反激式变换器中RCD电路的工作原理

反激式变换器中RCD电路的工作原理
反激式变换器中RCD电路的工作原理

反激式变换器中RCD箝位电路的工作原理

图为RCD 箝位电路在反激式变换器中的应用。

图中:V c lamp:箝位电容两端间的电压

V in:输入电压

V D:开关管漏极电压

L p:初级绕组的电感量

L lk:初级绕组的漏感量

该图中RCD箝位电路的工作原理是:当开关管导通时,能量存储在Lp和Llk中,当开关管关闭时,Lp中的能量将转移到副边输出,但漏感Llk中的能量将不会传递到副边。如果没有RCD箝位电路,Llk 中的能量将会在开关管关断瞬间转移到开关管的漏源极间电容和电路中的其它杂散电容中,此时开关管的漏极将会承受较高的开关应力。若加上RCD 箝位电路,Llk中的大部分能量将在开关管关断瞬间转移到箝位电路的箝位电容上,然后这部分能量被箝位电阻Rc消耗。这样就大大咸少了开关管的电压应力。

RCD 箝位电路的设计

在RCD 箝位电路中电阻Rc和电容Cc的取值都比较大,因此,箝位电容Cc上的电压在每个开关周期不会有较大的变化,这样,我们可以用一个恒定值Vclamp来表示箝位电容

两端的电源。在此基础上我们可以按以下几个步骤来设计RCD箝位电路。

步骤一:确定箝位电压Vclamp

图2表示的是采用RCD 箝位的反激变换器的开关管的漏极电压。

图中:V OR:次级到初级的折射电压

V c lamp:箝位电容Cc两端的箝位电压

V BR(DSS):开关管的漏源极击穿电压

V INMAX:最大输入直流电压

由图可见,箝位电压V c lamp与开关管的V BR(DSS)及输入最高电压有关,如果考虑0.9的降额使用系数,可用下式来确定V clamp的大小

步骤二:确定初级绕组的漏感量Llk

初级绕组的漏感量可以通过测试来获得,常用方法是,短路各个次级绕组测试此时的初级绕组的感量,这个值就是初级绕组的漏感量。需要注意的是,测试频率应采用变换器的工作频率。

当然,批量生产时不可能采取逐个测试的方法,这时,可确定一个百分比来估计整个批次的

漏感值,这个百分比通常是在1%--5%。

步骤三:确定箝位电阻Rc

前文提到,箝位电容Cc两端的电压可用恒定值V c lamp表示,因此箝位电阻消耗的功率为

式中:P R-clamp:箝位电阻消耗的功率

另一方面从能量守恒原则考虑,存在以下关系

式中:W R-c lamp:箝位电阻消耗的能量

W l:初级绕组漏感中存储的能量

V OR:次级到初级的折射电压。

V c lamp:箝位电压

将能量转换为平均功率则(3)式可变为

式中:f s:变换器的工作频率

L lk:初级绕组的漏感量

I ds-peak:开关管的最大峰值电流(即低压满载时的峰值电流)

这样由(2)、(4)式就可得到箝位电阻的计算公式

步骤四:

确定箝位电容Cc

箝位电容C c的值应取得足够大以保证其在吸收漏感能量时自身的脉动电压足够小,通常取这个脉动电压为箝位电压的5%--10%,这样,我们就可通过下式来确定C c的最小值

式中:C c:箝位电容

V c lamp:箝位电压

△V c lamp:箝位电容上的脉动电压

R c:箝位电阻

f s:变换器的工作频率

(整理)反激式开关电源变压器设计原理.

反激式开关电源变压器设计原理 (Flyback Transformer Design Theory) 第一节. 概述. 反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图. 一、反激式转换器的优点有: 1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求. 2. 转换效率高,损失小. 3. 变压器匝数比值较小. 4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在 85~265V间.无需切换而达到稳定输出的要求. 二、反激式转换器的缺点有: 1. 输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下. 2. 转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大. 3. 变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂. 第二节. 工作原理 在图1所示隔离反驰式转换器(The isolated flyback converter)中, 变压器" T "有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下: 当开关晶体管 Tr ton时,变压器初级Np有电流 Ip,并将能量储存于其中(E = LpIp / 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律 : (e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2. 由图可知,导通时间 ton的大小将决定Ip、Vce的幅值: Vce max = VIN / 1-Dmax VIN: 输入直流电压 ; Dmax : 最大工作周期 Dmax = ton / T 由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax = 0.4,以限制Vcemax ≦ 2.2VIN. 开关管Tr on时的集电极工作电流Ie,也就是原边峰值电流Ip 为: Ic = Ip = IL / n. 因IL = Io,故当Io一定时,匝比 n的大小即决定了Ic 的大小,上式是按功率守恒原则,原副边安匝数相等 NpIp = NsIs而导出. Ip 亦可用下列方法表示: Ic = Ip = 2Po / (η*VIN*Dmax) η: 转换器的效率 公式导出如下: 输出功率 : Po = LIp2η / 2T

占空比可调的方波振荡电路工作原理及案例分析

占空比可调的方波振荡电路工作原理及案例分析 参考电路图5.12所示,测试电路,计算波形出差频率。 电容 图5.12 方波发生电路(multisim) 通过上述电路调试,发现为方波发生器。 一、电路组成 如图5.13,运算放大器按照滞回比较器电路进行链接,其输出只有两种可能的状态:高电平或低电平,所以电压比较器是它的重要组成部分;因为产生振荡,就是要求输出的两种状态自动的产生相互变换,所以电路中必须引入反馈;因为输出状态应按一定的时间,间隔交替变化,即产生周期性的变化,所以电路中要有延迟环节来确定每种状态维持的时间。 电路组成:如图所示为矩形波发生电路,它由反相输入的滞回比较器和RC 电路组成。RC 回路既作为延迟环节,又作为反馈网络,通过RC 充、放电实现输出状态的自动转换。电压传输特性如图6.8所示: U 0 U N U P U z U c R 3 R 2 R 1 R 图5.13方波发生电路 二、工作原理 从图5.13可知,设某一时刻输出电压U O =+U Z ,则同相输入端电位U P =+U T 。U O 通过R 对电容C 正向充电。反相输入端电位U N 随时间t 增长而逐渐升高,当t 趋近于无穷时,U N 趋于+U z ;

当U N =+U T ,再稍增大,U O 就从+U Z 越变为-U Z ,与此同时U p 从+U T 越变为-U T 。随后,U O 又通过R 对电容C 放电。 反相输入端电位U N 随时间t 增长而逐渐降低,当t 趋近于无穷时,U N 趋于-U Z ;当U N =-U T ,稍减小,U O 就从-U Z ,于此同时,U p 从-U T 跃变为+U T ,电容又开始正向充电。 上述过程周而复始,电路产生了自激振荡。 三、波形分析及主要参数 由于矩形波发生电路中电容正向充电与反向充电的时间常数均等于R3C,而且充电的总幅值也相等因而在一个周期内U O =+U Z 的时间与U O =-U Z 的时间相等,U O 对称的方波,所以也称该电路为对称方波发生电路。电容上电压U C 和电路输出电压U O 波形如图所示。矩形波的宽度T k 与周期T 之比称为占空比,因此U O 是占空比为1/2的矩形波。 利用一阶RC 电路的三要素法可列出方程,求出振荡周期。 3122(12/)T R C R R =+ 振荡频率为: 1/f T = 调整电压比较器的电路参数R 1,R 2和U Z 可以改变方波发生电路的振荡幅值,调整电阻R 1,R 2,R 3和电容C 的数值可以改变电路的振荡频率。 四、占空比可调电路 占空比的改变方法:使电容的反向和正向充电时间常数不同。利用二极管的单向导电性可以引导电流流经不同的通路,占空比可调的矩形波发生电路如图2-5所示,电容上电压和输出波形的如图 6.19 Z U ±O 图 5.14占空比可调电路 电路工作原理:当U O =+U Z 时,通过RW1,D1,和R3对电容C 正向充电,若忽略二极管导通时的等效电阻,则时间常数为:

如何看懂电路图(超级完整版)

如何看懂电路图1--学电子跟我来系列文章 电子设备中有各种各样的图。能够说明它们工作原理的是电原理图,简称电路图。 电路图有两种,一种是说明模拟电子电路工作原理的。它用各种图形符号表示电阻器、电容器、开关、晶体管等实物,用线条把元器件和单元电路按工作原理的关系连接起来。这种图长期以来就一直被叫做电路图。 另一种是说明数字电子电路工作原理的。它用各种图形符号表示门、触发器和各种逻辑部件,用线条把它们按逻辑关系连接起来,它是用来说明各个逻辑单元之间的逻辑关系和整机的逻辑功能的。为了和模拟电路的电路图区别开来,就把这种图叫做逻辑电路图,简称逻辑图。 除了这两种图外,常用的还有方框图。它用一个框表示电路的一部分,它能简洁明了地说明电路各部分的关系和整机的工作原理。 一张电路图就好象是一篇文章,各种单元电路就好比是句子,而各种元器件就是组成句子的单词。所以要想看懂电路图,还得从认识单词——元器件开始。有关电阻器、电容器、电感线圈、晶体管等元器件的用途、类别、使用方法等内容可以点击本文相关文章下的各个链接,本文只把电路图中常出现的各种符号重述一遍,希望初学者熟悉它们,并记住不忘。 电阻器与电位器 符号详见图 1 所示,其中( a )表示一般的阻值固定的电阻器,( b )表示半可调或微调电阻器;( c )表示电位器;( d )表示带开关的电位器。电阻器的文字符号是“ R ”,电位器是“ RP ”,即在 R 的后面再加一个说明它有调节功能的字符“ P ”。 在某些电路中,对电阻器的功率有一定要求,可分别用图 1 中( e )、( f )、

( g )、( h )所示符号来表示。 几种特殊电阻器的符号: 第 1 种是热敏电阻符号,热敏电阻器的电阻值是随外界温度而变化的。有的是负温度系数的,用NTC来表示;有的是正温度系数的,用PTC来表示。它的符号见图( i ),用θ或t° 来表示温度。它的文字符号是“ RT ”。 第 2 种是光敏电阻器符号,见图 1 ( j ),有两个斜向的箭头表示光线。它的文字符号是“ RL ”。 第 3 种是压敏电阻器的符号。压敏电阻阻值是随电阻器两端所加的电压而变化的。符号见图 1 ( k ),用字符 U 表示电压。它的文字符号是“ RV ”。这三种电阻器实际上都是半导体器件,但习惯上我们仍把它们当作电阻器。 第 4 种特殊电阻器符号是表示新近出现的保险电阻,它兼有电阻器和熔丝的作用。当温度超过500℃ 时,电阻层迅速剥落熔断,把电路切断,能起到保护电路的作用。它的电阻值很小,目前在彩电中用得很多。它的图形符号见图 1 ( 1 ),文字符号是“ R F ”。 电容器的符号 详见图2 所示,其中( a )表示容量固定的电容器,( b )表示有极性电容器,例如各种电解电容器,( c )表示容量可调的可变电容器。( d )表示微调电容器,( e )表示一个双连可变电容器。电容器的文字符号是 C 。 电感器与变压器的符号 电感线圈在电路图中的图形符号见图 3 。其中( a )是电感线圈的一般符号,( b )是带磁芯或铁芯的线圈,( c )是铁芯有间隙的线圈,( d )是带可调磁芯的可调电感,( e )是有多个抽头的电感线圈。电感线圈的文字符号是“ L ”。

电路原理图详解

电子电路图原理分析 电器修理、电路设计都是要通过分析电路原理图,了解电器的功能和工作原理,才能得心应手开展工作的。作为从事此项工作的同志,首先要有过硬的基本功,要能对有技术参数的电路原理图进行总体了解,能进行划分功能模块,找出信号流向,确定元件作用。若不知电路的作用,可先分析电路的输入和输出信号之间的关系。如信号变化规律及它们之间的关系、相位问题是同相位,或反相位。电路和组成形式,是放大电路,振荡电路,脉冲电路,还是解调电路。 要学会维修电器设备和设计电路,就必须熟练掌握各单元电路的原理。会划分功能块,能按照不同的功能把整机电路的元件进行分组,让每个功能块形成一个具体功能的元件组合,如基本放大电路,开关电路,波形变换电路等。 要掌握分析常用电路的几种方法,熟悉每种方法适合的电路类型和分析步骤。 1.交流等效电路分析法 首先画出交流等效电路,再分析电路的交流状态,即:电路有信号输入时,电路中各环节的电压和电流是否按输入信号的规律变化、是放大、振荡,还是限幅削波、整形、鉴相等。 2.直流等效电路分析法 画出直流等效电路图,分析电路的直流系统参数,搞清晶体管静态工作点和偏置性质,级间耦合方式等。分析有关元器件在电路中所处状态及起的作用。例如:三极管的工作状态,如饱和、放大、截止区,二极管处于导通或截止等。 3.频率特性分析法 主要看电路本身所具有的频率是否与它所处理信号的频谱相适应。粗略估算一下它的中心频率,上、下限频率和频带宽度等,例如:各种滤波、陷波、谐振、选频等电路。 4.时间常数分析法 主要分析由R、L、C及二极管组成的电路、性质。时间常数是反映储能元件上能量积累和消耗快慢的一个参数。若时间常数不同,尽管它的形式和接法相似,但所起的作用还是不同,常见的有耦合电路、微分电路、积分电路、退耦电路、峰值检波电路等。 最后,将实际电路与基本原理对照,根据元件在电路中的作用,按以上的方法一步步分析,就不难看懂。当然要真正融会贯通还需要坚持不懈地学习。 电子设备中有各种各样的图。能够说明它们工作原理的是电原理图,简称电路图。 电路图有两种 一种是说明模拟电子电路工作原理的。它用各种图形符号表示电阻器、电容器、开关、晶体管等实物,用线条把元器件和单元电路按工作原理的关系连接起来。这种图长期以来就一直被叫做电路图。 另一种是说明数字电子电路工作原理的。它用各种图形符号表示门、触发器和各种逻辑部件,用线条把它们按逻辑关系连接起来,它是用来说明各个逻辑单元之间的逻辑关系和整机的逻辑功能的。为了和模拟电路的电路图区别开来,就把这种图叫做逻辑电路图,简称逻辑图。 除了这两种图外,常用的还有方框图。它用一个框表示电路的一部分,它能简洁明了地说明电路各部分的关系和整机的工作原理。 一张电路图就好象是一篇文章,各种单元电路就好比是句子,而各种元器件就是组成句子的单词。所以要想看懂电路图,还得从认识单词——元器件开始。有关电阻器、电容器、电感线圈、晶体管等元器件的用途、类别、使用方法等内容可以点击本文相关文章下的各个链接,本文只把电路图中常出现的各种符号重述一遍,希望初学者熟悉它们,并记住不忘。 电阻器与电位器(什么是电位器) 符号详见图 1 所示,其中( a )表示一般的阻值固定的电阻器,( b )表示半可调或微调电阻器;( c )表示电位器;( d )表示带开关的电位器。电阻器的文字符号是“ R ”,电位器是“ RP ”,即在 R 的后面再加一个说明它有调节功能的字符“ P ”。

正激变换器工作原理

正激变换器 实际应用中,由于电压等级变换、安全、系统串并联等原因,开关电源的输入输出往往需要电气隔离。在基本的非隔离DC DC-变换器中加入变压器,就可以派生出带隔离变压器的DC DC-变换器。例如,单端正激变换器就是有BUCK变换器派生出来的。 一工作原理 1 单管正激变换器 单端正激变换器是由BUCK变换器派生而来的。图(a1)为BUCK 变换器的原理图,将开关管右边插入一个隔离变压器,就可以得到图(a2)的单端正激变换器 图(a1)BUCK变换器

图(a2)单端正激变换器 BUCK 变换器工作原理: 电路进入平恒以后,由电感单个周期内充放电量相等, 由电感周期内充放电平恒可以得到: ?==T dt L u T L U 001

即: 可得: 单端正激变换器的工作原理和和BUCK 相似。 其工作状态如图如图(a3)所示: 图(a3)单端正激变换器工作状态 开关管Q 闭合。如图所示,当开关管Q 闭合时的工作状态如图a4所示, ? ? =- -ON ON t T t o o i dt U dt U U 0 )(i i ON o o o i OFF o ON o i DU U T t U T D U DT U U t U t U U == -=-=-)1()()(

图(a4) 根据图中同名端所示,可以知道变压器副边也流过电流,D1导通,D2截止,电感电压为正,变压器副边的电流线性上升。在此期间,电感电压为: O I L U U N N u -= 1 2 开关管Q 截止。开关管截止时,变压器副边没有电流流过,副边电流经反并联二极管D2续流,在此期间,电感电压为负,电流线性下降: O L U U -= 在稳定时,和BUCK 电路一样,电感电压在一个周期内积分为零,因此: ()S O S I T D U DT U U N N ?-?=??? ? ??-1120 得: I O DU N N U 1 2= 由此可见,单端正激变换器电压增益与开关导通占空比成正比,

环形振荡器的工作原理

环形振荡器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

环形振荡器的工作原理 环形振荡器是利用门电路的固有传输延迟时间将奇数个反相器首尾相接而成,该电路没有稳态。因为在静态(假定没有振荡时)下任何一个反相器的输入和输出都不可能稳定在高电平或低电平,只能处于高、低电平之间,处于放大状态。 假定由于某种原因v11产生了微小的正跳变,经G1的传输延迟时间tpd后,v12产生了一个幅度更大的负跳变,在经过G2的传输延迟时间tpd后,使v13产生更大的正跳变,经G3的传输延迟时间tpd后,在vo产生一个更大的负跳变并反馈到G1输入端。可见,在经过3tpd后,v11又自动跳变为低电平,再经过3tpd之后,v11又将跳变为高电平。如此周而复始,便产生自激振荡。如图2所示,可见振荡周期为 T=6tpd 环形振荡器的改进原因 环形振荡器的突出优点是电路极为简单,但由于门电路的传输延迟时间极短,TTL门电路只有几十纳秒,CMOS电路也不过一二百纳秒,难以获得较低的振荡频率,而且频率不易调节,为克服这个缺点,有几种改进电路,下面给出对照图。如图3和图4所示。 环形振荡器的改进原理 接入RC 电路以后,不仅增大了门G2的传输延迟时间tpd2有助于获得较低的振荡频率。而且通过改变R 和C 的数值可以很方便地实现对频率的调节。 环形振荡器的实用电路 如图4,为了进一步加大RC和G2的传输延迟时间,在实用电路中将电容C 的接地端改接G1的输出端。如图10.3.5所示。例如当v12处发生负跳变时,经过电容C使v13首先跳变到一个负电平,然后再从这

电路图、工作原理、调试步骤

1、稳压电源电路图、工作原理、调试步骤 a)仪器的准备 1、调压器 2、变压器 3、指针万用表(2.5A插孔) 4、数字万用表 5、负载电阻12Ω/25W 6、电子电压表 b)电路的功能 该电路是一个串联形直流稳压电路,它是由电源变换电路、整流电路、滤波电路、稳压电路和负载组成。该电路可以实现整流、滤波、稳压。其中稳压部分包括基准电压、取样电路、比较放大器、调整电路等。 c)电路原理图 d)电路的原理 ◆稳压的工作原理 稳压电路是利用负反馈的原理,以输出电压的变化量ΔUL,经取样管VT3与基准电压7.5V(VD5稳压管提供)比较放大后,去控制调整管VT2的基极电流Ib,当Ib增大,调整管Uce将减小;当Ib减小,调整管Uce将增大;使输出电压UL基本保持不变。 当电网电压升高或输出电流减小时: Uo↑→Ub(VT3)↑→Ube(VT3)↑→Ic(VT3)↑→Uc(VT3)↓→Ub(VT1)↓→Ic(VT1)↓→Ic(VT2)↓→Uce(VT2) ↑→Uo↓ 当电网电压下降或输出电流变大时: Uo↓→Ub(VT3) ↓→Ube(VT3) ↓→Ic(VT3) ↓→Uc(VT3) ↑→Ub(VT1) ↑→Ic(VT1) ↑→Ic(VT2) ↑→Uce(VT2) ↓→Uo↓ ◆说明各元件在电路中的作用 VD1、VD2、VD3、VD4桥式整流电路。C6、C7、C8、C9滤波电容、保护整流二极管。VT1、VT2组成复合管,增大等效β值改善稳压性能。C1、C2、C3、C4、C5为滤波电容。R5为VD5限流电阻。R4给VT1的反向穿透电流提供一条通路,防止高温时,VT2出现失控。R8、RP1、R7为VT3分压偏置电阻。R1、R3为VT2负载电阻。R2、R6、R9为VT1偏置、负载电阻。 e)电路的测量步骤

有源钳位正激变化器的工作原理

第2章有源箝位正激变换器的工作原理 2.1 有源箝位正激变换器拓扑的选择 单端正激变换器具有结构简单、工作可靠、成本低廉、输入输出电气隔离、易于多路输出等优点,因而被广泛应用在中小功率变换场合。但是它有一个固有缺点:在主开关管关断期间,必须附加一个复位电路,以实现高频变压器的磁复位,防止变压器磁芯饱和[36]。传统的磁复位技术包括采用第三个复位绕组技术、无损的LCD箝位技术以及RCD箝位技术。这三种复位技术虽然都有一定的优点,但是同时也存在一些缺陷[37-39]。 (1)第三复位绕组技术采用第三个复位绕组技术正激变换器的优点是技术比较成熟,变压器能量能够回馈给电网。 它存在的缺点是:第三复位绕组使得变压器的设计和制作比较复杂;变压器磁芯不是双向对称磁化,因而利用率较低;原边主开关管承受的电压应力很大。 (2)RCD箝位技术采用RCD箝位技术正激变换器的优点是电路结构比较简单,成本低廉。 它存在的缺点是:在磁复位过程中,磁化能量大部分都消耗在箝位网络中,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。 (3) LCD箝位技术采用无损的LCD箝位技术正激变换器的优点是磁场能量能够全部回馈给电网,效率较高。 它存在的缺点是:在磁复位过程中,箝位网络的谐振电流峰值较大,增加了开关管的电流应力和通态损耗,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。 而有源箝位正激变换器是在传统的正激式变换器的基础上,增加了由箝位电容和箝位开关管串联构成的有源箝位支路,虽然与传统的磁复位技术相比,有源箝位磁复位技术增加了一个箝位开关管,提高了变换器的成本,但是有源箝位磁复位技术有以下几个优点: (1)有源箝位正激变换器的占空比可以大于0.5,使得变压器的原副边匝

反激式变压器设计原理

反激式变压器设计原理 绿色节能PWM控制器CR68XX CR6848低功耗的电流模PWM反激式控制芯片 成都启达科技有限公司联系人:陈金元TEL: 电话/传真:-218 电邮:; MSN: 概述:CR6848是一款高集成度、低功耗的电流模PWM控制芯片,适用于离线式AC-DC反激拓扑的小功率电源模块。 特点:电流模式PWM控制低启动电流低工作电流 极少的外围元件片内自带前沿消隐(300nS) 额定输出功率限制 欠压锁定(12.1V~16.1V) 内建同步斜坡补偿PWM工作频率可调 输出电压钳位(16.5V) 周期电流限制 软驱动2000V的ESD保护过载保护 过压保护(27V)60瓦以下的反激电源SOT23-6L、DIP8封装 应用领域:本芯片适用于:电池充电器、机顶盒电源、DVD 电源、小功率电源适配器等60 瓦以下(包括60 瓦)的反激电源模块。 兼容型号: SG6848/SG5701/SG5848/LD7535/LD7550/OB2262/OB2263。 原生产厂家现货热销!-218,。 CR6842兼容SG6842J/LD7552/OB2268/OB2269。 绿色节能PWM控制器AC-DC 产品型号功能描述封装形式兼容型号 CR6848 低成本小功率绿色SOT-26/DIP-8 SG6848/SG5701/SG5848 节能PWM控制器LD7535/LD7550 OB2262/OB2263 CR6850 新型低成本小功率绿色SG6848/SG5701/SG5848 节能PWM控制器SOT-26/DIP-8 LD7535/LD7550 SOP-8OB2262/OB2263 CR6851 具有频率抖动的低成本SOT-26/DIP-8 SG6848/SG5701/SG5848 绿色节能PWM控制器SOP-8 LD7535/LD755 OB2262/OB2263 CR6842 具有频率抖动的大功能DIP-8 兼容SG6842J/LD7552

振荡电路的原理

高频放大器 使用高频功率放大器的目的是放大高频大信号使发射机末级获得足够大的发射功率。 高频放大器的工作状态是由负载阻抗Rp、激励电压vb、供电电压VCC、VBB等4个参量决定的。如果VCC、VBB、vb 3个参变量不变,则放大器的工作状态就由负载电阻Rp决定。此时,放大器的电流、输出电压、功率、效率等随Rp而变化的特性,就叫做放大器的负载特性。 原理 放大电路所需的通频带由输入信号的频带来确定,为了不失真地放大信号,要求放大电路的通频带应大于信号的频带。如果放大电路的通频带小于信号的频带,由于信号的低频段或高频段的放大倍数下降过多,放大后的信号不能重现原来的形状,也就是输出信号产生了失真。这种失真称为放大电路的频率失真,由于它是线性的电抗元件引起的,在输出信号中并不产生新的频率成分,仅是原有各频率分量的相对大小和相位发生了变化,故这种失真是一种线性失真。 For personal use only in study and research; not for commercial use 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻变换和选频滤波功能。高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 本级振荡电路 本级振荡电路图 本级振荡电路采用改进型晶体振荡电路(克拉伯振荡电路),振荡频率由晶振决定,为6MHz,三极管的静态工作点由RP0控制,集电极电流ICQ,一般取0.5mA~4mA,ICQ过大会产生高次谐波,导致输出波形失真。调节RP1可使输出波形失真较小、波形较清晰,RP2用来调节本振信号的幅值,以便得到适当幅值的本振信号作为载波。 混频器 工作频率 混频器是多频工作器件,除指明射频信号工作频率外,还应注意本振和中频频率应用范围。

一种实用ups电源电路图及电路工作原理

一种实用ups电源电路图及电路工作原理 UPS即不间断电源(ups不间断电源),该装置可以保障计算机系统停电后,用户还能再工作一段时间紧急存盘,不会因为停电而影响工作或使数据丢失。当市电输入正常时,ups可将市电稳压后提供给负载使用,此时ups(ups稳压电源)被当做交流市电稳压器,与此同时还向机内电池充电。当市电中断时,UPS 便立即将机内电池的电能向负载继续供电,使负载保持正常工作状态,并保护负载、软件、硬件不被损坏。UPS 设备通常对电压过大或电压太低都可以提供保护,本文主要介绍了一种实用ups电源电路图及电路工作原理。 在使用ups电源(ups电源的作用)时,我们要留意以下几个注意事项: 1)UPS的输出负载控制在60%左右为最佳,可靠性最高。 2)UPS放电后应及时充电,避免电池因过度自放电而损坏。 3)UPS的使用环境应注意通风良好,利于散热,并保持环境的清洁。 4)切勿带感性负载,如点钞机、日光灯、空调等,以免造成损坏。 5)UPS带载过轻(如1000VA的UPS带100VA负载)有可能造成电池的深度放电,会降低电池的使用寿命,应尽量避免。 6)对于多数小型UPS,上班再开UPS,开机时要避免带载启动,下班时应关闭UPS;对于网络机房的UPS,由于多数网络是24小时工作的,所以UPS也必须全天候运行。 7)适当的放电,有助于电池的激活,如长期不停市电,每隔三个月应人为断掉市电用UPS 带负载放电一次,这样可以延长电池的使用寿命。 一、UPS电源系统组成 UPS电源系统由4部分组成:整流、储能、变换和开关控制。其系统的稳压功能通常是由整流器完成的,整流器件采用可控硅或高频开关整流器,本身具有可根据外电的变化控制输出幅度的功能,从而当外电发生变化时(该变化应满足系统要求),输出幅度基本不变的整流电压。 净化功能由储能电池来完成,由于整流器对瞬时脉冲干扰不能消除,整流后的电压仍存在干扰脉冲。储能电池除可存储直流直能的功能外,对整流器来说就象接了一只大容器电容器,其等效电容量的大小,与储能电池容量大小成正比。 由于电容两端的电压是不能突变的,即利用了电容器对脉冲的平滑特性消除了脉冲干扰,起到了净化功能,也称对干扰的屏蔽。频率的稳定则由变换器来完成,频率稳定度取决于变换器的振荡频率的稳定程度。为方便UPS电源系统的日常操作与维护,设计了系统工作开关,主机自检故障后的自动旁路开关,检修旁路开关等开关控制。 在电网电压工作正常时,给负载供电,而且,同时给储能电池充电;当突发停电时,UPS 电源开始工作,由储能电池供给负载所需电源,维持正常的生产(如粗黑→所示);当由于生产需要,负载严重过载时,由电网电压经整流直接给负载供电(如虚线所示)。 二、实用ups电源电路图及电路工作原理 实用ups电源电路图如下图所示。 电路工作原理:常态下,市电(220V)通过可调充电器向蓄电池充电,同时自启动继电器K1吸合,R1与VZ1、VZ2对蓄电池+24V电压进行分压采样,采样电压Vo通过R2、VD3加到V1基极,使V1处于线性放大状态,V2、V3深度饱和,直流控制继电器K吸合,+24V电压通过K、K1送至逆变器V+端,逆变器工作,输出220V正弦波电压,同时自锁继电器K2吸合。 当市电断电时,K1断开,初时输人电压+24V不变,K继续吸合,由于K2的自锁作用,+24V仍正常送至逆变器。经一段时间后,电池电压开始下降,Vo跟着下降,V1导通减弱,

石英晶体振荡器原理

石英晶体振荡器的基本工作原理及作用 (1)石英晶体振荡器(简称晶振)的结构石英晶体振荡器是利用石英晶体(二氧化矽的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑胶封装的。(2)压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐 振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 (3)符号和等效电路石英晶体谐振器的符号和等效电路如图所示。当晶体不振动时,可把它看 成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个pF到几十pF。当晶体振荡时,机械振动的惯性可用电感L來等效。一般L的值为几十mH到几 百mH。晶片的弹性可用电容C來等效,C的值很小,一般只有0.0002~0.1pF。晶片振动时因 摩擦而造成的损耗用R來等效,它的數值约为100Ω。由于晶片的等效电感很大,而C很小, R也小,因此回路的品质因數Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只 与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定性。

入门电路原理图分析

入门电路原理图分析 一、电子电路的意义电路图是人们为了研究和工程的需要,用约定的符号绘制的一种表示电路结构的图形。通过电路图可以知道实际电路的情况。这样,我们在分析电路时,就不必把实物翻来覆去地琢磨,而只要拿着一张图纸就可以了。在设计电路时,也可以从容地纸上或电脑上进行,确认完善后再进行实际安装,通过调试、改进,直至成功。我们更可以应用先进的计算机软件来进行电路的辅助设计,甚至进行虚拟的电路实验,大大提高工作效率。二、电子电路图的分类常遇到的电子电路图有原理图、方框图、装配图和印版图等。1、原理图 原理图就是用来体现电子电路的工作原理的一种电路图,又被叫做“电原理图”。这种图由于它直接体现了电子电路的结构和工作原理,所以一般用在设计、分析电路中。分析电路时,通过识别图纸上所画的各种电路元件符号以及它们之间的连接方式,就可以了解电路的实际工作情况。下图所示就是一个收音机电路的原理图。2、方框图(框图) 方框图是一种用方框和连线来表示电路工作原理和构成概 况的电路图。从根本上说,这也是一种原理图。不过在这种图纸中,除了方框和连线几乎没有别的符号了。它和上面的原理图主要的区别就在于原理图上详细地绘制了电路的全

部的元器件和它们连接方式,而方框图只是简单地将电路安装功能划分为几个部分,将每一个部分描绘成一个方框,在方框中加上简单的文字说明,在方框间用连线(有时用带箭头的连线)说明各个方框之间的关系。所以方框图只能用来体现电路的大致工作原理,而原理图除了详细地表明电路的工作原理外,还可以用来作为采集元件、制作电路的依据。下图所示的就是上述收音机电路的方框图。(三)装配图它是为了进行电路装配而采用的一种图纸,图上的符号往往是电路元件的实物的外形图。我们只要照着图上画的样子,依样画葫芦地把一些电路元器件连接起来就能够完成电路的装配。这种电路图一般是供初学者使用的。装配图根据装配模板的不同而各不一样,大多数作为电子产品的场合,用的都是下面要介绍的印刷线路板,所以印板图是装配图的主要形式。在初学电子知识时,为了能早一点接触电子技术,我们选用了螺孔板作为基本的安装模板,因此安装图也就变成另一种模式。如下图:(四)印板图印板图的全名是“印刷电路板图”或“印刷线路板图”,它和装配图其实属于同一类的电路图,都是供装配实际电路使用的。印刷电路板是在一块绝缘板上先覆上一层金属箔,再将电路不需要的金属箔腐蚀掉,剩下的部分金属箔作为电路元器件之间的连接线,然后将电路中的元器件安装在这块绝缘板上,利用板上剩余的金属箔作为元器件之间导电的连线,完成电路的连接。由于这种电路板的一面

RC正弦波振荡电路图文分析原理

RC正弦波振荡电路图文分析原理参考电路图5.7所示,搭建一个100KHz的正弦波振荡电路。 U O (a)测试电路(b)输出波形 图5.7 RC正弦波振荡电路(multisim) LC振荡电路的振荡频率过低时,所需的L和C就很大,这将使振荡电路结构不合理,经济不合算,而且性能也变坏,在几百千赫兹以下的振荡电路常采用RC振荡电路。由RC 元件组成的选频网络有RC称相型,RC串并联型,RC双T型等结构。这里主要介绍RC串并联型网络组成的振荡电路,即RC桥式正弦波振荡电路。 一、RC串并联型网络的选频特性 RC桥式电路如图5.8所示,设R1=R2=R,C1=C2=C, 11 1 2 1 2 11 1 2 11 2 j CR Z R j C j C R j C R Z j CR R j C ω ωω ω ω ω + =+= == + + 则反馈系数 2 12 1 1 3() f o U Z F U Z Z j CR CR ω ω === ++-

令 01C R ω= ,即 012f RC π= 则式(7-13)可写为 000 001 1 3( )3() F f f j j f f ωωωω = = +-+- 其频率特性曲线如图5.9(a )、(b )所示。 从图中可看出,当信号频率f =f 0时,u f 与u 0同相,且有反馈系数 01 3 f U F U = =为最大。 (a)幅频特性 (b)相频特性 图5.8 RC 串并联网络 图5.9RC 串并联网络的频率特性 二、RC 桥式振荡电路 1、电路组成 图5.9所示电路是文氏电桥振荡电路的原理图,它由同相放大器A 及反馈网络F 两部分组成。图中RC 串并联电路组成正反馈选频网络,电阻R f 、R 是同相放大器中的负反馈回路,由它决定放大器的放大倍数。 RC 桥式振荡电路的起振条件 同相放大器的输出电压0U 与输入电压i U 同相,即0a ?=,从分析RC 串并联网络的选频特性知,当输入RC 网络的信号频率f =f 0时,0U 与f U 同相,即0f ?=,整个电路的相移0f a ???=+=,即为正反馈,满足相位平衡条件。 放大器的放大倍数1f u R A R =+ ,从分析RC 串联网络的选频特性知,在R 1=R 2=R ,C 1=C 2=C 的条件下,当f=f 0时,反馈系数F=1/3达到最大,此时,只要放大器的电压放大倍数略大 于连(即R f ≥2R ),就能满足AF >1的条件,振荡电路能自行建立振荡。 R 1 C 1R 1 C 2 -U o + - + U f Z 1 Z 2

电气控制电路基础(电气原理图)

电气控制电路基础(电气原理图) 电气控制系统图一般有三种:电气原理图、电器布置图和电气安装接线图。 这里重点介绍电气原理图。 电气原理图目的是便于阅读和分析控制线路,应根据结构简单、层次分明清晰的原则,采用电器元件展开形式绘制。它包括所有电器元件的导电部件和接线端子,但并不按照电器元件的实际布置位置来绘制,也不反映电器元件的实际大小。 电气原理图一般分主电路和辅助电路(控制电路)两部分。 主电路是电气控制线路中大电流通过的部分,包括从电源到电机之间相连的电器元件;一般由组合开关、主熔断器、接触器主触点、热继电器的热元件和电动机等组成。 辅助电路是控制线路中除主电路以外的电路,其流过的电流比较小和辅助电路包括控制电路、照明电路、信号电路和保护电路。其中控制电路是由按钮、接触器和继电器的线圈及辅助触点、热继电器触点、保护电器触点等组成。 电气原理图中所有电器元件都应采用国家标准中统一规定的图形符号和文字符号表示。 电气原理图中电器元件的布局

电气原理图中电器元件的布局,应根据便于阅读原则安排。主电路安排在图面左侧或上方,辅助电路安排在图面右侧或下方。无论主电路还是辅助电路,均按功能布置,尽可能按动作顺序从上到下,从左到右排列。 电气原理图中,当同一电器元件的不同部件(如线圈、触点)分散在不同位置时,为了表示是同一元件,要在电器元件的不同部件处标注统一的文字符号。对于同类器件,要在其文字符号后加数字序号来区别。如两个接触器,可用KMI、KMZ文字符号区别。 电气原理图中,所有电器的可动部分均按没有通电或没有外力作用时的状态画出。 对于继电器、接触器的触点,按其线圈不通电时的状态画出,控制器按手柄处于零位时的状态画出;对于按钮、行程开关等触点按未受外力作用时的状态画出。 电气原理图中,应尽量减少线条和避免线条交叉。各导线之间有电联系时,在导线交点处画实心圆点。根据图面布置需要,可以将图形符号旋转绘制,一般逆时针方向旋转90o,但文字符号不可倒置。 图面区域的划分 图纸上方的1、2、3…等数字是图区的编号,它是为了便于检索电气线路,方便阅读分析从而避免遗漏设置的。图区编号也可设置在图的下方。

LC振荡电路的工作原理及特点

简单介绍LC振荡电路的工作原理及特点 LC振荡电路,顾名思义就是用电感L和电容C组成的一个选频网络的振荡电路,这个振荡电路用来产生一种高频正弦波信号。常见的LC振荡电路有好多种,比如变压器反馈式、电感三点式及电容三点式,它们的选频网络一般都采用LC并联谐振回路。这种振荡电路的辐射功率跟振荡频率的四次方成正比,如果要想让这种电路向外辐射足够大的电磁波的话,就必须提高其振荡频率,而且还必须是电路具备开放的形式。 LC振荡电路之所以有振荡,是因为该电路通过运用电容跟电感的储能特性,使得电磁这两种能量在交替转化,简而言之,由于电能和磁能都有最大和最小值,所以才有了振荡。当然,这只是一个理想情况,现实中,所有的电子元件都有一些损耗,能量在电容和电感之间转化是会被损耗或者泄露到外部,导致能量不断减小。所以LC 振荡电路必须要有放大元件,这个放大元件可以是三极管,也可以是集成运放或者其他的东西。有了这个放大元件,这个不断被消耗的振荡信号就会被反馈放大,从而我们会得到一个幅值跟频率都比较稳定的信号。 开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率F0。并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。设基极的瞬间电压极性为正。经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离F0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率F0的振荡信号。 LC振荡电路物理模型的满足条件 ①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。 ②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。 ③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。 能产生大小和方向都随周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。 振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。 充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。 放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。 充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。 放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。 在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的

反激式变换器(Flyback Converter)的工作原理

反激式变换器(Flyback Converter)的工作原理 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计. 二.反激式变换器(Flyback Converter)的工作原理 1).反激式变换器的电路结构如图一. 2).当开关管Q1导通时,其等效电路如图二(a)及在导通时初级电流连续时的波形,磁化曲线如图二(b).

当Q1导通,T1之初级线圈渐渐地会有初级电流流过,能量就会储存在其中.由于变压器初级与次级侧之线圈极性是相反的,因此二极管D1不会导通,输出功率则由Co来提供.此时变压器相当于一个串联电感Lp,初级线圈电流Ip可以表示为: Vdc=Lp*dip/dt 此时变压器磁芯之磁通密度会从剩磁Br增加到工作峰值Bw. 3.当Q1截止时, 其等效电路如图三(a)及在截止时次级电流波形,磁化曲线如图三(b).

当Q1截止时,变压器之安匝数(Ampere-Turns NI)不会改变,因为?B并没有相对的改变.当?B向负的方向改变时(即从Bw降低到Br),在变压器所有线圈之电压极性将会反转,并使D1导通,也就是说储存在变压器中的能量会经D1,传递到Co和负载上. 此时次级线圈两端电压为:Vs(t)=Vo+Vf (Vf为二极管D1的压降). 次级线圈电流: Lp=(Np/Ns)2*Ls (Ls为次级线圈电感量) 由于变压器能量没有完全转移,在下一次导通时,还有能量储存在变压器中,次级电流并没有降低到0值,因此称为连续电流模式或不完全能量传递模式(CCM). 三.CCM模式下反激变压器设计的步骤 1. 确定电源规格. 1. .输入电压范围Vin=85—265Vac; 2. .输出电压/负载电流:Vout1=5V/10A,Vout2=12V/1A; 3. .变压器的效率?=0.90

振荡电路工作原理详细分析

振荡电路工作原理详细分析注:这只是我个人的理解,仅供参考,如不正确,请原谅! 1、电路图和波形图 2、工作原理:晶体管工作于共发射极方式。集电极电压通过变压器反馈回基级,而变压器绕组的接法实现正反馈。其工作过程根据三极管的工作状态分为三个阶段:t1、t2、t3(如上图): 说明:此分析过程是在电路稳定震荡后,以一个完整波形周期为例进行分析,即起始Uce=12v。而对于电路刚接通时,工作原理完全相同,只是做波形图时,起始电压Uce=0v。 1)、电路接通后,进入t1阶段(晶体管为饱和状态)。 在t1的初始阶段,电路接通,流过初级线圈的电流不能突变,使得集电极电压Uce急速减小,由于时间很短,在波形中表现为下降沿很陡。而经过线圈耦合,会使基极电压Ube急速增大。此时,三极

管工作在饱和状态(Ube>=Uce)。基极电流ib失去对集电极电流ic 的控制。之后,随着时间增加,Uce会逐渐增加,Ube通过基极与发射机之间的放电而逐渐减少。基极电压Ube下降使得ib减小。 2)、当ib减小到ic /β时, 晶体管又进入放大状态,即t2阶段。 于是,ib的减小引起ic的减小,造成变压器绕组上感应电动势方向的改变,这一改变的趋势进一步引起ib的减小。如此又开始强烈的循环,直到晶体管迅速改变为截止状态。这一过程也很快,对应于脉冲的下降沿。在此过程中,电流强烈的变化趋势使得感应线圈上出现一个很大的感应电动势,Ube变成一个很大的负值。 3)、当晶体管截止后(t3阶段),ic=0,Uce经初级线圈逐渐上升到12v(变压器线圈中储存有少量能量,逐渐释放)。此时,直流12v电源通过27欧电阻和反馈线圈对基极电压充电,Ube逐渐上升,当Ube上升到0.7v左右时,晶体管重新开始导通(硅管完全导通的电压大约是0.7v)。于是下一个周期开始,重复上述各个阶段。其震荡周期T=t1+t2+t3;

相关文档
最新文档