小学二年级奥数下册第九讲-整数的分拆习题+答案

合集下载

二年级奥数(整数拆分)习题及答案:分糖方案

二年级奥数(整数拆分)习题及答案:分糖方案

编者小语:题海无边,题型有限。

学习数学必须要有扎实的基本功,有了扎实的基本功再进行奥数的学习就显得水到渠成了。

查字典数学网小编整理二年级奥数题(整数拆分)及答案:分糖方案,助您快速通往高分之路!!有人以为8是个吉利数字,他们得到的东西的数量都能要够用8表示才好.现有200块糖要分发给一些人,请你帮助想一个吉利的分糖方案.【答案解析】可以这样想:因为200的个位数是0,又知只有5个8相加才能使和的个位数字为0,这就是说,可以把200分成5个数,每个数的个位数字都应是8.这样由85=40及200-40=160,可知再由两个8作十位数字可得802=160即可.最后得到下式:88+88+8+8+8=200.。

高斯小学奥数含答案二年级(下)第09讲加减法巧算二

高斯小学奥数含答案二年级(下)第09讲加减法巧算二

第九讲加减法巧算二前续知识点:二年级第一讲;XX 模块第X 讲后续知识点:X 年级第X 讲;XX 模块第X 讲做把里面的人物换成相应红字标明的人物咦,发生什么事了?I厂I厂I •②③④+ •③④①+ •④+ •①②③•②②②- •③③•-④④不知道什么时候门关上了,要想出去,必须在30秒的时间内做出下面这道题.小朋友们,你们有办法在30秒内做出这道题吗?在进行加减法计算时,“先计算括号里的部分,再从左往右依次计算”是基本的运算法则.但除此之外,还有许多运算技巧,熟练掌握各种运算技巧可以使你计算的更快更准.“凑整法”是最常用的巧算方法,就是在计算时优先计算可以得到整十、整百、整千的部分,从而达到巧算的目的.要想凑出整十,两个数的末尾相加应该得0,这样的情况除了0 0 外,还有1 9,2 8,3 7,4 6,5 5 .同学们在做题时要注意观察各加数的个位,看能不能找到合适的凑法.除了加法可以凑整之外,减法同样可以凑整,个位相同的两个数相减后便能得到整十的数.在进行加减法混合运算时,经常会遇到能够巧算的数不在一起的情况,这时候就需要通过调整运算顺序,把能巧算的放在一起先算.但需要注意的是,在调整的过程中,每个数都必须带着自己前面的符号一起移动,这种调整可以形象地称作“带符号搬家” .如果搬家的是算式中的第一个数,前面没有符号,在这个数之前添上一个加号即可.除了“带符号搬家”可以调整运算顺序外,“脱括号”与“添括号”也是改变运算顺序的常用方法.加减法算式中,“添括号”要遵循下面的规则:括号前面是加号,添上括号不变号;括号前面是减号,添上括号变符号.例如:57623860171357(6238)60(1713)57100603015730例题1 用简便方法计算:(1)375 59 2412) 168 139 129提示】找出可以凑成整十、整百的数.练习1 用简便方法计算:2) 367 145 85(1)195 89 11例题2用简便方法计算:1)16238792)1574329213) 4215217548 25【提示】找可以凑整的“好朋友” ,添加括号,让“好朋友”先计算.练习2 用简便方法计算:364 276 64 266前面学习了“添括号”的巧算方法,其实“脱括号”也是一个重要的技巧,“脱括号”与“添括号”类似,“脱括号”要遵循下面的规则:括号前面是加号,脱去括号不变号;括号前面是减号,脱去括号变符号.例题3用简便方法计算:(1)121 (45 21) (2) 176 (15 76)提示】先去括号,再凑整.练习 3 简便方法计算:(1) 138 (38 49) 例题 4 用简便方法计算:1)145 (55 78) (14 22)2)162 (62 135) (35 19)3)273 (150 18) (173 76) (124 18)提示】 先去括号,找到能凑整的数再进行计算.练习 4 用简便方法计算:(1) 123 (23 45) (45 67)2) 437 (200 86) (63 56)接下来看一个与数位有关的计算. 这样的计算如果硬算就显得特别麻烦, 有没有巧妙方法呢?2) 234 (34 85)开动脑筋想一想例题5用简便方法计算:246 462 624 888【提示】仔细观察,前面三个数都是由哪几个数字组成的?例题6如下图所示,除第一行外,每个圆圈中的数都等于它上面两个圆圈中的数的和,请计算最下面的圆圈中应填的数.课堂内外神奇的读心术假如有人能迅速说出一个三位数减法算式结果里的十位数字,你会不会感到很惊讶呢?下面我们就来看看这种神奇的减法.①你在心中想一个三位数(不要说出来),它的个位数、十位数、百位数均不同,如:563.②你把刚才想的三位数倒过来变成另外一个数(记在心里,不要说不出),即365.③你把步骤①和步骤②中的两个数相减,得出结果.注意要用大数减小数,即:563 365 198 .这个结果只需让你自己记得.④现在,有人可以马上说出十位数字是9.你发现什么奥秘了吗?举个例子试着算算看!作业1. 用简便方法计算.1) 365 84 24 2) 223 59 412. 用简便方法计算.1) 427 61 410 393.4.2) 296 374用简便方法计算.1) 154 (432) 189 (89用简便方法计算.1) 216 (1327454)98)79)58 42(87 99)2) 122 (57 78) (57 125)5. 用简便方法计算.714 147 471 555第九讲加减法巧算二1. 例题 1 答案:(1)75;(2)158 详解:根据加减法的凑整特征,带符号搬家,把能凑整的放在一起算,再在适当的位置添上括号进行计算.括号 前面是加号,添上括号不变号;括号前面是减号,添上括号要变号,加减互变.1)375 59 241375 (59 241) 375 300 752. 例题 2 答案:(1)240;(2)150;(3)131 详解:根据加减法的凑整特征,带符号搬家,把能凑整的放在一起算,再在适当的位置添上括号进行计算.括号 前面是加号,添上括号不变号;括号前面是减号,添上括号要变号,加减互变.1)162 38 79 39 (2)157 43 29 21(162 38) (79 39)(157 43) (29 21)200 40200 502401503)431 52 17548 25431 (52 48) (175 25)431 100 2001313. 例题 3 答案:(1)55;(2)115 详解:加减法算式中, “脱括号”要遵循下面的规则: 括号前面是加号,脱去括号不变号;括号前面是减号,脱去括号变符号.1)121 (45 21)( 2)176 (15 76)121 45 21 176 15 76 121 21 45 176 76 15 100 45 100 15 551154. 例题 4 答案:(1)114;(2)219;(3)150详解:加减法算式中, “脱括号”要遵循下面的规则: 括号前面是加号,脱去括号不变号;括号前面是减号,脱去括号变符号.2) 168 139 129 168 (139 129) 168 10 158(1)145 (55 78) (14 22)145 55 78 14 22(145 55) (78 22) 14200 100 14 114(3)273 (150 18) (173 76)(124 273 150 18 173 76 124 18(273 173) (18 18) (76124) 150100 0 200 1501505. 例题5 答案:444详解:方法一:位值原理•不难发现在246、462、624中“ 2、4、6”都出现在每个数中,并且在这三个数的个、十、百位上都出现一次,那么像这样的算式,就可以运用“位值原理”可以把 246写成200 40 6 ;把462可以写成200 60 2 ;把624可以写成600 20 4 .246 462 624 888222 444666 888444方法二:列竖式•从个位算起,从开始算减法的地方标岀“-”,记得上面的数都是需要算加法的•注意在计算的时候,如果一个数位上岀现进位则需标岀进位,如果有退位记得标退位.百十个2464 H \ K > 4—8 8 84446. 例题6 答案:4000 详解:742 465 87 32 913 968 535 258(742 258) (465 535) (87 913)(32968)1000 1000 1000 100040007. 练习1答案:(1) 95; (2) 307 简答:(2) 162 (62 135) (35 19) 162 62 135 35 19 (162 62) (135 35) 19100 100 1921918)3078.练习 2 答案: 310 简答:364 27664 266(364 64) (276 266)300 103109. 练习 3 答案:(1)149;(2)115 简答:去括号,再凑整.去括号时,注意括号前面是加号,直接去括号;括号前面是减号,去括号时要变号,加 减互变.10. 练习 4 答案:(1)167;(2)330 简答:去括号,再凑整.去括号时,注意括号前面是加号,直接去括号;括号前面是减号,去括号时要变号,加 减互变.11. 作业 1 答案:(1)305;(2)123 简答:根据加减法的凑整特征,带符号搬家,把能凑整的放在一起算,再在适当的位置添上括号进行计算.括号 前面是加号,添上括号不变号;括号前面是减号,添上括号要变号,加减互变.30512. 作业 2答案:(1)117;(2)961)195 89 11195 (89 11) 195 1002)367 145 85367 (145 85) 367 60951)138 (38 49) 138 38 49 100 49 1492)234 (34 85) 234 34 85 200 85 1151)123 (23 45) (45 67)123 23 45 45 67 100 0 67 1672)437 (200 86) (63 56) 437 200 86 63 56 (437 63) 200 (86 56) 500 200 30 3301 ) 365 84 242) 223 59 41 365 (84 24) 365 60 223 (59 41) 223 100 123简答:根据加减法的凑整特征,带符号搬家,把能凑整的放在一起算,再在适当的位置添上括号进行计算.括号 前面是加号,添上括号不变号;括号前面是减号,添上括号要变号,加减互变.296 (374 274) (58 42) 296 100 10011713. 作业 3 答案:(1)143;(2)198 简答:去括号,再凑整.去括号时,注意括号前面是加号,直接去括号;括号前面是减号,去括号时要变号,加 减互变.100 43 100 98 14319814. 作业 4 答案:(1)336;(2)75 简答:去括号,再凑整.去括号时,注意括号前面是加号,直接去括号;括号前面是减号,去括号时要变号,加 减互变.1)216 (13 79) (87 99) ( 2)122 (57 78)(57 125)216 13 79 87 99 122 57 78 57 125216 (13 87) (99 79) (122 78) 125216 100 20 200 1253367515. 作业 5 答案: 777 简答:用位值原理的方法.不难发现在 714、147、471 中“ 1、4、7”都出现在每个数中,并且在这三个数的个、十、百位上都出现一次,那么像这样的算式,就可以运用“位值原理”可以把 714 写成 700 10 4;把 147 可以 写成 100 40 7 ;把 471 可以写成 400 70 1 .714 147 471 555 111 444 777 555 7771)427 61 410 39 2)296 374 274 58 42(427 410) (61 39) 17 100 961)154 (43 54) 154 43 54 2)189 (89 98)189 89 98。

二年级数学奥数练习题:整数分拆

二年级数学奥数练习题:整数分拆

二年级数学奥数练习题:整数分拆
整数分拆是二年级奥数中常见的题型,为了迎接考试每个题型我们都需要熟悉,下面就是小编为大家整理的整数分拆练习题,希望对大家有所帮助!
习题一
问:把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?(此题是美国小学数学奥林匹克试题).
解:共6种。

15=9+3+2+1
15=8+4+2+1
15=7+5+2+1
=7+4+3+1
15=6+5+3+1
=6+4+3+2
习题二
问:将15分拆成不大于9的四个不同的自然数之和,有多少种不同的分拆方式,请一一列出。

解:共6种.
15=9+3+2+1
15=8+4+2+1
15=7+5+2+1
=7+4+3+1
15=6+5+3+1
=6+4+3+2
习题三
问:将15分拆成三个不同的自然数相加之和,共有多少种不同的分拆方式,请一一列出.。

解:共12种。

奥数二年级讲义小二教案第九讲整数的分拆

奥数二年级讲义小二教案第九讲整数的分拆

第九讲整数的分拆例 1 小兵和小军用玩具枪做打靶游戏,见以下图所示.他们每人打了两发子弹.小兵共打中 6 环,小军共打中 5 环.又知没有哪两发子弹打到同一环带内,而且百步穿杨.你知道他俩打中的都是哪几环吗 ?解:已知小兵两发子弹打中 6 环,要求每次打中的环数,可将 6 分拆 6= 1+5= 2+4 ;同理,要求小军每次打中的环数,可将 5 分拆 5= l+l = 2+3.由题意:没有哪两发子弹打到同一环带内而且百步穿杨,只可能是:小兵打中的是l 环和 5 环,小军打中的是 2 环和 3 环.例 2某个外星人到达地球上,随身带有本星球上的硬币 1 分、 2 分、 4 分、 8 分各一枚,如果他想买7 分钱的一件商品,他应如何付款?买 9 分、 10 分、 13 分、 14 分和 15 分的商品呢?他又将如何付款?1、 2、 4、 8 进行分拆.解:这道题目的实质是要求把7、 9、 10、 13、 14、 15 各数按7= 1+2+49= 1+810= 2+813= 1+4+814=2+4+815= 1+2+4+8∴外星人可按以上方式付款.例 3有人认为8 是个吉利数字,他们获得的东西的数目都能要够用“8”表示才好.现有200块糖要散发给一些人,请你帮助想一个吉利的分糖方案.解:能够这样想:因为200 的个位数是 0,又知只有 5 个 8相加才能使和的个位数字为0,这就是说,能够把 200 分红 5 个数,每个数的个位数字都应是8.这样由 8× 5= 40 及 200- 40= 160,可知再由两个8 作十位数字可得80× 2= 160 即可.最后获得下式:88+88+8+8+8 = 200 .例 4 试将 100 之内的完整平方数分拆成从 1 开始的一串奇数之和.2)特例1-1(解:1=l× l=2==1+3 24=2× 2=21+3+5=3×3==3=921+3+5+7=4= 4×4=16.2=51+3+5+7+925=5× 5=2= 6=61+3+5+7+9+1136=6× 2 =71+3+5+7+9+11+13 49= 7×7=2=8×8=864= 1+3+5+7+9+11+13+152 =9×9=981= 1+3+5+7+9+11+13+15+172= 10× 10= 101001+3+5+7+9+11+13+15+17+19 .=察看上述各式,可得出以下猜想:这个平方数就等于奇数个数的l 开始的若干连续奇数之和,一个完整平方数能够写成从 ) .自乘积 ( 平方,两个完整平方数分拆,看其能否切合上述猜14412111 × 11=,和 12×12 =查验:把想.121=1+3+5+7+9+11+13+15+17+19+2l144=1+3+5+7+9+11+13+15+17+19+21+23两个完整平方数是正确的.121和 144结论:上述猜想对? 有多少种不一样的写法将1l写成两个不一样的自然数之和,从l ~9九个数中选用,例 5的九个自然数从小到大排成一列:~91解:将., 96, 7, 8 1,2,3,4,5, 10相加之和为不切合要求.先看最小的 1 和最大的 9剖析2+9 . 11 切合要求,得 11=但用次大的 2 和最大的 9 相加,和为5+6 ., 11= 11 = 3+8, 1l=4+7逐一做下去,可得种不一样的写法.可见共有4分拆成三个不一样的自然数相加之和,共有多少种不一样的分拆方式,请把它126将例们一一列出.分拆成三个不一样的自然数之和,三个数中最小的数应为12解:能够做以下考虑:若将.= 1+2+92,那么第三个数就应是 9 得: 121,其次是 2 上, 1 下边进行变化,如从9 中取加到1+3+8.又得 12=持续按近似方法变化,可得以下各式:, 1+4+7= 2+3+7=12 ,= 2+4+61+5+612=.= 3+4+512、共有 7 种不一样的分拆方式.中选用,问~ 9l例 7 将 21 分拆成四个不一样的自然数相加之和,但四个自然数只好从共有多少种不同的分拆方式,请你一一列出.,因此接着只好(9+8)=4 - 21,算一算8 考虑选用,其次选9 解:也能够先从最大的数选 3 和 1.这样就能够得出第一个分拆式:21= 9+8+3+1,以这个分拆式为基础按次序进行调整,就能够得出所有的不一样分拆方式:以 9开头的分拆方式有 6 种以 8开头的分拆方式有 4 种21 = 7+6+5+3}以 7 开头的分拆方式有 1 种∴共有 11 种不一样的分拆方式.例 8从 1~ 12 这十二个自然数中选用,把26 分拆成四个不一样的自然数之和.解:以 12 开头的分拆方式共10 种种 10 开头的分拆方式共ll以.以 10 开头的分拆方式共8 种以 9 开头的分拆方式共 4 种26= 8+7+6+5} 以 8开头的分拆方式共 1 种不一样的分拆方式总数为:10+10+8+4+1= 33 种.总结:由例 4 显然看出,欲求出所有的不一样的分拆方式,一定使分拆过程按必定的次序进行.习题九1 .把 15 分拆成不大于9 的两个整数之和,有多少种不一样的分拆方式,请一一列出.2.将 15 分拆成不大于 9 的三个不一样的自然数之和有多少种不一样分拆方式,请一一列出.3.将 15 分拆成三个不一样的自然数相加之和,共有多少种不一样的分拆方式,请一一列出.4 .将 15 分拆成不大于9 的四个不一样的自然数之和,有多少种不一样的分拆方式,请一一列出.5.将 15 分拆成四个不一样的自然数之和,有多少种不一样的分拆方式,请一一列出.6 .把 15 个玻璃球分红数目不一样的 4 堆,共有多少种不一样的分法 ?( 本题是美国小学数学奥林匹克试题 ) .7.七只箱子分别放有 1 个、 2 个、 4 个、 8 个、 16 个、 32 个、 64 个苹果.此刻要从这七只箱子里拿出 87个苹果,但每只箱子内的苹果要么所有取走,要么不取,你看怎么取法?8.把 100个馒头分装在七个盒里,要求每个盒里装的馒头的数目都带有 6 字,想想看,应该如何分 ?9.把 1000 个鸡蛋放到五只筐子里,每只筐子里的鸡蛋数都由数字8 构成,请你想想该怎样分 ?10.美国硬币有 1 分、 5 分、 10 分和 25 分四种.现有 10枚硬币价值是 1 元钱,此中有3枚 25分的硬币.问余下的硬币有哪几种,每种各有多少枚 ?( 本题是美国小学数学奥林匹克试题) .11. (1 , 1, 8) 是一个和为 10 的三元自然数组.假如不考虑数字摆列的次序,即把(1 ,1,8) 与 (1 , 8, 1) 及 (8 , 1, 1) 当作是同样的三元自然组.那么和为IO 的自然数组共有多少个?习题九题答种不一样的分拆方式:2.解:共有1.15==9+615= 8+72.解:共 8 种.15= 9+5+1 15=7+6+2= 9+4+2=7+5+315= 8+6+1 15 = 6+5+4=8+5+2=8+4+33.解:共 12 种.15= 12+2+115= 8+6+l15= ll+3+l =8+5+215= 10+4+l =8+4+3= 10+3+215=7+6+215= 9+5+1=7+5+3=9+4+2 15 = 6+5+4 4.解:共 6 种.15= 9+3+2+115= 8+4+2+115= 7+5+2+l=7+4+3+l15= 6+5+3+1=6+4+3+25.解:同第 4 题答案.6.解:同第 4 题答案.7.解:可这样想:总数要 87 个,最初取数最多的一箱64 个苹果,这样还差再取则不可以取装有32 个苹果的那箱,只好取装有16 个的那箱,这样还差取装有 1 个、 2 个、 4 个的三箱苹果,正好:87 = 64+16+4+2+1..87- 64= 23 个苹果;23-16= 7 个苹果;再8 .解:从已有经验中可知6× 6= 36 ,这样就能够把每个盒里装 6 个馒头,共装有一个盒装100 - 36= 64 个馒头. 64 个这个数,恰好含有数字6,知足题目要求.6 个盒,还即得 100 = 64+6+6+6+6+6+6.9.解:仿例 7 解法,得以下分拆式:1000 = 888+88+8+8+8.10.解:因为有 3 枚 25 分的硬币,它们的价值是:25×3=75( 分) .因此其他的 7枚硬币的价值是:100- 75=25(分 ) .将 25 分拆成7 个数之和, ( 注意没有各数不一样的限制 )25= 1+1+1+1+1+10+10.因此这 7枚硬币是 5枚1分,2枚 10分.11.解:共 8个.它们是(1 ,1,8) ,(1 ,2,7) , (1 ,3,6) , (1 ,4,5),(2,2,6) ,(2 ,3,5) ,(2 ,4,4) ,(3 ,3,4) .。

【精品文档】二年级奥数题及答案:整数拆分-推荐word版 (1页)

【精品文档】二年级奥数题及答案:整数拆分-推荐word版 (1页)

【精品文档】二年级奥数题及答案:整数拆分-推荐word版
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
二年级奥数题及答案:整数拆分
编者小语:期末考试结束了,同学们可以小小的休息一下,放松的玩一玩了,
但是也不可以把学习忘记哦,虽然现在休息了,但是每天坚持做几道试题,对
自己的学习还是很有好处的,下面我们开始今天的学习吧!
在图2-24中,三个圆圈两两相交形成七块小区域,分别填上1~7七个自然数,在一些小区域中,自然数3、5、7三个数已填好,请你把其余的数填到空着的
小区域中,要求每个圆圈中四个数的和都是15。

【答案】15=1+2+5+7,15=1+3+4+7,15=1+3+5+6,15=2+3+4+6
其中1和3用的次数最多,图中最中间的部分被三个圆包围,所以1和3应该
填在里面。

但题目总3已填好,所以只能填1。

1填好后其他的也就好确定了。

答案见下图。

二年级整数分拆练习题及答案【三篇】

二年级整数分拆练习题及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。

愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。

学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。

以下是⽆忧考为⼤家整理的《⼆年级整数分拆练习题及答案【三篇】》供您查阅。

【第⼀篇:分拆玻璃球】
问:把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?(此题是美国⼩学数学奥林匹克试题).
解:共6种。

15=9+3+2+1
15=8+4+2+1
15=7+5+2+1
=7+4+3+1
15=6+5+3+1
=6+4+3+2
【第⼆篇:四数分拆15】
问:将15分拆成不⼤于9的四个不同的⾃然数之和,有多少种不同的分拆⽅式,请⼀⼀列出。

解:共6种.
15=9+3+2+1
15=8+4+2+1
15=7+5+2+1
=7+4+3+1
15=6+5+3+1
=6+4+3+2
【第三篇:分拆15】
问:将15分拆成三个不同的⾃然数相加之和,共有多少种不同的分拆⽅式,请⼀⼀列出.。

解:共12种。

【思维拓展】数学二年级思维拓展之整数的拆分(附答案)

【思维拓展】数学二年级思维拓展之整数的拆分(附答案)

二年级奥数题-整数的拆分1.把15分拆成不大于9的两个整数之和,有多少种不同的分拆方式,请一一列出.2.将15分拆成不大于9的三个不同的自然数之和有多少种不同分拆方式,请一一列出.3.将15分拆成三个不同的自然数相加之和,共有多少种不同的分拆方式,请一一列出.4.将15分拆成不大于9的四个不同的自然数之和,有多少种不同的分拆方式,请一一列出.5.将15分拆成四个不同的自然数之和,有多少种不同的分拆方式,请一一列出.6.把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?(此题是美国小学数学奥林匹克试题).7.七只箱子分别放有1个、2个、4个、8个、16个、32个、64个苹果.现在要从这七只箱子里取出87个苹果,但每只箱子内的苹果要么全部取走,要么不取,你看怎么取法?8.把100个馒头分装在七个盒里,要求每个盒里装的馒头的数目都带有6字,想想看,应该怎样分?参考答案1.解:共有2种不同的分拆方式:15=9+6;15=8+72.解:共8种.3.解:共12种.4.解:共6种:15=9+3+2+1;15=8+4+2+1;15=7+5+2+1=7+4+3+115=6+5+3+1=6+4+3+25.解:同第4题答案.6.解:同第4题答案.7.解:可这样想:总数要87个,最先取数最多的一箱64个苹果,这样还差87-64=23个苹果;再取则不能取装有32个苹果的那箱,只能取装有16个的那箱,这样还差23-16=7个苹果;再取装有1个、2个、4个的三箱苹果,正好:87=64+16+4+2+1.8.解:从已有经验中可知6×6=36,这样就可以把每个盒里装6个馒头,共装6个盒,还有一个盒装100-36=64个馒头.64个这个数,刚好含有数字6,满足题目要求.即得100=64+6+6+6+6+6+6.。

小学奥数:整数分拆之最值应用.专项练习及答案解析

小学奥数:整数分拆之最值应用.专项练习及答案解析

5-2-2.整数分拆之最值应用.题库 教师版 page 11. 熟练掌握整除的性质;2. 运用整除的性质解最值问题;3. 整除性质的综合运用求最值.一、常见数字的整除判定方法 1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a 和数b 都能被数c 整除,那么它们的和或差也能被c 整除.即如果c ︱a ,c ︱b ,那么c ︱(a ±b ).性质2 如果数a 能被数b 整除,b 又能被数c 整除,那么a 也能被c 整除.即如果b ∣a , c ∣b ,那么c ∣a .用同样的方法,我们还可以得出:性质3 如果数a 能被数b 与数c 的积整除,那么a 也能被b 或c 整除.即如果bc ∣a ,那 么b ∣a ,c ∣a .性质4 如果数a 能被数b 整除,也能被数c 整除,且数b 和数c 互质,那么a 一定能被b 与c 的乘积整除.即如果b ∣a ,c ∣a ,且(b ,c )=1,那么bc ∣a .例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a 能被数b 整除,那么am 也能被bm 整除.如果 b |a ,那么bm |am (m 为非0整数);性质6 如果数a 能被数b 整除,且数c 能被数d 整除,那么ac 也能被bd 整除.如果 b |a ,且d |c ,那么bd |ac ;模块一、2、3、5系列 【例 1】 要使156abc 能被36整除,而且所得的商最小,那么,,a b c 分别是多少?【考点】整除最值之2、3、5系列 【难度】3星 【题型】解答【解析】 分解为互质的几个数的乘积,3649=⨯分别考虑所以6c 能被4整除,从而c 只可能例题精讲知识点拨教学目标5-2-2.整数分拆之最值应用是1,3,5,7,9.要使商最小,,a b应尽可能小,先取0a=,又b=,5c=时,取得++是9的倍数所以1a b c b c15612+++++=++,所以3b c最小值.【答案】0b=,5c=a=,1【例 2】把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?最大是多少?【考点】整除最值之2、3、5系列【难度】4星【题型】解答【解析】乘积末尾的零的个数是由乘数中因数2和5的个数决定的,有一对2和5乘积末尾就有一个零.由于相邻两个自然数中必定有一个是2的倍数,而相邻5个数中才有一个5的倍数,所以我们只要观察因数5的个数就可以了.551=⨯,=⨯,1052=⨯,……,发现只有25、50、75、100、……=⨯,30561553=⨯,2054=⨯,2555这样的数中才会出现多个因数5,乘到55时共出现11213+=个因数5,所以至少应当写到55,最多可以写到59.【答案】最小55,最大59【巩固】把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末53位恰好都是零,那么最后出现的自然数最小应该是多少?最大是多少?【考点】整除最值之2、3、5系列【难度】4星【题型】解答【解析】1到10的乘积里会出现25⨯和10两次末尾添零的情况,估算从200开始,是++=个0,还要扩大至220时再增加4个0,所以最小的数应该是220,408149而最大应该是224.【答案】最小的数应该是220,而最大应该是224【例 3】各位数码是0、1或2,且能被225 整除的最小自然数是多少?【考点】整除最值之2、3、5系列【难度】3星【题型】解答【解析】被合数整除把225分解,分别考虑能被25和9整除特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九讲整数的分拆
例1 小兵和小军用玩具枪做打靶游戏,见下图所示。

他们每人打了两发子弹.小兵共打中6环,小军共打中5环。

又知没有哪两发子弹打到同一环带内,并且弹无虚发.你知道他俩打中的都是哪几环吗?
解:已知小兵两发子弹打中6环,要求每次打中的环数,可将6分拆6=1+5=2+4;同理,要求小军每次打中的环数,可将5分拆5=1+4=2+3.
由题意:没有哪两发子弹打到同一环带内并且弹无虚发,只可能是:小兵打中的是1环和5环,小军打中的是2环和3环。

例2 某个外星人来到地球上,随身带有本星球上的硬币1分、2分、4分、8分各一枚,如果他想买7分钱的一件商品,他应如何付款?买9分、10分、13分、14分和15分的商品呢?他又将如何付款?
解:这道题目的实质是要求把7、9、10、13、14、15各数按1、2、4、8进行分拆。

7=1+2+4
9=1+8
10=2+8
13=1+4+8
14=2+4+8
15=1+2+4+8
外星人可按以上方式付款.
例3 有人以为8是个吉利数字,他们得到的东西的数量都能要够用“8"表示才好。

现有200块糖要分发给一些人,请你帮助想一个吉利的分糖方案.
解:可以这样想:因为200的个位数是0,又知只有5个8相加才能使和的个位数字为0,这就是说,可以把200分成5个数,每个数的个位数字都应是8。

这样由8×5=40及200-40=160,
可知再由两个8作十位数字可得80×2=160即可。

最后得到下式:88+88+8+8+8=200.
例4 试将100以内的完全平方数分拆成从1开始的一串奇数之和.
解:1=1×1=12=1(特例)
4=2×2=22=1+3
9=3×3=32=1+3+5
16=4×4=42=1+3+5+7
25=5×5=52=1+3+5+7+9
36=6×6=62=1+3+5+7+9+11
49=7×7=72=1+3+5+7+9+11+13
64=8×8=82
=1+3+5+7+9+11+13+15
81=9×9=92
=1+3+5+7+9+11+13+15+17
100=10×10=102
=1+3+5+7+9+11+13+15+17+19.
观察上述各式,可得出如下猜想:
一个完全平方数可以写成从1开始的若干连续奇数之和,这个平方数就等于奇数个数的自乘积(平方)。

检验:把11×11=121,和12×12=144,两个完全平方数分拆,看其是否符合上述猜想。

121=1+3+5+7+9+11+13+15+17+19+21
144=1+3+5+7+9+11+13+15+17+19+21+23
结论:上述猜想对121和144两个完全平方数是正确的.
例5 从1~9九个数中选取,将11写成两个不同的自然数之和,有多少种不同的写法?
解:将1~9的九个自然数从小到大排成一列:
1,2,3,4,5,6,7,8,9.
分析先看最小的1和最大的9相加之和为10不符合要求。

但用次大的2和最大的9相加,和为11符合要求,得11=2+9.
逐个做下去,可得11=3+8,11=4+7,11=5+6。

可见共有4种不同的写法.
例6 将12分拆成三个不同的自然数相加之和,共有多少种不同的分拆方式,请把它们一一列出。

解:可以做如下考虑:若将12分拆成三个不同的自然数之和,三个数中最小的数应为1,其次是2,那么第三个数就应是9得:12=1+2+9。

下面进行变化,如从9中取1加到2上,
又得12=1+3+8.
继续按类似方法变化,可得下列各式:
12=1+4+7=2+3+7,
12=1+5+6=2+4+6。

12=3+4+5.
共有7种不同的分拆方式。

例7 将21分拆成四个不同的自然数相加之和,但四个自然数只能从1~9中选取,问共有多少种不同的分拆方式,请你一一列出.
解:也可以先从最大的数9考虑选取,其次选8,算一算21-(9+8)=4,所以接着只能选3和1.这样就可以得出第一个分拆式:21=9+8+3+1,
以这个分拆式为基础按顺序进行调整,就可以得出所有的不同分拆方式:
21=7+6+5+3}以7开头的分拆方式有1种
∴共有11种不同的分拆方式。

例8 从1~12这十二个自然数中选取,把26分拆成四个不同的自然数之和。

26=8+7+6+5}以8开头的分拆方式共1种不同的分拆方式总数为:
10+10+8+4+1=33种.
总结:由例4明显看出,欲求出所有的不同的分拆方式,必须使分拆过程按一定的顺序进行。

习题九
1。

把15分拆成不大于9的两个整数之和,有多少种不同的分拆方式,请一一列出。

2.将15分拆成不大于9的三个不同的自然数之和有多少种不同分拆方式,请一一列出。

3.将15分拆成三个不同的自然数相加之和,共有多少种不同的分拆方式,请一一列出。

4.将15分拆成不大于9的四个不同的自然数之和,有多少种不同的分拆方式,请一一列出。

5.将15分拆成四个不同的自然数之和,有多少种不同的分拆方式,请一一列出。

6.把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?(此题是美国小学数学奥林匹克试题)。

7。

七只箱子分别放有1个、2个、4个、8个、16个、32个、64个苹果.现在要从这七只箱子里取出87个苹果,但每只箱子内的苹果要么全部取走,要么不取,你看怎么取法?
8。

把100个馒头分装在七个盒里,要求每个盒里装的馒头的数目都带有6字,想想看,应该怎样分?
9.把1000个鸡蛋放到五只筐子里,每只筐子里的鸡蛋数都由数字8组成,请你想一想该怎样分?
10。

美国硬币有1分、5分、10分和25分四种。

现有10枚硬币价值是1元钱,其中有3枚25分的硬币。

问余下的硬币有哪几种,每种各有多少枚?(此题是美国小学数学奥林匹克试题).
11。

(1,1,8)是一个和为10的三元自然数组.如果不考虑数字排列的顺序,即把(1,1,8)与(1,8,1)及(8,1,1)看成是相同的三元自然组.那么和为10的自然数组共有多少个?
习题九题答
1.解:共有2种不同的分拆方式:
15=9+6
15=8+7
2。

解:共8种.
3.解:共12种.
4。

解:共6种.
15=9+3+2+1
15=8+4+2+1
15=7+5+2+1
=7+4+3+1
15=6+5+3+1
=6+4+3+2
5。

解:同第4题答案。

6.解:同第4题答案。

7。

解:可这样想:总数要87个,最先取数最多的一箱64个苹果,这样还差87-64=23个苹果;再取则不能取装有32个苹果的那箱,只能取装有16个的那箱,这样还差23-16=7个苹果;再取装有1个、2个、4个的三箱苹果,正好:
87=64+16+4+2+1.
8。

解:从已有经验中可知6×6=36,这样就可以把每个盒里装6个馒头,共装6个盒,还有一个盒装100—36=64个馒头.64个这个数,刚好含有数字6,满足题目要求.
即得100=64+6+6+6+6+6+6.
9.解:仿例7解法,得下列分拆式:
1000=888+88+8+8+8.
10.解:由于有3枚25分的硬币,它们的价值是:
25×3=75(分).
所以其余的7枚硬币的价值是:
100-75=25(分).
将25分拆成7个数之和,(注意没有各数不同的限制)
25=1+1+1+1+1+10+10.
所以这7枚硬币是5枚1分,2枚10分。

11.解:共8个。

它们是(1,1,8),(1,2,7),(1,3,6),(1,4,5),(2,2,6),(2,3,5),(2,4,4),(3,3,4)。

相关文档
最新文档