聚合物基复合材料在高介电材料方面的应用与发展

聚合物基复合材料在高介电材料方面的应用与发展
聚合物基复合材料在高介电材料方面的应用与发展

聚合物基复合材料在高介电材料方面的应用与发展

姓名:*** 班级:高分子化学与物理学号:****

摘要:高介电常数聚合物具有优异的介电性和柔韧性,可以制备高容量有机薄膜电容器等无源器件,近年来受到广泛关注。本文概述了目前高介电聚合物基复合材料的主要问题,论述了铁电陶瓷-聚合物型、氧化物-聚合物型、碳纳米管-聚合物型、金属导电颗粒-聚合物型、全有机高分子聚合物型等高介电复合材料的国内外研究进展。并指出提高介电常数、储能密度,减小介电损耗,降低制备成本是未来发展的方向。

关键词:高介电常数复合材料聚合物填料介电损耗

正文:

随着信息技术的发展,作为金属氧化物半导体场效应晶体管(MOSFET)、动态随机存储器(DRAM)以及印刷线路板(PWB)上电容器的介质材料迅速减薄,逼近其物理极限。随着器件特征尺寸的不断缩小,当线宽小于0.1μm,栅氧化物层厚度开始逐渐接近原子间距。此时,受隧道效应的影响,栅极漏电流将随氧化层厚度的减小呈指数增长。漏电流的急剧增加造成MOS器件关态时的功耗增加,对器件的集成度、可靠性和寿命都有很大影响,因此研究新型高介电介质材料成为当今信息功能材料以及微电子领域的前沿课题。

介电材料按介电常数的高低分为高介电和低介电两个方向。高介电材料主要应用于栅极介质材料、储能材料等领域,低介电材料主要用来制备电子封装材料。笔者所在的课题组近年来在聚酰亚胺低介电复合材料方面取得了一系列研究成果。高介电常数材料根据用途主要分为钙钛矿相氧化物和金属或过渡金属氧化物,前者用于DRAM以及PWB上的电容介质材料,后者用于MOSFET栅极的绝缘介质材料。近年来,聚合物基高介电材料成为微电子行业研究的热点之一,选择合适的聚合物基体,可以在PWB上快速大规模地制备高电容嵌入式微电容器,这种微电容器可以保证集成电路的高速运行。此外,利用聚合物基高介电材料具备的特殊物理特性,可制备具有特殊性能的新型器件[1]。

1 电介质及其极化机理[2]

电介质是指在电场下能在电介质材料内部建立极化的一切物质。从广义上讲,电介质不仅包括绝缘体,还包括能够将力、热、光、温度、射线、化学及生物等非电量转化为电信息的各种功能材料,甚至还包括电解质和金属材料。电介质的特征是以正、负电荷重心不重合的电极化方式传递、存储和记录电的作用和影响。电介质在电场下最主要的电特性是电导和极化,极化是电介质中电荷(束缚在分子或局部空间中不能完全自由运动的电荷及自由电荷) 在电场中作微小

位移(自由电荷移至界面与电极表面) 或受限的大尺度位移,而在电介质表面(或界面) 产生束缚电荷的物理过程。

在微观上,电介质的极化主要有 3 种基本形式:(1)材料中原子核外电子云畸变产生的电子极化;(2)分子中正负离子相对位移造成的离子极化;(3)分子固有电矩在外电场作用下转动导致的转向极化。此外,还有空间电荷极化、带有电矩的基团极化以及界面极化。

2按类型分类

聚合物基复合介电材料基于前人的研究工作,本文将聚合物基复合介电材料分为以下几种类型:铁电陶瓷-聚合物型、氧化物-聚合物型、碳纳米管-聚合物型、金属导电颗粒-聚合物型、全有机高分子聚合物型等[3]。

2. 1 填料的种类

2. 1. 1 无机导体填料

导电粒子填充聚合物基体是一种有效的提高复合材料介电常数的方法,它主要依据逾渗理论。逾渗理论指出,当导电粒子达到逾渗阈值处,会发生绝缘体-导体转变。对于逾渗体系,体系的有效介电常数可表示成:

ε= ε1( p c-p) -β(1)

式中,p为孤立的分散相的体积分数,p c为逾渗阈值,且p < p c,β是与材料性质、微观结构以及绝缘体-导体界面的连通性有关的常数。根据式(1),具有逾渗行为复合材料的介电常数反比于导体的实际填充分数与临界填充分数( 逾渗阈值) 之差。这样,要得到高的介电常数就必须使得导体的填充分数接近临界值而又不能高于临界值。如果填充分数合适,可以得到非常高的介电常数,如图1 所示,在Ag 填充分数在23% 左右介电常数达到最大。相比陶瓷/聚合物复合材料,导电粒子/ 聚合物复合材料具有更高的介电常数、更好的介电性能和黏接强度。

图1 室温下Ag-epoxy 复合材料中相对介电常数随着Ag 填充体积的变化Fig. 1 Dielectric constant values of Ag/epoxy coposites with different Ag filler

loading at room temperature

目前Al、Ag、Ni、炭黑等导电颗粒已经用来制备导电粒子/ 聚合物复合材料,此种复合材料具有较高的介电常数,被认为很有希望应用在嵌入式电容器中。但是Al、Ag 等金属粒子,主要产生电子位移极化,产生的损耗主要是电导损耗,当导电粒子的体积过大,达到或超过逾渗阈值时,粒子间的间距过小,电子就会在各导电粒子间发生迁移,形成导电通路,产生较大的介电损耗。目前研究的关键问题主要集中于提高介电常数的同时控制介电损耗的增加,使二者之间达到一种平衡,最终制备出具有高介电常数、低损耗的合适的聚合物基复合材料。

控制填料体积分数在逾渗阈值附近,可以很大程度提升介电常数,同时控制颗粒的分散性,使粒子又不构成导电通路,从而能赋予材料较低的介电损耗和良好的力学性能。目前改进的方法主要有:(1) 制备核壳结构的混合填料。为了阻止导电粒子间的接触,阻碍电子在粒子间迁移,得到高介电常数和低介电损耗,可在导电粒子外包覆绝缘壳层,形成屏障和连续的势垒网。此种复合材料的高介电常数主要来源于界面极化,即在不均匀介质中,无序排布的自由电荷在电场作用下会聚集在绝缘壳层形成的界面处,产生空间电荷极化。Xu 等用Al作为填料,Al自钝化形成的绝缘氧化层作为壳层,填充到具有高介电常数的聚合物基体中,在Al 填充体积为80% 时,介电常数为109,介电损耗为0.02。Shen等合成了金属Ag 核外面包覆有机碳层(用Ag@ C 表示) 作为填料填充(图2) ,分散性很好,介电常数> 300,介电损耗< 0. 05。(2) 在金属纳米粒子表面包覆表面活性剂层或对导电填料进行改性。Lai 等将表面包覆一薄层表面活性剂的Ag 纳米粒子(40nm) 填充在聚合物中,填充体积为22% 时,介电常数达308,介电损耗小于0. 05。除了采用金属导电粒子作为填料外,Dang 等和Yang 等还以改性的多壁碳纳米管(MWNTs) 作为导电填料,与PVDF 复合制得复合材料,介电常数高达4500 (图3) ,远高于不改性时的介电常数300。

图2 制得的Ag@ C 核壳结构

Fig. 2 Ag@ C core-shell structure

图3 改性后多壁碳纳米管填充在PVDF 中。右上角图为改性后的MWNTs Fig. 3 SEM photo of fractured surfaces of the TFP-MWNT /PVDF ( inset is the TEM

micrographs of the TFP-MWNTs)

由于纳米粒子具备特殊的性能,可以产生一些特殊的现象,因此填充金属纳米粒子可以在很大程度上改善材料的介电性能。如Lu 等制备了纳米Ag / 炭黑/ 环氧树脂的复合材料,在Ag 填充体积为3.7% 时,介电常数达2260,介电损耗在0.45 左右,而在没有纳米银粒子填充的炭黑/环氧树脂复合材料的介电常数为1600,介电损耗为0.7。加入纳米Ag 颗粒后介电常数提高是因为界面极化使得电荷在比表面较大的界面上聚集,而介电损耗降低是由于纳米粒子的库仑阻塞效应的影响。

2. 1. 2 铁电陶瓷填料

钛酸钡(BT)、钛酸锶钡( BST) 等具有高介电常数的铁电陶瓷颗粒与聚合物进行复合可以获得介电常数较高的复合材料。目前制备陶瓷/ 聚合物高介电复合材料经常选择的填料是具有高介电常数的弛豫铁电体陶瓷BaTiO3及铌镁酸铅-钛酸铅( PMNPT)等本身具有很高介电常数及较低介电损耗的陶瓷粉体。由于铁电体的极化主要由铁电体的自发极化引起的,铁电体的损耗主要源于自发极化所产生的电畴在外电场的作用下发生的转向,因此其介电损耗比非铁电电介质要大。而要达到很高的介电常数,填充量一般很高,分散性也降低,这样就导致复合材料的介电损耗很高,加工性能较差。因此此类材料存在着介电常数有限、黏接强度低以及加工性能低的缺点,在常温下介电常数一般不超过100。为了进一步提高此类复合材料的介电常数、降低损耗,目前改进的方法主要有:(1 ) 控制填料的分散性。填料的团聚会给复合材料的电学性能以及力学性能带来很大的影响,因此填料的分散是改善介电性能的一个很重要的因素。通常使用表面活性剂或者分散剂对填料的表面进行改性,可以使得纳米粒子较均匀地分散在基体中。如Kim 等采用表面改性的BaTiO3填充聚合物,得到分散性很好、介电强度很高的薄膜

材料。此外,在复合材料制备工艺上进行改进,也可以很好地控制粒子在基体中的分散。(2) 采用不同粒径的填料。钛酸钡颗粒的铁电临界尺寸在105—130nm,介电常数在平均粒径1μm 时达到极大值。即在1μm以下,BT 的介电常数随颗粒粒径的减小而减小,在临界尺寸以下,BT 的铁电性消失,不再有高介电常数。党智敏等研究了不同粒径的BT 粒子对复合材料介电常数的影响。通过选择合适的微米/ 纳米BT 的体积比,同样的体积含量时,微米/ 纳米BT 的共混物比尺寸均一的BT 对复合材料介电性能的提高有更明显的协同效应,有更大的介电常数。这是由于粒径相差较大的BT 同时填充时,复合材料中大颗粒之间的空隙可以再次被小颗粒填充,这有利于增大BT的总填充量,同时,增加复合材料中的相界面,从而提高介电常数。(3) 对铁电陶瓷材料进行掺杂改进或制备合成新的陶瓷材料。Cheng等采用类半导体陶瓷CaCu3 Ti4O12( CCTO) 作为陶瓷填料,这种材料在弱电场下就表现出很高的介电常数(20000) ,并且不依赖于温度的变化,将其填充到聚苯乙烯中得到了很高的介电常数,在室温100Hz 时达到610。Bai等将PMN-PT 陶瓷粉末通过溶液混合法分散到聚偏氟乙烯-三氟乙烯的共聚物中,在陶瓷的体积分数为50% 时,复合材料的介电常数为200左右。

以高介电陶瓷与聚合物进行复合形成两相复合材料,可以制备介电常数较高的复合材料。但是,这种方法很难进一步提高复合材料的介电常数,如果通过继续增加陶瓷组分的含量,则使得复合材料的柔性及机械性能等受到很大的影响,并增加了复合材料的介电损耗。为了进一步提高复合材料的介电常数,研究者设计制备了同时填充陶瓷和导电组分两种填料组成的聚合物基复合材料,如用金属微粒来代替部分BaTiO3,这样不但可以得到较高的介电常数,而且也可以大大降低复合材料的介质损耗。当复合材料中的导电填料接近渗流阈值时,复合材料的介电常数出现发散行为,从而可以得到介电常数高的复合材料。

2. 1. 3 有机半导体填料

与上述两种功能填料相比,有机半导体填料也具有良好的电性能,而且还具有电导率可控、环境稳定、成本低、产量大等特点,用其填充聚合物基体也可以获得高介电常数的复合材料。Zhang 等用有机半导体材料CuPc (介电常数高达105 ) 填充到P(VDF-TrFE) 基体中,得到介电常数为225,介电损耗为0. 4的复合材料(1Hz) ,CuPc 具有高的介电常数主要是由于它的电子位移极化造成的,而复合材料较高的介电损耗是由于分子间电子运动的结果。Huang 等以聚苯胺为填料,与一种三元共聚物基体复合,制得有机高介电逾渗复合材料,介电常数在1kHz 时达到1000。Lu 等采用原位聚合的方法制备了聚苯胺/ 环氧树脂复合材料,在10Hz和室温下,介电常数接近3000,介电损耗小于0.5。

2. 2 填料形貌及尺寸的影响

除了填料的种类外,导电填料的形貌也直接影响复合材料的介电性能。近年

来有很多学者用纳米线、纳米片和金属纤维等填充聚合物的方式来制备高介电性能的复合材料。渗流阈值的大小与填料颗粒的形状和尺寸有密切的关系。随着第二相颗粒的形状由球形变成长棒形,渗流阈值会显著减小,因为长棒形的颗粒更加容易相互连同形成电流通路。可以引入一个概念—排斥体积(excluded volume)。“排斥体积”被定义为,围绕一个物体的空间体积V ex,在避免两物体出现重叠的条件下,该空间允许其他物体进入。在引入排斥体积V ex后,渗流阈值f c可以如式(2) 表示:

f c = 1 -exp[-(B c V /〈V ex〉) ](2)

式中,V 是颗粒的体积,V ex是颗粒平均排斥体积,B c是临界接触数。不同维度或形貌的填料,其平均排斥体积不同,渗流阈值也不同,而渗流阈值越小,对提高复合材料的介电性能越有利。如碳纤维( L / d= 100) 与环氧树脂的复合材料,其逾渗阈值可以低到0.0055。

Rao等制备了银片/ 环氧树脂复合材料,介电常数达到2000。Li 等用金属纤维填充聚合物制备了高介电性能、低逾渗阈值的复合材料,介电常数达427,而纤维填充量只有10%。Gelves 等将银纳米线、铜纳米线与聚合物材料进行复合,通过改变逾渗阈值来改变复合材料的介电性能。Ang等对填料的形貌专门进行了研究,运用有限元法对圆形、三角形和环形的填料粒子分别进行计算分析发现,在同等填充比的情况下,介电常数:圆形<三角形< 环形。江平开等对非球形导电粒子与绝缘体复合材料的介电增强进行了研究,发现金属粒子的微观形状对复合材料的介电常数有明显的影响,轴长比越大,对于提高介电常数越有利,非球形粒子填充的复合材料的介电常数比球形粒子填充的复合材料在同一体积比下提高了很多。

填料尺寸对复合材料的介电性能也有很大的影响。颗粒尺寸越小,填料就越容易与聚合物实现均匀混合。另外,颗粒尺寸越小,颗粒与聚合物基体间的界面就越多,在极化过程中,界面极化效应就越显著,从而极大地提高了介电性能。3界面相的研究

许多研究者认为,颗粒填充的聚合物复合材料由三相组成:基相(聚合物) 、分散相(填充颗粒) 以及界面相(聚合物与填充颗粒之间的界面区) [4]。界面相的组成、极化形式及电导等与基相和分散相有着很大不同:一方面,聚合物与填充粒子之间存在着相互作用;另一方面,为了增加基相与界面相的亲和性,界面相一般都会存在化学偶联剂或表面活性剂。在很多情况下,界面相是复合材料介电性能的决定性的因素。

在纳米复合材料中,由于界面区的体积分数较大,即使低填充时也有可能发生界面区重合,因此少量的填充剂可影响材料的电行为。许多研究者甚至认为那些互相交叠的相互作用区是“准导电区”,电荷可以在这些区域耗散,这样,界

面区的存在就可以改善复合材料的击穿强度和耐压性能。

极性基团对电子具有散射作用,所以界面区中引入的一些化学偶联剂或表面活性剂往往可以提高复合材料的击穿强度,改善材料中的空间电荷分布。如果填充粒子的尺寸接近聚合物链的构象长度(conformation length) ,那么粒子与聚合物之间就会存在协同作用,进而消除或抑制常规填充复合材料所普遍存在的Maxwell-Wagner 极化。

一个球形纳米粒子填充的体系,当界面厚度为粒子半径的五分之一时,界面相的体积就会占到整个粒子体积的50%。因此,对于纳米复合材料而言,界面相决定了复合材料的性能。Nelson 等同时研究了微米、纳米TiO2颗粒填充的环氧树脂,结果发现不同体系材料的局部放电、导电、耐电压以及介电损耗等行为存在着差别。纳米复合材料的局部放电以及耐压性能明显优于微米复合材料,他们认为这是因为纳米复合材料的界面极化行为与微米复合材料不同造成的。在低频区,纳米体系的介电常数明显高于微米体系,而在高频区则没有差别,Lewis指出,在低频区,电荷在纳米粒子两极的积累产生的非同步偶极运动是介电常数增加的主要原因。纳米体系的介电损耗行为与微米体系显著不同:微米体系的介电损耗随频率的增加而增加,在中频区没有明显的强分散;而纳米体系的介电损耗随频率的变化有两种表现,在玻璃化温度以下,介电损耗单调增加,而在玻璃化温度以上,介电损耗表现为一个宽峰,并且峰值随着温度的升高移向高频区,这说明,在玻璃化温度以上纳米体系的松弛是一个热激发过程。

Shi等在研究陶瓷颗粒填充的环氧树脂复合材料的介电性能时发现,引入少量的功能硅烷偶联剂或非离子表面活性剂时,界面相的介电常数会有改变。当不存在偶联剂或表面活性剂时,聚合物链在界面相与陶瓷粒子存在着相互作用,而当引入偶联剂或表面活性剂时,在界面区与陶瓷粒子发生作用的不再是聚合物链或者说只有部分聚合物链,偶联剂或表面活性剂与界面的相互作用改变了界面区的极化行为:极性基团的引入能够有效增加极化,而分子间氢键的形成却能限制分子的运动进而抑制分子极化,因此界面相的介电常数会发生变化,既有可能变大又有可能变小。

4高介电聚合物基复合材料的应用[5]

4. 1在无源电容器中的应用

随着集成电路朝着超大规模、超高速、高密度、大功率、高精度多功能的方向迅速发展,被动元件的嵌入化是提高系统集成度和小型化的一种有效途径和研究热点。被动原件中电容器约占电路板组装无源器件总数的40%~70%,因而埋容技术受到更加特别的关注。图4为被动原件埋入示意图。

图4 电路板中无源器件的埋入

Fig.4 Schematic illustration of embedded passivesintegrated into the laminate

substrate

值、低D f值、低加工温度、低的渗漏电流以及埋容技术要求材料具有高D

高的击穿电压等。制备高介电聚合物基复合材料(HDPCs)是一种很有前景的方法,也被认为是埋入电容器应用中最有前途的材料之一。

4. 2 在高储能电容器中的应用

HDPCs在高储能电容器上有非常重要的应用。电容器储存的电能与介质材料的D k值成正比,高D k值材料可以减少介质材料的用量,大大减小电容器的体积和质量。电容器的散热能力也是一个重要的性能指标。在相同的交流电压频率f、电压U、电容C 下,电容器的散热性决定于介质损耗tanδ,所以要求电容器材料具有高的D k值、低的D f值。

4. 3 在电缆行业中的应用

电缆中间接头和终端的电场具有极不均匀性,由于高D k值场的电场强度会随着外电场的增大而增大,从而具有极佳的均匀电场的作用,在电缆终端和接头中具有广泛的应用。另外,电缆接头和终端也要求散热性好,因此要求这种材料的介质损耗也要尽可能低。

此外,由于HDPCs综合性能优异,在微波吸收隐身材料、生物工程研究等领域也得到了广泛的研究。

5展望

高介电聚合物材料由于具有良好的介电性和均匀电场能力,已被广泛使用,如制造高性能电容器、微波吸收剂、用于电缆接头和终端以改善电场的不均匀性等[6]。由于目前使用的材料存在击穿场强较低、高频下介电常数迅速降低等缺点,严重限制了该类材料在相关领域的使用。另外,有机溶剂可溶的聚合物介电材料更适合薄膜工艺。因此,开发新型具有高介电性能、低损耗、对频率依赖性小、可溶的有机聚合物材料将是今后理论和实验研究的重点。

参考文献:

[1] 尚继武,张以河,吕凤柱.高介电常数聚合物基复合材料研究进展,材料工程, 2012, 5:87.

[2] 周文英,左晶,任文娥.高介电常数高分子复合材料的研究进展,中国塑料, 2010, 24(2):6.

[3] 卢鹏荐,王一龙,孙志刚,官建国.高介电常数、低介电损耗的聚合物基复合材料,化学进展, 2010, 22(8): 1061.

[4] 黄兴溢,柯清泉,江平开,韦平,汪根林.颗粒填充聚合物高介电复合材料,高分子通报, 2006, 12:39.

[5] 殷卫峰,苏民社,颜善银.高介电聚合物基复合材料的研究进展,材料导报(A:综述篇), 2013, 27(1): 75.

[6] 赵波,唐先忠,唐翔,闰裔超.新型电容器用高介电常数聚合物研究进展,材料导报, 2009, 23(14): 332.

复合材料的界面改性

界面及界面改性方法 界面结合强度低,则增强纤维与基体很容易分离,在材料的断面可观察到脱粘、纤维拔出、纤维应力松弛等现象,起不到增强作用;但界面结合强度太高,则增强纤维与基体之间应力无法松弛,形成脆性断裂。 在研究和设计界面时,不应只追求界面粘结而应考虑到最优化和最佳综合性能。 1、聚合物基复合材料界面 界面结合有机械粘接与润湿吸附、化学键结合等。 大多数界面为物理粘结,结合强度较低,结合力主要来自如色散力、偶极力、氢键等物理粘结力。 偶联剂与纤维的结合(化学反应或氢键)也不稳定,可能被环境(水、化学介质等)破坏。一般在较低温度下使用,其界面可保持相对稳定。增强剂本身一般不与基体材料反应。 聚合物基复合材料界面改性原则: 1)在聚合物基复合材料的设计中,首先应考虑如何改善增强材料与基体间的浸润性。一般可采取延长浸渍时间,增大体系压力、降低熔体粘度以及改变增强体织物结构等措施。2)适度的界面结合强度 3)减少复合材料中产生的残余应力 4)调节界面内应力和减缓应力集中 聚合物基体复合材料改性方法 1、颗粒增强体在热塑性聚合物基体加入两性相溶剂(增容剂),则能使液晶微纤与基体间形成结合良好的界面 2、纤维增强体复合材料界面改善 a)纤维表面偶联剂 b)涂覆界面层 c)增强体表面改性 2、金属基复合材料界面 金属基体在高温下容易与增强体发生不同程度的界面反应,金属基体多为合金材料,在冷却凝固热处理过程中还会发生元素偏聚、扩散、固溶、相变等。 金属基复合材料界面结合方式有化学结合、物理结合、扩散结合、机械结合。总的来讲,金属基体复合材料界面以化学结合为主,有时也会出现几种界面结合方式共存。 金属基体复合材料的界面有3种类型:第一类界面平整、组分纯净,无中间相。第二类界面不平直,由原始组分构成的凸凹的溶解扩散型界面。第三类界面中含有尺寸在亚微米级的界面反应物。多数金属基复合材料在制备过程中发生不同程度的界面反应。 金属基复合材料的界面控制研究方法: 1)对增强材料进行表面涂层处理在增强材料组元上预先涂层以改善增强材料与基体的浸润性,同时涂层还应起到防止发生反应的阻挡层作用。 2)选择金属元素改变基体的合金成分,造成某一元素在界面上富集形成阻挡层来控制界面反应。尽量避免选择易参与界面反应生成脆硬界面相、造成强界面结合的合金元素 3)优化制备工艺和参数金属基体复合材料界面反应程度主要取决于制备方法和工艺参数,因此优化制备工艺和严格控制工艺参数是优化界面结构和控制界面反应的有效途径。 3、陶瓷基复合材料的界面 陶瓷基体复合材料指基体为陶瓷材料的复合材料。增强体包括金属和陶瓷材料。界面结合方式与金属基体复合材料基本相同,有化学结合、物理结合、机械结合和扩散结合,其中以化学结合为主,有时几种结合方式同时存在。 陶瓷基体复合材料界面控制方法

聚合物基复合材料试题

第一章 聚合物合金的概念、合金化技术的特点? 聚合物合金:有两种以上不同的高分子链存在的多组分聚合物体系 合金化技术的特点:1、开发费用低,周期短,易于实现工业化生产。2、易于制得综合性能优良的聚合物材料。3、有利于产品的多品种化和系列化。 热力学相容性和工艺相容性的概念? 热力学相容性:达到分子程度混合的均相共混物,满足热力学相容条件的体系。 工艺相容性:使用过程中不会发生剥离现象具有一定程度相容的共混体系。 如何从热力学角度判断聚合物合金的相容性? 1、共混体系的混合自由能(ΔG M )满足ΔG M =ΔH M -TΔS M <0 2、聚合物间的相互作用参数χ 12 为负值或者小的正值。 3、聚合物分子量越小,且两种聚合物分子量相近。 4、两种聚合物的热膨胀系数相近。 5、两种聚合物的溶度参数相近。 *思考如何从改变聚合物分子链结构入手,改变聚合物间的相容性? 1、通过共聚使分子链引入极性基团。 2、对聚合物分子链化学改性。 3、通过共聚使分子链引入特殊相互作用基团。 4、形成IPN或交联结构。 5、改变分子量。 第二章 *列举影响聚合物合金相态结构连续性的因素,并说明分别是如何影响的? 组分比:含量高的组分易形成连续相; 黏度比:黏度低的组分流动性较好,容易形成连续相; 内聚能密度:内聚能密度大的聚合物,在共混物中不易分散,容易形成分散相;溶剂类型:连续相组分会随溶剂的品种而改变; 聚合工艺:首先合成的聚合物倾向于形成连续性程度大的相。 说明聚合物合金的相容性对形态结构有何影响?

共混体系中聚合物间的工艺相容性越好,它们的分子链越容易相互扩散而达到均匀的混合,两相间的过渡区越宽,相界面越模糊,分散相微区尺寸越小。完全相容的体系,相界面消失,微区也随之消失而成为均相体系。两种聚合物间完全不相容的体系,聚合物之间相互扩散的倾向很小,相界面和明显,界面黏接力很差,甚至发生宏观的分层剥离现象。 什么是嵌段共聚物的微相分离?如何控制嵌段共聚物的微相分离结构? 微相分离:由化学键相连接的不同链段间的相分离 控制溶剂、场诱导、特殊基底控制、嵌段分子量来控制 *简述聚合物合金界面层的特性及其在合金中所起的作用。 特性:1、两种分子链的分布是不均匀的,从相区到界面形成一浓度梯度;2、分子链比各自相区内排列松散,因而密度稍低于两相聚合的平均密度;3、界面层内易聚集更多的表面活性剂、其他添加剂、分子量较低的聚合物分子。 作用:力的传递效应;光学效应;诱导效应。 第三章 简述橡胶增韧塑料的形变机理及形变特点。 形变机理:银纹化和剪切带形变 特点:1、橡胶的存在有利于发生屈服形变;2、力学性能受形变机理影响 简述橡胶增韧塑料形变机理的研究方法及影响形变机理的因素。 定量研究:高精度的蠕变仪同时测定试样在张应力作用下的纵向和横向形变 影响因素:树脂基体;应力和应变速率;温度;橡胶含量;拉伸取向 简述橡胶增韧塑料的增韧机理,并列举实例加以说明。 多重银纹化增韧理论:在橡胶增韧的塑料中,由于橡胶粒子的存在,应力场不再是均匀的,橡胶粒子起着应力集中的作用。(脆性玻璃态高聚物受外力作用发生银纹形变时材料韧性很差) 银纹-剪切带增韧机理:银纹和剪切到之间存在着相互作用和协同作用。(ABS 拉伸过程中既有发白现象,又有细颈形成) 试比较橡胶增韧塑料和刚性粒子工程塑料的异同点。 1、增韧剂种类不同; 2、增韧的对象不同; 3、增韧剂含量对增韧效果的影响不同; 4、改善聚合物合金性能的效果不同; 5、增韧机理不同; 6、对两相界面黏结强度的要求是相同 第四章

玻璃材料的应用现状与发展趋势

玻璃材料的应用与趋势 内容摘要:随着建筑多元化的发展,建筑玻璃的已经成为建筑多样化和建筑功能化的关键组成部分,尤其是最近几年,建筑用深加工玻璃的品种、数量也得到了很大的发展,产品质量有了很大的提高。但是一些建筑使用的深加工玻璃出现了如钢化玻璃自爆、中空玻璃漏气等多种问题,造成很大的损失。当今世界玻璃制造商们在开发钢化玻璃新技术方面,均向能源、材料、环保、信息、生物等五大领域的发展和需求奋进。 关键词:玻璃材料的应用现状,玻璃材料的发展趋势 一 .世界建筑的发展对玻璃的要求变化 从20世纪60年代,随着第一个玻璃幕墙出现开始,建筑幕墙一直占据着建筑市场的主导位置并引领着建筑行业技术的发展。到目前,建筑对玻璃的要求经过了从白玻、本体着色玻璃、热反射镀膜到低辐射镀膜玻璃的变化。玻璃的颜色也由无色、茶色、金黄色到兰色、绿色并最后向通透方向的发展变化。 二.建筑玻璃的主要应用品种及特点 1、钢化玻璃 它是利用加热到一定温度后迅速冷却的方法,或是化学方法进行特殊处理的玻璃。一般是在原来普通的浮法玻璃基础上,经过将玻璃加热到软化点温度再经过淬火处理,使玻璃内部中心部位具有张应力

而玻璃表面部位具有压应力并达到均匀应力平衡的玻璃产品。钢化玻璃的品种包括化学钢化也称离子钢化和物理钢化两种;化学钢化玻璃的特点是由于采用颗粒较大的离子如钾离子置换玻璃表面的钠离子,在约400度的温度下经过一定的工艺制作完成;化学钢化玻璃可以切割、热弯等,但经过高温加工后的玻璃强度会受影响;化学钢化玻璃的初始强度可以达到原片的6-7倍,但是随着使用时间加长,性能会衰减;由于离子置换的特殊性,多数使用在超薄的玻璃上。物理钢化玻璃的特点是强度高,一般强度可以达到普通平板玻璃的4倍左右 2、夹层玻璃 夹层玻璃是由一层玻璃与一层或多层玻璃、塑料材料夹中间层而成的玻璃制品,中间层是介于玻璃之间或玻璃与塑料材料之间起粘结和隔离作用的材料,使夹层玻璃具有抗冲击、阳光控制、隔音等性能;夹层玻璃的特点是安全—即使破碎,也不会对人造成伤害。缺点是降低采光性能、玻璃自重增加。 3、镀膜玻璃 镀膜玻璃俗称热反射玻璃,包括阳光控制镀膜玻璃和低辐射镀膜玻璃(Low-E)玻璃两个品种。镀膜形成的原理是在原片玻璃表面镀上金属或者金属氧化物/氮化物膜,使玻璃的遮蔽系数降低,又称低辐射玻璃,是一种对波长范围4.5μm-25μm的远红外线有较高反射比的镀膜玻璃。低辐射镀膜玻璃还可以复合阳光控制功能,称为阳光控制低辐射玻璃。镀膜玻璃主要有两个系列的品种,一种是在线镀

聚合物基复合材料

聚合物基复合材料 摘要:聚合物基复合材料以其特有的性能近年来越来越受到人们的青睐。本文简单的介绍了聚合物基复合材料,描述了其作为一种新材料的性能特点,并详细描述了其发展历史及应用。 关键词:聚合物、复合材料、应用、历史 1、聚合物基复合材料 复合材料是指:两个或两个以上独立的物理相,包括粘接材料(基体)和粒料纤维或片状材料所组成的一种固体物。 (1) 复合材料的组分材料虽然保持其相对独立性,但复合材料的性能却不是各组分材料性能的简单加和,而是有着重要的改进。(2)复合材料中通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。(3)分散相是以独立的形态分布在整个连续相中,两相之间存在着界面。分散相可以是增强纤维,也可以是颗粒状或弥散的填料。 聚合物基复合材料(PMC)是以有机聚合物(主要为热固性树脂、热塑性树脂及橡胶)为基体,连续纤维为增强材料组合而成的。聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。而纤维的高强度、高模量的特性使它成为理想的承载体。纤维和基体之间的良好的结合,各种材料在性能上互相取长补短,产生协同效应,材料的综合性能优于原组成材料而满足各种不同的要求,充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。 实用PMC通常按两种方式分类。一种以基体性质不同分为热固性树脂基复合材料和热塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。如:玻璃纤维增强热固性塑料(俗称玻璃钢)、短切玻璃纤维增强热塑性塑料、碳纤维增强塑料、芳香族聚酰胺纤维增强塑料、碳化硅纤维增强塑料、矿物纤维增强塑料、石墨纤维增强塑料、木质纤维增强塑料等。这些聚合物基复合材料具有上述共同的特点,同时还有其本身的特殊性能。通常意义上的聚合物基复合材料一般就是指纤维增强塑料。 而聚合物基复合材料一般都具有以下特性: 1. 比强度、比模量大。比强度和比模量是度量材料承载能力的一个指标,比强度越高,同一零件的自重越小;比模量越高,零件的刚性越大。复合材料的比强度和比模量都比较大,例如碳纤维和环氧树脂组成的复合材料,其比强度是钢的

聚合物基复合材料制备方法

摘自课本《聚合物基复合材料》,针对的是聚合物基纳米复合材料的制备方法。 1、溶胶-凝胶法 溶胶-凝胶法是最早用来制备纳米复合材料的方法之一。所谓的溶胶-凝胶工艺过程是将前驱物在一定的有机溶剂中形成均质溶液,均质溶液中的溶质水解形成纳米级粒子并成为溶胶,然后经溶剂挥发或加热等处理使溶胶转化为凝胶。溶胶-凝胶中通常用酸、碱和中性盐来催化前驱物水解和缩合,因其水解和缩合条件温和,因此在制备上显得特别方便。根据聚合物与无机组分的相互作用情况,可将其分为以下几类: (1)直接将可溶性聚合物嵌入到无机网络中把前驱物溶解在形行成的聚合物溶液中,在酸、碱或中性盐的催化作用下,让前驱化合物水解,形成半互穿网络。(2)嵌入的聚合物与无机网络有共价键作用在聚合物侧基或主链末端引入能与无机组分形成共价键的基团,就可赋予其具有可与无机组分进行共价交联的优点,可明显增加产品的弹性模量和极限强度。在良好溶解的情况下,极性聚合物也可与无机物形成较强的物理作用,如氢键。 (3)有机-无机互穿网络在溶胶-凝胶体系中加入交联单体,使交联聚合和前驱物的水解与缩合同步进行,就可形成有机-无机同步互穿网络。用此方法,聚合物具有交联结构,可减少凝胶的收缩,具有较大的均匀性和较小的微区尺寸,一些完全不溶的聚合物可以原位生成均匀地嵌入到无机网络中。 溶胶-凝胶法的特点是可在温和条件下进行,可使两相分散均匀,通过控制前驱物的水解-缩合来调节溶胶-凝胶化过程,从而在反应早期就能控制材料的表面与界面性能,产生结构极其精细的第二相。存在的问题是在凝胶干燥过程中,由于溶剂、小分子、水的挥发可能导致材料内部产生收缩应力,从而会影响材料的力学和机械性能。另外,该法所选聚合物必须是溶解于所用溶剂中的,因而这种方法受到一定限制。 2、层间插入法 层间插入法是利用层状无机物(如粘土、云母等层状金属盐类)的膨胀性、吸附性和离子交换功能,使之作为无机主体,将聚合物(或单体)作为客体插入于无机相的层间,制得聚合物基有机-无机纳米复合材料。层状无机物是一维方向上的纳米材料,其粒子不易团聚且易分散,其层间距离及每层厚度都在纳米尺度范

(汽车行业)汽车车身新材料的应用及发展方向

(汽车行业)汽车车身新材料的应用及发展方向

汽车车身新材料的应用及发展趋势 现代汽车车身除满足强度和使用寿命的要求外,仍应满足性能、外观、安全、价格、环保、节能等方面的需要。在上世纪八十年代,轿车的整车质量中,钢铁占80%,铝占3%,树脂为4%。自1978年世界爆发石油危机以来,作为轻量化材料的高强度钢板、表面处理钢板逐年上升,有色金属材料总体有所增加,其中,铝的增加明显;非金属材料也逐步增长,近年来开发的高性能工程塑料,不仅替代了普通塑料,而且品种繁多,在汽车上的应用范围广泛。本文着重介绍国内外在新型材料应用方面的情况及发展趋势。 高强度钢板 从前的高强度钢板,拉延强度虽高于低碳钢板,但延伸率只有后者的50%,故只适用于形状简单、延伸深度不大的零件。当下的高强度钢板是在低碳钢内加入适当的微量元素,经各种处理轧制而成,其抗拉强度高达420N/mm2,是普通低碳钢板的2~3倍,深拉延性能极好,可轧制成很薄的钢板,是车身轻量化的重要材料。到2000年,其用量已上升到50%左右。中国奇瑞汽车X公司和宝钢合作,2001年在试制样车上使用的高强度钢用量为262kg,占车身钢板用量的46%,对减重和改进车身性能起到了良好的作用。低合金高强度钢板的品种主要有含磷冷轧钢板、烘烤硬化冷轧钢板、冷轧双相钢板和高强度1F冷轧钢板等,车身设计师可根据板制零件受力情况和形状复杂程度来选择钢板品种。含磷高强度冷轧钢板:含磷高强度冷轧钢板主要用于轿车外板、车门、顶盖和行李箱盖升板,也可用于载货汽车驾驶室的冲压件。主要特点为:具有较高强度,比普通冷轧钢板高15%~25%;良好的强度和塑性平衡,即随着强度的增加,伸长率和应变硬化指数下降甚微;具有良好的耐腐蚀性,比普通冷轧钢板提高20%;具有良好的点焊性能;烘烤硬化冷轧钢板:经过冲压、拉延变形及烤漆高温时效处理,屈服强度得以提高。这种简称为BH钢板的烘烤硬化钢板既薄又有足够的强度,是车身外板轻量化设计首选材料之壹;冷轧双向钢板:具有连续屈服、屈强比低和加工硬化高、兼备高强度及高塑性的特点,如经烤漆后其强度可进壹步提高。适用于形状复杂且要求强度高的车身零件。主要用于要求拉伸性能好的承力零部件,如车门加强板、保险杠等;超低碳高强度冷轧钢板:在超低碳钢(C≤0.005%)中加入适量的钛或铌,以保证钢板的深冲性能,再添加适量的磷以提高钢板的强度。实现了深冲性和高强度的结合,特别适用于壹些形状复杂而强度要求高的冲压零件。 轻量化迭层钢板 迭层钢板是在俩层超薄钢板之间压入塑料的复合材料,表层钢板厚度为0.2~0.3mm,塑料层的厚度占总厚度的25%~65%。和具有同样刚度的单层钢板相比,质量只有57%。隔热防振性能良好,主要用于发动机罩、行李箱盖、车身底板等部件。铝合金 和汽车钢板相比,铝合金具有密度小(2.7g/cm3)、比强度高、耐锈蚀、热稳定性好、易成形、可回收再生等优点,技术成熟。德国大众X公司的新型奥迪A2型轿车,由于采用了全铝车身骨架和外板结构,使其总质量减少了135kg,比传统钢材料车身减轻了43%,使平均油耗降至每百公里3升的水平。全新奥迪A8通过使用性能更好的大型铝铸件和液压成型部件,车身零件数量从50个减至29个,车身框架完全闭合。这种结构不仅使车身的扭转刚度提高了60%,仍比同类车型的钢制车身车重减少50%。由于所有的铝合金都能够回收再生利用,深受环保人士的欢迎。根据车身结构设计的需要,采用激光束压合成型工艺,将不同厚度的铝板或者用铝板和钢板复合成型,再在表面涂覆防具有良好的耐腐蚀性。 镁合金 镁的密度为1.8g/cm3,仅为钢材密度的35%,铝材密度的66%。此外它的比强度、比刚度高,阻尼性、导热性好,电磁屏蔽能力强,尺寸稳定性好,因此在航空工业和汽车工业中得到了广泛的应用。镁的储藏量十分丰富,镁可从石棉、白云石、滑石中提取,特别是海水的

国内外焊接材料的应用及发展趋势

国内外焊接材料的应用 及发展趋势 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

国内外焊接材料的应用及发展趋势 沈阳工业大学材料科学与工程学院 摘要:焊接材料是焊接行业中一个重要分支。随着焊接技术的发展,国内外焊接材料的生产和使用也得到了长足的进步。本文简单介绍国内外的钢材、焊接材料的应用状况,进而分析了焊接材料的应用领域,总结出我国焊接的材料发展中存在的问题及应对策略。 关键词:焊接材料;应用;发展趋势 1国内外钢材及焊接的应用现状 钢产量是衡量一个国家综合经济实力的重要指标,钢铁工业是中国工业进程中的支柱产业。表1为世界主要国家的钢产量数据。从表中数据可以发现,从2001年开始我国的钢产量已经跃居全球第一,从2001年到2008年钢产量已经提高了3倍多,这样的增速明显高于其他国家。这主要是由于中国的经济持续高速增长,拉动了钢铁工业的快速发展,带动了中国钢铁的生产和消耗。但与中国钢产量全球第一形成鲜明的对比的是中国也是钢材进口大国,尤其是特种性能、高强度钢材的大量进口,因此中国钢材巨大产量,并没有给中国带来巨大的经济效益。

(数据来源:中国钢材贸易网) 焊接是一种将材料永久性连接,并成为具有给定功能结构的制造技术。几乎所有的产品,从几十万吨巨轮到不足1克的微电子元件。在生产制造中都不同程度地应用焊接技术。焊接已经渗透到制造业的各个领域,直接影响到产品的质量、可靠性和寿命以及生产的成本、效率和市场反应速度。焊接技术包括焊接材料、设备和工艺等相关内容,而其中焊接材料是焊接技术发展的基础,所以焊接材料的应用和发展影响着焊接技术的发展。 钢材产量和快速升高又拉动了中国焊接材料产业的强劲发展,钢材的产量、品质及发展趋势直接决定了焊接行业的可持续发展及焊接技术的发展方向。2006年,按国际钢材协会统计,全世界钢产量12.39亿吨,按有 关资料综合测算,焊材的消费量应为钢材总量的0.6%--1.6%,全世界焊接材料约为600多万吨,因此,2006年中国钢产量占全世界钢产量的34%[2],中国焊接材料产量占全世界焊接材料产量的50%左右。但是中国焊接材料的种类和分布不是很平衡[3,4],见表2-表3。

金属材料的应用现状及发展趋势分析

金属材料的应用现状及发展趋势分析 在进行金属材料的应用现状及发展趋势分析之前,先简要介绍一下金属材料。金属材料是最重要的工程材料之一。按冶金工艺,金属材料可以分为铸锻材料、粉末冶金材料和金属基复合材料。铸锻材料又分为黑色金属材料和有色金属材料。黑色金属材料包括钢、铸铁和各种铁合金。有色金属是指除黑色金属以外的所有金属及其合金,如铝及铝合金、铜及铜合金等。工程结构中所用的金属材料90%以上是钢铁材料,其资源丰富、生产简单、价格便宜、性能优良、用途广泛。钢有分为碳钢和合金钢,铸铁又分为灰口铸铁和白口铸铁。 一、金属材料的应用现状 金属材料的结构及其性能决定了它的应用。而金属材料的性能包括工艺性能和使用性能。工艺性能是指在加工制造过程中材料适应加工的性能,如铸造性、锻造性、焊接性、淬透性、切削加工性等。使用性能是指材料在使用条件和使用环境下所表现出来的性能,包括力学性能(如强度、塑性、硬度、韧性、疲劳强度等)、物理性能(如熔点、密度热容、电阻率、磁性强度等)和化学性能(如耐腐蚀性、抗氧化性等)。 金属材料具有许多优良性能,是目前国名经济各行业、各部门应用最广泛的工程材料之一,特别是在车辆、机床、热能、化工、航空航天、建筑等行业各种部件和零件的制造中,发挥了不可替代的作用。 (1)、在汽车中的应用。缸体和缸盖,需具有足够的强度和刚度,良好的铸造性能和切削加工性能以及低廉的价格等,目前主要用灰铸钢和铝合金;缸套和活塞,对活塞材料的性能要求是热强性高,导热性好,耐磨性和工艺性好,目前常用铝硅合金;冲压件,采用钢板和钢带制造,主要是热轧和冷轧钢板。热轧钢板主要用于制造承受一定载荷的结构件,冷轧钢板主要用于构型复杂、受力不大的机器外壳、驾驶室、轿车车身等。还有汽车的曲轴和连杆、齿轮、螺栓和弹簧等,都按其实用需要使用的了不同的金属材料 (2)、在机床方面的应用。机床的机身、底座、液压缸、导轨、齿轮箱体、轴承座等大型零件部,以及其他如牛头刨床的滑枕、带轮、导杆、摆杆、载物台、手轮、刀架等,首选材料为灰铸铁,球磨铸铁也可选用。随着对产品外观装饰效果的日益重视,不锈钢、黄铜的

聚合物基复合材料复习

1.聚合物基复合材料的组成 (1) 基体 热固性基体: i) 熔体或溶液粘度低,易于浸渍与浸润,成型工艺性好 ii) 交联固化后成网状结构,尺寸稳定性好耐热性好,但性脆 iii) 制备过程伴有复杂化学反应 热塑性基体: i) 熔体粘度大,浸渍与浸润困难,需较高温度和压力下成型,工艺性差 ii) 线性分子结构,抗蠕变和尺寸稳定性差,但韧性好 iii) 制备过程中伴有聚集态结构转变及取向、结晶等物理现象 (2) 增强体 主要有碳纤、玻璃纤维、芳纶纤维、硼纤维等 由于树脂基体与增强体相容性、浸润性较差,增强体多经过表面处理与表面改性,以及浸润剂、偶联剂和涂复层的使用,使其组成复杂化。 3.复合材料的界面 1)界面现象:①表面吸附作用与浸润 ②扩散与粘结(含界面互穿网络结构) ③界面上分子间相互作用力(范氏力和化学键合力) 2). 复合材料的界面形成过程 PMC、MMC、CMC等复合材料体系对界面要求各不相同,它们的成型加工方法与工艺差别很大,各有特点,使复合材料界面形成过程十分复杂,理论上可分为三个阶段。(1)第一阶段:增强体表面预处理或改性阶段。 i) 界面设计与控制的重要手段 ii) 改性层成为最终界面层的重要组成部分 iii) 为第二阶段作准备 (2)第二阶段:增强体与基体在一组份为液态(或粘流态)时的接触与浸润过程 i) 接触—吸附与浸润—交互扩散—化学结合或物理结合。化学结合可看作是一种 特殊的浸润过程 ii) 界面形成与发展的关键阶段 (3)第三阶段:液态(或粘流态)组分的固化过程,即凝固或化学反应 i) 界面的固定(亚稳态、非平衡态) ii) 界面的稳定(稳态、平衡态) 在复合材料界面形成过程中涉及: i) 界面间的相互置换:如,润湿过程是一个固-液界面置换固-气表面的过程 ii) 界面间的相互转化:如,固化过程是固-液界面向固-固界面转化的过程后处理过程:固-固界面自身完善与平衡的过程 3)复合材料界面结构与性能特点 i) 非单分子层,其组成、结构形态、形貌十分复杂、形式多样。界面区至少包括: 基体表面层、增强体表面层、基体/增强体界面层三个部分 ii ) 具有一定厚度的界面相(层),其组成、结构、性能随厚度方向变化而变化,具有“梯度”材料的性能特征

纳米材料的应用及发展前景

纳米材料的应用及发展前景 摘要 纳米技术的诞生将对人类社会产生深远的影响,可能许多问题的发展都与纳米材料的发展息息相关。本文概要的论述了纳米材料的发现发展过程,并简述了纳米材料在各方面的应用及其在涂料和力学性能材料方面的发展前景。 关键词:纳米材料、纳米技术、应用、发展前景 一、前言 从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下(注1米=100厘米,1厘米=10000微米,1微米=1000纳米,1纳米=10埃),即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。 纳米级结构材料简称为纳米材料(nanometer material),是指其结构单元的尺寸介于1 纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。 纳米技术的广义范围可包括纳米材料技术及纳米加工技术、纳米测量技术、纳米应用技术等方面。其中纳米材料技术着重于纳米功能性材料的生产(超微粉、镀膜、纳米改性材料等),性能检测技术(化学组成、微结构、表面形态、物、化、电、磁、热及光学等性能)。纳米加工技术包含精密加工技术(能量束加工等)及扫描探针技术。 纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。 纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。我国已努力赶上先进国家水平,研究队伍也在日渐壮大。 二、纳米材料的发现和发展

聚合物基复合材料的界面研究进展

大学研究生课程论文 题目聚合物基复合材料的界面研究进展成绩 专业材料工程 课程名称、代码1512011080405 年级 姓名学号 时间年月 任课教师

聚合物基复合材料的界面研究进展 【摘要】界面的好坏是直接影响复合材料性能的关键因素之一。当复合材料受到外力作用时,除增强材料和基体受力外,界面亦起着极其重要的作用。本文主要综述无机刚性粒子增强复合材料、无机纳米粒子增强复合材料、纤维增强复合材料、原位复合材料的界面特性及其改性方法,并简要介绍了各种复合材料的增强机理,界面相容性。 【关键词】聚合物;复合材料;综述;增强 1 前言 界面是复合材料极为重要的微观结构,它作为增强体与基体连接的“桥梁”,对复合材料的物理机械性能有至关重要的影响。复合材料一般是由增强相、基体相和它们的中间相(界面相)组成,它们各自都有其独特的结构、性能与作用,增强相主要起承载作用,基体相主要起连接增强相和传载作用,界面是增强相和基体相连接的桥梁,同时是应力的传递者[1]。目前对增强相和基体相的研究已取得了许多成果,但对作为复合材料三大微观结构之一的界面问题的研究却不够深入,其原因是测试界面的精细方法运用起来较困难,描述的理论尚不完整,尤其从力学的角度研究界面的性质、作用及其对复合材料力学性能的影响和破坏机理等方面的工作正在开展。界面的性质直接影响着复合材料的各项力学性能[2],尤其是层间剪切、断裂、抗冲击等性能,因此随着复合材料科学和应用的发展,复合材料界面及其力学行为将越来越受到重视。 复合材料的强度、刚性及韧性是代表其物理机械性能的重要指标,对复合材料进行界面改性使两相界面具有合适的粘附力,形成一个相互作用匹配且能顺利传递应力的中间模量层,以提高聚合物基复合材料的力学性能一直是高分子材料科学的重要研究领域[3]。 2 无机刚性粒子增强聚合物基复合材料及其界面 无机刚性粒子增强聚合物是近年来研究的热点,它克服了以往用弹性体、热塑性树脂增韧聚合物时在韧性提高的同时刚性下降的缺点。常用的无机刚性粒子[4]有CaCO3、SiC、BaSO4、滑石、硅石灰、蒙脱土以及煤灰等。欧玉春[5]等提出刚性粒子增强增韧聚合物的界面结构模型,即在均匀分散的刚性粒子周围嵌入具有良好界面结合和一定厚度的柔性界面相,以便在材料经受破坏时能引发银纹,终止裂缝的扩展。在一定形态结构下它还可引发基体剪切屈服,从而消耗大量冲击能,又能较好地传递所承受的外应力,达到既增强又增韧的目的。 在PP/CaCO3复合体系中用酯酸类偶联剂在刚性粒子表面引入柔性或弹性界面层,降低

金属的材料地地的应用现状与发展趋势

金属材料的发展现状与前景 摘要:金属是人们日常生活生产中最不可或缺的材料,更是人类社会进步的关键所在,本篇论文主要论述金属材料的种类、性能及在社会发展中的重要应用,并且展望金属材料在未的发展前景。 关键词:金属材料、镁合金、铝合金、稀土、汽车 引言 金属材料是指由金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属间化合物和特种金属材料等。 人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。我们对金属材料的认识应从以下几方面开始: 一、分类: 金属材料通常分为黑色金属、有色金属和特种金属材料。 1、黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%~4%的铸铁,含碳小于2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、精密合金等。广义的黑色金属还包括铬、锰及其合金。 2、有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。

3、特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金,以及金属基复合材料等。 4、金属材料按生产成型工艺又分为铸造金属、变形金属、喷射成形金属,以及粉末冶金材料。铸造金属通过铸造工艺成型,主要有铸钢、铸铁和铸造有色金属及合金。变形金属通过压力加工如锻造、轧制、冲压等成型,其化学成分与相应的铸造金属略有不同。喷射成形金属是通过喷射成形工艺制成具有一定形状和组织性能的零件和毛坯。 二、性能 金属材料的性能可分为工艺性能和使用性能两种。为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。 材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。 材料的工艺性能指材料适应冷、热加工方法的能力。 三、应用现状: 金属材料的发展已从纯金属、纯合金中摆脱出来。随着材料设计、工艺技术及使用性能试验的进步,传统的金属材料得到了迅速发展,新的高性能金属材料不断开发出来。如快速冷凝非晶和微晶材料、高比强和高比模的铝锂合金、有序金属间化合物及机械合金化合金、氧化物弥散强化合金、定向凝固柱晶和单晶合金等高温结构材料、金属基复合材料以及形状记忆合金、钕铁硼永磁合金、贮氢合金等新型功能金属材料,已分别在航空航天、能源、机电等各个领域获得了应用,并产生了巨大的经济效益。 1、镁及镁合金

聚合物基复合材料考试答案

1聚合物基复合材料的定义、特征、结构模式。 聚合物基复合材料:是以有机聚合物为基体,以颗粒、纤维等为增 强材料组成的复合材料 特征:1比强度和比模量高,比强度(抗拉强度与密度之比)和比模 量(弹性模量与密度之比)高,说明材料轻而且刚性大。2 良好的抗 疲劳性能疲劳是材料在循环应力作用下的性质。复合材料能有效地 阻止疲劳裂纹的扩展。3、减振性能好在工作过程中振动问题十分突出,复合材料为多相系统,大量的界面对振动有反射吸收作用。且 自振动频率高,不易产生共振4、高温性能好复合材料在高温下强度 和模量基本不变5、各项异性和可设计性。6、成型加工性好复合材 料可成型任意型面的零件7、其它优点与其它类材料相比,聚合物基 复合材料耐化学腐蚀、导电、导热率低等特点。 缺点:1耐湿热性差2.材料性能分散性差3.价格过高 复合材料的结构①无规分散(弥散)增强结构(含颗粒、晶须、短 纤维)②连续长纤单向增强结构(单向板)③层合(板)结构(二维 织布或连续纤维铺层,每层不同)④三维编织体增强结构⑤夹层结 构(蜂窝夹层等)⑥混杂结构 2、复合材料的界面效应有哪些?怎么影响材料的性能。 界面在复合材料中所起到的效应: 1、传递效应:界面可将复合材料体系中基体承受的外力传递给增强相,起到基体和增强相之间的桥梁作用。 2、阻断效应:基体和增强相之间结合力适当的界面有阻止裂纹扩展、减缓应力集中的作用。 3、不连续效应:在界面上产生物理性能的不连续性和界面摩擦出现 的现象 4、散射和吸收效应:光波、声波、热弹性波、冲击波等在界面产生 散射和吸收。 5、诱导效应:一种物质(通常是增强物)的表面结构使另一种(通常 是聚合物基体)与之接触的物质的结构由于诱导作用而发生改变,由 此产生一些现象 3.试说明玻璃纤维、碳纤维与芳纶纤维表面处理方法的相同点和不 同点。 相同点是都需要在高温下处理,改善纤维的微结构,使纤维与界面 和基体更加匹配。包括化学键理论,润湿理论,表面形态理论,可

碳素材料的应用及发展趋势

碳素材料的应用及发展趋势 炭素是以高纯度优质无烟煤,经过深加工改变煤的一些性质得出的,原子C,炭素制品按产品用途分为石墨电极类、炭块类、石墨阳极类、炭电极类、糊类、电炭类等等。俗称炭砖或电炉块,主要用于冶金行业:有色金属和无色金属的冶炼以及电石、磷化工企业!炭块按用途可分为高炉炭块、铝用炭块、电炉块等。炭素制品按加工深度高低可分为炭制品、石墨制品、炭纤维和石墨纤维等炭素制品按原料和生产工艺不同,可分为石墨制品、炭制品、炭素纤维、特种石墨制品等。炭素制品按其所含灰分大小,又可分为多灰制品和少灰制品(含灰分低于l%)。 炭素新材料是指用于高技术领域的碳和石墨材料,主要用于航空、航天、核能、风能、硬质材料制造、电子、医疗、建筑、环保等行业。因此21世纪被称为“碳世纪”。目前已经形成规模应用的炭素新材料主要有各种特种石墨、碳纤维、碳复合材料等。 1导电材料 用电弧炉或矿热电炉冶炼各种合金钢、铁合金或生产电石(碳化钙)、黄磷时,强大的电流通过炭电极(或连续自焙电极-即电极糊)或石墨化电极导入电炉的熔炼区产生电弧,使电能转化成热能,温度升高到2000℃左右,从而达到冶炼或反应的要求。金属镁、铝、钠一般用熔盐电解制取,这时电解槽的阳极导电材料都是采用石墨化电极或连续自焙电极(阳极糊、有时用预焙阳极)。熔盐电解的温度一般在1000℃以下。生产烧碱(氢氧化钠)和氯气的食盐溶液电解槽的阳极导电材料,一般都用石墨化阳极。生产金刚砂(碳化硅)使用的电阻炉的炉头导电材料,也使用石墨化电极。 除上述用途外,炭和石墨制品作为导电材料广泛用于电机制造工业作为滑环和电刷,以及用作干电池中的炭棒或产生弧光用的弧光炭棒,水银整流器中的阳极等。 2耐火材料 由于炭素制品能耐高温和有较好的高温强度及耐腐蚀性,所以很多冶金炉内衬可用炭块砌筑,如高炉的炉底、炉缸和炉腹,铁合金炉和电石炉的内衬,铝电解槽的底部及侧部。许多贵重金属和稀有金属冶炼用的坩埚、熔化石英玻璃等所用的石墨坩埚,也都是用石墨化坯料加工制成的。 3耐腐蚀的结构材料 经过有机树脂或无机树脂浸渍过的石墨材料,具有耐腐蚀性好、导热性好、渗透率低等特点,这种浸渍石墨又称为不透性石墨。它大量应用于制作各种热交换器、反应槽、凝缩器、燃烧塔、吸收塔、冷却器、加热器、过滤器、泵等设备,广泛应用于石油炼制、石油化工、湿法冶金、酸碱生产、合成纤维,造纸等工业部门,可节省大量的不锈钢等金属材料。 4耐磨和润滑材料 炭素材料除具有化学稳定性高的特性外,还有较好的润滑性能。在高速、高温、高压的条件下,用润滑油来改善滑动部件的耐磨性往往是不可能的。石墨耐磨材料可以在-200℃到2000℃温度下的腐蚀性介质中并在很高的滑动速度下(可达100m/s)不用润滑油而工作。因此,许多输送腐蚀性介质的压缩机和泵广泛采用石墨材料制成的活塞环、

(1)纤维增强聚合物基复合材料界面残余热应力研究

纤维增强聚合物基复合材料界面残余热应力研究 赵若飞 周晓东 戴干策 (华东理工大学聚合物加工室上海200237) 摘要:本文综述了聚合物基纤维复合材料界面残余热应力的形成、测定方法和各种理论分析方法。阐述了残余应力对界面粘结强度以及复合材料断裂韧性和强度的影响,最后对界面残余应力的控制方法作了评述。 关键词:聚合物基纤维复合材料 残余热应力 界面 1 前 言 聚合物基纤维复合材料的基体和增强纤维的热 膨胀系数存在很大的差异,而复合材料有相当部分 是在升温条件下成型的,当温度降低时,由于基体和 纤维的体积收缩率不同,会产生热残余应力,热固性 树脂在固化过程中发生体积收缩也会形成残余应 力。复合材料的残余应力同时存在于基体、纤维和 界面上,基体中的应力会使基体的性质发生变 化[1、2],使基体的耐冲击性、疲劳强度、压缩强度等下 降,甚至会引起基体的破坏。纤维中主要存在轴向 压缩残余应力,可能引起纤维发生曲折[3]。界面相 的残余应力有径向压缩或拉伸应力、环向拉伸应力 和界面剪切应力[4、5],这些应力都会对界面的粘结强 度和纤维的脱粘产生重要的影响[6~8]。 界面相残余应力的存在显然严重影响复合材料 的宏观性能,因此,人们一直希望能定量测定它,但 是界面层的厚度很小,属于微结构(纳米结构),而且界面存在材料的内部,所以难以直接测量残余应力[9]。纤维和基体中的残余应力则可采用各种实验方法来测定,例如光弹性法[2、10]、Ramman光谱法[11]、纤维总应变法[12]、碳纤维电阻率法[13]、单丝拔除法[14]等,可以通过测定邻近界面的基体或纤维中的残余应力来得到界面残余应力。另一方面,三十年来发展了有限元分析等各种理论分析方法研究复合材料残余应力[15~21],使人们对界面残余应力有了深入的认识。 近年来热塑性树脂基复合材料得到发展和广泛应用,人们对聚合物基复合材料的界面残余应力的研究越来越重视,这是因为与热固性树脂基复合材料相比,这种热塑性树脂在加工冷却过程中多伴有结晶的形成,与纤维的体积收缩比具有更大的差异[1、22] ,可能形成较大的界面残余应力。 2 残余应力的形成 聚合物基纤维复合材料有不少是在高于环境温度(150~300℃)的条件下加工,当体系温度降低时,会由于树脂和纤维的体积收缩不匹配而造成残余应力,表1列举了几种纤维和树脂的热膨胀系数和温度变化时的体积收缩率。由表1可见玻璃纤维是各向同性的,而碳纤维和凯芙拉纤维的横向和纵向热膨胀系数差别很大,当升温时沿纤维纵向收缩,横向膨胀。环氧树脂在固化过程中,伴随着化学反应体积发生收缩,产生残余应力,体积收缩率随树脂类型的不同在1%-6%范围内,固化完成后,环氧树脂随温度的降低继续发生一定的体积收缩,热膨胀系数在较窄的温度范围内(50~150℃)可看作常数(40~80ppm/℃)[24]。热塑性树脂在温度达到固化温度时(T c或者T g),体积收缩开始产生热应力,在达到固化温度以前,热塑性树脂仍然是熔体,虽然也有很大的体积收缩但却不产生残余应力,非晶型热塑性树脂的体积收缩率与环氧树脂相差不大,而结晶型的体积收缩率则相当高。 FRP/CM 2000.No.4

聚合物基复合材料的界面研究进展

深圳大学研究生课程论文 题目聚合物基复合材料的界面研究进展成绩 专业材料工程 课程名称、代码1512011080405 年级 姓名学号 时间年月 任课教师

聚合物基复合材料的界面研究进展 【摘要】界面的好坏是直接影响复合材料性能的关键因素之一。当复合材料受到外力作用时,除增强材料和基体受力外,界面亦起着极其重要的作用。本文主要综述无机刚性粒子增强复合材料、无机纳米粒子增强复合材料、纤维增强复合材料、原位复合材料的界面特性及其改性方法,并简要介绍了各种复合材料的增强机理,界面相容性。 【关键词】聚合物;复合材料;综述;增强 1 前言 界面是复合材料极为重要的微观结构,它作为增强体与基体连接的“桥梁”,对复合材料的物理机械性能有至关重要的影响。复合材料一般是由增强相、基体相和它们的中间相(界面相)组成,它们各自都有其独特的结构、性能与作用,增强相主要起承载作用,基体相主要起连接增强相和传载作用,界面是增强相和基体相连接的桥梁,同时是应力的传递者[1]。目前对增强相和基体相的研究已取得了许多成果,但对作为复合材料三大微观结构之一的界面问题的研究却不够深入,其原因是测试界面的精细方法运用起来较困难,描述的理论尚不完整,尤其从力学的角度研究界面的性质、作用及其对复合材料力学性能的影响和破坏机理等方面的工作正在开展。界面的性质直接影响着复合材料的各项力学性能[2],尤其是层间剪切、断裂、抗冲击等性能,因此随着复合材料科学和应用的发展,复合材料界面及其力学行为将越来越受到重视。 复合材料的强度、刚性及韧性是代表其物理机械性能的重要指标,对复合材料进行界面改性使两相界面具有合适的粘附力,形成一个相互作用匹配且能顺利传递应力的中间模量层,以提高聚合物基复合材料的力学性能一直是高分子材料科学的重要研究领域[3]。 2 无机刚性粒子增强聚合物基复合材料及其界面 无机刚性粒子增强聚合物是近年来研究的热点,它克服了以往用弹性体、热塑性树脂增韧聚合物时在韧性提高的同时刚性下降的缺点。常用的无机刚性粒子[4]有CaCO3、SiC、BaSO4、滑石、硅石灰、蒙脱土以及煤灰等。欧玉春[5]等提出刚性粒子增强增韧聚合物的界面结构模型,即在均匀分散的刚性粒子周围嵌入具有良好界面结合和一定厚度的柔性界面相,以便在材料经受破坏时能引发银纹,终止裂缝的扩展。在一定形态结构下它还可引发基体剪切屈服,从而消耗大量冲击能,又能较好地传递所承受的外应力,达到既增强又增韧的目的。 在PP/CaCO3复合体系中用酯酸类偶联剂在刚性粒子表面引入柔性或弹性界面层,降低了添加刚性粒子所引起的材料韧性下降的程度;同时由于界面层的引入,使三相复合体系在较低的橡胶含量下具有较高的模量和冲击强度。欧玉春[6]等报道了PP/三元乙丙橡胶(EPDM)/

吸波材料简介、应用,及未来发展趋势

吸波材料简介、应用,及未来发展趋势 一、吸波材料简介: 吸波材料是近年来发展的一种新型的复合型聚合物合成材料,用于电子元器件上屏蔽和防止电磁干扰的磁性吸波材料. 所谓吸波材料,指能吸收投射到它表面的电磁波能量的一类材料。在工程应用上,除要求吸波材料在较宽频带内对电磁波具有高的吸收率外,还要求它具有质量轻、耐温、耐湿、抗腐蚀等性能。 电磁辐射通过热效应、非热效应、累积效应对人体造成直接和间接的伤害。研究证实,铁氧体吸波材料性能最佳,它具有吸收频段高、吸收率高、匹配厚度薄等特点。将这种材料应用于电子设备中可吸收泄露的电磁辐射,能达到消除电磁干扰的目的。根据电磁波在介质中从低磁导向高磁导方向传播的规律,利用高磁导率铁氧体引导电磁波,通过共振,大量吸收电磁波的辐射能量,再通过耦合把电磁波的能量转变成热能。 其中铁氧体的磁损耗特性在300MHz以下可有效吸引电波,而导电性发泡聚苯乙烯材料在300MHz 以上的作用更为明显。 二、吸波材料的应用范围: 早在第二次世界大战期间,美、英、德等国出于各自的军事目的,针对雷达电子侦察和反侦察,开始对电磁波吸收材料进行了大量探索性工作。美国于20世纪60年代开始把吸波材料应用于空军的F-14、F-15、F-18战斗机和F-117隐形飞机上。80年代以来,世界各国投巨资加大对吸波材料研究的力度。随着电信业务的迅速发展,吸波材料也被应用到通信、环保及人体防护等诸多领域。 能抵挡并削弱电磁波辐射的材料——吸波材料,已成为材料科学的一大课题。 城市内高楼林立,高大的建筑反射电磁波会造成重影。将吸波材料应用于建筑材料中,可使这个问题迎刃而解。而吸波材料制作的微波暗室可广泛地应用于雷达、通信和航空航天领域。此外,吸波材料在改善机载、航载雷达设备的兼容性,提高整机性能等方面也有着广阔的应用空间。 在各种雷达目标的表面,涂覆吸波材料用以减少武器系统的有效反射截面,从而使这些武器易于突破敌方雷达的防区,这是反雷达侦察的一种有力手段,也是减少武器系统遭受红外制导导弹和激光武器攻击的一种方法。吸波材料还可用于着落灯等机场导航设备,航船桅杆、甲板,潜艇的潜望镜支架或通气管道等。 将吸波材料应用于各类电子产品,如电视、LED显示屏、音响、VCD机、电脑、数码相机、游戏机、微波炉、移动电话中,可以使电磁波泄露降到国家卫生安全限值(10微瓦每平方厘米)以下,确保人体健康。将其应用于高功率雷达、微波暗室、微波医疗器、微波破碎机、电子兼容的吸收屏蔽,能保护操作人员免受电磁波辐射的伤害。

相关文档
最新文档