八年级平行四边形复习教案
新人教版八年级数学下册《平行四边形》教案设计(10篇)

新人教版八年级数学下册《平行四边形》教案设计(10篇)八年级数学下册《平行四边形》教案设计篇1教学准备教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.学生准备:复习,平行四边形性质;学具:课本“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。
八年级数学下册《平行四边形》教案设计篇2教材分析:平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。
平行四边形的性质及判定复习课教案

平行四边形的性质及判定复习课教案平行四边形的性质及判定复习课教案「篇一」一教学目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.二重点、难点1.重点:平行四边形的判定方法及应用.2.难点:平行四边形的判定定理与性质定理的灵活应用.3.难点的突破方法:平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.(1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.(2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意:①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;②本节课只介绍前两个判定方法.(3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.然后利用学生手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件.在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.(4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求.(5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.(6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.三例题的意图分析本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.四课堂引入1.欣赏图片、提出问题.展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的'一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。
《平行四边形》教案参考5篇

《平行四边形》教案参考5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!《平行四边形》教案参考5篇教案的编写应当充分考虑学生的学习能力和学习需求,以便让每个学生都能够得到适当的教育,一份完善的教案能够提供丰富多样的教学资源和教学辅助材料,下面是本店铺为您分享的《平行四边形》教案参考5篇,感谢您的参阅。
人教版初中数学八年级下册《平行四边形的性质》教案

人教版初中数学八年级下册《平行四边形的性质》教案一. 教材分析《平行四边形的性质》是人教版初中数学八年级下册的教学内容,本节课主要让学生掌握平行四边形的性质,包括对边平行且相等,对角相等,对边和对角线的性质等。
通过学习,让学生能够识别平行四边形,并运用性质解决实际问题。
二. 学情分析学生在七年级时已经学习了四边形的分类和性质,对四边形有了一定的认识。
但平行四边形作为一个特殊的四边形,其性质和特点需要进一步引导学生理解和掌握。
在导入环节,可以通过复习四边形的性质,为新课的学习打下基础。
三. 教学目标1.知识与技能:让学生掌握平行四边形的性质,能够识别和判断平行四边形。
2.过程与方法:通过观察、操作、推理等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:平行四边形的性质及其应用。
2.难点:对角线的性质和判定平行四边形的方法。
五. 教学方法采用问题驱动法、合作学习法和情境教学法,引导学生主动探索、发现和解决问题,提高学生的学习兴趣和参与度。
六. 教学准备1.教具:平行四边形的模型、剪刀、彩笔等。
2.课件:平行四边形的性质及其应用。
七. 教学过程1.导入(5分钟)复习四边形的性质,提问:四边形有哪些性质?设计意图:巩固学生对四边形的认识,为新课的学习做好铺垫。
2.呈现(10分钟)展示平行四边形的模型,引导学生观察并提问:平行四边形有什么特点?学生分组讨论,总结出平行四边形的性质。
设计意图:培养学生观察和思考的能力,引导学生发现平行四边形的性质。
3.操练(10分钟)让学生用剪刀剪出平行四边形,并用彩笔标记出对边和对角线。
学生互相检查,教师巡回指导。
设计意图:培养学生动手操作的能力,加深对平行四边形性质的理解。
4.巩固(10分钟)出示一些判断题,让学生判断题目中给出的图形是否为平行四边形。
设计意图:巩固所学知识,提高学生的判断能力。
平行四边形复习课教案

《平行四边形》复习教案仁德一中妥连军一学习目标:1.知识目标:通过运用平行四边形、矩形、菱形、正方形的性质和判定解决问题,加深对平行四边形、矩形、菱形、正方形的性质和判定的理解.2.能力目标:(1)通过平行四边形、矩形、菱形、正方形性质和判定的归纳梳理,建立良好的思维体系.(2)通过探究平行四边形有关问题,建立模型,提高探究能力.3.情感目标:在学习过程中积累经验,体验成功,激发兴趣,发展创新精神和实践能力.二教学重点:平行四边形、矩形、菱形、正方形的性质和判定的灵活运用.三教学难点:综合运用平行四边形、矩形、菱形、正方形的性质和判定解决问题.四知识链接:平行四边形、矩形、菱形、正方形的性质和判定,三角形中位线定理.五课时安排:1课时六教学过程设计:昆明中考考情分析:1、考频及权重分析平行四边形在昆明市近五年的中考中,共考了9次。
其中市统测(2015,2016,2018)三年出现5次,省统测(2017,2019)两年出现4次。
分值在11-14分之间,所占比重为10%左右。
2、题型分析在填空题和选择题中主要考查平行四边形及特殊平行四边形的性质以及利用性质求长度、角度、三角函数值等计算;简答题中主要考查判定与计算,也常以平行四边形、特殊平行四边形为载体,考查全等、线段位置关系及圆的计算等。
在压轴题中以会出现平行四边形哦,主要考查平行四边形的存在性、探究性等问题。
【任务一】知识梳理(一)思维导图回顾平行四边的性质判定:(二)平行四边形及特殊平行四边形的性质(三)平行四边形及特殊平行四边形的判定【任务二】条件探索如图,在△ABC中,D、E、F分别是BC、AB、AC的中点,(1)猜想四边形AEDF是什么四边形,并证明你的结论.(2)当△ABC的边和角满足什么条件时,四边形AEDF是矩形?(3)当△ABC的边和角满足什么条件时,四边形AEDF是菱形?(4)当△ABC的边和角满足什么条件时,四边形AEDF是正方形?教学策略:学生看、说、展示思维,构建模型,教师展示规范答题格式。
人教版八年级数学下册18.1《平行四边形的性质》教案

然而,我也注意到,一些学生在逻辑推理和数学表达方面还存在困难。在未来的教学中,我需要更多地关注这部分学生,提供更多的指导和支持,帮助他们克服这些难点。
3.增强学生的空间观念,通过实际操作和解决具体问题,让学生理解平行四边形在实际生活中的应用,提高解决几何问题的能力。
4.培养学生的数学建模素养,使学生能够运用平行四边形的性质构建数学模型,解决实际问题,体会数学与实际生活的紧密联系。
三、教学难点与重点
1.教学重点
a.平行四边形的定义及其判定方法:熟练掌握平行四边形的定义,能快速识别图形是否为平行四边形。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形的定义、性质和在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对平行四边形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我们探讨了平行四边形的性质,我发现学生们对这一几何图形的概念和性质表现出很大的兴趣。在导入环节,通过提出与生活相关的问题,成功吸引了学生的注意力,他们积极参与,提出了不少有趣的观察和问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行四边形的基本概念。平行四边形是具有两对对边平行的四边形。它在几何图形中非常重要,广泛应用于日常生活和建筑领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了平行四边形在建筑设计中的应用,以及它如何帮助我们解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调平行四边形的定义和性质这两个重点。对于难点部分,我会通过图形示例和逻辑推理来帮助大家理解。
数学八年级下册第18章平行四边形 教案

18.1 平行四边形(第1课时)【教学任务分析】教学目标知识技能1.理解平行四边形的的概念.2.探究并掌握平行四边形的边、角性质.3.利用平行四边形的性质来解决简单的实际问题.过程方法通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生简单推理能力和逻辑思维能力,渗透“转化”的数学思想.情感态度让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.重点平行四边形的概念和性质的探索.难点平行四边形的性质的运用.【教学环节安排】环节教学问题设计教学活动设计情境引入【问题1】观察章前图,你能从图中找出我们熟悉的几何图形吗?【问题2】我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?学生观察,师导出本章所研究的内容.设计意图:这个问题是以农田鸟瞰图作为本章的章前图,学生可以见识各种四边形的形状.通过查找长方形、正方形、平行四边形、梯形等起到复习的作用,为进一步比较系统地学习这些图形做准备,并明确本章的学习任务.自主探究合作交流【问题3】1.请举出你身边存在的平行四边形例子.2.观察问题2中的图片,你能说出平行四边形的定义吗?3.你能表示平行四边形吗?4.你能用符号语言来描述平行四边形的定义吗?【问题 4】1.根据定义画一个平行四边形,并观察这个四边形除了“两组对边分别平行”外,它的边、角之间还有哪学生举生活中例子,如:大门口的伸缩门,书本等,让学生体会平行四边形在日常生活中应用广泛.学生结合实例和教材中的图片,师引导学生归纳这些四边形的共同特征,即:两组对边平行.师强调平行四边形的对边、邻边、对角、邻角、对角线等概念.教师引导学生观察、猜想、验证得出结论,即:平行四边形的对边相等;平行四边形的对角些关系?度量一下,是不是和你的猜想一致?2.你能证明你发现的上述的结论吗?已知:四边形中,AB∥CD求证:AD=BC,AB=CD证明:(略)相等小组合作交流证明的方法.教师指导学生发现证明的方法并提示:证明线段相等或角相等时,通常证明三角形的全等,而图中没有三角形怎么办?如何添加辅助线将四边形的问题转化为三角形的问题来解决.尝试应用例1.小明用一根36米长的绳子围成了一个平行四边形的场地,其中AB边长为8米,其他三条边的长是多少?【分析】根据平行四边形的性质,CD=AB=8,AD=BC=12(36-AB-CD)=12(36-8-8)=10.例2.如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.【分析】要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式的性质,可得BE=DF.由“边角边”可得出所需要的结论.练习:1.在ABCD中,∠A=︒50,则∠B= °,∠C= °,∠D= °.2.在下列图形的性质中,平行四边形不一定具有的是().A.对角相等B.对角互补C.邻角互补D.内角和是︒3603.如图ABCD中,EF//AD,GH//CD,EF与GH相交点O,图中平行四边形共有().(A)4个(B)5个(C)8个(D)9个教师引导学生审题,学生弄清题意后教师示范解题过程,并重点强调解答中平行四边形的性质的几何表述.引导学生总结:在平行四边形中已知相邻的两边长,可求另两边的长.学生思考并解答,师引导生总结:平行四边形中已知一个角,可求其余的三个角.成果展示引导学生对上面的问题进行展示交流引导学生自己出一组题,小组内做.小组内讨论交流.补充提高1.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.3.如图,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.教师出示题目,学生分组讨论解题方法,让代表发言口述解题思路.找学生板演解题过程,做后师生共同点评.作业设计1.必做题:习题.2.选做题:探究开放性作业.教师布置作业,并提出要求.学生课下独立完成,延续课堂.18.1 平行四边形(第2课时)【教学任务分析】教学目标知识技能1.探究并掌握平行四边形对角线的性质.2.利用平行四边形的性质来解决简单的实际问题.过程方法通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生简单推理能力和逻辑思维能力,渗透“转化”的数学思想.情感态度让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.重点平行四边形的对角线互相平分的性质探索.难点平行四边形的性质应用.【教学环节安排】环节教学问题设计教学活动设计情境引入【问题1】1.什么样的四边形是平行四边形?2.学过哪些平行四边形的性质?教师出示问题 1.学生回忆上节课所学内容,师补充完善.自主探究合作交流【问题2】请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转180,观察它还和EFGH重合吗?你能从中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?【问题3】你能证明上述结论吗?【问题4】你会作平行四边形的高吗?教师出示问题2.学生分小组动手操作.学生操作观察,师点拨并引导学生分析、发现、归纳、总结得出结论.【结论】(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形对角线互相平分.教师出示问题3.先让学生独立思考,或与同伴交流.再请学生板书过程.鼓励学生勇于表达让学生尝试着作出平行四边形的高.尝试应用例1已知四边形ABCD是平行四边形,10AB=cm,8AD=cm,AC BC⊥,求BC,CD,AC,OA的长以及ABCD的面积.【分析】由平行四边形的对边相等,可得BC,CD的长,在Rt ABC∆中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底⨯高(高为此底上的高),可求得ABCD的面积.例2 已知:如图ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF.【变式】若上题中的条件都不变,将EF转动到图a的位置,那么例1的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交如图b,上题的结论是否成立,说明你的理由.教师出示例1.ODCBA学生思考,尝试完成,有难度的小组内交流.教师巡视,了解学生的学习情况,并针对个别在学习中有困难的学生进行个别辅导.完成练习后,先小组内进行交流、讨论,然后师生共同评析.存在的共性问题共同讨论解决.教师出示例2.请两位学生分析,其他学生补充.然后一生板演.教师出示变式练习,学生思考、完成.成果展示1.已知O是平行四边形ABCD的对角线交点,AC=24,BD=38,AD=28,求△OBC的周长.2.已知平行四边形ABCD,AB=8cm,BC=10cm,∠B=30°,求平行四边形ABCD的面积.学习小组内互相交流,讨论,展示.学生扮演,师巡视.做后师生共同点评,纠正出现的错误.师引导学生总结补充提高1. ABCD的周长是32,5AB=3BC,则对角线AC的取值范围为( )A. 6<AC<10B. 6<AC<16C. 10<AC<16D. 4<AC<162.若ABCD的周长为28,△ABC的周长为17cm,则AC的长为()A.11cmB. 5.5cmC.4cmD.3cm3.在平行四边形ABCD中,已知对角线AC和BD相交于点O,△BOC的周长为24,BC=10,求对角线AC与BD得和.4.如图,在□ABCD中,BD⊥AB,AB=12cm,AC=26cm,求AD、BD的长.教师出示题目.第1题、第2题由学生独立完成. 教师巡视,个别辅导.请两位学生回答.师生共同评析.存在的共性问题共同讨论解决.第3、4题鼓励学生独立思考后解决.感觉有困难的学生可以寻求同学的帮助,然后完成.小组内交流.作业设计必做题:课本第3题.选做题:完成本课时同步学习.教师布置作业,并提出要求.学生课下独立完成,延续课堂.DCBA老四老三老二老大教学反思:18.2.2 矩形(第1课时)时间地点召集人课题18.2.2矩形的性质课时第 1 课时(总第 1 课时)科任教师授课时间教学目标知识与能力:1.掌握矩形的性质定理.2.掌握“直角三角形斜边上的中线等于斜边的一半”这一性质,并能利用这一性质和矩教学反思18.2.2 矩形(第2课时)主备人:板书设计教学反思18.2.1 菱形(第1课时)【教学任务分析】教学目标知识技能理解菱形的概念,掌握菱形的性质.过程方法经历菱形的性质的探究过程,培养学生的动手实验、观察推理的意识,发展学生的形象思维和逻辑推理能力.情感态度在探究菱形的性质的活动中获得成功的体验,通过运用菱形的性质,锻炼克服困难的意志,建立自信心.重点理解并掌握菱形的性质.难点菱形性质的运用.环节教学问题设计教学活动设计情境引入【问题1】如图,在平行四边形中,保持角的度数不变,改变边的长度能否得到一个特殊的平行四边形?小结:有一组邻边相等的平行四边形叫做菱形.教师用教具展示问题1的过程(如果让学生做一个学具效果会更好),学生观察边的大小变化;教师板书菱形的定义;学生回答,并用图片展示生活中的菱形【问题2】你能举出生活中你看到的菱形吗?教师讲解菱形美感,为接下来的对称性的引出打基础自主探究合作交流【问题3】师生互动:将一个矩形的纸对折两次,沿图中虚线剪下,再打开,就得到一个菱形.观察得到的菱形:(1)它是轴对称图形吗?(2)有几条对称轴?对称轴之间有什么位置关系?(3)你能看出图中哪些线段或角相等?性质1:菱形的四条边都相等.性质2:菱形的两条对角线互相垂直,每一条对角线平分一组对角.【问题4】如图,四边形ABCD是菱形,求证:(1)AB=BC=CD=DA;(2)AC⊥BD,AC平分∠DAB和∠DCB ,BD平分∠ADC和∠ABC.教师演示,学生动手(可以合作)操作折剪.教师依次提出3个问题;学生根据所剪图形,思考、合作、讨论,并依次回答.在这个过程中教师应重点关注以下几点:(1)学生动手操作时,是否能恰当的质疑,探究的方向正确、合理,并合情地做出猜想.(2)学生口头表述性质时,所用的语言是否恰当、准确,若有出现语言表述不恰当时应当及时给予纠正.学生在充分讨论思考的基础上口述证明过程;教师及时补充、归纳、鼓励.尝试应用1.已知菱形的周长是12cm,那么它的边长是______.2.菱形ABCD中∠BAD=60°,则∠ABD=_______.3.菱形的两条对角线长分别为6cm和8cm,则菱形的边长是________.4.菱形ABCD中,O是两条对角线的交点,已知AB=5cm,AO=4cm,求两对角线AC、BD的长.5.如图1,菱形ABCD的两条对角线BD、AC长分别是6cm和8cm,求菱形的周长和面积.学生练习;教师矫正.4.教师提问:AO、DO的长分别是多少?如何求出AD的长?5.菱形的面积如何求出?利用练习的结论引入讨论菱形的面积公式ABCDS菱形=12AC·BD成果展示1.如图2是菱形花坛ABCD,它的边长为20m,∠ABC=60°,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积(分别精确到0.01m和0.01m2).小组先讨论交流,师点拨疑点.找小组代表板演,点拨1题:∵花坛ABCD是菱形,∴AC⊥BD,∠ABO=21∠ABC=30°.在Rt△OAB中,2.已知如图3,菱形ABCD中,E是AB的中点,且DE ⊥AB,AE=2. 求:(1)∠ABC的度数;(2)对角线AC、BD的长;(3)菱形ABCD的面积.AO=10m,BO=300,∴AC=2AO=20m,BD=2BO=34064 m.点拨∵ E是AB的中点,且DE ⊥AB,∴AD=BD. 又∵AB=AD, ∴△DAB为等边三角形补充提高1.菱形的一个角是150°,如果边长为a,那么它的高为_____.2.如果菱形的周长等于它的一组对边距离的8倍,那么它的四个角分别是________.3.菱形的一个内角是120°,边长为4厘米,则此菱形的两条对角线长分别是__________.4. 小红所在学校里的一处花坛是美丽的菱形图案,如图4所示,小明发现,他沿着花坛的边走完一个菱形图案用了12秒钟,当他以同样的速度从A到B再到C(AB=BC),只用了6秒钟,小明说他知道了两个菱形间的夹角的度数了.你知道∠1的度数是多少吗?5.菱形的周长为40cm,它的一条对角线长10cm.⑴求菱形的每一个内角的度数.⑵求菱形另一条对角线的长.⑶求菱形的面积.教师出示题目学生独立完成教师巡视解疑小组交流4题方法5题找学生板演作业设计必做题:选做题:利用所学过的四边形设计一幅漂亮的图案学生课下完成教学反思:18.2.1 菱形(第2课时)【教学任务分析】教学目标知识技能理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证、画图和计算.过程方法经历探索菱形判定思想的过程,领会菱形的概念以及应用方法,发展学生主动探究的思想、动手操作能力和说理的基本方法.情感态度培养良好的思维意识以及合情推理的能力,感悟其应用价值及培养学生的观察能力、动手能力及逻辑思维能力.重点菱形的判定定理的证明及应用.难点判定方法的证明方法及运用.【教学环节安排】环节教学问题设计教学活动设计情境引入【问题1】(1)菱形的定义是什么?(2)菱形的性质有哪些?(3)运用菱形的定义进行菱形的判定,应具备几个条件?有一组邻边相等的平行四边形是菱形.【问题2】用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?判定定理一:对角线互相垂直的平行四边形是菱形.师生回顾菱形的定义,教师:出示教具并演示;学生:观察演示,思考木条的位置关系,回答问题.教师引导学生口头证明:教师:强调注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直自主探究合作交流【问题3】如果对角线互相垂直的四边形是菱形吗?为什么?同时可用上图来证实,虽然对角线AC⊥BD,但它们都不是菱形.【问题4】试画一个菱形,使它的边长为2cm.判定定理二:四边相等的四边形是菱形.菱形常用的判定方法归纳为:教师提出问题,学生思考 1.对角线相等的四边形是不是菱形?(在黑板上画出图形供学生思考).2.对角线互相垂直平分的四边形是不是菱形?学生思考,并口头证明。
八年级数学教案:《平行四边形》(最新7篇)

八年级数学教案:《平行四边形》(最新7篇)平行四边形教案篇一课型:新授课。
教学分析:本节课是在学生已经认识长方形、正方形的基础上进行教学。
重点是让学生通过亲自观察、动手测量、比较掌握长方形、正方形的特点,初步认识平行四边形。
教学目标:(一)知识与技能:引导学生观察长方形、正方形的边、角的特点,认识长方形和正方形的共性及各自的特性。
会在方格纸上画长方形、正方形,并认识平行四边形。
(二)过程与方法:学生通过观察比较、动手操作、交流合作等活动发现长方形和正方形的特点,积累感性认识,初步认识平行四边形。
(三)情感态度价值观:培养学生积极参与的学习品质,使学生获得成功的`体验,感受教学与日常生活的密切联系,树立学好数学的信心。
教学策略:创设情景、动手实践、交流合作。
教具学具:多媒体课件、长方形、正方形、格子纸、三角板。
教学流程:一、创设情景,提出问题。
今天,我们的好朋友智慧星要带领大家到图形王国去参观。
参观之前提一个小小的要求,请你仔细观察、多动脑筋。
(多媒体演示图片)你能说出这些事物中你认识的图形吗?(抽出长方形、正方形。
引出课题)二、协作探索,研究问题。
1、教学长方形、正方形。
(1)多媒体出示长方形、正方形:请大家仔细观察他们各有几条边,几个角?(2)教学对边的概念:在生活中我们把两个人面对面叫做对面,在长方形中上下两条边我们把它们叫做对边、左右两条边也叫对边。
(多媒体演示)(3)小组合作研究长方形、正方形的特点。
下面请大家利用你手中的工具量一量、折一折、比一比,和组内同学说一说。
长方形的对边和正方形的边有什么特点,角有什么特点?(4)指名汇报,并演示自己发现的过程。
共同总结:长方形和正方形都是四条边围成的图形,它们都是四边形,它们的每个角都是直角,长方形的对边相等,正方形的四条边都相等。
(5)在方格纸上画出长方形、正方形2、教学平行四边形。
(1)多媒体演示:在生活中我们还会看到这样一些图形,它们是长方形吗?是正方形吗?我们把这样的四边形叫做平行四边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教案内容备课记录第十八章《平行四边形》复习课教案
【教学目标】
1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复
习平行四边形与各种特殊平行四边形的定义、性质、判定方法;
2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流
过程中,逐渐建立知识体系;
3、引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成
功的体验,形成科学的学习习惯。
【教学重点】
1、平行四边形与各种特殊平行四边形的区别。
2、梳理平行四边形、矩形、菱形、正方形的知识体系及应用方法。
【教学难点】
平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。
【教学模式】
以题代纲,梳理知识-----变式训练,查漏补缺 -----综合训练,总结规律
-----测试练习,提高效率
考点呈现
考点一求度数
例1如图1,在□ABCD中,CE⊥AB,E为垂足.如果∠A=125°,则∠BCE=
()
A.550
B.350
C.300
D.250
解析:本题只要求出∠B的度数,就可以得到∠BCE
的度数,由已知□ABCD中,∠A=125°,知∠A+∠B=180°,得∠B=55°.进而得
∠BCE=35°.
故选B.点评:本例也可以利用对边平行、对角相等来求.
考点二平行四边形的性质
例2 如图2,在周长为20cm的□ABCD中,AB≠AD,AC,BD相交于点O,
OE⊥BD交AD于E,则△ABE的周长为()
A.4cm
B.6cm
C.8cm
D.10cm
解析:本题要求△ABE 的周长,就是求AB+BE+EA 的值,而题目所给的条件是□ABCD 的AC ,BD 相交于点O ,可得AC 、BD 互相平分,即O 是BD 的中点,
又OE ⊥BD 交AD 于E ,可知OE 是BD 的垂直平分线,则有BE=DE ,所以AB+BE+EA=AB+DE+EA=AB+ DA=
2
1×20=10(cm ).故选D . 点评:本例利用平行四边形及线段垂直平分线的性质把所要求的三角形的周长转化为平行四边形两邻边的和,使问题得到解决.
考点三 正方形的性质
例3 (1)如图3,在正方形ABCD 中,点E ,F 分别在边BC 、CD 上,AE ,BF 交于点O ,∠AOF =90°.求证:BE =CF.
(2) 如图4,在正方形ABCD 中,点E ,H ,F ,G 分别在边AB ,BC ,CD ,DA 上,EF ,GH 交于点O ,∠FOH =90°, EF =4.求GH 的长.
(3) 已知点E ,H ,F ,G 分别在矩形ABCD 的边AB ,BC ,CD ,DA 上,EF ,GH 交于点O ,∠FOH =90°,EF =4. 直接写出下列两题的答案:①如图5,矩形ABCD 由2个全等的正方形组成,求GH 的长;
②如图6,矩形ABCD 由n 个全等的正方形组成,求GH 的长(用n 的代数式表示).
图5
图6
解析:(1)要证BE=CF ,发现它们分别在△ABE 和△BCF 中,由已知
A
B
C
D
O
E
图3 图4
条件可以证出△ABE ≌△BCF ;第(2)可以借助(1)的解法,作出辅助线,构造成(1)的形式;而(3)则是在前两问的基础对规律的总结,
发现在正方形内互相垂直的两条线段相等.
(1) 因为四边形ABCD 为正方形,所以AB=BC,∠ABC=∠BCD=90°,所以 ∠EAB+∠AEB=90°. 因为∠EOB=∠AOF =90°, 所以∠FBC+∠AEB=90°, 所以∠EAB=∠FBC ,
所以△ABE ≌△BCF ,所以BE=CF .
(2)如图7,过点A 作AM//GH 交BC 于M ,过
点B 作BN//EF 交CD 于N,AM 与BN 交于点R ,则四边形AMHG 和四边形BNFE 均为平行四边形,所以 EF=BN,GH=AM ,
因为∠FOH =90°, AM//GH ,EF//BN ,所以∠NRA=90°,故由(1)得, △ABM ≌△BCN ,所以AM=BN.所以GH=EF=4.
(3) ① 8.② 4n .
点评:这是一道猜想题,由特殊的图形得到结论,进一步推广到在其它情况下也成立,这是今后中考常见的一个题型,需要我们认真观察、计算、猜想、推广应用.
考点四 四边形的折叠
例4 将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB =3,则BC 的长为( )
A.1
B.2
C.2
D.3
解析:由对矩形的折叠过程可知,矩形ABCD 是一个特殊的矩形,否则折叠后难以得到菱形,据此,矩形的对角线等于边BC 的2倍,于是,在Rt △ABC 中利用勾股定理即可求解.由题意知AC =2BC ,在Rt △ABC 中,由勾股定理,得AC 2=AB 2+BC 2,即4BC 2=AB 2+BC 2,而AB =3,所以BC =3.故应选D .
点评:有关特殊四边形的折叠问题历来是中考命题的一个热点,求解时只要依据折叠的前后的图形是全等形,再结合特殊四边形的有关知识就可以解决问题.
A B
C
D
F E
O
A B C
D
图7
R
N
M
误区点拨
一、平行四边形的性质用错
例1如图1,在平行四边形ABCD 中,下列各式:①0
12180∠+∠=;②0
23180∠+∠=; ③0
34180∠+∠=;④0
24180∠+∠=.
其中一定正确的是( ) A .①②③ B .②③④ C .①②④ D .①③④ 错解:选B 、C 、D.
剖析:平行四边形的两组对边分别平行,对角相等的性质,同时考查了平行线的,因为∠1与∠2互补,所以0
12180∠+∠=,因为四边形ABCD 是平行四边形,所以AB ∥DC ,AD ∥BC ,∠2 =∠4,所以0
34180∠+∠=,0
23180∠+∠=.正解:选A.
例2 如图2,平行四边形ABCD 中,对角线AC 和BD 相交于O 点,若AC=8,BD=6,则边长AB 取值范围为( )
A .1<A
B <7 B .2<AB <14
C .6<AB <8
D .3<AB <14 错解:选B.
剖析:本题错误原因在于没有搞清这三条边是否在同一个三角形中就用两边之和大于第三边,两边之差小于第三边来判定.在平行四边形ABCD 中,两条对角线一半与平行四边形一边组成一个三角形然后再求取值范围.正解:选A.
二、运用判定方法不准确
例3已知,如图3,在□ABCD 中,E ,F 分别是AB ,CD 的中点. 求证:(1)△AFD ≌△CEB ; (2)四边形AECF 是平行四边形. 错解:(1)在□ABCD 中,AD=CB ,AB=CD ,∠D=∠B. 因为E ,F 分别是AB 、CD 的中点,所以
11
,22
DF CD BE AB ==,即DF=BE.
在△AFD 和△CEB 中,AD=CB ,∠D=∠B ,DF=BE ,所以 △AFD ≌△CEB.
(2)由(1)知,△AFD ≌△CEB ,所以∠DFA=∠BEC ,所以AF ∥CE ,即
B
A
C
D
O
四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).
剖析:本例第(1)问是正确的,错在第(2)问选择证平行四边形的方法上,我们利用“一组对边平行且相等的四边形是平行四边形”这个方法时,证明出现了错误.
正解:(1)同上.
(2)在□ABCD中,AB=CD,AB∥CD,由(1)
得BE=DF,所以AE=CF.所以,四边形AECF是平行四
边形.
例4 如图4,在四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F
在AD上,AF=CE,EF与对角线BD相交于点O.试说明:O是BD的中点.
错解:在四边形ABCD中,AB=DC,AD=BC,所以四边形ABCD是平行四边形,又因为AF=CE,所以O是BD的中点.
剖析:本例主要错在误认为O是平行四边形ABCD对角线的交点上,但我们观察图形可以发现EF与BD为四边形FBED的对角线,只要得到四边形FBED是平行四边形,就能根据平行四边形的对角线互相平分这一性质即可得到O是BD 的中点.
正解:连接FB,DE,因为AB=DC,AD=BC,所以四边形ABCD是平行四边形.所以FD∥BE.
又因为AD=BC,AF=CE,所以FD=BE.所以四边形FBED是平行四边形.所以BO=OD,即O是BD的中点.。