点的最长线段;圆的半径垂直于圆的弧上的切线;相交于圆上同一条弧的两条弦相等;圆心角所对的弧和该角度所在的圆弧的长度成正比。
二、圆的相关计算1. 圆的周长:圆的周长公式是C=2πr,其中C表示周长,π是一个常数(约等于3.14),r是圆的半径。
2. 圆的面积:圆的面积公式是S=πr²,其中S表示面积,π是常数,r是圆的半径。
3. 弧长和扇形面积:给定圆心角的度数θ和圆的半径r,可以利用公式计算弧长L和扇形面积A。
弧长公式为L=2πr(θ/360°),扇形面积公式为A=πr²(θ/360°)。
三、圆的位置关系与定理1. 圆内切和外切:当两个圆的内部或外部只有一点重合时,称这两个圆内切或外切。
2. 弦的性质:圆内任意两点可连成一条弦,弦的性质有:等长的弦所对的圆心角相等;垂直于半径的弦是半径所对的圆心角的平分线。
3. 切线的性质:切线与半径垂直;切线与切点间的半径是切线的切点处的切线角的平分线。
4. 切线与圆的位置关系:切线与圆的位置关系有内切、外切和相离三种情况。
内切时切线只与圆的内部相切;外切时切线只与圆的外部相切;相离时切线与圆没有交点。
四、圆的相关定理1. 余弦定理:在任意三角形ABC中,设AB=c、AC=b、BC=a,则有c²=a²+b²-2abcos∠C。
初三有关圆的解答题及答案

初三有关圆的解答题及答案初三数学教学中,圆是一个非常重要的内容,也是经常考察的一道题型。
下面,我们来探讨一些初三有关圆的解答题及其答案。
一、相切问题问题:两个圆相切,半径分别为$r_1$和$r_2$,求它们的公切线的长度$L$。
解析:根据勾股定理,可得:$(r_1 + r_2)^2 = L^2 + (r_1 - r_2)^2$化简得:$L = 2\sqrt{r_1r_2}$答案:$L = 2\sqrt{r_1r_2}$二、切线问题问题:已知一个圆心坐标$(a, b)$,与一直线$y=k$相切,求这个圆的方程。
解析:由于圆与直线相切,所以该直线的距离等于圆的半径。
直线$y=k$与圆的距离为$|b-k|$,因此圆的方程为:$(x-a)^2 + (y-b)^2 = (b-k)^2$答案:$(x-a)^2 + (y-b)^2 = (b-k)^2$三、垂直问题问题:已知直线$y=k$和圆$(x-a)^2+(y-b)^2=r^2$相交于点$P(x_0,y_0)$,求直线$OP$的斜率,其中$O(a,b)$为圆心。
解析:首先,求点$P$的坐标。
因为$P$是圆和直线的交点,所以可以列出以下方程组:$\begin{cases} y=k \\ (x-a)^2 + (y-b)^2 = r^2 \end{cases}$将$y=k$代入第二个方程,可得:$(x-a)^2 + (k-b)^2 = r^2$将$(x,y)$代入,得到:$(x_0-a)^2 + (k-b)^2 = r^2$整理可得:$x_0 = a\pm \sqrt{r^2-(k-b)^2}$由于直线$OP$与$x$轴垂直,所以直线$OP$的斜率为$-\frac{1}{\frac{y_0-b}{x_0-a}}$。
代入$x_0$和$y_0$,即可得到答案。
答案:$-\frac{1}{\frac{y_0-b}{x_0-a}}$四、分割问题问题:一个圆$O$被圆弧$AB$和直径$CD$所分割,分别为弧$AB$和弧$BCD$。
九年级圆周角定理知识点

九年级圆周角定理知识点圆周角是在数学几何中的一个重要概念,它与圆形的内角和外角有着密切的关系。
在九年级的几何学学习中,圆周角定理是一个不可或缺的内容。
在本文中,将详细介绍九年级圆周角定理的知识点。
1. 圆周角的定义在一个圆上,连接圆心和圆上两点,所对的角被称为圆周角。
圆周角的尺寸是以弧度为单位进行度量的。
一个完整的圆周角等于360°或2π弧度。
这意味着一个圆周角的度数恰好等于所对弧的弧度数。
2. 圆周角定理圆周角定理是指,在同一个圆中,对应于相同弧的圆周角相等。
换句话说,如果两个圆周角对应于同一个圆上的相同弧,那么这两个角的大小是相等的。
圆周角定理可以用数学表达式来表示:∠AOC = ∠ABC其中∠AOC和∠ABC分别表示对应于相同弧AC的两个圆周角的度数。
3. 圆周角的相关性质除了圆周角定理,还有一些与圆周角相关的性质需要了解。
(1)圆周角定理的逆定理:如果两个角对应于同一个圆上的不同弧,那么这两个角的度数是不等的。
(2)圆周角等于直径角:一个圆上的直径所对应的圆周角恰好等于180°或π弧度。
(3)圆周角的其他性质:圆周角与圆上的弧长有关,根据圆周角的度数可以计算对应的弧长。
4. 圆周角定理的应用圆周角定理是解决各种几何问题的重要工具。
通过应用圆周角定理,我们可以求解关于弧长、角度和半径之间的问题。
例如,可以通过已知弧长计算对应的圆周角,或者通过已知角度计算对应的弧长。
在现实生活中,圆周角定理也有一些实际应用。
例如,在建筑工程中,可以利用圆周角定理来测量圆形表面的角度和长度。
在天文学中,圆周角定理也被广泛用于计算天体的运动轨迹和距离。
总结:本文详细介绍了九年级圆周角定理的知识点。
圆周角的定义和圆周角定理是理解和应用圆周角的基础。
此外,我们还学习了圆周角的其他性质和一些实际应用。
通过掌握这些知识,我们能够更好地理解和解决与圆周角相关的几何问题。