八年级下平行四边形难题全面专题复习(最全面的平行四边形)

合集下载

(完整版)八年级下平行四边形期末复习(很全面_题型很典型)(20200921073838)

(完整版)八年级下平行四边形期末复习(很全面_题型很典型)(20200921073838)

八年级下册复习---平行四边形一、学习目标 复习平行四边形、特殊平行四边形、梯形的性质与判定,能利用它们进行计算或证明 、学习重难点 重点:性质与判定的运用; 难点:证明过程的书写。

三、本章知识结构图i 平行四边形是特殊的 ________ ;特殊的平行四边形包括 ________ 、 ______ 、 _______ 。

2•梯形 _______ (是否)特殊平行四边形, __________ (是否)特殊四边形。

3•特殊的梯形包括 _________ 梯形和 ________ 梯形。

4、本章学过的四边形中,属于轴对称图形的有 _______________________________________________;属于中心对称图形的有 ___________________________________________ 。

四、复习过程(一)知识要点1:平行四边形的性质与判定1. 平行四边形的性质:(1) ______________________ 从边看:对边 _ ,对边 ; (2) ______________________ 从角看:对角 ,邻角 ;(3) ___________________________________ 从对角线看:对角线互相 ___________________________________________ ; (4) 从对称性看:平行四边形是 _____________ 图形。

2、 平行四边形的判定:(1) ___________________________ 判定1:两组对边分别 的四边形是平行四边形。

(定义) (2) ___________________________ 判定2:两组对边分别 的四边形是平行四边形。

(3) ______________________ 判定3: 一组对边 且 的四边形是平行四边形。

(4) ___________________________ 判定4:两组对角分别 的四边形是平行四边形。

初二数学八下平行四边形所有知识点总结和常考题型练习题

初二数学八下平行四边形所有知识点总结和常考题型练习题

初二数学八下平行四边形所有知识点总结和常考题型练习题平行四边形知识点一、四边形相关1、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°。

四边形的外角和定理:四边形的外角和等于360°。

推论:多边形的内角和定理:n边形的内角和等于(n-2)×180°;多边形的外角和定理:任意多边形的外角和等于360°。

2、多边形的对角线条数的计算公式设多边形的边数为n,则多边形的对角线条数为n(n-3)/2.二、平行四边形1.定义:两组对边分别平行的四边形是平行四边形。

平行四边形的定义既是平行四边形的一条性质,又是一个判定方法。

2.平行四边形的性质:平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的。

1)角:平行四边形的对角相等,邻角互补;2)边:平行四边形两组对边分别平行且相等;3)对角线:平行四边形的对角线互相平分;4)面积:①S=底×高=ah;②平行四边形的对角线将四边形分成4个面积相等的三角形。

3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对边分别相等的四边形是平行四边形③方法2:一组对边平行且相等的四边形是平行四边形④方法3:两组对角分别相等的四边形是平行四边形⑤方法4:对角线互相平分的四边形是平行四边形三、矩形1.矩形定义:有一个角是直角的平行四边形是矩形。

2.矩形性质①边:对边平行且相等;②角:对角相等、邻角互补,矩形的四个角都是直角;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条)。

3.矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角。

②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等。

初二平行四边形所有知识点总结和常考题提高难题压轴题练习

初二平行四边形所有知识点总结和常考题提高难题压轴题练习

初二平行四边形全部知识点总结和常考题知识点:1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质:⑴平行四边形的对边相等;⑵平行四边形的对角相等:⑶平行四边形的对角线相互均分。

3 平行四边形的判断:⑴. 两组对边分别相等的四边形是平行四边形;⑵对角线相互均分的四边形是平行四边形;⑶两组对角分别相等的四边形是平行四边形;⑷一组对边平行且相等的四边形是平行四边形。

4、矩形的定义:有一个角是直角的平行四边形。

5、矩形的性质:⑴矩形的四个角都是直角;⑵矩形的对角线相等。

6、矩形判断定理:⑴有三个角是直角的四边形是矩形;⑵对角线相等的平行四边形是矩形。

7、中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

(连结三角形两边中点的线段叫做三角形的中位线。

)8、菱形的定义:有一组邻边相等的平行四边形。

9、菱形的性质:⑴菱形的四条边都相等;⑵菱形的两条对角线相互垂直,而且每一条对角线均分一组对角。

S菱形 =1/2 ×ab(a、b为两条对角线长)10、菱形的判断定理:⑴四条边相等的四边形是菱形。

⑵对角线相互垂直的平行四边形是菱形。

11、正方形定义:一个角是直角的菱形或邻边相等的矩形。

12 正方形判断定理:⑴ 邻边相等的矩形是正方形。

⑵有一个角是直角的菱形是正方形。

(矩形 +菱形 =正方形)常考题:一.选择题(共14 小题)1.矩形拥有而菱形不拥有的性质是()A.两组对边分别平行B.对角线相等C.对角线相互均分D.两组对角分别相等2.平行四边形ABCD中, AC、 BD是两条对角线,假如增添一个条件,即可推出平行四边形 ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥ BD D.AB⊥ BD3.如图,已知四边形 ABCD是平行四边形,以下结论中不正确的选项是()A.当 AB=BC时,它是菱形B.当 AC⊥ BD时,它是菱形C.当∠ ABC=90°时,它是矩形 D.当 AC=BD时,它是正方形4.按序连结随意四边形四边中点所得的四边形必定是()A.平行四边形 B .矩形C.菱形D.正方形5.在平面直角坐标系中,平行四边形 ABCD的极点 A,B,D的坐标分别是(0,0),( 5, 0),(2,3),则极点 C 的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)6.如图, ? ABCD的对角线 AC与 BD订交于点 O,AB⊥AC,若 AB=4,AC=6,则 BD 的长是()A.8B.9C.10D.117.如图,把矩形 ABCD沿 EF翻折,点 B 恰巧落在 AD边的 B′处,若 AE=2,DE=6,∠EFB=60°,则矩形 ABCD的面积是()A.12 B.24 C.12D.168.如图,在菱形 ABCD中,∠ BAD=80°, AB的垂直均分线交对角线A C于点 F,垂足为 E,连结 DF,则∠ CDF等于()A.50°B.60°C.70°D.80°9.如图,在 ? ABCD中,用直尺和圆规作∠ BAD的均分线 AG交 BC于点 E.若 BF=6,AB=5,则 AE的长为()A.4B.6C.8D.1010.如图,菱形 ABCD中,∠ B=60°, AB=4,则以 AC为边长的正方形ACEF的周长为()A.14 B.15 C.16D.1711.如图,在平行四边形 ABCD中, AB=4,∠ BAD的均分线与 BC的延伸线交于点E,与 DC交于点 F,且点 F 为边 DC的中点, DG⊥AE,垂足为 G,若 DG=1,则 AE的边长为()A.2B.4C.4D.812.如图,边长为 6 的大正方形中有两个小正方形,若两个小正方形的面积分别为 S1,S2,则 S1+S2的值为()A.16 B.17 C.18D.1913.如图,正方形 ABCD的边长为 4,点 E 在对角线 BD上,且∠ BAE=°,EF⊥ AB,垂足为 F,则 EF的长为()A.1B. C.4﹣2D.3﹣414.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE 订交于点 F,则∠ BFC为()A.45°B.55°C.60°D.75°二.填空题(共13 小题)cm2.15.已知菱形的两对角线长分别为 6cm和 8cm,则菱形的面积为16.如图,在? ABCD中,BE均分∠ ABC,BC=6,DE=2,则 ? ABCD的周长等于.17.如图, ? ABCD的对角线 AC,BD订交于点 O,点 E,F 分别是线段 AO, BO 的中点,若 AC+BD=24厘米,△ OAB的周长是 18 厘米,则 EF=厘米.18.如图,矩形 ABCD的对角线 AC和 BD订交于点 O,过点 O的直线分别交 AD 和BC于点 E、F,AB=2, BC=3,则图中暗影部分的面积为.19.如图,在平面直角坐标系xOy中,若菱形 ABCD的极点 A,B的坐标分别为(﹣3,0),( 2, 0),点 D 在 y 轴上,则点 C 的坐标是.20.如图,在正方形 ABCD中,点 F 为 CD上一点,BF与 AC交于点 E.若∠CBF=20°,则∠ AED等于度.21.如图, ? ABCD中,∠ ABC=60°,E、F 分别在 CD和 BC的延伸线上, AE∥BD,EF⊥BC, EF=,则 AB的长是.22.以下图,菱形 ABCD的边长为 4,且 AE⊥BC于 E,AF⊥ CD于 F,∠ B=60°,则菱形的面积为.23.如图, D 是△ ABC内一点, BD⊥ CD,AD=6,BD=4,CD=3,E、F、G、 H 分别是AB、AC、 CD、BD的中点,则四边形 EFGH的周长是.24.如图,在平面直角坐标系中, O 为坐标原点,矩形OABC中, A( 10,0),C( 0,4),D 为 OA的中点, P 为 BC边上一点.若△ POD为等腰三角形,则全部满足条件的点 P 的坐标为.25.如图,已知△ ABC的三个极点的坐标分别为 A(﹣ 2,0),B(﹣ 1,2),C(2,0).请直接写出以 A,B,C 为极点的平行四边形的第四个极点 D 的坐标.26.如图,在菱形 ABCD中,AB=4cm,∠ ADC=120°,点 E、F 同时由 A、C 两点出发,分别沿 AB、 CB方向向点 B 匀速挪动(到点 B 为止),点 E 的速度为 1cm/s,点 F 的速度为2cm/s,经过t 秒△ DEF为等边三角形,则t 的值为.27.如图,四边形ABCD中,∠ A=90°, AB=3,AD=3,点 M,N 分别为线段 BC,AB上的动点(含端点,但点M不与点 B 重合),点 E,F 分别为 DM,MN的中点,则 EF 长度的最大值为.三.解答题(共13 小题)28.如图,已知:AB∥CD,BE⊥AD,垂足为点 E,CF⊥AD,垂足为点 F,而且 AE=DF.求证:四边形 BECF是平行四边形.29.已知:如图,在△ ABC中, AB=AC,AD⊥BC,垂足为点 D,AN是△ ABC外角∠ CAM的均分线, CE⊥ AN,垂足为点 E,(1)求证:四边形 ADCE为矩形;(2)当△ ABC知足什么条件时,四边形 ADCE是一个正方形?并给出证明.30.如图,分别以 Rt △ABC的直角边 AC及斜边 AB 向外作等边△ ACD及等边△ABE.已知∠ BAC=30°, EF⊥ AB,垂足为 F,连结 DF.(1)试说明 AC=EF;(2)求证:四边形 ADFE是平行四边形.31.如图,矩形 ABCD中, AC与 BD交于点 O, BE⊥AC, CF⊥BD,垂足分别为 E,F.求证: BE=CF.32.如图,在△ ABC中,D 是 BC边上的一点, E 是 AD的中点,过 A 点作 BC的平行线交 CE的延伸线于点 F,且 AF=BD,连结 BF.(1)线段 BD与 CD有什么数目关系,并说明原因;(2)当△ ABC知足什么条件时,四边形 AFBD是矩形?并说明原因.33.如图,在△ ABC中, D、E 分别是 AB、AC的中点, BE=2DE,延伸 DE到点F,使得 EF=BE,连结 CF.(1)求证:四边形 BCFE是菱形;(2)若 CE=4,∠ BCF=120°,求菱形 BCFE的面积.34.如图,在正方形 ABCD中,E是 AB上一点, F 是 AD延伸线上一点,且 DF=BE.(1)求证: CE=CF;(2)若点 G在 AD上,且∠ GCE=45°,则 GE=BE+GD建立吗?为何?35.如图,在△ ABC中,点 O是 AC边上的一个动点,过点 O作直线 MN∥ BC,设MN交∠ BCA的角均分线于点 E,交∠ BCA的外角均分线于点 F.(1)求证: EO=FO;(2)当点 O运动到哪处时,四边形 AECF是矩形?并证明你的结论.36.如图,已知:在平行四边形ABCD中,点 E、F、G、H分别在边 AB、BC、CD、DA上, AE=CG,AH=CF,且 EG均分∠ HEF.求证:(1)△ AEH≌△ CGF;(2)四边形 EFGH是菱形.37.如图,四边形 ABCD中, AD∥BC,BA⊥ AD,BC=DC, BE⊥CD于点 E.(1)求证:△ ABD≌△ EBD;(2)过点 E 作 EF∥ DA,交 BD于点 F,连结 AF.求证:四边形 AFED是菱形.38.如图①,在正方形 ABCD中, P 是对角线 AC上的一点,点 E 在 BC的延伸线上,且 PE=PB.(1)求证:△ BCP≌△ DCP;(2)求证:∠ DPE=∠ ABC;(3)把正方形 ABCD改为菱形,其余条件不变(如图②),若∠ ABC=58°,则∠DPE=度.39.在数学活动课中,小辉将边长为和 3 的两个正方形搁置在直线l 上,如图 1,他连结 AD、CF,经丈量发现AD=CF.( 1)他将正方形 ODEF绕 O点逆时针旋转必定的角度,如图2,试判断 AD与 CF 还相等吗?说明你的原因;(2)他将正方形 ODEF绕 O点逆时针旋转,使点 E 旋转至直线 l 上,如图 3,请你求出 CF的长.40.数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E 是边BC的中点.∠ AEF=90°,且 EF交正方形外角∠ DCG的均分线 CF于点 F,求证:AE=EF.经过思虑,小明展现了一种正确的解题思路:取 AB的中点 M,连结 ME,则AM=EC,易证△ AME≌△ ECF,因此 AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,假如把“点E 是边BC的中点”改为“点E 是边BC上(除B,C外)的随意一点”,其余条件不变,那么结论“AE=EF”仍旧建立,你以为小颖的看法正确吗?假如正确,写出证明过程;假如不正确,请说明原因;(2)小华提出:如图 3,点 E 是 BC的延伸线上(除 C点外)的随意一点,其余条件不变,结论“ AE=EF”仍旧建立.你以为小华的看法正确吗?假如正确,写出证明过程;假如不正确,请说明原因.初二平行四边形全部知识点总结和常考题提升难题压轴题练习 ( 含答案分析 )参照答案与试题分析一.选择题(共14 小题)1.(2013? 宜宾)矩形拥有而菱形不拥有的性质是()A.两组对边分别平行 B.对角线相等C.对角线相互均分 D.两组对角分别相等【剖析】依据矩形与菱形的性质对各选项剖析判断后利用清除法求解.【解答】解: A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都相互均分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.应选 B.【评论】本题考察了矩形的性质,菱形的性质,熟记两图形的性质是解题的重点.2.(2014? 河池)平行四边形ABCD中, AC、BD是两条对角线,假如增添一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥ BD D.AB⊥ BD【剖析】依据对角线相等的平行四边形是矩形判断.【解答】解: A、是邻边相等,可获得平行四边形ABCD是菱形,故不正确;B、是对角线相等,可推出平行四边形ABCD是矩形,故正确;C、是对角线相互垂直,可获得平行四边形ABCD是菱形,故不正确;D、没法判断.应选 B.【评论】本题主要考察的是矩形的判断定理.但需要注意的是本题的知识点是对于各个图形的性质以及判断.3.(2008? 扬州)如图,已知四边形ABCD是平行四边形,以下结论中不正确的是()A.当 AB=BC时,它是菱形B.当 AC⊥ BD时,它是菱形C.当∠ ABC=90°时,它是矩形D.当 AC=BD时,它是正方形【剖析】依据邻边相等的平行四边形是菱形;依据所给条件能够证出邻边相等;依占有一个角是直角的平行四边形是矩形;依据对角线相等的平行四边形是矩形.【解答】解:A、依据邻边相等的平行四边形是菱形可知:四边形 ABCD是平行四边形,当 AB=BC时,它是菱形,故 A 选项正确;222222 B、∵四边形 ABCD是平行四边形,∴BO=OD,∵ AC⊥BD,∴ AB=BO+AO,AD=DO+AO,∴ AB=AD,∴四边形 ABCD是菱形,故 B 选项正确;C、有一个角是直角的平行四边形是矩形,故 C 选项正确;D、依据对角线相等的平行四边形是矩形可知当 AC=BD时,它是矩形,不是正方形,故 D 选项错误;综上所述,切合题意是 D 选项;应选: D.【评论】本题主要考察学生对正方形的判断、平行四边形的性质、菱形的判断和矩形的判断的理解和掌握,本题波及到的知识点许多,学生答题时简单犯错.4.(2011? 张家界)按序连结随意四边形四边中点所得的四边形必定是()A.平行四边形 B .矩形C.菱形D.正方形【剖析】按序连结随意四边形四边中点所得的四边形,一组对边平行而且等于本来四边形某一对角线的一半,说明新四边形的对边平行且相等.因此是平行四边形.【解答】解:连结 BD,已知随意四边形ABCD, E、 F、 G、 H 分别是各边中点.∵在△ ABD中, E、H 是 AB、AD中点,∴EH∥BD,EH=BD.∵在△ BCD中, G、F 是 DC、BC中点,∴GF∥BD,GF=BD,∴EH=GF,EH∥GF,∴四边形 EFGH为平行四边形.应选: A.【评论】本题三角形的中位线的性质考察了平行四边形的判断:三角形的中位线平行于第三边,且等于第三边的一半.A,B,D的坐5.(2006? 南京)在平面直角坐标系中,平行四边形ABCD的极点标分别是( 0,0),(5,0),(2,3),则极点 C 的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)【剖析】因为 D 点坐标为( 2,3),由平行四边形的性质,可知 C 点的纵坐标一定是 3,又由 D 点相对于 A 点横坐标挪动了2,故可得 C 点横坐标为 2+5=7,即极点 C 的坐标( 7,3).【解答】解:已知 A,B,D 三点的坐标分别是( 0,0),(5,0),(2,3),∵ AB在 x 轴上,∴点 C 与点 D 的纵坐标相等,都为3,又∵ D点相对于 A点横坐标挪动了2﹣0=2,∴C点横坐标为 2+5=7,∴即极点 C 的坐标( 7,3).应选: C.【评论】本题主假如对平行四边形的性质与点的坐标的表示及平行线的性质和互为余(补)角的等知识的直接考察.同时考察了数形联合思想,题目的条件既有数又有形,解决问题的方法也要既依靠数也依靠形,表现了数形的密切联合,但本题对学生能力的要求其实不高.6.( 2014? 河南)如图,? ABCD的对角线 AC与 BD订交于点 O,AB⊥AC,若 AB=4,AC=6,则 BD的长是()A.8B.9C.10D.11【剖析】利用平行四边形的性质和勾股定理易求 BO的长,从而可求出 BD的长.【解答】解:∵ ? ABCD的对角线 AC与 BD订交于点 O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴ BO==5,∴BD=2BO=10,应选: C.【评论】本题考察了平行四边形的性质以及勾股定理的运用,是中考常有题型,比较简单.7.(2013? 南充)如图,把矩形ABCD沿 EF 翻折,点 B 恰巧落在 AD边的 B′处,若 AE=2,DE=6,∠ EFB=60°,则矩形 ABCD的面积是()A.12 B.24 C.12D.16【剖析】在矩形 ABCD中依据 AD∥BC得出∠ DEF=∠EFB=60°,因为把矩形ABCD 沿 EF 翻折点 B 恰巧落在 AD边的 B′处,因此∠ EFB=∠DEF=60°,∠ B=∠A′B′F=90°,∠ A=∠A′=90°,AE=A′E=2,AB=A′B′,在△ EFB′中可知∠ DEF=∠EFB=∠EB′F=60°故△ EFB′是等边三角形,由此可得出∠ A′B′E=90°﹣ 60°=30°,依据直角三角形的性质得出 A′B′=AB=2,而后依据矩形的面积公式列式计算即可得解.【解答】解:在矩形 ABCD中,∵AD∥BC,∴∠ DEF=∠EFB=60°,∵把矩形 ABCD沿 EF 翻折点 B 恰巧落在 AD边的 B′处,∴∠ DEF=∠EFB=60°,∠ B=∠A′B′F=90°,∠ A=∠A′=90°, AE=A′E=2,AB=A′B′,在△ EFB′中,∵∠ DEF=∠EFB=∠EB′F=60°∴△ EFB′是等边三角形,Rt △A′EB′中,∵∠ A′B′E=90°﹣ 60°=30°,∴B′E=2A′E,而 A′E=2,∴B′E=4,∴A′B′=2,即 AB=2,∵AE=2, DE=6,∴AD=AE+DE=2+6=8,∴矩形 ABCD的面积 =AB? AD=2× 8=16.应选 D.【评论】本题考察了矩形的性质,翻折变换的性质,两直线平行,同旁内角互补,两直线平行,内错角相等的性质,解直角三角形,作协助线结构直角三角形并熟记性质是解题的重点.8.(2013? 扬州)如图,在菱形ABCD中,∠ BAD=80°, AB的垂直均分线交对角F,垂足为 E,连结DF,则∠ CDF等于()线 AC于点A.50°B.60°C.70°D.80°【剖析】连结 BF,依据菱形的对角线均分一组对角求出∠ BAC,∠ BCF=∠DCF,四条边都相等可得 BC=DC,再依据菱形的邻角互补求出∠ ABC,而后依据线段垂直均分线上的点到线段两头点的距离相等可得 AF=BF,依据等边平等角求出∠ABF=∠BAC,从而求出∠ CBF,再利用“边角边”证明△ BCF和△ DCF全等,依据全等三角形对应角相等可得∠CDF=∠ CBF.【解答】解:如图,连结 BF,在菱形 ABCD中,∠ BAC=∠BAD=×80°=40°,∠ BCF=∠ DCF,BC=DC,∠ABC=180°﹣∠ BAD=180°﹣ 80°=100°,∵EF是线段AB的垂直均分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠ CBF=∠ABC﹣∠ ABF=100°﹣40°=60°,∵在△ BCF和△ DCF中,,∴△BCF≌△DCF(SAS),∴∠ CDF=∠CBF=60°.应选: B.【评论】本题考察了菱形的性质,全等三角形的判断与性质,线段垂直均分线上的点到线段两头点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的重点.9.(2015? 河南)如图,在 ? ABCD中,用直尺和圆规作∠ BAD的均分线 AG交 BC于点 E.若 BF=6,AB=5,则 AE的长为()A.4B.6C.8D.10【剖析】由基本作图获得 AB=AF,加上 AO均分∠ BAD,则依据等腰三角形的性质获得 AO⊥BF,BO=FO=BF=3,再依据平行四边形的性质得 AF∥BE,因此∠ 1=∠3,于是获得∠ 2=∠ 3,依据等腰三角形的判断得 AB=EB,而后再依据等腰三角形的性质获得 AO=OE,最后利用勾股定理计算出 AO,从而获得 AE的长.【解答】解:连结 EF, AE与 BF 交于点 O,如图,∵AB=AF,AO均分∠ BAD,∴ AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴ AF∥BE,∴∠ 1=∠ 3,∴∠ 2=∠ 3,∴AB=EB,而 BO⊥ AE,∴AO=OE,在Rt△AOB中,AO===4,∴ AE=2AO=8.应选 C.【评论】本题考察了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线相互均分.也考察了等腰三角形的判断与性质和基本作图.10.( 2013? 凉山州)如图,菱形ABCD中,∠ B=60°, AB=4,则以 AC为边长的正方形 ACEF的周长为()A.14 B.15 C.16D.17【剖析】依据菱形得出 AB=BC,得出等边三角形 ABC,求出 AC,长,依据正方形的性质得出 AF=EF=EC=AC=4,求出即可.【解答】解:∵四边形 ABCD是菱形,∴AB=BC,∵∠ B=60°,∴△ ABC是等边三角形,∴AC=AB=4,∴正方形 ACEF的周长是AC+CE+EF+AF=4×4=16,应选 C.【评论】本题考察了菱形性质,正方形性质,等边三角形的性质和判断的应用,重点是求出 AC的长.11.(2013? 泰安)如图,在平行四边形ABCD中,AB=4,∠BAD的均分线与BC 的延伸线交于点 E,与 DC交于点 F,且点 F 为边 DC的中点, DG⊥ AE,垂足为 G,若 DG=1,则AE的边长为()A.2B.4C.4D.8【剖析】由 AE 为角均分线,获得一对角相等,再由ABCD为平行四边形,获得AD与 BE平行,利用两直线平行内错角相等获得一对角相等,等量代换及等角对等边获得 AD=DF,由 F 为 DC中点, AB=CD,求出 AD与 DF的长,得出三角形ADF 为等腰三角形,依据三线合一获得 G 为 AF 中点,在直角三角形 ADG中,由AD 与 DG的长,利用勾股定理求出 AG的长,从而求出 AF的长,再由三角形 ADF与三角形 ECF全等,得出 AF=EF,即可求出 AE的长.【解答】解:∵ AE为∠DAB的均分线,∴∠ DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F 为DC的中点,∴ DF=CF,∴ AD=DF=DC=AB=2,在 Rt△ ADG中,依据勾股定理得: AG=,则 AF=2AG=2,∵平行四边形 ABCD,∴AD∥BC,∴∠ DAF=∠E,∠ ADF=∠ECF,在△ ADF和△ ECF中,,∴△ ADF≌△ ECF(AAS),∴AF=EF,则AE=2AF=4.应选: B【评论】本题考察了平行四边形的性质,全等三角形的判断与性质,勾股定理,等腰三角形的判断与性质,娴熟掌握平行四边形的判断与性质是解本题的重点.12.( 2013? 菏泽)如图,边长为6 的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则 S1+S2的值为()A.16 B.17 C.18D.19【剖析】由图可得, S1的边长为 3,由 AC=BC,BC=CE=CD,可得 AC=2CD,CD=2,EC=;而后,分别算出 S1、S2的面积,即可解答.【解答】解:如图,设正方形 S2的边长为 x,依据等腰直角三角形的性质知,AC=x, x=CD,∴AC=2CD,CD==2,222∴ EC=2 +2 ,即 EC=;2∴ S2的面积为 EC==8;∵S1的边长为 3,S1的面积为 3×3=9,∴ S1+S2=8+9=17.应选: B.【评论】本题考察了正方形的性质和等腰直角三角形的性质,考察了学生的读图能力.13.( 2013? 连云港)如图,正方形ABCD的边长为 4,点 E 在对角线 BD上,且∠BAE=°, EF⊥ AB,垂足为 F,则 EF的长为()A.1B. C.4﹣2D.3﹣4【剖析】依据正方形的对角线均分一组对角可得∠ ABD=∠ADB=45°,再求出∠DAE 的度数,依据三角形的内角和定理求∠ AED,从而获得∠ DAE=∠AED,再依据等角平等边的性质获得 AD=DE,而后求出正方形的对角线 BD,再求出 BE,最后依据等腰直角三角形的直角边等于斜边的倍计算即可得解.【解答】解:在正方形 ABCD中,∠ ABD=∠ADB=45°,∵∠ BAE=°,∴∠ DAE=90°﹣∠ BAE=90°﹣° =°,在△ ADE中,∠ AED=180°﹣ 45°﹣° =°,∴∠ DAE=∠AED,∴AD=DE=4,∵正方形的边长为 4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵ EF⊥AB,∠ ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×( 4﹣4)=4﹣ 2.应选: C.【评论】本题考察了正方形的性质,主要利用了正方形的对角线均分一组对角,等角平等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判断与性质,依据角的度数的相等求出相等的角,再求出 DE=AD是解题的重点,也是本题的难点.14.( 2014? 福州)如图,在正方形ABCD的外侧,作等边三角形ADE, AC、BE 订交于点 F,则∠ BFC为()A.45°B.55°C.60°D.75°【剖析】依据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠ BFC.【解答】解:∵四边形 ABCD是正方形,∴AB=AD,又∵△ ADE是等边三角形,∴AE=AD=DE,∠ DAE=60°,∴AB=AE,∴∠ ABE=∠AEB,∠ BAE=90° +60°=150°,∴∠ ABE=(180°﹣ 150°)÷ 2=15°,又∵∠ BAC=45°,∴∠ BFC=45° +15°=60°.应选: C.【评论】本题主假如考察正方形的性质和等边三角形的性质,本题的重点是求出∠ABE=15°.二.填空题(共13 小题)15.( 2008? 恩施州)已知菱形的两对角线长分别为6cm 和8cm,则菱形的面积2为24cm.【剖析】依据菱形的面积等于两对角线乘积的一半求得其面积即可.【解答】解:由已知得,菱形的面积等于两对角线乘积的一半2即: 6×8÷2=24cm.故答案为: 24.【评论】本题主要考察菱形的面积等于两条对角线的积的一半.16.( 2015? 梅州)如图,在 ? ABCD中, BE均分∠ ABC, BC=6, DE=2,则 ? ABCD 的周长等于 20 .【剖析】依据四边形 ABCD为平行四边形可得 AE∥ BC,依据平行线的性质和角均分线的性质可得出∠ ABE=∠AEB,既而可得 AB=AE,而后依据已知可求得结果.【解答】解:∵四边形 ABCD为平行四边形,∴AE∥BC,AD=BC,AB=CD,∴∠ AEB=∠EBC,∵ BE均分∠ ABC,∴∠ ABE=∠EBC,∴∠ ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴? ABCD的周长 =4+4+6+6=20,故答案为: 20.【评论】本题考察了平行四边形的性质,解答本题的重点是依据平行线的性质和角均分线的性质得出∠ ABE=∠AEB.17.( 2013? 厦门)如图, ? ABCD的对角线 AC,BD订交于点 O,点 E, F 分别是线段 AO,BO的中点,若 AC+BD=24厘米,△OAB的周长是 18 厘米,则 EF= 3 厘米.【剖析】依据 AC+BD=24厘米,可得出出OA+OB=12cm,既而求出 AB,判断 EF是△OAB的中位线即可得出 EF的长度.【解答】解:∵四边形ABCD是平行四边形,∴ OA=OC,OB=OD,又∵AC+BD=24厘米,∴ OA+OB=12cm,∵△ OAB的周长是 18 厘米,∴AB=6cm,∵点 E,F 分别是线段 AO, BO的中点,∴EF是△ OAB的中位线,∴EF=AB=3cm.故答案为: 3.【评论】本题考察了三角形的中位线定理,解答本题需要用到:平行四边形的对角线相互均分,三角形中位线的判断定理及性质.18.( 2007? 临夏州)如图,矩形 ABCD的对角线 AC和 BD订交于点 O,过点 O 的直线分别交 AD和 BC于点 E、F,AB=2,BC=3,则图中暗影部分的面积为 3 .【剖析】依据矩形是中心对称图形找寻思路:△AOE≌△ COF,图中暗影部分的面积就是△ BCD的面积.【解答】解:∵四边形 ABCD是矩形,∴OA=OC,∠ AEO=∠CFO;又∵∠ AOE=∠COF,在△ AOE和△ COF中,,∴△ AOE≌△ COF,∴S△AOE=S△COF,∴图中暗影部分的面积就是△BCD的面积.S△BCD=BC×CD=×2×3=3.故答案为: 3.【评论】本题主要考察了矩形的性质以及全等三角形的判断和性质,能够依据三角形全等,从而将暗影部分的面积转变为矩形面积的一半,是解决问题的重点.19.(2014? 宿迁)如图,在平面直角坐标系xOy 中,若菱形ABCD的极点A,B 的坐标分别为(﹣ 3,0),(2,0),点 D 在 y 轴上,则点 C的坐标是(5,4).【剖析】利用菱形的性质以及勾股定理得出DO的长,从而求出C 点坐标.【解答】解:∵菱形 ABCD的极点 A,B 的坐标分别为(﹣ 3,0),( 2, 0),点 D 在 y 轴上,∴ AB=5,∴ DO=4,∴点 C 的坐标是:(5,4).故答案为:( 5, 4).【评论】本题主要考察了菱形的性质以及坐标与图形的性质,得出题重点.DO的长是解20.( 2015? 黄冈)如图,在正方形ABCD中,点F 为CD上一点, BF与AC交于点 E.若∠ CBF=20°,则∠ AED等于 65 度.【剖析】依据正方形的性质得出∠ BAE=∠DAE,再利用 SAS 证明△ ABE 与△ADE 全等,再利用三角形的内角和解答即可.【解答】解:∵正方形 ABCD,∴AB=AD,∠ BAE=∠DAE,在△ ABE与△ ADE中,,∴△ ABE≌△ ADE(SAS),∴∠ AEB=∠AED,∠ABE=∠ADE,∵∠ CBF=20°,∴∠ ABE=70°,∴∠ AED=∠AEB=180°﹣ 45°﹣70°=65°,故答案为: 65【评论】本题考察正方形的性质,重点是依据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判断和性质解答.21.(2013? 十堰)如图, ? ABCD中,∠ ABC=60°, E、F 分别在 CD和 BC 的延伸线上, AE∥BD, EF⊥BC, EF=,则 AB的长是 1 .【剖析】依据平行四边形性质推出 AB=CD,AB∥CD,得出平行四边形 ABDE,推出DE=DC=AB,依据直角三角形性质求出 CE长,即可求出 AB的长.【解答】解:∵四边形 ABCD是平行四边形,∴AB∥DC,AB=CD,∵ AE∥BD,∴四边形 ABDE是平行四边形,∴AB=DE=CD,即D 为CE中点,∵ EF⊥BC,∴∠ EFC=90°,∵ AB∥CD,∴∠ DCF=∠ABC=60°,∴∠ CEF=30°,∵EF=,∴CE==2,∴AB=1,故答案为: 1.【评论】本题考察了平行四边形的性质和判断,平行线性质,勾股定理,直角三角形斜边上中线性质,含30 度角的直角三角形性质等知识点的应用,本题综合性比较强,是一道比较好的题目.22.( 2013? 黔西南州)以下图,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥ CD于 F,∠ B=60°,则菱形的面积为.【剖析】依据已知条件解直角三角形 ABE可求出 AE的长,再由菱形的面积等于底×高计算即可.【解答】解:∵菱形 ABCD的边长为 4,∴AB=BC=4,∵AE⊥BC于 E,∠ B=60°,∴ sinB== ,∴ AE=2,∴菱形的面积 =4×2=8,故答案为 8.【评论】本题考察了菱形的性质:四边相等以及特别角的三角函数值和菱形面积公式的运用.23.(2013? 鞍山)如图, D 是△ ABC内一点, BD⊥ CD,AD=6,BD=4,CD=3,E、F、G、H分别是 AB、AC、 CD、BD的中点,则四边形 EFGH的周长是 11 .【剖析】利用勾股定理列式求出BC的长,再依据三角形的中位线平行于第三边而且等于第三边的一半求出EH=FG=AD,EF=GH=BC,而后辈入数据进行计算即可得解.【解答】解:∵ BD⊥CD, BD=4, CD=3,∴BC===5,∵ E、 F、 G、 H分别是 AB、AC、CD、 BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形 EFGH的周长 =EH+GH+FG+EF=AD+BC,又∵ AD=6,∴四边形 EFGH的周长 =6+5=11.故答案为: 11.【评论】本题考察了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边而且等于第三边的一半是解题的重点.24.(2015? 攀枝花)如图,在平面直角坐标系中, O为坐标原点,矩形 OABC中,A(10,0),C(0,4),D为 OA的中点, P 为 BC边上一点.若△ POD为等腰三角形,则全部知足条件的点 P 的坐标为(, 4),或( 3,4),或( 2,4),或( 8,4).【剖析】由矩形的性质得出∠ OCB=90°, OC=4,BC=OA=10,求出 OD=AD=5,分情况议论:①当 PO=PD时;②当 OP=OD时;③当 DP=DO时;依据线段垂直均分线的性质或勾股定理即可求出点P 的坐标.【解答】解:∵四边形 OABC是矩形,∴∠ OCB=90°, OC=4,BC=OA=10,∵D为OA的中点,∴ OD=AD=5,①当 PO=PD时,点 P 在 OD得垂直均分线上,∴点 P 的坐标为:(, 4);②当OP=OD时,如图1 所示:则 OP=OD=5,PC==3,∴点 P 的坐标为:(3,4);③当DP=DO时,作PE⊥OA于E,则∠ PED=90°, DE==3;分两种状况:当 E 在 D 的左边时,如图 2 所示:OE=5﹣3=2,∴点 P 的坐标为:(2,4);当 E 在 D 的右边时,如图 3 所示:OE=5+3=8,∴点 P 的坐标为:(8,4);综上所述:点 P 的坐标为:(, 4),或( 3,4),或( 2,4),或( 8,4);故答案为:(, 4),或( 3,4),或( 2,4),或( 8,4).【评论】本题考察了矩形的性质、坐标与图形性质、等腰三角形的判断、勾股定理;本题有必定难度,需要进行分类议论才能得出结果.25.( 2013? 阜新)如图,已知△ ABC 的三个极点的坐标分别为 A(﹣ 2,0),B (﹣ 1,2), C( 2,0).请直接写出以 A,B,C 为极点的平行四边形的第四个极点 D 的坐标( 3,2),(﹣ 5,2),(1,﹣ 2).【剖析】第一依据题意画出图形,分别以BC,AB,AC为对角线作平行四边形,即可求得答案.【解答】解:如图:以 A,B,C 为极点的平行四边形的第四个极点 D 的坐标分别为:(3,2),(﹣5,2),(1,﹣ 2).故答案为:( 3, 2),(﹣ 5,2),(1,﹣ 2).【评论】本题考察了平行四边形的性质.注意坐标与图形的关系.26.(2014? 丹东)如图,在菱形ABCD中,AB=4cm,∠ ADC=120°,点 E、F 同时由 A、C 两点出发,分别沿 AB、CB方向向点 B 匀速挪动(到点 B 为止),点 E 的速度为 1cm/s,点 F 的速度为 2cm/s,经过 t 秒△ DEF为等边三角形,则 t 的值为.【剖析】延伸 AB至 M,使 BM=AE,连结 FM,证出△ DAE≌EMF,获得△ BMF 是等边三角形,再利用菱形的边长为 4 求出时间 t 的值.【解答】解:延伸 AB至 M,使 BM=AE,连结 FM,∵四边形 ABCD是菱形,∠ ADC=120°∴AB=AD,∠A=60°,∵ BM=AE,∴AD=ME,∵△ DEF为等边三角形,∴∠ DAE=∠DFE=60°, DE=EF=FD,∴∠ MEF+∠DEA═120°,∠ ADE+∠DEA=180°﹣∠ A=120°,∴∠ MEF=∠ADE,∴在△ DAE和△ EMF中,∴△ DAE≌EMF( SAS),∴AE=MF,∠ M=∠A=60°,又∵ BM=AE,∴△ BMF是等边三角形,∴BF=AE,∵AE=t, CF=2t,∴BC=CF+BF=2t+t=3t,∵ BC=4,∴3t=4 ,∴t=。

(必考题)初中八年级数学下册第十八章《平行四边形》经典复习题(含答案解析)

(必考题)初中八年级数学下册第十八章《平行四边形》经典复习题(含答案解析)

一、选择题1.如图,ABC 中,//DE BC ,//EF AB ,要判定四边形DBFE 是菱形,可添加的条件是( )A .BD EF =B .AD BD =C .BE AC ⊥D .BE 平分ABC ∠D解析:D【分析】 当BE 平分∠ABC 时,四边形DBFE 是菱形,可知先证明四边形BDEF 是平行四边形,再证明BD=DE 即可解决问题.【详解】解:当BE 平分∠ABC 时,四边形DBFE 是菱形,理由:∵DE ∥BC ,∴∠DEB=∠EBC ,∵∠EBC=∠EBD ,∴∠EBD=∠DEB ,∴BD=DE ,∵DE ∥BC ,EF ∥AB ,∴四边形DBFE 是平行四边形,∵BD=DE ,∴四边形DBFE 是菱形.其余选项均无法判断四边形DBFE 是菱形,故选:D .【点睛】本题考查菱形的判定、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.2.如图,M 是ABC 的边BC 的中点AN 平分BAC ∠.且BN AN ⊥,垂足为N 且6AB =,10BC =.2MN =,则ABC 的周长是( )A.24 B.25 C.26 D.28C解析:C【分析】延长BN交AC于D,根据等腰三角形的性质得到AD=AB=6,BN=ND,根据三角形中位线定理得到DC=2MN=4,计算即可.【详解】解:延长BN交AC于D,∵AN平分∠BAC,BN⊥AN,∴AD=AB=6,BN=ND,又M是△ABC的边BC的中点,∴DC=2MN=4,∴AC=AD+DC=10,则△ABC的周长=AB+AC+BC=6+10+10=26,故选C.【点睛】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.3.下列命题是真命题的是()A.三角形的三条高线相交于三角形内一点B.一组对边平行,另一组对边相等的四边形是平行四边形C.对于所有自然数n,237-+的值都是质数n nD.三角形一条边的两个顶点到这条边上的中线所在直线的距离相等D解析:D【分析】根据钝角三角形的高的交点在三角形外部可对A进行判断;根据平行四边形的判定对B进行判断;取n=6可对C进行判断;根据三角形全等的知识可对D进行判断.【详解】解:A、钝角三角形的三条高线相交于三角形外一点,所以A选项错误;B、一组对边平行,另一组对边也平行的四边形是平行四边形,所以B选项错误;C、当n=6时,n2-3n+7=25,25不是质数,所以C选项错误;D、通过证明三角形全等,可以证明三角形一条边的两个顶点到这条边上的中线所在直线的距离相等,所以D选项准确.故选:D.【点睛】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.也考查了平行四边形的判定及全等三角形的判定和性质.4.如图,在平行四边形ABCD 中,100B D ︒∠+∠=,则B 等于( )A .50°B .65°C .100°D .130°A解析:A【分析】 根据平行四边形的对角相等求出∠B 即可得解.【详解】解:□ABCD 中,∠B =∠D ,∵∠B +∠D =100°,∴∠B =12×100°=50°, 故选:A .【点睛】本题考查了平行四边形的性质,主要利用了平行四边形的对角相等是基础题. 5.如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为EBD △.下列说法错误的是( )A .AE CE =B .12AE BE =C .EBD EDB ∠=∠ D .△ABE ≌△CDE B解析:B【分析】 由折叠的性质和平行线的性质可得∠ADB=∠CBD ,可得BE=DE ,可证AE=CE ,由“SAS”可证△ABE ≌△CDE ,即可求解.【详解】解:如图,∵把矩形纸片ABC'D 沿对角线折叠,∴∠CBD=∠DBC',CD=C'D=AB ,AD=BC=BC',∵AD ∥BC',∴∠EDB=∠DBC',∴∠EDB=∠EBD ,故选项C 正确;∴BE=DE ,∵AD=BC ,∴AE=CE ,故选项A 正确;在△ABE 和△CDE 中,AB CD A C AE CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CDE (SAS ),故选项D 正确; 没有条件能够证明12AE BE =, 故选:B .【点睛】本题考查了翻折变换,全等三角形的判定和性质,矩形的性质,掌握折叠的性质是本题的关键.6.如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定四边形ABCD 为平行四边形的是( )A .AB ∥CD ,AD ∥BCB .AD ∥BC ,AB =CD C .OA =OC ,OB =ODD .AB =CD ,AD =BC B解析:B【分析】根据平行四边形的判定方法即可判断.【详解】A 、根据两组对边分别平行的四边形是平行四边形,可以判定;B 、无法判定,四边形可能是等腰梯形,也可能是平行四边形;C 、根据对角线互相平分的四边形是平行四边形,可以判定;D 、根据两组对边分别相等的四边形是平行四边形,可以判定;故选:B .【点睛】本题考查平行四边形的判定,解题的关键是掌握平行四边形的判定定理.7.如图,在ABC 中,90A ∠=,D 是AB 的中点,过点D 作BC 的平行线,交AC 于点E ,作BC 的垂线交BC 于点F ,若AB CE =,且DFE △的面积为1,则BC 的长为( )A .25B .5C .45D .10A解析:A【分析】 过A 作AH ⊥BC 于H ,根据已知条件得到AE=CE ,求得DE=12BC ,求得DF=12AH ,根据三角形的面积公式得到DE•DF=2,得到AB•AC=8,求得AB=2(负值舍去),根据勾股定理即可得到结论.【详解】解:过A 作AH ⊥BC 于H ,∵D 是AB 的中点,∴AD=BD ,∵DE ∥BC ,∴AE=CE ,∴DE=12BC , ∵DF ⊥BC , ∴DF ∥AH ,DF ⊥DE ,∴BF=HF ,∴DF=12AH , ∵△DFE 的面积为1,∴12DE•DF=1,∴DE•DF=2,∴BC•AH=2DE•2DF=4×2=8,∴AB•AC=8,∵AB=CE ,∴AB=AE=CE=12AC , ∴AB•2AB=8, ∴AB=2(负值舍去),∴AC=4,∴BC=22222425AB AC +=+=.故选:A .【点睛】本题考查了三角形中位线定理,三角形的面积的计算,勾股定理,平行线的判定和性质,正确的识别图形是解题的关键.8.如图,以平行四边形ABCD 的边AB 、BC 、CD 、DA 为斜边,分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,顺次连结这四个点,得四边形EFGH ,当()090ADC αα∠=︒<<︒时,有以下结论:①180GCF α∠=︒-;②90HAE α∠=︒+;③HE HG =;④ EH GH ⊥;⑤四边形EFGH 是平行四边形.则结论正确的是( )A .①③④B .②③⑤C .①③④⑤D .②③④⑤D解析:D【分析】 根据平行四边形性质得出∠ABC=∠ADC=α,∠BAD=∠BCD ,AB=CD ,AD=BC ,AD ∥BC ,AB ∥CD ,根据等腰直角三角形得出BE=AE=CG=DG ,AH=DH=BF=CF ,∠ABE=∠EAB=∠FBC=∠FCB=∠GCD=∠GDC=∠HAD=∠EDA=45°,求出∠HAE=∠HDG=∠FCG=∠FBE=90°+α,证△FBE ≌△HAE ≌△HDG ≌△FCG ,推出∠BFE=∠GFC ,EF=EH=HG=GF ,求出∠EFG=90°,根据正方形性质得出即可.【详解】解:∵四边形ABCD 是平行四边形,∴∠ABC=∠ADC=α,∠BAD=∠BCD ,AB=CD ,AD=BC ,AD ∥BC ,AB ∥CD ,∵平行四边形ABCD 的边AB 、BC 、CD 、DA 为斜边,分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,∴BE=AE=CG=DG ,AH=DH=BF=CF ,∠ABE=∠EAB=∠FBC=∠FCB=∠GCD=∠GDC=∠HAD=∠EDA=45°,∵AB ∥CD ,∴∠BAD=∠BCD=180°-α,∴∠EAH=360°-45°-45°-(180°-α)=90°+α,∠GCF=360°-45°-45°-(180°-α)=90°+α, ∴①错误;②正确;∠HDG=45°+45°+α=90°+α,∠FBE=45°+45°+α=90°+α,∴∠HAE=∠HDG=∠FCG=∠FBE ,在△FBE 、△HAE 、△HDG 、△FCG 中,BF AH DH CF FBE HAE HDG FCG BE AE DG CG ===⎧⎪∠=∠=∠=∠⎨⎪===⎩,∴△FBE ≌△HAE ≌△HDG ≌△FCG (SAS ),∴∠BFE=∠GFC ,EF=EH=HG=GF ,③正确;∴四边形EFGH 是菱形,∵∠BFC=90°=∠BFE+∠EFC=∠GFC+∠CFE ,∴∠EFG=90°,∴四边形EFGH 是正方形,⑤正确;∴EH ⊥GH ,④正确;故选:D .【点睛】本题考查了等腰直角三角形,全等三角形的性质和判定,正方形的判定,平行四边形的性质,菱形的判定的应用,主要考查学生的推理能力.9.下列命题中,正确的命题是( )A .菱形的对角线互相平分且相等B .顺次联结菱形各边的中点所得的四边形是矩形C .矩形的对角线互相垂直平分D .顺次连结矩形各边的中点所得的四边形是正方形B解析:B【分析】根据菱形的性质、矩形的性质、中点四边形的定义逐一判断即可.【详解】解:A. 菱形的对角线互相平分,但不相等,该命题错误;B. 顺次联结菱形各边的中点所得的四边形是矩形,该命题正确;C. 矩形的对角线互相平分,但是不垂直,该命题错误;D. 顺次连结矩形各边的中点所得的四边形是菱形,该命题错误;故选:B.【点睛】本题考查特殊四边形的判定和性质,掌握菱形的性质、矩形的性质、中点四边形的定义是解题的关键.⊥于点10.如图,在Rt ABC中,90∠,30C=∠=,D是AC边的中点,DE ACAD,交AB于点E,若83AC=,则DE的长是()A.8 B.6 C.4 D.2C解析:C【分析】根据直角三角形的性质得到AB=2BC,利用勾股定理求出BC,再根据三角形中位线定理求出DE.【详解】解:∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC,设BC=x,则AB=2x,∴(222=+,x x43解得:x=8或-8(舍),∴BC=8,⊥,∵D是AC边的中点,DE AC∴DE=1BC=4,2故选C.【点睛】本题考查了含30°角的直角三角形的性质,三角形的中位线的性质,熟练掌握直角三角形的性质是解题的关键.二、填空题11.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成个正方形和两对全等的直角三角形,得到一个恒等式,后人借助这种分割方法所得的图形证明了勾AE=,正方形ODCE的边长为1,则BD 股定理,如图所示的图形就用了这种分割方法若5等于___________.【分析】设BD=x 正方形ODCE 的边长为1则CD=CE=1根据全等三角形的性质得到AF=AEBF=BD 根据勾股定理即可得到结论【详解】解:设正方形ODCE 的边长为1则CD=CE=1设BD=x ∵△AF 解析:32 【分析】设BD=x ,正方形ODCE 的边长为1,则CD=CE=1,根据全等三角形的性质得到AF=AE ,BF=BD ,根据勾股定理即可得到结论.【详解】解:设正方形ODCE 的边长为1,则CD=CE=1,设BD=x ,∵△AFO ≌△AEO ,△BDO ≌△BFO ,∴AF=AE=5,BF=BD=x ,∴AB=x+5,AC=5+1=6,BC=x+1,∵在Rt △ABC 中,AC 2+BC 2=AB 2,∴(x+1)2+62=(x+5)2,∴x=32, 故答案为:32. 【点睛】本题考查了勾股定理的证明,全等三角形的性质,正方形的性质,熟练掌握勾股定理是解题的关键.12.如图,在长方形纸片ABCD 中,12AB =,5BC =,点E 在AB 上,将DAE △沿DE 折叠,使点A 落在对角线BD 上的点A '处,则AE 的长为______.【分析】首先利用勾股定理计算出BD 的长再根据折叠可得AD=A′D=5进而得到A′B 的长再设AE=x 则A′E=xBE=12-x 再在Rt △A′EB 中利用勾股定理得出关于x 的方程解出x 的值可得答案【详解】 解析:103 【分析】首先利用勾股定理计算出BD 的长,再根据折叠可得AD=A′D=5,进而得到A′B 的长,再设AE=x ,则A′E=x ,BE=12-x ,再在Rt △A′EB 中利用勾股定理得出关于x 的方程,解出x 的值,可得答案.【详解】解:∵AB=12,BC=5,∴AD=5,∴BD=22125+=13,根据折叠可得:AD=A′D=5,∴A′B=13-5=8,设AE=x ,则A′E=x ,BE=12-x ,在Rt △A′EB 中:(12-x )2=x 2+82,解得:x=103. 故答案为:103. 【点睛】本题考查了矩形的性质、勾股定理、折叠的性质等知识点,能根据题意得出关于x 的方程是解此题的关键.13.如图,在Rt ABC ∆中,90,6,10ACB AC AB ∠===,过点A 作//,AM CB CE 平分ACB ∠交AM 于点,E Q 是线段CE 上的点,连接BQ ,过点B 作BP BQ ⊥交AM 于点P ,当PBQ ∆为等腰三角形时,AP =________________________.【分析】过点P 作PG ⊥CB 交CB 的延长线于点G 过点Q 作QF ⊥CB 运用AAS 定理证明△QBF ≌△BPG 根据平行线的性质和角平分线的定义求得△AEC 为等腰直角三角形利用勾股定理求得线段BC 的长然后结合全解析:10【分析】过点P 作PG ⊥CB ,交CB 的延长线于点G ,过点Q 作QF ⊥CB ,运用AAS 定理证明△QBF≌△BPG,根据平行线的性质和角平分线的定义求得△AEC为等腰直角三角形,利用勾股定理求得线段BC的长,然后结合全等三角形和矩形的性质求解.【详解】解:过点P作PG⊥CB,交CB的延长线于点G,过点Q作QF⊥CB∵BP BQ⊥,PG⊥CB∴∠1+∠2=90°,∠2+∠3=90°∴∠1=∠3∵QF⊥CB,BP BQ⊥∴∠QFB=∠PGB=90°又∵PBQ∆为等腰三角形∴QB=PB在△QBF和△BPG中1=3QFB PGB QB PB∠∠⎧⎪∠=∠⎨⎪=⎩∴△QBF≌△BPG∴PG=BF,BG=QF∵∠ACB=90°,CE平分ACB∠∴∠ACE=∠ECB=45°又∵AM∥CB,∴∠AEC=∠ECB=45°∴∠AEC=∠ACE=45°∴△AEC为等腰直角三角形∵AM∥BC,∠ACB=90°∴∠CAM+∠ACB=180°,即∠CAM=90°∴∠CAM=∠ACB=∠PGB=90°∴四边形ACGP为矩形,∴PG=AC=6,AP=CG在Rt△ABC中,8∴CF=BC-BF=BC-PG=8-6=2∵QF⊥BC,∠ECB=45°∴△CQF是等腰直角三角形,即CF=QF=2∴AP=CG=BC+BG=BC+QF=8+2=10【点睛】本题考查矩形的判定和性质、全等三角形的判定和性质以及勾股定理,掌握相关性质定理正确推理论证是解题关键14.如图,在四边形ABCD 中,150ABC ∠=︒,BD 平分ABC ∠,过A 点作//AE BC 交BD 于点E ,EF BC ⊥于点F 若6AB =,则EF 的长为________.3【分析】过点A 作AM ⊥CB 交CB 延长线于点M 根据题意可知∠ABM=30°可求AM=3再利用平行四边形的性质求出EF【详解】解:过点A 作AM ⊥CB 交CB 延长线于点M ∵∴∠ABM=30°∴AM=AB= 解析:3【分析】过点A 作AM ⊥CB ,交CB 延长线于点M ,根据题意可知,∠ABM=30°,可求AM=3,再利用平行四边形的性质,求出EF .【详解】解:过点A 作AM ⊥CB ,交CB 延长线于点M ,∵150ABC ∠=︒,∴∠ABM=30°,∴AM=12AB=12×6=3, ∵AM ⊥CB ,EF BC ⊥,∴AM ∥EF ,∵//AE BC ,∴四边形AMFE 是平行四边形,∵AM ⊥CB ,∴四边形AMFE 是矩形,∴EF=AM=3,故答案为:3..【点睛】本题考查了含30°角的直角三角形的性质和平行四边形的判定,恰当的作辅助线,构造特殊的直角三角形是解题关键.15.在△ABC 中, AD 是BC 边上的高线,CE 是AB 边上的中线,CD =AE ,且CE <AC .若AD =6,AB =10,则CE =___________【分析】先根据勾股定理求得AB 再做△ABD 的中位线EF 可得EF=3BF=DF=4从而可得CF=1再次利用勾股定理即可求得CE 【详解】解:∵AD 是BC 边上的高线AD=6AB=10∴∠D=90°∵CE 是 10【分析】先根据勾股定理求得AB ,再做△ABD 的中位线EF ,可得EF=3,BF=DF=4,从而可得CF=1,再次利用勾股定理即可求得CE .【详解】解:∵AD 是BC 边上的高线,AD =6,AB =10,∴∠D=90°,22BD AB AD 8=-=,∵CE 是AB 边上的中线,CD =AE , ∴152CD AE BE AB ====, 取BD 的中点F,连接CF ,∴EF 为△ABD 的中位线, ∴132EF AD ==,EF//AD , ∴∠EFB=∠D=90°, 在Rt △BEF 中,根据勾股定理,2222534BF BE EF =-=-=,∴DF=BD-BF=8-4=4,∴CF=CD-DF=5-4=1,在Rt △CEF 中,根据勾股定理,22221310CE CF EF +=+= 10【点睛】本题考查三角形中位线的定理,勾股定理.能正确作出辅助线,构造直角三角形是解题关键.16.平行四边形的两条对角线长分别为6和8,其夹角为45︒,该平行四边形的面积为_______.【分析】画出图形证明四边形EFGH 是平行四边形得到∠EHG=45°计算出MG 得到四边形EFGH 的面积从而得到结果【详解】解:如图四边形ABCD 是平行四边形EFGH 分别是各边中点过点G 作EH 的垂线垂足 解析:2【分析】画出图形,证明四边形EFGH 是平行四边形,得到∠EHG=45°,计算出MG ,得到四边形EFGH 的面积,从而得到结果.【详解】解:如图,四边形ABCD 是平行四边形,E 、F 、G 、H 分别是各边中点,过点G 作EH 的垂线,垂足为M ,AC=6,BD=8,可得:EF=HG=12AC=3,EH=FG=12BD=4,EF ∥HG ∥AC ,EH ∥FG ∥BD , ∴四边形EFGH 是平行四边形,∵AC 和BD 夹角为45°,可得∠EHG=45°,∴△HGM为等腰直角三角形,又∵HG=3,∴MG=233222=,∴四边形EFGH的面积=MG EH⋅=62,∴平行四边形ABCD的面积为122,故答案为:122.【点睛】此题考查了平行四边形的性质,中位线定理,等腰直角三角形的判定和性质,勾股定理,解题的关键是根据题意画出图形,结合图形的性质解决问题.17.如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于12EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG交AD于点P,若AP=3,则点P到BD的距离为_______.3【分析】首先结合作图的过程确定BP是∠ABD的平分线然后根据角平分线的性质求得点P到BD的距离即可【详解】结合作图的过程知:BP平分∠ABD∵∠A=90°AP=3∴点P到BD的距离等于AP的长为3解析:3【分析】首先结合作图的过程确定BP是∠ABD的平分线,然后根据角平分线的性质求得点P到BD 的距离即可.【详解】结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.【点睛】考查了尺规作图的知识及角平分线的性质、矩形的性质等知识,解题的关键是根据图形确定BP平分∠ABD.18.如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A',折痕为DE.若将∠B沿EA'向内翻折,点B恰好落在DE上,记为B',则AB=_______.【分析】利用矩形和折叠的性质证明∠ADE=∠ADE=∠ADC=30°∠C=∠ABD=90°推出△DBA≌△DCA那么DC=DB设AB=DC=x在Rt△ADE中通过勾股定理可求出AB的长度【详解】解:3【分析】利用矩形和折叠的性质,证明∠ADE=∠A'DE=∠A'DC=30°,∠C=∠A'B'D=90°,推出△DB'A'≌△DCA',那么DC=DB',设AB=DC=x,在Rt△ADE中,通过勾股定理可求出AB的长度.【详解】解:∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=1×180°=60°,3∴∠ADE=90°-∠AED=30°,∠A'DE=90°-∠A'EB'=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,23∴323设AB=DC=x,则∵AE2+AD2=DE2,∴2222323233x x +=+-()() 解得,x 1=−33 (负值舍去),x 2=3 , 故答案为:3.【点睛】 本题考查了矩形的性质,轴对称的性质等,解题关键是通过轴对称的性质证明∠AED=∠A'ED=∠A'EB=60°.19.如图,在平行四边形ABCD 中,∠ABC =135°,AD =42,AB =8,作对角线AC 的垂直平分线EF ,分别交对边AB 、CD 于点E 和点F ,则AE 的长为_____.【分析】连接CE 过点C 作交AB 的延长线于点H设AE=x 则BE=8-xCE=AE=x 在根据勾股定理即可得到x 的值【详解】如图:连接CE 过点C 作交AB 的延长线于点H 平行四边形ABCD 中设AE=x 则BE= 解析:203【分析】连接CE ,过点C 作CH AB ⊥,交AB 的延长线于点H ,设AE=x ,则BE=8-x ,CE=AE=x ,在根据勾股定理,即可得到x 的值.【详解】如图:连接CE ,过点C 作CH AB ⊥,交AB 的延长线于点H ,平行四边形ABCD 中,135,2ABC AD ∠=︒=45,2CBH BC ∴∠=︒=90,H ∠=︒45,BCH ∴∠=︒4CH BH ∴==设AE=x ,则BE=8-x ,EF 垂直平分AC ,CE AE x ∴==,在Rt CEH 中,222CH EH EC +=,()222484x x ∴+-+=, 解得:203x =, AE ∴的长为203, 故答案为:203. 【点睛】 本题考查了平行四边形的性质,勾股定理以及线段垂直平分线的性质,解决问题的关键是作辅助线构造直角三角形,利用勾股定理求解.20.如图,正方形ABCD 的顶点B 在直线l 上,作AE l ⊥于E ,连结CE ,若4BE =,3AE =,则BCE 的面积________.8【分析】过C 作于点F 根据正方形的性质找出对应相等的边和角求证出得到即可求三角形的面积【详解】如图所示过C 作于点F 四边形ABCD 是正方形又又在和中故答案为8【点睛】此题考查了正方形的性质和三角形全等解析:8【分析】 过C 作CF l ⊥于点F ,根据正方形的性质找出对应相等的边和角,求证出ABE BCF ≅得到 4CF BE ==即可求三角形的面积.【详解】如图所示,过C 作CF l ⊥于点F ,四边形ABCD 是正方形,AB BC ∴=,90ABC ∠=︒,又AE BE ⊥,CF BF ⊥,90AEB BFC ∴∠=∠=︒,又18090ABE CBF ABC ∠+∠=︒-∠=︒,18090ABE BAE AEB ∠+∠=︒-∠=︒,CBF BAE ∴∠=∠,∴在ABE △和BCF △中, AEB BFC BAE CBF AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABE BCF ∴≅,4CF BE ∴==, 12BCE S BE CF ∴=⨯⨯1442=⨯⨯8=, 故答案为8.【点睛】此题考查了正方形的性质和三角形全等的判定,以及三角形面积的公式,难度一般.三、解答题21.如图所示,小明在测量旗杆AB 的高度时发现,国旗的升降绳自然下垂到地面时,还剩余0.3米,小明走到距离国旗底部6米的C 处,把绳子拉直,绳子末端恰好位于他的头顶D 处,假设小明的身高为1.5米,求旗杆AB 的高度是多少米?解析:旗杆AB 的高度为10.6米【分析】过点D 作DE AB ⊥,垂足为E ,可证四边形BCDE 为长方形,可知 1.5BE CD ==米,设旗杆高度为x 米,则绳子长度为(0.3)AD x =+米,( 1.5)AE x =-米,在Rt ADE △中,由勾股定理,得222AE DE AD +=,222( 1.5)6(0.3)x x -+=+,解方程即可.【详解】解:过点D 作DE AB ⊥,垂足为E ,∵AB ⊥BC ,CD ⊥BC∴∠EBC=∠BCD=∠BED=90°,∴四边形BCDE 为长方形,∴ 1.5BE CD ==米,设旗杆高度为x 米,则绳子长度为(0.3)AD x =+米,( 1.5)AE AB BE x =-=-米, 在Rt ADE △中,由勾股定理,得222AE DE AD +=,∴222( 1.5)6(0.3)x x -+=+,整理得223 2.25360.60.09x x x x -++=++,即3.638.16x =,解得10.6x =.答:旗杆AB 的高度为10.6米.【点睛】本题考查勾股定理,矩形的判定与性质,一元一次方程的解法,掌握勾股定理,矩形的判定与性质,一元一次方程的解法,利用勾股定理结合旗杆与绳长的关系构造方程是解题关键.22.如图,在ABCD 中,AP 、BP 分别是DAB ∠和CBA ∠的角平分线,已知5AD =.(1)求线段AB 的长;(2)延长AP ,交BC 的延长线于点Q .①请在答卷上补全图形;②若6BP =,求ABQ △的周长.解析:(1)10;(2)①见解析;②36【分析】(1)依据平行线的性质以及角平分线的定义即可得到DP =AD =5,CP =BC =5,进而得出AB 的长;(2)①根据题意画出图形;②依据平行线的性质以及角平分线的定义即可得到AB =QB ,再根据BP 平分∠ABQ ,即可得出BP ⊥AQ ,AP =QP ,依据勾股定理得出AP 的长,进而得到△ABQ 的周长.【详解】解:(1)∵在□ABCD 中,AD =5,∴BC =5,∵AB ∥CD ,∴∠BAP =∠DPA ,∵AP 平分∠BAD ,∴∠BAP =∠DAP ,∴∠DAP =∠DPA ,∴DP =AD =5,同理可得,CP =BC =5,∴CD =10,∴AB =10;(2)①如图所示:②∵AD ∥BQ ,∴∠Q =∠DAP ,又∵∠DAP =∠BAP ,∴∠Q =∠BAP ,∴AB =QB =10,又∵BP 平分∠ABQ ,∴BP ⊥AQ ,AP =QP ,∴Rt △ABP 中,22AB BP -, ∴AQ =16,∴△ABQ 的周长为:16+10+10=36.【点睛】本题主要考查了平行四边形的性质以及勾股定理的运用,解题时注意:平行四边形的对边平行,对边相等.23.在ABC 中,AC BC =,点E 在边AB 所在的直线上,过点E 作//DE BC 交直线AC 于点D ,//EF AC 交直线BC 于点F ,构造出平行四边形CDEF .(1)若点E 在线段AB 上时.①求证:FE FB =.②求证:DE EF BC +=.(2)点E 在边AB 所在的直线上,若8BC =,2EF =,请作出简单示意图并直接写出DE 的长度.解析:(1)①见解析;②见解析;(2)10或6【分析】(1)①根据平行线的性质得到∠FEB=∠A,根据等边对等角得到∠B=∠A,可得∠FEB=∠B,从而可证;②证明四边形CDEF是平行四边形,得到CF=DE,结合FE=FB可得结论;(2)点E在边AB所在的直线上,分三种情况讨论,即可得出DE的长度.【详解】解:(1)①∵EF∥AC,∴∠FEB=∠A,又∵AC=BC,∴∠B=∠A,∴∠FEB=∠B,∴FE=FB;②∵EF∥AC,DE∥BC,∴四边形CDEF是平行四边形.∴CF=DE,∵EF=BF,∴DE+EF=CF+BF=BC;(2)如图,同理可得:BF=EF,∴DE=BC+BF=BC+EF=8+2=10.如图,同理可得:BF=EF,DE=CF=BF-BC=EF-BC=2-8=-6(不合题意).如图④,DE=BC-BF=BC-EF=8-2=6.【点睛】本题考查平行四边形的判定与性质以及等腰三角形的判定,等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段. 24.综合与实践——探究正方形旋转中的数学问题问程情境:已知正方形ABCD 中,点O 是线段BC 的中点,将将正方形ABCD 绕点O 顺时针旋转得到正方形A B C D ''''(点A ',B ',C ',D 分别是点A ,B ,C ,D 的对应点).同学们通过小组合作,提出下列数学问题,请你解答.特例分析:(1)“乐思”小组提出问题:如图1,在正方形绕点O 旋转过程中,顺次连接点B ,B ',C ,C '得到四边形''BB CC ,求证:四边形''BB CC 是矩形;(2)“善学”小组提出问题:如图2.在旋转过程中,当点B '落在对角线BD 上时,设A B ''与CD 交于点M .求证:四边形OB MC '是正方形.深入探究:(3)“好问”小组提出问题:如图3.若点O 是线段BC 的三等分点且2OB OC =,在正方形ABCD 旋转的过程中当线段A D ''经过点D 时,请直接写出''DD OC 的值. 解析:(1)证明见解析;(2)证明见解析;(3)2'='DD OC . 【分析】(1)由旋转性质可得 OB=OB′ ,OC=OC′ ,得到四边形BB′CC′是平行四边形,又 BC=B′ C′ ,得到平行四边形BB′CC′是矩形.(2)先由∠C=∠OB′M=∠B′OC=90°,证明四边形 OB′MC 是矩形 ,再由OC=OB′ 得到四边形 OB′MC 是正方形.(3)过D 作DN ⊥B′C′,证Rt △DNO ≌Rt △DCO(HL),设OC=a ,得到OC′=a ,DD′=2a ,即可求解.【详解】解:(1)由旋转性质可得OB OB '=,OC OC '=.点O 是线段BC 的中点OB OC ∴=,''∴=OB OC ,OB OC =.∴四边形''BB CC 是平行四边形.又BC B C ''=,∴平行四边形''BB CC 是矩形.(2)证明:四边形ABCD 是正方形,BC CD ∴=,90C ∠=︒.180180904522-∠︒-∴︒∠=∠===︒︒C CBD CDB 由旋转可知,OB OB '=,45''∴∠=∠=︒OB B OBB454590'''∴∠=∠+∠=︒+︒=︒B OC OB B OBB .四边形A B C D ''''是正方形,90'∴∠=︒OB M∴四边形OB MC '是矩形OB OC =,OC=OC′ ,OB′=OB ,∴OC=OB′∴矩形OB MC '是正方形,(3)2'='DD OC. 如图,过D 作DN ⊥B′C′可知,∠A′=∠B′=∠B′ND=90°,∠D′=∠C′=∠C′ND=90°,∴四边形DNC′D′为矩形,四边形DNB′A′为矩形,在Rt △DNO 与Rt △DCO 中,∵OD=OD ,DN=DC ,∴Rt △DNO ≌Rt △DCO(HL)设OC=a ,则OB=2OC=2a ,∴ON=OC=OC′=a∴BC=OB+OC=3a ,DD′=NC′=ON+OC′=2a , ∴2DD a OC a'='=2. 【点睛】 本题考查了特殊的四边形,平行四边形,矩形,正方形的性质和判定,解题的关键是熟练掌握特殊的四边形的性质和判定.25.如图,将长方形ABCD 沿着对角线BD 折叠,使点C 落在C '处,BC '交AD 于点E .(1)试判断BDE 的形状,并说明理由.(2)若4AB =,8AD =,求AE 的长.参考答案解析:(1)BDE 是等腰三角形,证明见解析;(2)3AE =.【分析】(1)根据折叠的性质可知EBD DBC ∠=∠,又因为//AD BC ,可知ADB DBC ∠=∠,即推出ADB EBD ∠=∠,所以BE DE =,BDE 为等腰三角形.(2)设AE x =,则8BE DE x ==-,在Rt ABE △中根据勾股定理列出等式,解出x 即可.【详解】(1)BDE 是等腰三角形,理由是:由折叠得:EBD DBC ∠=∠,∵四边形ABCD 是矩形,∴//AD BC ,∴ADB DBC ∠=∠,∴ADB EBD ∠=∠,∴BE DE =,∴BDE 是等腰三角形.(2)设AE x =,则8BE DE x ==-,∵四边形ABCD 是矩形,∴90A ∠=︒,∴在Rt ABE △中,222AB AE BE +=,即2224(8)x x +=-,解得:3x =,∴3AE =.【点睛】本题考查翻折的性质,矩形的性质,等腰三角形的判定以及勾股定理.根据翻折的性质间接证明出BE DE =是解答本题的关键.26.如图,在ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 在BD 上,且BE DF =,连接AE 并延长,交BC 于点G ,连接CF 并延长,交AD 于点H .(1)求证:AE CF =;(2)若AC 平分HAG ∠,判断四边形AGCH 的形状,并证明你的结论.解析:(1)见解析;(2)四边形AGCH 是菱形,见解析【分析】(1)利用SAS 证明△AOE ≌△COF 即可得到结论;(2)四边形AGCH 是菱形.根据△AOE ≌△COF 得∠EAO=∠FCO ,推出AG ∥CH ,证得四边形AGCH 是平行四边形,再根据AD ∥BC ,AC 平分HAG ∠,得到GAC ACB ∠=∠,证得GA=GC ,即可得到结论.【详解】证明:(1)四边形ABCD 是平行四边形,OA OC ∴=,OB OD =,BE DF =,OB BE OD DF ∴-=-,即OE OF =,又AOE COF ∠=∠,AOE COF ∴≌,AE CF ∴=.(2)四边形AGCH 是菱形.理由:AOE COF ≌,EAO FCO ∴∠=∠,//AG CH ∴,四边形ABCD 是平行四边形,//AD BC ∴,∴四边形AGCH 是平行四边形,//AD BC ,HAC ACB ∠∠∴=,AC 平分HAG ∠,HAC GAC ∠∠∴=,∴GAC ACB ∠=∠,GA GC ∴=,∴平行四边形AGCH 是菱形.【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定定理,等角对等边证明边相等,熟记平行四边形的判定定理是解题的关键.27.如图,在Rt △ABC 中,∠ACB =90°,D 为AB 的中点,AE //CD ,CE //AB ,连接DE 交AC 于点O .(1)证明:四边形ADCE 为菱形;(2)若∠B =60°,BC =6,求菱形ADCE 的高.解析:(1)见解析;(2)3√3【分析】(1)先证明四边形ADCE 是平行四边形,再由直角三角形斜边上的中线性质得出CD=12AB=AD ,即可得出四边形ADCE 为菱形; (2)过点D 作DF ⊥CE ,垂足为点F ;先证明△BCD 是等边三角形,得出∠BDC=∠BCD=60°,CD=BC=6,再由平行线的性质得出∠DCE=∠BDC=60°,在Rt △CDF 中,求出DF 即可.【详解】解:(1)证明:∵AE ∥CD ,CE ∥AB ,∴四边形ADCE 是平行四边形,∵∠ACB=90°,D 为AB 的中点,∴CD=12AB=AD , ∴四边形ADCE 为菱形;(2)过点D 作DF ⊥CE ,垂足为点F ,如图所示:DF 即为菱形ADCE 的高,∵∠B=60°,CD=BD ,∴△BCD 是等边三角形,∴∠BDC=∠BCD=60°,CD=BC=6,∵CE ∥AB ,∴∠DCE=∠BDC=60°,∴∠CDF=30°,又∵CD=BC=6,∴CF=3,∴在Rt △CDF 中,DF=√CD 2−CF 2=3√3.【点睛】本题考查了平行四边形的判定、菱形的判定、等边三角形的判定与性质、平行线的性质,熟练掌握直角三角形的性质,并能进行推理论证与计算是解决问题的关键.28.如图1,正方形ABCD ,E 为平面内一点,且90BEC ∠=︒,把BCE 绕点B 逆时针旋转90︒得BAG ,直线AG 和直线CE 交于点F .(1)证明:四边形BEFG 是正方形;(2)若135AGD ∠=︒,猜测CE 和CF 的数量关系,并说明理由;(3)如图2,连接DF ,若13AB =,17CF =,求DF 的长.解析:(1)见解析;(2)CE=CF ,理由见解析;(3)52或122【分析】(1)根据正方形的判定定理进行证明即可;(2)证明Rt ADH ≌Rt BAG 得DH AG =,AH=BG ,再证明△DHG 是等腰直角三角形,可得DH=BH=AG ,最后由BEFG 是正方形可得结论;(3)分点F 在AB 右侧和左侧两种情况求解即可.【详解】解:(1)证明:90BEC =︒∠,把BCE 绕点B 逆时针旋转90︒得BAG , BE BG ∴=,90EBG ∠=︒,90BGA ∠=︒,则90BGF ∠=︒,90BEC EBG BGF ∴∠=∠=∠=︒,∴四边形BEFG 是正方形;(2)CE CF =,理由如下:过D 点作DH AF ⊥,垂足为H ,如图,四边形ABCD 是正方形,90BAD ∴∠=︒,AB AD =,90BGA ∠=︒,90DAH BAG ∴∠+∠=︒,90BAG ABG ∠+∠=︒,DAH ABG ∴∠=∠,在Rt ADH 和Rt BAG 中,90,DAH ABG BGA AHD AD AB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩Rt ADH ∴≌()Rt BAG AAS ,DH AG ∴=,∵∠DGH =180°-∠AGD =45°∴在Rt △DHG 中,∠GDH =45°∴DH =GH =AG ∴1122AG GH AH BG === 又AG CE =,EF BG =,2EF CE ∴=,CE CF ∴=;(3)①点F 在AB 右侧时,如图,过D 作DK ⊥AG ,交其延长线于K .设正方形BEFG 的边长为x ,则BE x =,17CE x =-,在Rt BEC △中,13BC =,根据勾股定理可得,222BE CE BC +=,即222(17)13x x +-=,解得112x =,25(x =不符合条件,舍去),即12BG BE ==,17125AG CE ==-=,∵四边形BEFG 是正方形,∴∠BAD =90°.∵DK ⊥AG ,∴∠K =90°.∵∠BAG +∠KAD =180°—∠BAD =90°∠ADK +∠KAD =90°∴∠BAG =∠ADK在Rt △ABG 和Rt △DAK 中,90G K AB ADBAG ADK ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩所以Rt △ADK ≌Rt BAG ,则AK =BG =12,DK =AG =5,∵AF +FK =AK =BG=GF=AG +AF∴FK =AG =5在R t △DFK 中,根据勾股定理可得,DF =2252DK FK +=②点F 在AB 左侧时,如图,过D 作DK ⊥AG ,交其延长线于K .方法同①,可得FK =AG =12,。

人教版数学八年级下册:第十八章 平行四边形 专题练习(附答案)

人教版数学八年级下册:第十八章  平行四边形   专题练习(附答案)

第十八章平行四边形专题练习专题1平行四边形的证明思路类型1若已知(已证)四边形中边的关系(1)已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)已知一组对边相等,可以证这一组对边平行或另一组对边相等1.如图,在△ABC中,AB=AC,点D在AB上,过点D作BC的平行线,与AC相交于点E,点F在BC上,EF=EC.求证:四边形DBFE是平行四边形.2.如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.3.如图,点B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.求证:四边形ABED是平行四边形.4.如图,在▱ABCD中,分别以AD,BC为边向内作等边△ADE和等边△BCF,连接BE,DF.求证:四边形BEDF是平行四边形.5.如图,已知点D,E,F分别在△ABC的边BC,AB,AC上,且DE∥AF,DE=AF,将FD延长到点G,使FG=2DF,连接AG,则ED与AG互相平分吗?请说明理由.6.如图,在▱ABCD中,E,F分别是AD,BC的中点,AF与BE交于点G,CE与DF交于点H,求证:四边形EGFH是平行四边形.类型2若已知条件(已证结论)与对角线有关,则可以通过证明对角线互相平分得到平行四边形7.如图,▱ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.8.如图,在▱ABCD 中,点O 是对角线AC 的中点,EF 过点O,与AD,BC 分别相交于点E,F,GH 过点O,与AB,CD 分别相交于点G,H,连接EG,FG,FH,EH.求证:四边形EGFH 是平行四边形.专题2与正方形有关的四个常考模型模型1正方形中相交垂线段问题——教材P68复习题T8的变式与应用1.如图,ABCD是一个正方形花园,E,F是它的两个门,且DE=CF.要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?为什么?【探究】若去掉“DE=CF”这一条件,将两个结论中的一个作为条件能推出另一个结论成立吗?(1)若已知BE=AF,则BE⊥AF成立吗?正方形内,分别连接两组对边上任意两点,得到的两条线段(如:图1中的线段AF与BE,图2中的线段AF与EG,图3中的线段HF与EG)满足:若垂直,则相等.模型2正方形中过对角线交点的直角问题2.如图,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点,OA1交AB于点E,OC1交BC于点F.(1)求证:△AOE≌△BOF;(2)如果两个正方形的边长都为a,那么这两个正方形重叠部分的面积等于多少?为什么?【变式1】如图,正方形ABCD的边长为4,点O在对角线DB上运动(不与点B,D重合),连接OA,作OP⊥OA,交直线BC于点P.判断线段OA,OP的数量关系,并说明理由.【变式2】如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是( )A.n B.n-1 C.4(n-1) D.4n正方形ABCD中,O为两条对角线的交点,点E,F分别在AB,BC上.若∠EOF为直角,OE,OF分别与DA,AB的延长线交于点G,H,则△AOE≌△BOF,△AOG≌△BOH,△OGH是等腰直角三角形,且S四边形OEBF=14S正方形ABCD.模型3正方形中三垂直全等模型——教材P69复习题T14的变式与应用3.正方形ABCD的边长为6,点P在对角线BD上,点E是线段AD上或AD的延长线上的一点,且PE⊥PC.(1)如图1,点E在线段AD上,求证:PE=PC;(2)如图2,点E在线段AD的延长线上,请补全图形,并判断(1)中的结论是否仍然成立?请说明理由.模型4正方形中的半角模型4.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(1)如图,正方形ABCD中,若∠EAF=45°,则:①EF=BE+DF;②△CEF的周长为正方形ABCD边长的2倍;③FA平分∠DFE,EA平分∠BEF.(2)如图,正方形ABCD中,若∠EAF=45°,FA平分∠DFE,则EF=DF-BE.专题3特殊平行四边形的性质与判定1.如图,在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.2.如图,四边形ABCD,BEFG均为正方形,连接AG,CE.求证:(1)AG=CE;(2)AG⊥CE.3.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB 边上一点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)请求出AM的长为何值时,四边形AMDN是矩形,并说明理由.4.已知:如图,四边形ABCD四条边上的中点分别为E,F,G,H,顺次连接EF,FG,GH,HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.5.如图,在矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.6.如图所示,在▱ABCD中,E,F分别是AB,CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)你能说明四边形EHFG是平行四边形吗?(2)当四边形ABCD满足什么条件时,四边形EHFG是一个菱形?(3)四边形EHFG会成为一个正方形吗?专题4四边形中的动点问题——教材P68复习题T13的变式与应用【例】如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=12 cm,BC =18 cm,点P从点A出发,以1 cm/s的速度向点D运动;点Q从点C同时出发,以2 cm/s 的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设点P,Q运动的时间为t s.(1)CD边的长度为cm,t的取值范围为;(2)从运动开始,当t取何值时,PQ∥CD?(3)从运动开始,当t取何值时,PQ=CD?【拓展变式1】在整个运动过程中是否存在t值,使得四边形PQCD是菱形?若存在,请求出t值;若不存在,请说明理由.【拓展变式2】从运动开始,当t取何值时,四边形PQBA是矩形?【拓展变式3】在整个运动过程中是否存在t值,使得四边形PQBA是正方形?若存在,请求出t值;若不存在,请说明理由.【拓展变式4】是否存在t,使得△DQC是等腰三角形?若存在,请求出t值;若不存在,请说明理由.专题5特殊平行四边形中的折叠问题——教材P64“数学活动”的变式与应用【例】如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.图1【拓展延伸】再沿MN所在的直线折叠,点B落在AD上的点B′处,得到折痕MG,同时得到线段B′G,展开如图2.探究四边形MBGB′的形状,并证明你的结论.图2在折叠问题中,原图形与折叠后图形中所隐含的相等线段与相等角常常是解决问题的关键,注意翻折变换的性质的灵活运用,折叠前后,重叠部分是全等形,另外注意勾股定理等知识在求折叠图形的线段中的适当运用.1.如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O.若AE =5,BF =3,则AO 的长为( )A . 5B .32 5 C .2 5 D .452.如图,将边长为6 cm 的正方形纸片ABCD 折叠,使点D 落在AB 边中点E 处,点C 落在点Q 处,折痕为FH ,则线段AF 的长是 cm .3.如图,将一张菱形纸片ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH.若EF =4,EH =3,则AB = .4.如图,在矩形ABCD 中,AB>AD ,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE.求证: (1)△ADE ≌△CED ; (2)△DEF 是等腰三角形.专题6特殊平行四边形中的最值问题【例】如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB的中点,P 为AC上一个动点,求PF+PE的最小值.【思路点拨】(1)先确定点P的位置:作点E关于AC的对称点E′,连接FE′,交AC于点P,则点P即为所求;(2)求E′F的长度:将E′F放到一个直角三角形中,利用勾股定理求出E′F的长,即求出了PF+PE的最小值.求线段和最小时,若已知的两点在动点所在直线的同侧,将动点所在直线当作对称轴,作出其中一点的对称点,再将另一点与这个对称点连接,则其与直线的交点即为所求动点所在位置,再求出所连接的线段长即为所求.1.如图,菱形ABCD的边长为2,∠DAB=60°,点E为BC边的中点,点P为对角线AC上一动点,则PB+PE的最小值为.2.如图,在矩形ABCD 的边AD 上找一点P ,使得点P 到B ,C 两点的距离之和最短,则点P 的位置应该在 .3.如图,四边形ABCD 是菱形,AB =8,且∠ABC =60°,M 为对角线BD(不含B 点)上任意一点,则AM +12BM 的最小值为 .4.如图,以边长为2的正方形的对角线的交点O 为端点,引两条相互垂直的射线,分别与正方形的边交于A ,B 两点,求线段AB 的最小值.参考答案:专题1 平行四边形的证明思路1.证明:∵AB =AC ,∴∠B =∠C. ∵EF =EC ,∴∠EFC =∠C. ∴∠B =∠EFC. ∴AB ∥EF. 又∵DE ∥BC ,∴四边形DBFE 是平行四边形.2.证明:∵四边形ABCD 是平行四边形, ∴点O 是BD 的中点. 又∵点E 是边CD 的中点, ∴OE 是△BCD 的中位线. ∴OE ∥BC ,且OE =12BC.又∵CF =12BC ,∴OE =CF.又∵点F 在BC 的延长线上, ∴OE ∥CF.∴四边形OCFE 是平行四边形. 3.证明:∵AB ∥DE ,∴∠B =∠DEF. ∵AC ∥DF ,∴∠ACB =∠F.∵BE =CF ,∴BE +CE =CF +CE ,即BC =EF. 在△ABC 和△DEF 中,⎩⎨⎧∠B =∠DEF ,BC =EF ,∠ACB =∠F ,∴△ABC ≌△DEF(ASA ).∴AB =DE. ∵AB ∥DE ,∴四边形ABED 是平行四边形.4.证明:∵四边形ABCD 是平行四边形, ∴CD =AB ,AD =CB ,∠DAB =∠BCD. 又∵△ADE 和△BCF 都是等边三角形,∴DE =AD =AE ,CF =BF =BC ,∠DAE =∠BCF =60°. ∴BF =DE ,CF =AE.∵∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE , ∴∠DCF =∠BAE. 在△DCF 和△BAE 中,⎩⎨⎧CD =AB ,∠DCF =∠BAE ,CF =AE ,∴△DCF ≌△BAE(SAS ). ∴DF =BE. 又∵BF =DE ,∴四边形BEDF 是平行四边形. 5.解:ED 与AG 互相平分. 理由:连接EG ,AD. ∵DE ∥AF ,DE =AF , ∴四边形AEDF 是平行四边形. ∴AE ∥DF ,AE =DF. 又∵FG =2DF , ∴DG =DF. ∴AE =DG. 又∵AE ∥DG ,∴四边形AEGD 是平行四边形. ∴ED 与AG 互相平分.6.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC.∵E ,F 分别是AD ,BC 的中点, ∴AE =12AD ,FC =12BC.∴AE ∥FC ,AE =FC.∴四边形AECF 是平行四边形. ∴GF ∥EH.同理可证:ED ∥BF 且ED =BF. ∴四边形BFDE 是平行四边形. ∴GE ∥FH.∴四边形EGFH 是平行四边形.7.证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,OA =OC ,AB ∥CD. ∴∠DFO =∠BEO ,∠FDO =∠EBO. 在△FDO 和△EBO 中,⎩⎨⎧∠DFO =∠BEO ,∠FDO =∠EBO ,OD =OB ,∴△FDO ≌△EBO(AAS). ∴OF =OE . 又∵OA =OC ,∴四边形AECF 是平行四边形.8.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC. ∴∠EAO =∠FCO. ∵O 为AC 的中点, ∴OA =OC.在△OAE 和△OCF 中,⎩⎨⎧∠EAO =∠FCO ,OA =OC ,∠AOE =∠COF ,∴△OAE ≌△OCF(ASA ). ∴OE =OF.同理可证:OG =OH.∴四边形EGFH 是平行四边形.专题2 与正方形有关的四个常考模型1.解:BE =AF 且BE ⊥AF ,理由: ∵四边形ABCD 是正方形,∴AB =AD =CD ,∠BAD =∠D =90°. 又∵DE =CF ,∴AE =DF. ∴△ABE ≌△DAF(SAS ). ∴BE =AF ,∠ABE =∠DAF.∵∠DAF +∠BAF =90°,∴∠ABE +∠BAF =90°. ∴∠AGB =90°,即BE ⊥AF.【探究】解:成立.理由:∵四边形ABCD 是正方形, ∴∠BAD =∠D =90°,AB =AD. 在Rt △ABE 和Rt △DAF 中,⎩⎨⎧AB =DA ,BE =AF ,∴Rt △ABE ≌Rt △DAF(HL ). ∴∠ABE =∠DAF.∵∠DAF +∠BAF =90°,∴∠ABE +∠BAF =90°.∴∠AGB =90°,即BE ⊥AF. (2)若已知BE ⊥AF ,则BE =AF 成立吗? 解:成立.理由:∵四边形ABCD 是正方形, ∴AB =AD ,∠BAD =∠D =90°. 又∵BE ⊥AF ,∴∠AGB =90°. ∴∠ABE +∠BAF =90°.∵∠DAF +∠BAF =90°,∴∠ABE =∠DAF. ∴△ABE ≌△DAF(ASA ). ∴BE =AF.2.解:(1)证明:在正方形ABCD 中,AO =BO ,∠AOB =∠A 1OC 1=90°,∠OAB =∠OBC =45°. ∴∠AOE +∠EOB =90°,∠BOF +∠EOB =90°. ∴∠AOE =∠BOF. 在△AOE 和△BOF 中,⎩⎨⎧∠OAE =∠OBF ,OA =OB ,∠AOE =∠BOF ,∴△AOE ≌△BOF(ASA ).(2)两个正方形重叠部分的面积等于14a 2.理由如下:∵△AOE ≌△BOF ,∴S 四边形OEBF =S △EOB +S △BOF =S △EOB +S △AOE =S △AOB =14S 正方形ABCD =14a 2.【变式1】 解:OA =OP ,理由:过点O 作OG ⊥AB 于点G ,过点O 作OH ⊥BC 于点H ,∵四边形ABCD 是正方形, ∴∠ABO =∠CBO ,AB =BC. ∴OG =OH.∵∠OGB =∠GBH =∠BHO =90°, ∴四边形OGBH 是正方形. ∴∠GOH =90°.∵∠AOP =∠GOH =90°,∴∠AOG =∠POH. ∴△AGO ≌△PHO(ASA ). ∴OA =OP. 【变式2】 B3.解:(1)证明:过点P 作FG ∥DC 分别交AD ,BC 于点F ,G. 易得∠PFD =∠CGP =90°. ∵BD 为正方形ABCD 的对角线, ∴∠BDF =∠FPD =45°. ∴PF =FD.又∵FG ∥DC ,FD ∥GC ,∠ADC =90°, ∴四边形FGCD 为矩形. ∴DF =CG. ∴PF =CG. ∵PE ⊥PC ,∴∠FPE +∠GPC =90°. ∵∠FEP +∠FPE =90°, ∴∠FEP =∠GPC. ∴在△PFE 和△CGP 中,⎩⎨⎧∠PFE =∠CGP ,∠FEP =∠GPC ,PF =CG ,∴△PFE ≌△CGP(AAS ). ∴PE =CP.(2)成立.理由:过点P 作FG ∥DC 分别交AD ,BC 于点F ,G. 同理可证△PFE ≌△CGP(AAS ). ∴PE =PC.4.解:(1)证明:∵四边形ABCD 是正方形, ∴BC =CD ,∠B =∠CDF.又∵BE =DF ,∴△CBE ≌△CDF(SAS ).∴CE =CF.(2)GE =BE +GD 成立.理由:由(1)得,△CBE ≌△CDF ,∴∠BCE =∠DCF.∴∠BCE +∠ECD =∠DCF +∠ECD ,即∠BCD =∠ECF =90°.又∵∠GCE =45°,∴∠GCF =∠GCE =45°.∵CE =CF ,∠GCE =∠GCF ,GC =GC ,∴△ECG ≌△FCG(SAS ).∴GE =GF.∴GE =DF +GD =BE +GD.专题3 特殊平行四边形的性质与判定1.证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC.∴∠BPF =∠DAE.∵∠ABC =∠AED ,∴∠BAF =∠ADE.∵∠ABF =∠BPF ,∴∠ABF =∠DAE.∵AB =DA ,∴△ABF ≌△DAE(ASA ).(2)∵△ABF ≌△DAE ,∴AE =BF ,DE =AF.∵AF =AE +EF =BF +EF ,∴DE =BF +EF.2.证明:(1)∵四边形ABCD ,BEFG 均为正方形,∴AB =CB ,∠ABC =∠GBE =90°,BG =BE.∴∠ABG =∠CBE.在△ABG 和△CBE 中,⎩⎨⎧AB =CB ,∠ABG =∠CBE ,BG =BE ,∴△ABG ≌△CBE(SAS ).∴AG =CE.(2)设AG 交BC 于点M ,交CE 于点N.∵△ABG ≌△CBE ,∴∠BAG =∠BCE.∵∠ABC =90°,∴∠BAG +∠AMB =90°.∵∠AMB =∠CMN ,∴∠BCE +∠CMN =90°.∴∠CNM =90°.∴AG ⊥CE.3.解:(1)证明:∵四边形ABCD 是菱形,∴ND ∥AM.∴∠NDE =∠MAE ,∠DNE =∠AME.又∵点E 是AD 边的中点,∴DE =AE.∴△NDE ≌△MAE(AAS ).∴ND =MA.∴四边形AMDN 是平行四边形.(2)当AM 的长为1时,四边形AMDN 是矩形.理由如下:∵AM =1=12AD =AE ,∠DAB =60°, ∴△AEM 是等边三角形.∴∠AME =∠AEM =60°,EM =AE =ED.∴∠EMD =∠EDM =30°.∴∠AMD =∠AME +∠EMD =90°.∴四边形AMDN 是矩形.4.(1)四边形EFGH 的形状是平行四边形,证明你的结论;(2)当四边形ABCD 的对角线满足互相垂直条件时,四边形EFGH 是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?菱形.证明:连接BD.∵E ,H 分别是AB ,AD 中点,∴EH ∥BD ,EH =12BD. 同理FG ∥BD ,FG =12BD , ∴EH ∥FG ,EH =FG.∴四边形EFGH 是平行四边形.5.解:(1)证明:由题意得△BCE ≌△BFE ,∴∠BEC =∠BEF ,FE =CE.∵FG ∥CE ,∴∠FGE =∠BEC.∴∠FGE =∠BEF.∴FG =FE.∴FG =EC.∴四边形CEFG 是平行四边形.又∵CE =FE ,∴四边形CEFG 是菱形.(2)∵矩形ABCD 中,AB =6,AD =10,BC =BF ,∴∠BAF =90°,AD =BC =BF =10.∴AF =BF 2-AB 2=8.∴DF =2.设EF =x ,则CE =x ,DE =6-x.∵∠FDE =90°,∴22+(6-x)2=x 2.解得x =103.∴CE =103. ∴S 四边形CEFG =CE·DF =103×2=203. 6.解:(1)能说明四边形EHFG 是平行四边形.∵四边形ABCD 是平行四边形,∴AB 綊CD.而AE =12AB ,CF =12CD , ∴AE 綊CF.∴四边形AECF 是平行四边形.∴GF ∥EH.同理可得GE ∥HF.∴四边形EHFG 是平行四边形.(2)当四边形ABCD 是矩形时,四边形EHFG 是菱形.由(1)知,四边形EHFG 是平行四边形.连接EF.当四边形ABCD 是矩形时,四边形EBCF 也是矩形,∴EH =FH ,∴四边形EHFG 是菱形.(3)当四边形ABCD 是矩形且AB =2AD 时,四边形EHFG 是正方形.由(2)知,当四边形ABCD 是矩形时,四边形EHFG 是菱形.又由AB =2AD 可知,四边形EBCF 是正方形.根据正方形的性质知,EC⊥BF,即∠EHF=90°,∴四边形EHFG是正方形.专题4四边形中的动点问题【例】(1)CD边的长度为10cm,t的取值范围为0≤t≤9;解:(2)设经过t s时,PQ∥CD,此时四边形PQCD为平行四边形,则PD=CQ.∵PD=(12-t)cm,CQ=2t cm,∴12-t=2t.∴t=4.∴当t=4时,PQ∥CD.(3)设经过t s时,PQ=CD,分别过点P,D作BC边的垂线PE,DF,垂足分别为E,F.当CF=EQ时,四边形PQCD为梯形(腰相等)或者平行四边形.∵∠B=∠A=∠DFB=90°,∴四边形ABFD是矩形.∴AD=BF.∵AD=12 cm,BC=18 cm,∴CF=BC-BF=6 cm.①当四边形PQCD为梯形(腰相等)时,PD+2(BC-AD)=CQ,∴(12-t)+12=2t.∴t=8.∴当t=8时,PQ=CD;②当四边形PQCD为平行四边形时,由(2)知当t=4 s时,PQ=CD.综上,当t=4或t=8时,PQ=CD.【拓展变式1】解:不存在.理由:要使四边形PQCD是菱形,则四边形PQCD一定是平行四边形.由例知当t=4 s时,四边形PQCD是平行四边形.此时DP=12-t=8≠10,即DP≠DC,所以按已知速度运动,四边形PQCD只能是平行四边形,不可能是菱形.【拓展变式2】解:如图,由题意,得AP =t ,DP =12-t ,CQ =2t ,BQ =18-2t.要使四边形PQBA 是矩形,已有∠B =90°,AD ∥BC ,即AP ∥BQ ,只需满足AP =BQ ,即t =18-2t ,解得t =6.所以当t =6时,四边形PQBA 是矩形.【拓展变式3】 解:不存在.理由:要使四边形PQBA 是正方形,则四边形PQBA 一定是矩形.由变式2知,当t =6时,四边形PQBA 是矩形.此时AP =t =6≠8,即AP ≠AB ,所以按已知速度运动,四边形PQBA 只能是矩形,不可能是正方形.【拓展变式4】 解:△DQC 是等腰三角形时,分三种情况讨论:图1 图2 图3①如图1,当QC =DC 时,即2t =10,∴t =5.②如图2,当DQ =DC 时,过点D 作DH ⊥CQ ,则QH =CH =12CQ =t. 在矩形ABHD 中,BH =AD =12,∴CH =BC -BH =6,∴t =6.③如图3,当QD =QC 时,过点D 作DH ⊥CQ ,DH =8,CH =6,DC =10,CQ =QD =2t ,QH =|2t -6|.在Rt △DQH 中,DH 2+QH 2=DQ 2.∴82+|2t -6|2=(2t)2.解得t =256. 综上,当t =5或6或256时,△DQC 是等腰三角形专题5 特殊平行四边形中的折叠问题【例】 解:∠MBN =30°.证明:连接AN .∵直线EF 是AB 的垂直平分线,点N 在EF 上,∴AN =BN .由折叠可知,BN =AB ,∴△ABN 是等边三角形.∴∠ABN =60°.∴∠MBN =∠ABM =12∠ABN =30°. 【拓展延伸】 解:四边形MBGB′是菱形.证明:∵∠ABM =30°,∠A =∠ABC =90°,∴∠MBG =∠AMB =60°.根据折叠的性质,得BM =MB′,BG =B′G ,∠BMN =∠AMB.∴∠BMN =∠MBG =60°.∴△MBG 是等边三角形.∴BM =BG.∴BM =MB′=BG =B′G.∴四边形MBGB′是菱形.1.C2. 94cm . 3.5.4.证明:(1)由折叠相关性质可知,AE =AB ,CE =CB.∵四边形ABCD 是矩形,∴AE =AB =DC ,CE =CB =AD.在△ADE 和△CED 中,⎩⎨⎧AD =CE ,AE =CD ,DE =ED ,∴△ADE ≌△CED(SSS ).(2)由(1)知,△ADE ≌△CED ,∴∠AED =∠CDE.∴△DEF 是等腰三角形.小专题(十) 特殊平行四边形中的最值问题【例】 解:作点E 关于直线AC 的对称点E′(易知点E′在CD 上),连接E′F ,交AC 于点P.则PE =PE′,CE ′=CE.∴PE +PF =PE′+PF =E′F.∴P 即为所求的使PF +PE 最短的点.∵正方形ABCD 的边长为4,BE =1,F 为AB 的中点, ∴BF =2,CE =CB -BE =3.∴CE ′=CE =3.过点F 作FG ⊥CD 于点G ,则∠FGE′=∠FGC =90°. ∵四边形ABCD 是正方形,∴∠B =∠BCD =∠FGC =90°.∴四边形FBCG 是矩形.∴CG =BF =2,FG =BC =4.∴E ′G =E′C -CG =1.∴在Rt △E ′FG 中,E ′F =FG 2+E′G 2=42+12=17. ∴PF +PE 的最小值为17.12.AD 的中点.34.解:∵四边形CDEF 是正方形,∴∠OCA =∠ODB =45°,∠COD =90°,OC =OD. ∵AO ⊥OB ,∴∠AOB =90°.∴∠COA +∠AOD =90°,∠AOD +∠DOB =90°. ∴∠COA =∠DOB.在△COA 和△DOB 中,⎩⎨⎧∠OCA =∠ODB ,OC =OD ,∠COA =∠DOB ,∴△COA ≌△DOB(ASA ).∴OA =OB.∵∠AOB =90°,∴△AOB 是等腰直角三角形. 由勾股定理,得AB =OA 2+OB 2=2OA ,要使AB 最小,只要OA 取最小值即可,根据垂线段最短,得OA ⊥CD 时,OA 最小,∵四边形CDEF 是正方形,∴OD =OC.又∵OA ⊥CD ,∴CA =DA.∴OA =12CF =1.∴AB = 2.∴AB的最小值为 2.。

最新人教版初中数学八年级下册-第18章《平行四边形》复习课件-

最新人教版初中数学八年级下册-第18章《平行四边形》复习课件-

第 1 题图
第 2 题图
2.(4分)如图,在四边形ABCD中,E是BC边的中点,
连接DE并延长,交AB的延长线于F点,AB=BF.添
加一个条件,使四边形ABCD是平行四边形.你认为
下面四个条件中可选择的是( D )
A.AD=BC;
B.CD=BF;
C.∠A=∠C;
D.∠F=∠CDE。
3.(8分)(2013·镇江)如图,AB∥CD,AB=CD,点
6.(5分)小玲的爸爸在钉制平行四边形框架时,采用了
一种方法:如图所示,将两根木条AC,BD的中点
重叠,并用钉子固定,则四边形ABCD就是平行四
边形,这种方法的依据是( )
A.对角线互相平分的四边形是平行四边形
B.两组对角分别相等的四边形是平行四边形
C.两组对边分别相等的四边形是平行四边形
D.两组对边分别平行的四边形是平行四边形 7.(8分)如图,在▱ABCD中,点E,F是对角线AC上两
四边形的个数为( ) A.4个; B.3个; C.2个; D.1个
9.已知三条线段的长分别为10 cm, 14 cm和8 cm, 如 果以其中的两条为对角线, 另一条为边, 那么可以 画出所有不同形状的平行四边形的个数为( ) A. 1个; B. 2个; C. 3个; D. 4个.
10.如图, 在▱ABCD中, 对角线AC, BD相交于点O, E,
∠CFD+∠DFE=180°,∴∠AEF=∠DFE.∴AE∥DF.∴四边形 AFDE 为平行四边形
4.(4分)如图,在▱ABCD中,点E,F分别在AD,BC
上,且BE∥DF,若∠EBF=45°,则∠EDF的度数
为 45 。
5.(A41第B分8C2.)1D如课.2为图时平,平行四行平四边边四行形形边四A,B形边C则D形的可中的判添,性定加AB的质∥条与C件D判,是定要的使四综边合形应用

人教八下平行四边形专题知识点 常考(典型)题型 重难点题型(含详细答案)

人教八下平行四边形专题知识点 常考(典型)题型 重难点题型(含详细答案)

平行四边形专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (2)1.平行四边形的定义 (2)2.平行四边形的性质 (3)3.平行四边形的判定定理 (7)4.三角形中位线定理 (10)三、重难点题型 (14)1.平行四边形的共性 (14)2.平行四边形间距离的应用 (16)3.与平行四边形有关的计算 (17)4.与平行四边形有关的证明 (19)二、基础知识点1.平行四边形的定义平行四边形:两组对边分别平行的四边形。

平行四边形ABCD记作“□ABCD”注:只要满足对边平行的四边形都是平行四边形。

矩形、菱形、正方形都是特殊的平行四边形例1.如图,□ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:BE=DF.答案:∵四边形ABCD为平行四边形∴AD∥CB,AD=CB∵DE⊥AB,BF⊥CD∴∠DEA=∠CFB∴△ADE≌△CFB∴AE=CF∵DC=AB∴BE=DF例2.在平面直角坐标系中,有A(0,1),B(-1,0),C(1,0)三点,若点D与A,B,C构成平行四边形,求D的坐标。

(3解)答案:如下图,有三种情况,坐标分别为:(0,-1);(2,1);(-2,1)2.平行四边形的性质性质1(边):平行四边形的对边相等(AB=CD,AC=BD)证明:∵∠CAD=∠ADB ∠DAB=∠ADC AD=AD ∴△ACD≌△DBA(ASA)∴AB=CD AC=BD性质2(角):平行四边形对角相等,邻角互补(∠A=∠D,∠C=∠B;∠A+∠C=∠B+∠D=180°)证明:∵△ACD≌△DBA(ASA)又∵∠CAB=∠CAD+∠DAB ∠CDB=∠CDA+∠ADB∴∠CAB=∠CDB∵AB∥CD∴∠B+∠BDC=180°性质3(对角线):平行四边形对角线互相平分(AO=OC;BO=OD)证明:∵AD=BC ∠OAD=∠OCB ∠ODA=∠OBC∴△AOD≌△COB(ASA)∴AO=OC OB=OD注1:平行四边形对角线互相平分,但两对角线不一定相等解析:假设平行四边形对角线相等∴∠OAD=∠ADO=∠OBC=∠OCB∠OAB=∠OBA=∠OCD=∠CDO又∵∠DAB+∠CBA=180°∴∠DAB=∠ABC=∠BCD=∠CDA=90°∴仅在平行四边形的四个角为直角时(即矩形),对角线相等注2:对角线不一定平分角解析:假设平行四边形对角线平分角,则∠ADB=∠BDC ∠ACD=∠ACB ∵∠DCB=∠BAD∴∠ACD=∠CAD又∵OD=OD∴△AOD≌△COD(AAS)∴AD=DC=BC=AB∴仅当平行四边形四条边相等时(即菱形),对角线平分角性质4:平行四边形是中心对称图形,对称中心为对角线交点。

2025年浙教版八年级下册数学期末复习专题七 与平行四边形的性质与判定有关的计算和证明

2025年浙教版八年级下册数学期末复习专题七 与平行四边形的性质与判定有关的计算和证明
又∵ //,∴ 四边形为平行四边形.
针对训练
(2)若 ⊥ , = 8, = 10,求线段的长.
【解】由(1)可知,四边形为平行四边形,
∴ = = 10. ∵ ⊥ ,∴ ∠ = 90∘ .
∴ = 2 − 2 = 102 − 82 = 6.
类型2 计算线段的长度
例2 如图,在四边形中,∠ = ∠ = 90∘ ,点
在上,//.若∠ = 30∘ ,平分∠, = 8 3,
求的长.
【解】∵ ∠ = ∠ = 90∘ ,
∴ //.
又∵ //,∴ 四边形是平
又∵ //′,
∴ 四边形′是平行四边形.
针对训练
(2)若平分∠,求证:2 = 2 + 2 .
针对训练
【证明】 ∵ 平分∠,
1
2
∴ ∠ = ∠ = ∠.
在▱中,//,
∴ ∠ + ∠ = 180∘ .
由折叠知∠的直线折叠,使点
落到边上的点′处,折痕交边于点,连结.
针对训练
(1)求证:四边形′是平行四边形;
【证明】∵ 四边形是平行四边形,
∴ ∠ = ∠,//.
由折叠知∠ = ∠′,
∴ ∠′ = ∠. ∴ ′//.
(4 3)2 + 2 = (2)2 ,
解得 = 4,
∴ = = 4.
方法点拨:已知//,再证//即可得到四边形
是平行四边形,由平行四边形的性质得 = ,再
在直角三角形中求出即可.
变式2 已知,在四边形中,//,
∠ = ∠, = 3, = 10.
(1)如图①,求长;
【解】∵ //,
∴ ∠ + ∠ = 180∘ .
∵ ∠ = ∠,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【镭霆数学】平行四边形专题复习一、平行四边形与等腰三角形专题例题1已知:如图,平行四边形ABCD中,E为AD的中点,BE的延长线交CD的延长线于点F.(1)求证:CD=DF;(2)若AD=2CD,请写出图中所有的直角三角形和等腰三角形.训练一1.如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①② B.只有①②③ C.只有③④ D.①②③④2.如图,四边形ABCD是平行四边形,△AB′C和△ABC关于AC所在的直线对称,AD和B′C相交于点O,连接BB′.(1)请直接写出图中所有的等腰三角形(不添加字母);(2)求证:△AB′O≌△CDO.3.如图,已知AD和BC交于点O,且△OAB和△OCD均为等边三角形,以OD和OB为边作平行四边形ODEB,连接AC、AE和CE,CE和AD相交于点F.求证:△ACE为等边三角形.4.如图,已知:平行四边形ABCD中,∠BCD的平分线CE交边AD于E,∠ABC的平分线BG交CE于F,交AD于G.求证:AE=DG.二、平行四边形与面积专题例题2 已知平行四边形ABCD,AD=a,AB=b,∠ABC=α.点F为线段BC上一点(端点B,C除外),连接AF,AC,连接DF,并延长DF交AB的延长线于点E,连接CE.(1)当F为BC的中点时,求证:△EFC与△ABF的面积相等;(2)当F为BC上任意一点时,△EFC与△ABF的面积还相等吗?说明理由.训练二1. 如图,过▱ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的▱AEMG的面积S1与▱HCFM的面积S2的大小关系是()A. S1>S2 B.S1<S2 C.S1=S2 D.2S1=S22.农业技术员在一块平行四边形的实验田里种植四种不同的农作物,现需将该实验田划成四个平行四边形地块(如图),已知其中三块田的面积分别是14m2,10m2,36m2,则第四块田的面积为3.如图,AE ∥BD ,BE ∥DF ,AB ∥CD ,下面给出四个结论:(1)AB=CD ;(2)BE=DF ;(3)S ABDC =S BDFE ;(4)S △ABE =S △DCF .其中正确的有( )A.1个B.2个C.3个D.4个4.在面积为15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB=5,BC=6,则CE+CF 的值为( )A .231111+B .231111-C .231111+或231111- D .231111+或231+ 5.平行四边形ABCD 的周长为20cm ,AE ⊥BC 于点E ,AF ⊥CD 于点F ,AE=2cm ,AF=3cm ,求ABCD 的面积.6.如图,四边形ABCD 的对角线AC 、BD 交于点P ,过点P 作直线交AD 于点E ,交BC 于点F .若PE=PF ,且AP+AE=CP+CF .(1)求证:PA=PC .(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD 的面积.7.如图,平行四边形ABCD 中,AB :BC=3:2,∠DAB=60°,E 在AB 上,且AE :EB=1:2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP :DQ 等于( )A .3:4B .13:5C .13:6D .13:5三、平行四边形与角度专题例题3 如图,在平行四边形ABCD 中,∠BAD=32°.分别以BC 、CD 为边向外作△BCE 和△DCF ,使BE=BC ,DF=DC ,∠EBC=∠CDF ,延长AB 交边EC 于点G ,点G 在E 、C 两点之间,连接AE 、AF .(1)求证:△ABE ≌△FDA ;(2)当AE ⊥AF 时,求∠EBG 的度数.训练三1. 如图,将一平行四边形纸片ABCD 沿AE ,EF 折叠,使点E ,B ′,C ′在同一直线上,则∠AEF=度.2. 如图,已知平行四边形ABCD ,DE 是∠ADC 的角平分线,交BC 于点E .(1)求证:CD=CE ;(2)若BE=CE ,∠B=80°,求∠DAE 的度数.3.如图,E 、F 是▱ABCD 对角线AC 上的两点,且BE ∥DF .求证:(1)△ABE ≌△CDF ; (2)∠1=∠2.四、平行四边形与线段专题例题4 如图,ABCD 为平行四边形,AD=2,BE ∥AC ,DE 交AC 的延长线于F 点,交BE 于E 点.(1)求证:EF=DF ;(2)若AC=2CF ,∠ADC=60°,AC ⊥DC ,求DE 的长.训练四1. 如图,□ABCD 的对角线相交于点O ,过点O 任引直线交AD 于E ,交BC于F ,则OE OF (填“>”“=”“<”),并说明理由.2.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,如果AC=14,BD=8,AB=x ,那么x 的取值范围是3.已知:如图,在▱ABCD 中,∠ADC 、∠DAB 的平分线DF 、AE 分别与线段BC 相交于点F 、E ,DF 与AE 相交于点G .(1)求证:AE ⊥DF ;(2)若AD=10,AB=6,AE=4,求DF 的长.4. 如图,已知△ABC 是等边三角形,点D 、F 分别在线段BC 、AB 上,∠EFB=60°,DC=EF .(1)求证:四边形EFCD 是平行四边形;(2)若BF=EF ,求证:AE=AD .5.如图,E 、F 分别是▱ABCD 的边AD 、BC 上的点,且AE=CF ,AF 和BE相交于点G ,DF 和CE 相交于点H ,求证:EF 和GH 互相平分.6.已知:平行四边形ABCD 中,对角线AC 、BD 相交于点O ,BD=2AD ,E ,F ,G 分别是OC ,OD ,AB 的中点.求证:(1)BE ⊥AC ;(2)EG=EF .7. 如图,▱ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的F 点,若△FDE 的周长为8 cm ,△FCB 的周长为20 cm ,则FC 的长为 cm .8. 如图,已知:在△ABC 中,∠BAC=90°,延长BA 到点D ,使AD=21AB ,点G 、E 、F 分别为边AB 、BC 、AC 的中点.求证:DF=BE . 五、三角形中位线专题例题5 如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC=10,则PQ 的长为( )A .23B .25 C .3 D .4 训练五1. 如图,AB ∥CD ,E ,F 分别为AC ,BD 的中点,若AB=5,CD=3,则EF 的长是( )A.4 B.3 C.2 D.12.如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是()A.15° B.20° C.25° D.30°3.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7 B.9 C.10 D.11六、平行四边形综合探究专题例题6如图所示,在□ABCD中,AB>BC,∠A与∠D的平分线交于点E,∠B与∠C的平分线交于F 点,连接EF.(1)延长DE交AB于M点,则图中与线段EM一定相等的线段有哪几条?说明理由;(不再另外添加字母和辅助线)(2)EF、BC与AB之间有怎样的数量关系?为什么?(3)如果将条件“AB>BC”改为“AB<BC”,其它条件不变,EF、BC与AB的关系又如何?请画出图形并证明你的结论.训练六1.如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD=4AG;④△DBF≌△EFA.其中正确结论的序号是2.如图所示,△ABC为等边三角形,P是△ABC内任一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=3.如图,▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为4.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个B.2个C.3个D.4个5.在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.(1)如图①,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;(2)如图②,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.6. 在▱ABCD中,对角线AC、BD相交于点O,直线EF过点O,分别交AD、BC于E、F,如图①(1)求证:AE=CF;(2)将图①中▱ABCD沿直线EF折叠,使得点A落在A1处,点B落在B1处,如图②设FB1交CD于点G,A1B1分别交CD、DE于点P、Q,求证:EQ=FG.7.如图1,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明).(温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于点M、N,判断△OMN的形状,请直接写出结论;问题二:如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD的形状并证明.。

相关文档
最新文档