车辆动力学

车辆动力学
车辆动力学

目录

前言 (1)

1 操纵稳定性的一般定义 (2)

1.1 操纵稳定性的评价指标 (2)

1.2 影响操纵稳定性的因素 (2)

1.3基于驾驶员模型的人车闭环客观评价 (2)

2 汽车行驶平顺性 (4)

2.1 平顺性评价指标 (4)

2.2 影响汽车行驶平顺性的结构因素 (4)

2.3国内外汽车行驶平顺性建模与仿真研究现状 (5)

2.3.1面向结构和面向参数的方法比较 (5)

2.3.2路面对汽车激励建模研究的现状 (6)

2.3.3汽车行驶平顺性仿真求解方法的研究现状 (7)

3 结论 (8)

参考文献 (9)

前言

操纵稳定性和行驶平顺性是汽车非常重要的性能指标, 而悬架系统对这两

个性能的优劣有着决定性影响, 因此, 如何设定悬架系统的弹性与阻尼元件(弹簧、减振器等 )的参数, 以保证汽车同时具有良好的操纵稳定性和行驶平顺

性一直是汽车底盘开发中的重要课题。

国内外在车辆操纵稳定性和行驶平顺性方面运用仿真手段进行优化已经开展了不少研究[1- 5]。但由于汽车操纵稳定性与行驶平顺性相互耦合影响,单纯基于某一项性能的优化往往会影响另一项性能, 因此, 单目标优化的方法未能对二者进行权衡比较。运用多体动力学分析工具与多目标优化技术进行联合仿真, 将操纵稳定性与行驶平顺性的各指标综合进行平衡和优化是解决上述问题的一个途径。

汽车的操纵稳定性和平顺性是指在驾驶者不感到过分紧张疲劳的条件下,汽车能遵循驾驶者通过转向系及转向车轮给定的方向行驶,且当遭遇外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力汽车的操纵稳定性不仅影响到汽车驾驶的操纵方便程度,而且也是决定高速汽车安全行驶的一个主要性能随着社会经济的发展和汽车科学技术的进步,公路交通呈现出行驶高速化、车流密集化和驾驶员非职业化的趋势。频繁的交通事故使公路的交通安全成为社会广泛关注的问题。为了保证安全行驶,汽车的操纵稳定性受到汽车设计者的很大重视,成为现代汽车的重要使用性能之一。几十年来,如何设计和试验汽车以获得良好的安全性,尤其是如何试验和评价汽车的操纵稳定性,始终是各国学者和设计师们的主要研究方向之一。

1 操纵稳定性的一般定义

汽车能按驾驶员操纵方向行驶,抵抗力图改变行驶方向的外界干扰,维持一定的速度,不会造成驾驶员过度紧张和疲劳,保持稳定行驶,汽车的这种能力称为操纵稳定性。汽车的操纵稳定性与交通安全有直接的关系,操纵稳定性不好的汽车难于控制,严重时还可能发生侧滑或倾翻,而造成交通事故。因此,良好的操纵稳定性是行车安全的重要保证。汽车的操纵稳定性可用汽车稳态转向特性、汽车稳定极限以及驾驶员一汽车系统在紧急状态下操纵稳定性作为评价指标。

1.1 操纵稳定性的评价指标

汽车稳态转向特性是评价汽车操纵稳定性的重要指标。稳态转向特性有j 种状况:不足转向、过度转向和中性转向。驾驶员都习惯于驾驶具有适度不足转向的汽车。所以,设计时,一般都要有适当的不足转向量,以保证汽车突然出现甩尾时仍能保持良好的驾驶性能。为保证在通常行驶状态下汽车具有良好的操纵稳定性,还要求汽车对方向盘角输人的响应要灵敏,直行性及回正性良好,转向操作轻便等。

汽车转向行驶时的稳定性极限对安全行车影响很大。如果驾驶员对汽车的操纵动作使汽车的运动状态超过了这一限度,汽车的运动就会失去稳定,发生侧滑或倾翻,从而危及行车安全。当前轮上的侧向反力先达到附着极限时,因前轮发生的侧滑,汽车的横摆角速度减小,转向半径增大,汽车将向外侧甩出,发生“偏航”现象。严重时,汽车会被甩出路外,导致交通事故。如果后轮上的侧向反力先达到附着极限,后轮将先于前轮向外侧侧滑,发生“甩尾”现象。因转向半径减小,极易诱发汽车倾翻。

1.2 影响操纵稳定性的因素

汽车本身结构参数,如汽车的轴距、重心位置、轮胎特性、悬挂装置与转向装置的结构形式和参数,汽车的使用因素,如离心力,对汽车的操纵性和稳定性影响很大。另外,还应注意速度对汽车操纵稳定性的影响。低速时,汽车呈不足转向,但在高速时,汽车有可能变为过度转向。所以在高速行车时,一定要注意方向盘的操纵,避免产生过大的离心力,以保证高速行车安全。

1.3基于驾驶员模型的人车闭环客观评价

20 世纪 80 年代初期开始,从理论与实验两方面着手研究人-车闭环系统。考虑到驾驶员特性在建模中可能出现的困难,比如时变系统、人与人之间差异及驾驶员有很强的适应能力等因素; 以及实际主观实验需要样车,实验受自然条件限制; 并且车辆模型的动力学特性建模确定的且比较成熟。所以,在实验方面可以采用驾驶模拟器代替车辆模型,由真实驾驶员操纵组成的闭环系统,规避了驾驶员建模的难度。理论方面驾驶员模型的建立考虑到人的学习性和适应性,所建立的驾驶员模型可以有效的仿真驾驶员-汽车闭环系统对道路的跟随过程。

人-车闭环系统在分析汽车性能的应用主要有以下几个方面: ( 1) 驾驶员操纵负担的分析( 体力、精神负担) ; ( 2) 闭环系统性能分析; ( 3) 侧风稳定性分析。

2 汽车行驶平顺性

汽车行驶平顺性的评价方法,通常是根据人体对振动的生理反应及对保持货物完整性的影响来制订的,并用振动的物理量,如频率、振幅、加速度、加速、变化率等作为行驶平顺性的评价指标。目前常用汽车车身振动的固有频率和振动加速度评价汽车的行驶平顺性。试验表明,为了保持汽车具有良好的行驶平顺性,车身振动的固有频率应为人体所习惯的步行时,身体上、下运动的频率。它约为60 ~ 85 次/分(1Hz ~ 1. 6HZ),振动加速度极限值为 0.2~ 0.3g。为了保证所运输货物的完整性,车身振动加速度也不宜过大。如果车身加速度达到lg,未经固定的货物就有可能离开车厢底板。所以,车身振动加速度的极限值应低于 0.6~ O.7g。

2.1 平顺性评价指标

用加速度均方根值给出了人体在 1~ 80Hz 振动频率范围内对振动反应的三个不同感觉界限:舒适一降低界限、疲劳一工效降低界限和暴露极限。舒适一降低界限与保持舒适有关。在此极限内,人体对所暴露的振动环境主观感觉良好,并能顺利完成吃、读、写等动作。疲劳一T效降低界限与保持工作效率有关。当驾驶员承受振动在此极限内时,能保持正常地进行驾驶。暴露极限通常作为人体可以承受振动量的上限。当人体承受的振动强度在这个极限之内,将保持健康或安全。三个界限只是振动加速度容许值不同。“暴露极限”值为“疲劳一 T 效降低界限”的2倍(增加 6dB);“舒适一降低界限”为“疲劳一T效降低界限的l/ 3.15(降低lOdB);而各个界限容许加速度值随频率的变化趋势完全相同。

2.2 影响汽车行驶平顺性的结构因素

为了便于分析,需要对由多质量组成的汽车振动系统进行简化。在研究振动时,常将汽车由当量系统代替,即把汽车视为由彼此相联系的悬挂质量与非悬挂质量所组成。汽车的悬挂质量南车身、车架及其上的总成所构成。该质量通过质心的横轴 Y 的转动惯量为,悬挂质量由减振器和悬架弹簧与车轴、车轮相连。车轮、车轴构成的非悬挂质量为,车轮再经过具有一定弹性和阻尼的轮胎支承路面上。悬架结构、轮胎、悬挂质量和非悬挂质量是影响汽车平顺性的重要因,悬挂结构主要指弹性元件、导向装置与减振装置,其中弹性元件与悬架系统中阻尼影响较大。弹性元件将汽车车身看成一个在弹性悬架上作单自由度振动减少悬

架刚度可降低车身的固有频率。当汽车的其它结构参数不变时,要使悬架系统有低的固有频率,悬架就必须具备很大的静挠度。它是指汽车满载时,刚度不变的悬架在静载荷下的变形量。对变刚度悬架,静挠度是由汽车满载时,悬架上的静载荷和与相应的瞬时刚度来确定。

为了防止汽车在不平路面上行驶时经常冲击缓冲块,悬架还应有足够的动挠度(指悬架平衡位置到悬架与车架相碰时的变形)。前、后悬架的动挠度常根据其相应的静挠度选取,其数值主要取决于车型和经常使用的路面状况,越野车的可按货车范围取上限,以减少车轮悬空和悬架击穿现象。为了使悬架既有大的静挠度又不影响其它性能指标,可采取一些相应措施,如采用悬架刚度可变的非线性悬架。南于非线性悬架的刚度随动行程增大,就可以在同样的动行程中,得到比线性悬架更多的动容量(指悬架从静载荷时的位置起,变形到与车架部分接触时的最大变形)。悬架的动容量越大,对缓冲块撞击的可能性就越小。现代货车在后悬架上采用钢板弹簧加副簧即为此种最简易的办法。为使载荷增减时,静挠度保持不变,较为理想的是在悬架系统中设置自动调节车身高度的装置。

轮胎对行驶平顺性的影响取决于轮胎的径向刚度,轮胎的展平能力以及轮胎内摩擦所引起的阻尼作用。减少轮胎径向刚度,可使悬架换算刚度减小10%~15%。当汽车行驶于不平道路时,由于轮胎的弹性作用,轮胎位移曲线较道路断面轮廓要圆滑平整,其长度较道路坎坷不平处的实际长度大,而曲线的高度则较道路不平的实际高度小,即所谓的轮胎展平能力。它可使汽车在高频的共振振动减小。为了提高汽车行驶平顺性,轮胎径向刚度应尽可能减小。在采用足够软的悬架的情况下,在相当大的行驶速度范围内,低频共振的可能性完全可以消除。但轮胎刚度过低,会增加车轮的侧向偏离,影响稳定性,同时,还使滚动阻力增加,轮胎寿命降低。

2.3国内外汽车行驶平顺性建模与仿真研究现状

2.3.1面向结构和面向参数的方法比较

20世纪50年代后,仿真技术开始发展,并被逐渐引入到汽车振动研究领域。到20 世纪 70 年代,汽车动态仿真技术已在国外得到普及,产生了不同复杂程度的汽车模型。汽车动态仿真的方法可以分为两大类:多体参数法[ 6-10]和集中参数法。但是无论应用哪一种方法进行汽车行驶平顺性分析,都必须建立合理而正确的汽车振动的力学模型。

多体参数法,是面向结构的方法,需要给定各部件的详细特征,将汽车的每一部件看作刚体或弹性体,通过各种约束连接建立汽车结构系统振动的拓扑结构,然后由相应的商业化软件,如 ADAMS、DADS 等进行仿真。

商业化的多体参数法的软件需要使用者有很高的专业水平,同时,应用软件建立的汽车模型一般自由度很多,有些参数难以得到,所以不能从整体上保证系统的准确性。而且,复杂的模型在计算机上求解时间长,且一旦模型出错,很难准确查找问题。

集中参数法,是面向参数的方法,不必考虑汽车的具体结构,只要根据汽车振动分析需要给出描述汽车零部件结构的质量、刚度和阻尼参数,即可进行汽车行驶平顺性的分析。因此,应用集中参数法建立汽车结构系统振动的力学模型,方法简单。在汽车设计初期,由于不能完全得到汽车结构,应用集中参数法建立汽车结构系统振动的力学模型,对汽车行驶平顺性的预测与分析是非常有效的。

2.3.2路面对汽车激励建模研究的现状

大量的测量分析结果发现,路面不平度具有随机、平稳和各态历经的特性。因此,可以用平稳随机过程理论分析与描述,常用道路垂直纵断面与道路表面的交线作为路面不平度的样本,由样本方差或功率谱密度作为样本的统计特征[11-1 5]。对于路面不平度的研究,各国学者提出了不同形式的频域模型,即路面功率谱密度表达式[16]。它有两种表达形式:幂函数和有理数形式,两者具有等价性,在建立汽车路面激励模型方面得到广泛应用。

路面激励的频域模型首先用于汽车单轮力学模型,即此时的汽车路面激励的功率谱密度就是路面不平度的时间功率谱密度[17-19]。由于前后车轮的路面激励只存在因汽车的轴距和行驶车速而产生的时间延迟,因此,由前后车轮的滞后关系,可以建立 1/2汽车两轴或多轴的路面激励频域模型[20- 22]。

由于汽车左右车轮的实际输入并不完全相同,两者之间的统计特性需要用互功率谱密度或相干函数来描述[1]。在基于左右轮迹的统计特性相同,且相位谱等于零的假设,建立了前后轮距相等的路面对四轮汽车激励的功率谱密度矩阵[1,23]。

至今,路面对汽车激励的频域研究,在平稳随机过程领域已经非常成熟,并得到了广泛的应用,但是在非平稳随机过程领域还有待深入研究。由于现代汽车技术需要对汽车结构系统进行非线性或耦合动力学分析,此时,时域方法是最基本的分析方法,而且,时域方法有利于导出良好的控制律[24]。

2.3.3汽车行驶平顺性仿真求解方法的研究现状

由于汽车行驶的平顺性要在频域内完成评价,因此,对数学模型最直接的求解方法就是频域方法[25]。

傅里叶方法,是在频域内求取汽车振动响应量统计特性常用的方法,采用傅里叶变换作为数学工具进行频域分析。为得到汽车振动响应量的统计特性,必须给出系统、振动响应量与路面激励之间的频率响应,才能得到振动响应量的功率谱密度。

应用傅里叶方法求取汽车振动响应统计特性的方法已经很成熟,但频域方法只适用于汽车结构系统是线性系统,且受到的路面激励是平稳随机过程的情况[26]。

复模态法在汽车振动分析应用很多[27],引入由位移和速度组成的状态向量,将振动平衡方程转化为状态方程,求出结构系统的复模态频率和复模态向量后,对状态向量用复模态坐标进行变换,并利用复模态的正交性,将状态方程在复特征向量所张成的维复共轭空间解耦,求出解耦后的方程的解,再将这个复模态坐标中的解变换为物理坐标中的解2n[28]。

但是,在非比例粘性阻尼条件下,模态坐标的振动平衡方程不满足对角化条件,这时或者需要寻求优化解耦方法,或者需要忽略模态阻尼矩阵的非对角化条件,同时,一般取前几阶振型叠加,均降低了方法的精确性。因此,尽管这些方法已存在较长时间,但计算量、精度、收敛性及稳定性等因素束缚了这些方法的应用[29]。

由于要研究汽车其它的性能及其用行驶平顺性的评价指标进行悬架的优化,必须要建立汽车结构系统振动的时域求解方法。由于一般的结构系统自由度数目很多,很难获得结构系统的数学模型解析解,因此,时域数值方法便成为研究的热点。

求解多体系统动力学的数学模型的常用时域数值方法有中心差分法、Newmark- 法、Wilson-法、Runge-Kuta法和直接积分法等。对于结构模型简单且精度要求不太高时,应用上述数值方法就可以,但对于复杂且精度很高的结构系统振动,寻求一种高效的时域数值方法非常关键。

3 结论

汽车的操纵稳定性评价在汽车研发阶段、交通安全上都很重要。主观评价是汽车操纵稳定性评价的最终方法,纵然它成本较高而且离散性大。如果可以建立通过仿真的方法在汽车设计初期就可预测汽车操纵稳定性的客观评价体系,将节约成本。但是和主观评价一致性高的客观评价体系的建立一直难以确定,过去的研究方法围绕线性回归的方式建立主观单项评价指标与若干客观指标之间的联系,然而这种方法因为选去的样本( 车辆、指标) 有偏而不能得到理想的客观评价体系。目前国内外很多学者通过探索人车闭环中的驾驶员模型参数的变化或统计特性研究反映汽车操纵稳定性,有关这方面的研究会越来越多及深入。

现在,世界轿车发展的趋势之一就是安全舒适,无论是在国内还是在国外,无论是低档轿车还是高档轿车,人们关注的仍然是轿车的舒适性[3]。中国自主品牌的轿车在市场的竞争能力不如国外品牌轿车的主要原因之一:舒适性不如国外品牌轿车。国内路形复杂,影响轿车的行驶平顺性,从而更加影响轿车的乘坐舒适性。因此,研究轿车的行驶平顺性,提高国产轿车的舒适性,对增强轿车市场的竞争能力有着至关重要的作用。

国内外学者在汽车行驶平顺性的建模与仿真方面进行了大量的研究及其应用,但是,汽车建模与仿真方法等的简单、快速和精确程度不仅影响着预测结果的真实性,更影响着设计周期的长短、生产成本的高低。探讨更为简单、快速和精确的建模与仿真方法,对促进汽车行驶平顺性研究具有重要的意义。

参考文献

[1] AltN, WolffK,Eijkel P1 Idle Comfort of Passenger Cars [C] 1 SAE Paper 1999-01-18051

[2] Hoard J,Rehagen L1 Relating Subjective Idle Quality to Engine Combustion[ C]1

SAE Paper 9700351

[3] Bergeon M Scott,Braunwart Pau l,Daly Mark,etal. Vehicle Cas2 cade& Target Response Analys is (VeCTRA) is an Excel Based ToolUsed for the Idle NVH TargetCasecade Process[ C] 1 SAE Parper 2003-01-14341

[4] Shane Sui Clarence Hoppe,John Hirshey1 Powertrain Mounting Design Princip les to Achieve Op timum Vibration with Demonstration Tools[ C]1 SAE Paper 2003-01- 14761 [5] Beikmann R S1Roll2Down Considerations in Idle Quality[ C]1 SAE Paper 2001- 01-15011

[6] 王国权,余群,吕伟.8 自由度乘坐动力学模型及时域仿真[J].中国农业大学学报,2002,7(2):99-103

[7] 沈铁军.时域内双轴载重汽车行驶平顺性建模仿真与实验研究[D].吉林大学硕士学位论文,2006

[8] 倪晋尚,阮米庆.车辆的平顺性优化及仿真试验[J].现代机械,2006,(2):8-10

[9] 陈步达,江浩斌,周孔亢.农用运输车行驶平顺性的模拟计算与分析[J].农业机械学报,1997,28(4):23-26

[10] 姚文杰,孟红,叶金华.多轴越野车辆的行驶平顺性[J].计算机辅助工程,2006,15(B09):268-270

[11] 赵云,董炳武.获取路面谱的一种新方法[J].福州大学学报(自然科学版),1998,26(4):62-66

[12] Dodds C J.Generalized terrain dynamic inputs to vehicles[C].BSI Document 72/34562

[13] Dodds C J,Robson J D.The description of road surface roughness[J].Sound and Vibration,l973,31(1):168-175

[14] Kamash K M A,Robson J D.Implications of isotropy in random surfaces[J].Sound and Vibration,1977,54(1)13l-145

[15] Kamash K M , A-Robson J D . The application of isotropy in road surface modeling[J].Sound and Vibration ,1978,57(1):89-100

[16] Robson J D.Road surface description and vehicle response[J].Vehicle Design,1979,l(1):25-35

[17] Sussman N E.Statical ground excitation model for high speed vehicle dynamic analysis[J].High Speed Ground Transportation Journal,1974,8:I45-154

[18] A.M.A.Soliman.Effect of road roughness on the vehicle ride comfort and rolling resistance[C].SAE paper,2006-01-1297

[19] Wen-Hua Guo.Dynamic analysis of coupled road vehicle and long span cable-stayed bridge systems under cross winds[D].Hong Kong Polytechnic University,A thesis for the degree of doctor of philosophy,2003

[20] ISO-International Organization for Standardization and ISO-Interna-tional Organization for Standardization. Road vehicles-heavy com-mercial vehicles and

buses-steady-state circular tests. ISO 14792—2011,2011

[22] Frendo F,Greco G,Guiggiani M,etal. Evaluation of the vehiclehandling performances by a new approach.Vehicle System Dynam-ics: International Journal of Vehicle Mechanics and Mobility,2008;46(1) : 857—86885 Frendo F,Greco G,Guiggiani M,etal.The handling surface: anew perspective in vehicle dynamics. Vehicle System Dynamics: In-ternational Journal of Vehicle Mechanics and Mobility,2007; 45(11) : 1001—1016

[23] Frendo F,Greco G,Guiggiani M.Critical review of handling dia-gram and understeer gradient for vehicles with locked differential.Vehicle System Dynamics: International Journal of Vehicle Mechan-ics and Mobility,2006; 44(6) : 431—447 [24] Winkler C B. Simplified analysis of the steady-state turning of com-plex vehicles. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility,1998; 29: 141—18088 Okada T,Takiguchi T,Utsunomiya G. Evaluation of vehicle han-dling and stability by computer simulation at the first stage of vehicleplanning. SAE Paper 730525,1973

[25] Michelherger P , Palkovics L,Bokor J.Robust design of active suspension system[J].Vehicle Design,1993,14(2/3):145-165

[26] A.M.A.Soliman.Effect of road roughness on the vehicle ride comfort and rolling resistance[C].SAE paper,2006-01-1297

[27] 张洪信,尹玉川,牟红波.主动悬架改善重型车辆性能的仿真研究[J].青岛大学学报,2003,18(2):1-4

[28] Wen-Hua Guo.Dynamic analysis of coupled road vehicle and long span cable-stayed bridge systems under cross winds[D].Hong Kong Polytechnic University,A thesis for the degree of doctor of philosophy,2003

[29] ISO-International Organization for Standardization and ISO-Interna-tional Organization for Standardization. Road vehicles-heavy com-mercial vehicles and buses-Lateral transient response test methods.ISO 14793—2011,2011

车辆动力学

车辆动力学 Vehicle dynamics 课程简介 本课程主要讲述轮式车辆动力学的基本理论,内容包括车轮的纵向特性和横向特性,车轮与地面相互作用时的阻力和牵引力;车辆直线行驶时的驱动力和行驶阻力,车辆的加速性和制动性;轮式车辆的转向机理,轮式车辆的转向过渡过程;路面不平度的统计特性,描述车辆行驶振动的传递函数和状态空间方法,车辆被动悬架、半主动悬架和主动悬架的数学模型和计算机仿真;多自由度汽车行驶的动力学问题。 本课程是车辆工程硕士研究生必修课程。 教学大纲 第一部分大纲说明 1.课程名称:车辆动力学 2.课程代码:010******* 3.课程类型:学位课 4.开课时间:春(或秋) 5.总学时数及学分:32学时,2学分 6.开课部门:机械与汽车工程学院 7.授课对象:硕士研究生 8.面向学科:机械工程 9.预修课程:机械振动 10.考核方式:考试考查,闭卷考试70%,平时成绩30% 11.主讲教师:蔡仁华 13. 教材及教学参考资料: 教材: 米奇克、瓦伦托维兹著,陈萌三等译汽车动力学(第四版)清华大学出版社2009年王良曦、王红岩车辆动力学国防工业出版社 2008年版

参考资料: 张克健.车辆地面动力学.国防出版社.2002年版 RANDOM VIBRA TION,S.H.Carandall,Editor,The M.I.T.Press,1963 第二部分教学内容和教学要求 第一章车辆-地面相互作用力学 主要讲述车轮与地面间相互作用力学。 1.1 车轮-地面力学 1.1.1 轮胎的垂直特性 1.1.2 车轮的纵向特性 1.1.3 车轮的横向特性 1.2 车轮阻力 1.2.1 滚动阻力 1.2.2 穿水阻力 1.2.3 轴承摩擦,残余制动力矩 1.2.4车轮其他阻力 1.2.5总的车轮阻力 第二章车辆直线行驶力学 主要讲述车辆直线行驶力学,还叙述了牵引特性计算步骤,以及机械传动、液力传动车辆的加速性能计算方法。轮式车辆制动性相关的内容在本章的最后进行了介绍。 2.1 车辆的驱动力和行驶阻力 2.1.1 车辆的驱动力 2.1.2 车辆空气动力学 2.1.3 车辆的行驶阻力 2.1.4 车辆行驶条件 2.2 车辆直线行驶牵引计算 2.2.1 动力装置特性 2.2.2 车辆的牵引特性 2.2.3 牵引计算步骤 2.3 机械传动车辆的加速性能 2.3.1 发动机稳态运行时车辆的加速性 2.3.2 发动机非稳态运行时车辆的加速性 2.4 安装液力传动车辆的直线行驶牵引计算 2.4.1 液力传动车辆特点 2.4.2 液力变矩器的原始特性 2.4.3 液力变矩器与发动机共同工作特性 2.4.4 综合式液力传动车辆牵引计算 2.4.5 综合式液力传动车辆的加速性能 2.5 车辆的制动性能

车辆动力学概述

车辆动力学概述 回顾车辆动力学的发展历史,揭示车辆动力学研究内容及未来发展趋势,对车辆特性和设计方法也作了简要介绍。 1.历史发展 车辆动力学是近代发展起来的一门新兴学科。其发展历史可追溯到100多年前[1],直到20世纪30年代初人们才开始注意车轮摆振问题等;而后一直到1952年间,人们通过不断研究,定义了不足转向和过度转向,建立了简单的两自由度操纵动力学方程,开始进行有关行驶平顺性研究并建立了K2试验台,提出了“平稳行驶”概念,引入前独立悬架等;1952年以后,人们扩展了操纵动力学分析,开始采用随机振动理论对行驶平顺性进行性能预测,理论和试验两方面对动力学的发展也起了很大作用。然而,在新车型的设计开发中,汽车制造商仍然需要依赖于具有丰富测试经验与高超主观评价技能的工程师队伍,实际测试和主观评价在车辆开发中还有不可替代的作用。 2.研究内容 严格地说,车辆动力学是研究所有与车辆系统运动有关的学科。它涉及范围很广,除了影响车辆纵向运动及其子系统的动力学响应(纵向动力学)外,还有行驶动力学和操纵动力学。人们长期以来习惯按纵向、垂向和横向分别独立研究车辆动力学问题,而实际情况是车辆同时受到三个方向的输入激励且各个方向运动响应特性相互作用、相互耦合。随着功能强大的计算机技术和动力学分析软件的发展,我们已经有能力将三个方向的动力学问题结合起来进行研究。 纵向动力学研究车辆直线运动及其控制的问题,主要是车辆沿前进方向的受力与其运动的关系,按工况不同分为驱动动力学和制动动力学两大部分。与行驶动力学有关的主要性能及参数包括悬架工作行程、乘坐舒适性、车体的姿态控制及轮胎动载荷的控制等;而行驶动力学研究的首要问题是建立考虑悬架特性在内的车辆动力学模型。操纵动力学内容相当丰富,轮胎在其中起着相当重要的作用;通常操纵动力学研究范围分为三个区域,即线性域、非线性域和非线性联合工况。 3.车辆特性和设计方法

车辆系统动力学解析

汽车系统动力学的发展现状 仲鲁泉 2014020326 摘要:汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有汽车在垂直和横向两个方面的动力学内容。介绍车辆动力学建模的基础理论、轮胎力学及汽车空气动力学基础之外,重点介绍了受汽车发动机、传动系统、制动系统影响的驱动动力学和制动动力学,以及行驶动力学和操纵动力学内容。本文主要讲述的是通过对轮胎和悬架的系统动力学研究,来探究汽车系统动力学的发展现状。 关键词:轮胎;悬架;系统动力学;现状 0 前言 汽车系统动力学是讨论动态系统的数学模型和响应的学科。它是把汽车看做一个动态系统,对其进行研究,讨论数学模型和响应。是研究汽车的力与其汽车运动之间的相互关系,找出汽车的主要性能的内在联系,提出汽车设计参数选取的原则和依据。 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。

铁道车辆系统动力学作业及试地的题目详解

作业题 1、车辆动力学的具体内容是研究车辆及其主要零部件在各种运用情况下,特别是在高速运行时的位移、加速度和由此而产生的动作用力。 2、车辆系统动力学目的在于解决下列主要问题: ①确定车辆在线路上安全运行的条件; ②研究车辆悬挂装置和牵引缓冲装置的结构、参数和性能对振动及 动载荷传递的影响,并为这些装置提供设计依据,以保证车辆高速、安全和平稳地运行; ③确定动载荷的特征,为计算车辆动作用力提供依据。 3、铁路车辆在线路上运行时,构成一个极其复杂的具有多自由度的振动系统。 4、动力学性能归根结底都是车辆运行过程中的振动性能。 5、线路不平顺不是一个确定量,它因时因地而有不同值,它的变化规律是随机的,具有统计规律,因而称为随机不平顺。 (1)水平不平顺; (2)轨距不平顺; (3)高低不平顺; (4)方向不平顺。 6、车轮半径越大、踏面斜度越小,蛇行运动的波长越长,即蛇行运动越平缓。 7、自由振动的振幅,振幅大小取决于车辆振动的初始条件:初始位移和初始速度(振动频率)。

8、转向架设计中,往往把车辆悬挂的静挠度大小作为一项重要技术指标。 9、具有变摩擦减振器的车辆,当振动停止时车体的停止位置不是一个点,而是一个停滞区。 10、在无阻尼的情况下共振时振幅随着时间增加,共振时间越长,车辆的振幅也越来越大,一直到弹簧全压缩和产生刚性冲击。 11、出现共振时的车辆运行速度称为共振临界速度 12、在车辆设计时一定要尽可能避免激振频率与自振频率接近,避免出现共振。 13、弹簧簧条之间要留较大的间距以避免在振动过程中簧条接触而出现刚性冲击 14、两线完全重叠时,摩擦阻力功与激振力功在任何振幅条件下均相等。 15、在机车车辆动力学研究中,把车体、转向架构架(侧架)、轮对等基本部件近似地视为刚性体,只有在研究车辆各部件的结构弹性振动时,才把他们视为弹性体。 16、簧上质量:车辆支持在弹性元件上的零部件,车体(包括载重)及摇枕质量 17、簧下质量:车辆中与钢轨直接刚性接触的质量,如轮对、轴箱装置和侧架,客车转向架构架,一般是簧上质量。 18、一般车辆(结构对称)的垂向振动与横向振动之间是弱耦合,因此车辆的垂向和横向两类振动可以分别研究。 19、若车体质心处于纵垂对称面上,但不处于车体的横垂对称面上,则车体的浮沉振动将和车体的点头振动耦合起来。

车辆系统动力学发展1

汽车系统动力学的发展和现状 摘要:近年来,随着汽车工业的飞速发展,人们对汽车的舒适性、可靠性以及安全性也提出越来越高的要求,这些要求的实现都与汽车系统动力学相关。汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有车辆在垂向和横向两个方面的动力学内容。本文通过对汽车系统动力学的的介绍,对这一新兴学科的发展和现状做一阐述。 关键字:汽车系统动力学动力学响应发展历史 Summary:In recent years, with the rapid development of automobile industry, people on the vehicle comfort, reliability and safety are also put forward higher requirements, to achieve these requirements are related to vehicle system dynamics.Vehicle system dynamics is the study of all related to the movement of the car system discipline, it involves the scope is broad, in addition to the effects of dynamic response of vehicle longitudinal motion and its subsystems, and vehicles to and dynamic content crosswise two aspects in the vertical.Based on the vehicle system dynamics is introduced, the development and status of this emerging discipline to do elaborate. Keywords:Dynamics of vehicle system dynamics Dynamic response Development history 0 引言 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 传统的车辆动力学研究都是针对被动元件的设计而言,而采用主动控制来改变车辆动态性能的理念,则为车辆动力学开辟了一个崭新的研究领域。在车辆系统动力学研究中,采用“人—车—路”大闭环的概念应该是未来的发展趋势。作为驾驶者,人既起着控

机车系统动力学问题

问题: 1、 引起车辆振动的原因有很多,有些确定的,也有些随机的,请详细说明与车辆结构有关的激振因素有哪些? 答:引起车辆振动的原因主要可以从两方面考虑,一是与轨道有关的激振因素(详见《车辆工程》第三版P214-P216):(1)钢轨接头处的轮轨冲击,(2)轨道的垂向变形,(3)轨道的局部不平顺,(4)轨道的随机不平顺; 二是与车辆结构有关的激振因素。 车辆本身结构的特点会引起车辆振动,主要原因有以下几种。 (一)车轮偏心。车轮在制造或维修中,由于工艺或机床设备等原因,车轴中心和实际车轮中心之间可能存在一定的偏心,当车轮沿轨道运行时,车轮中心相对瞬时转动中心会出现上下和前后的运动。这些变化会激起车辆的上下振动和前后振动。设车轮中心与车轴中心之间的偏心为e ,则车轮转动时,车轴中心的上下运动量z t 为:z t =esin(t t r vt e t θθω+=+0 sin()),v-车辆运行速度;r 0-车轮名义半径;t-自某初始位置经历的时间;ω-车轮转动角速度;θt -初相角。 (二)车轮不均重。如果车轮的质量不均匀,车轮的质心与几何中心不一致,当车轮转动时车轮上会出现转动的不平衡力。设车轮的质量中心与几何中心 之偏差为e w ,则车轮转动时的不平衡力为:)sin()(0 20t w w w r vt e r v M F θ+=,式中,M w -每一车轮的质量,其他符号同上式。 车轮偏心和不均重,都会引起轮轨之间的动作用,车辆运行速度越高,则会引起的轮轨相互作用力越大。 (三)车轮踏面擦伤。车轮踏面存在擦伤时,车轮滚过擦伤处,轮轨间发生冲击,钢轨受到一个向下的冲量,而车轮受到一个向上的冲量。如果车轮擦伤长度与车轮中心所夹的圆心角为0θ,则车轮滚过踏面擦伤处的向上的冲量为:0θv M v M w w =?。车轮踏面擦伤后轮轨之间的冲击也是周期性的,其周期为:v r T 02π=。

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

车辆动力学相关的软件及特点

SIMPACK车辆动力学习仿真系统 SIMPACK软件是德国INTEC Gmbh公司(于2009年正式更名为SIMPACK AG)开发的针对机械/机电系统运动学/动力学仿真分析的多体动力学分析软件包。它以多体系统计算动力学(Computational Dynamics of Multibody Systems)为基础,包含多个专业模块和专业领域的虚拟样机开发系统软件。SIMPACK软件的主要应用领域包括:汽车工业、铁路、航空/航天、国防工业、船舶、通用机械、发动机、生物运动与仿生等。 SIMPACK是机械系统运动学/动力学仿真分析软件。SIMPACK软件可以分析如:系统振动特性、受力、加速度,描述并预测复杂多体系统的运动学/动力学性能等。 SIMPACK的基本原理就是通过搭建CAD风格的模型(包括铰、力元素等)来建立机械系统的动力学方程,并通过先进的解算器来获取系统的动力学响应。 SIMPACK软件可以用来仿真任何虚拟的机械/机电系统,从仅仅只有几个自由度的简单系统到诸如一个庞大的火车。SIMPACK软件可以应用在我们产品设计、研发或优化的任何阶段。 SIMPACK软件独具有的全代码输出功能可以将我们的模型输出成Fortran或C代码,从而可以实现与任意仿真软件的联合。 车辆动力学仿真carsim CarSim是专门针对车辆动力学的仿真软件,CarSim模型在计算机上运行的速度比实时快3-6倍,可以仿真车辆对驾驶员,路面及空气动力学输入的响应,主要用来预测和仿真汽车整车的操纵稳定性、制动性、平顺性、动力性和经济性,同时被广泛地应用于现代汽车控制系统的开发。CarSim可以方便灵活的定义试验环境和试验过程,详细的定义整车各系统的特性参数和特性文件。 CarSim软件的主要功能如下: 适用于以下车型的建模仿真:轿车、轻型货车、轻型多用途运输车及SUV; 可分析车辆的动力性、燃油经济性、操纵稳定性、制动性及平顺性; 可以通过软件如MATLAB,Excel等进行绘图和分析; 可以图形曲线及三维动画形式观察仿真的结果;包括图形化数据管理界面,车辆模型求解器,绘图工具,三维动画回放工具,功率谱分析模块;程序稳定可靠; CarSim软件可以扩展为CarSim RT, CarSim RT 是实时车辆模型,提供与一些硬件实时系统的接口,可联合进行HIL仿真;

动车组动力学性能暂规

动力学性能 试验鉴定方法及评定标准

目次 1围 (4) 2术语和定义 (4) 3车辆坐标系 (4) 4总则 (5) 5试验条件 (5) 6测量参数 (8) 7评定指标 (10) 8评定指标限度值 (12)

前言 为2004年采购200km/h电动车组,特制定本《200km/h电动车组动力学性能试验鉴定方法及评定标准》。 本规定制定中曾参考了以下文献: ——《GB5599 铁道车辆动力学性能评定和试验鉴定规》 ——《TB/T2360 铁道机车动力学性能试验鉴定方法及评定标准》 ——《UIC518 铁道车辆试验与鉴定》 ——《UIC513 铁道车辆旅客振动舒适性评定指南》 ——《prEN 14363 铁路应用—铁路机车车辆运行特性验收试验—运行特性试验和静态试验》 本文件由铁道部科学研究院车辆研究所负责起草。

动力学性能试验鉴定方法及评定标准 1围 1.1本标准规定了采购200km/h电动车组在中国铁路线路上进行动力学性能试验鉴定的方法和评定标准。 2术语和定义 2.1铁道车辆(Railway Vehicles) 在轨道线路上运行的车辆统称,包括机车、客车、动车组中的动车、拖车等。 2.2运行参数 最高运营速度V lim 铁道车辆运营的最高速度;单位:km/h。V lim=200km/h 允许欠超高h0 铁道车辆通过曲线时允许最大未被平衡的超高;单位:mm。 3车辆坐标系 3.1车辆动力学试验的坐标系 车辆动力学试验的坐标系为右手坐标系,如图1所示。列车前进方向为x轴,车辆向上为z轴。 在试验中,被试车辆试验运行方向应唯一规定,进而可以分为正向运行和反向运行。 图1车辆动力学试验的坐标系

车辆系统动力学-复习提纲

1. 简要给出完整约束与非完整约束的概念2-23,24,25, 1)、约束与约束方程 一般的力学系统在运动时都会受到某些几何或运动学特性的限制,这些构成限制条件的具体物体称为约束,用数学方程所表示的约束关系称为约束方程。 2)、完整约束与非完整约束 如果约束方程只是系统位形及时间的解析方程,则这种约束称为完整约束。 完整约束方程的一般形式为: 式中,qi为描述系统位形的广义坐标(i=1,2,…,n);n为广义坐标个数;m为完整约束方程个数;t为时间。 如果约束方程是不可积分的微分方程,这种约束就称为非完整约束。 一阶非完整约束方程的一般形式为:

式中,qi为描述系统位形的广义坐(i = 1, 2, …,n);为广义坐标对时间的一阶与数;n为广义坐标个数;m为系统中非完整约束方程个数;t为时间。 2. 解释滑动率的概念3-7,8 1.滑动率S 车轮滑动率表示车轮相对于纯滚动(或纯滑动)状态的偏离程度,是影响轮胎产生纵向力的一个重要因素。 为了使其总为正值,可将驱动和被驱动两种情况分开考虑。驱动工况时称为滑转率;被驱动(包括制动,常以下标b以示区别)时称为滑移率,二者统称为车轮的滑动率。

参照图3-2,若车轮的滚动半径为rd,轮心前进速度(等于车辆行驶速度)为uw,车轮角速度为ω,则车轮滑动率s定义如下: 车轮的滑动率数值在0~1之间变化。当车轮作纯滚动时,即uw=rd ω,此时s=0;当被驱动轮处于纯滑动状态时,s=1。 3. 轮胎模型中表达的输入量和输出量有哪些?3-22,23 轮胎模型描述了轮胎六分力与车轮运动参数之间的数学关系,即轮胎在特定工作条件下的输入和输出之间的关系,如图3-7所示。 根据车辆动力学研究内容的不同,轮胎模型可分为:

铁道车辆平稳性分析

铁道车辆平稳性分析 1.车辆平稳性评价指标 1.1 sperling平稳性指标 欧洲铁路联盟以及前社会主义国家铁路合作组织均采用平稳性指数来评定车辆的运行品质。等人在大量单一频率振动的实验基础上提出影响车辆平稳性的两个重要因素。其中一个重要因素是位移对时间的三次导数,亦即(加速度变化率)。若上式两边均乘以车体质 量,并将之积改写为,则。由此可见,在一定意义上代表力F的变化率的增减变化引起冲动的感觉。 如果车体的简谐振动为,则,其幅值为: 影响平稳性指数的另一个因素是振动时的动能大小,车体振动时的最大动能为: 所以: sperling在确定平稳性指数时,把反映冲动的和反映振动动能的乘积作为衡量标准来评定车辆运行平稳性。 车辆运行平稳性指数的经验公式为: 式中——振幅(cm); f——振动频率(Hz); a——加速度,其值为:; ——与振动频率有关的加权系数。 对于垂向振动和横向振动是不同的,具体情况见错误!未找到引用源。。 表1振动频率与加权系数关系 对于垂向振动的加权系数对于横向振动的加权系 f的取值范围(Hz)公式f的取值范围(Hz)公式 0.5~5.9 0.5~5.5

5.9~20 5.4~2.6 大于20 1 大于26 1 以上的平稳性指数只适用一种频率一个振幅的单一振动,但实际上车辆在线路上运行时的振动是随机的,即振动频率和振幅都是随时间变化的。因此在整理车辆平稳性指数时,通常把实测的车辆振动加速度按频率分解,进行频谱分析,求出每段频率范围的振幅值,然后对每一频段计算各自的平稳性指数,然后再求出全部频率段总的平稳性指数: Sperling平稳性指标等级一般分为5级,sperling乘坐舒适度指标一般分为4级。但在两级之间可按要求进一步细化。根据W值来评定平稳性等级表见错误!未找到引用源。 表2车辆运行平稳性及舒适度指标与等级 W值运行品质W值乘坐舒适度(对振动的感觉) 1 很好 1 刚能感觉 2 好 2 明显感觉 3 满意 2.5 更明显但无不快 4 可以运行 3 强烈,不正常,但还能忍受3.25 很不正常 4.5 运行不合格 3.5 极不正常,可厌,烦恼,不能长时忍 受 5 危险 4 极可厌,长时忍受有害 我国也主要用平稳性指标来评定车辆运行性能,但对等级做了简化,见错误!未找到引用源。。 表3车辆运行平稳性指标与等级 平稳性等级评定 平稳性指标 客车机车货车 1 优<2.5 <2.75 <3.5 2 良好 2.5~2.75 2.75~3.10 3.5~4.0 3 合格 2.75~3.0 3.10~3.45 4.0~4.25 对sperling评价方法的分析: 1.该评价方法仅按照某一个方向的平稳性指标等级来判断车辆的性能是不全面的,需要同时考虑垂向与横向振动对人体的生理及心理的相互影响,因为有时根据垂向振动确定的平稳性指标等级与根据横向振动确定的平稳性指标等级存在较大的差异。 2.该评价方法不够灵敏。由于人体对不同振动频率的反应不同,当对应某一频率范围的平稳性指标值很大值大于,在该窄带中的振动已超出了人体能够承受的限度,但在其它频带中值都很小,由于该方向总的平稳性指标是不同振动频率的平稳性指标求和,因而可能该方向总的砰值并不大,从而认为该车辆的平稳性能符合要求是不正确的。

车辆系统动力学 作业

车辆系统动力学作业 课程名称:车辆系统动力学 学院名称:汽车学院 专业班级:2013级车辆工程(一)班 学生姓名:宋攀琨 学生学号:2013122030

作业题目: 一、垂直动力学部分 以车辆整车模型为基础,建立车辆1/4模型,并利用模型参数进行: 1)车身位移、加速度传递特性分析; 2)车轮动载荷传递特性分析; 3)悬架动挠度传递特性分析; 4)在典型路面车身加速度的功率谱密度函数计算; 5)在典型路面车轮动载荷的功率谱密度函数计算; 6)在典型路面车辆行驶平顺性分析; 7)在典型路面车辆行驶安全性分析; 8)在典型路面行驶速度对车辆行驶平顺性的影响计算分析; 9)在典型路面行驶速度对车辆行驶安全性的影响计算分析。 模型参数为: m 1 = 25 kg ;k 1 = 170000 N/m ;m 2 = 330 kg ;k 2 = 13000 (N/m);d 2 =1000Ns/m 二、横向动力学部分 以车辆整车模型为基础,建立二自由度轿车模型,并利用二自由度模型分析计算: 1) 汽车的稳态转向特性; 2) 汽车的瞬态转向特性; 3)若驾驶员以最低速沿圆周行驶,转向盘转角0sw δ,随着车速的提高,转向盘转角位sw δ,试由 20sw sw u δδ-曲线和0 sw y sw a δ δ-曲线分析汽车的转向特性。 模型的有关参数如下: 总质量 1818.2m kg = 绕z O 轴转动惯量 23885z I kg m =? 轴距 3.048L m = 质心至前轴距离 1.463a m =

质心至后轴距离 1.585b m = 前轮总侧偏刚度 162618/k N rad =- 后轮总侧偏刚度 2110185/k N rad =- 转向系总传动比 20i =

车辆系统动力学试题及答案

西南交通大学研究生2009-2010学年第( 2 )学期考试试卷 课程代码 M01206 课程名称 车辆系统动力学 考试时间 120 分钟 阅卷教师签字: 答题时注意:各题注明题号,写在答题纸上(包括填空题) 一. 填空题(每空2分,共40分) 1.Sperling 以 频率与幅值的函数 ,而ISO 以 频率与加速度的函数 评定车辆的平稳性指标。 2.在轮轨间_蠕滑力的_作用下,车辆运行到某一临界速度时会产生失稳的_自激振动_即蛇行运动。 3.车辆运行时,在转向架个别车轮严重减重情况下可能导致车辆 脱轨 ,而车辆一侧全部车轮严重 减重情况下可能导致车辆 倾覆 。 4.在车体的六个自由度中,横向运动是指车体的横移、 侧滚 和 摇头 。 5.在卡尔克线性蠕滑理论中,横向蠕滑力与 横向 蠕滑率和 自旋 蠕滑率呈相关。 6.设具有锥形踏面的轮对的轮重为W ,近似计算轮对重力刚度还需要轮对的 接触角λ 和 名义滚动圆距离之半b 两个参数。 7.转向架轮对与构架之间的 横向定位刚度 和 纵向定位刚度 两个参数对车辆蛇行运动稳定性影 响较大。 8. 纯滚线距圆曲线中心线的距离与车轮 的_曲率_成反比、与曲线的_曲率_成正比。 9.径向转向架克服了一般转向架 抗蛇行运动 和 曲线通过 对转向架参数要求的矛盾。 10.如果两辆同型车以某一相对速度冲击时其最大纵向力为F ,则一辆该型车以相同速度与装有相同缓冲器 的止冲墩冲击时的最大纵向力为_21/2F _,与不装缓冲器的止冲墩冲击时的最大纵向力为_2F_。 院 系 学 号 姓 名 密封装订线 密封装订线 密封装订线

共2页 第1页 5.什么是稳定的极限环? 极限环附近的内部和外部都收敛于该极限环,则称该极限环为稳定的极限环。 6.轨道不平顺有几种?各自对车辆的哪些振动起主要作用? 方向、轨距、高低(垂向)、水平不平顺。方向不平顺引起车辆的侧滚和左右摇摆。轨距不平顺对轮轨磨耗、车辆运行稳定性和安全性有一定影响。高低不平顺引起车辆的垂向振动。水平不平顺则引起车辆的横向滚摆耦合振动。 三.问答题 (每题15分,共30分) 1.已知:轮轨接触点处车轮滚动圆半径r ,踏面曲率半径R w ,轨面曲率半径R t , 法向载荷N ,轮轨材料的弹性模量E 和泊松比o 。试写出Hertz 理论求解接触椭圆 长短半径a 、b 的步骤。P43-P44 根据车轮滚动圆半径、踏面在接触点处的曲率半径、钢轨在接触点处的曲率半径得到A+B 、B-A ,算得cos β,查表得到系数m 、n ,然后分别根据钢轨和车轮的弹性模量E 和泊松比σ,求得接触常数k ,得出轮轨法向力N ,然后带人公式求得a 、b 。 2. 在车辆曲线通过研究中,有方程式 ()W f r y f w O W μψλ212 1 2 222 * 11=??? ?????+???? ?? 二.简答题 (每题5分,共30分) 1.与传统机械动力学相比,轨道车辆动力学有何特点? 2.轮轨接触几何关系的计算有哪两种方法,各有何优缺点? 解析和数值方法。数值方法可以用计算机,算法简单,效率高,但存在一定误差;解析方法是利用轮轨接触几何关系建立解析几何的方式求解,比较准确,但是计算繁琐,方法难于理解。 3.在车辆系统中,“非线性”主要指哪几种关系? 轮轨接触几何非线性、轮轨蠕滑关系非线性、车辆悬挂系统非线性 4.怎样根据特征方程的特征根以判定车辆蛇行运动稳定性?。 根据求出的特征根实部的正负判断车辆蛇行运动的稳定性,当所有的特征根实部均为负时,车辆系统蛇行运动稳定,存在特征根为零或者负时,车辆系统的蛇行运动不稳定。

铁道车辆系统动力学及应用-西南交通大学出版社

成都西南交大出版社有限公司关于《铁道车辆系统动力学及应用》 图书印刷项目 招标书 2018年1月25日

目录 第一部分招标公告 第二部分投标方须知 第三部分商务资料 第四部分投标相关文件格式

第一部分招标公告 根据《中华人民共和国投标招标法》有关规定,经成都西南交大出版社有限公司总经理办公会决定,现对外公开招标《铁道车辆系统动力学及应用》图书的印刷企业,兹邀请合格投标企业参加竞标。 一、招标内容: 1.招标内容为《铁道车辆系统动力学及应用》图书的印制。 2.投标人按招标人给定的样式清单,根据自身业务经营情况,以综合印张价方式报价,作为投标文件内容之一。报价单上只允许有一种报价,任何有选择报价将不予接受。投标人必须对样式清单上全部事项进行报价,只投其中部分事项投标文件无效。本投标文件中的报价采用人民币表示。 二、投标人资格要求: 1、在中华人民共和国境内注册,具有独立法人资格的印刷企业; 2、必须取得《印刷经营许可证》,且在投标时年审合格。 三、投标截止和开标时间、地点: 1.投标截止时间:2018年1月25日下午17:00(北京时间),逾期不予受理。 投标文件递交地点:成都市二环路北一段111号西南交通大学创新大厦21楼2105室 2.开标时间和地点: 2018年1月25日下午17:00 开标地点:成都市二环路北一段111号西南交通大学创新大厦21楼西南交通大学出版社 四、招标机构联系人信息: 联系人:王蕾 地址:成都市二环路北一段111号西南交通大学创新大厦21楼西南交通大学出版社 邮政编码:610031

电话:8700627 第二部分投标方须知 一、项目说明 1、“招标方”系指本次项目的招标人“成都西南交大出版社有限公司”。 2、“投标方”系指符合招标公告中投标人资格要求的投标单位: 3、“投标报价”应包含该书印刷材料成本、印刷、装订、送货下货、税金等所有费用。 4、无论投标过程中的做法和结果如何,投标方自行承担所有参加投标有关的全部费用。 二、投标文件的编写 1、投标要求 1)投标方应仔细阅读招标文件的所有内容,按招标文件的要求提供投标文件,并保证所提供的全部资料的真实性,不真实的投标文件将视为废标。 2)投标文件应备正本一份、副本一份。在每一份投标文件上要注明“正本”或“副本”字样,一旦正本和副本有差异,以正本为准。若投标文件正本和副本存在较大差异,将在评标中酌情扣分。 3)投标文件应有投标人法定代表人亲自签署并加盖法人单位公章和法定代表人印鉴或授权代表签字,装入档案袋密封,封条上须加盖投标单位印章,在投标截止时间前由法定代表人或法人委托人持本人有效身份证件递交招标单位。 4)投标人必须保证投标文件所提供的全部资料真实可靠,并接受招标人对其中任何资料进一步审查的要求。 5)投标文件所有封袋上都应写明以下内容:

车辆系统动力学发展1

车辆系统动力学发展1

汽车系统动力学的发展和现状 摘要:近年来,随着汽车工业的飞速发展,人们对汽车的舒适性、可靠性以及安全性也提出越来越高的要求,这些要求的实现都与汽车系统动力学相关。汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有车辆在垂向和横向两个方面的动力学内容。本文通过对汽车系统动力学的的介绍,对这一新兴学科的发展和现状做一阐述。 关键字:汽车系统动力学动力学响应发展历史Summary:In recent years, with the rapid development of automobile industry, people on the vehicle comfort, reliability and safety are also put forward higher requirements, to achieve these requirements are related to vehicle system dynamics.Vehicle system dynamics is the study of all related to the movement of the car system discipline, it involves the scope is broad, in addition to the effects of dynamic response of vehicle longitudinal motion and its subsystems, and vehicles to and dynamic content crosswise two

(完整版)车辆动力学练习题及参考答案

车辆动力学练习题 一、单项选择题 1.轨道车辆通常由()、驱动部、走行部、制动部与连接部等组成。 A.车体B.转向架 C.轮对D.电动机 2. EDS型磁悬浮的悬浮高度一般为()mm,因而对轨道精度和维护要求相对不高。 A.10 B.30 C.100 D.50 3. 铁道车辆的()是指车辆每一根轮轴能够承受的允许静载。 A.轴重 B.额定载重 C.轮对重 D.车体重 4.车轮必须具有(),以引导车轮沿道岔形成的线路方向运行,并产生变道时所需的横向导向力。 A.轮缘 B.踏面 C.缓冲装置 D.车轴 5.铁路轨道可以分为()轨道和曲线轨道。 A.缓和曲线B.坡度 C.直线 D.圆曲线 6.人对频率在()Hz以下的横向振动最敏感。 A.1 B.2 C.5 D.10 7.轨道车辆的轮对由左右轮子和车轴固接组成,左右轮对滚动角速度一致,则称为()轮对。 A.弹性 B.普通 C.刚性 D.磁悬浮 8.轮轨蠕滑是指具有弹性的钢质车轮在弹性的钢轨上以一定速度滚动时,在车轮与钢轨的()间产生相对微小滑动。 A.上方B.下方C.侧面D.接触面 9.稳定性的含义包含静态平衡稳定性和()稳定性两大类。 A.动态B.准静态 C.安全D.非平衡 10.目前国内外最常用的轨道不平顺数值模拟方法主要有()、三角级数法和白噪声滤波法等。 A.二次滤波法 B.五次滤波法 C.四次滤波法D.三次滤波法 11.轨道交通车辆使用的轮胎一般是高压充气轮胎,轮胎内压力高达()kPa。 A.200~300 B.400~500 C.600~700 D.800~900 12.创造了581km/h的世界轨道交通列车的最高速度记录的是()超导磁浮。 A.中国 B.美国 C.日本 D.德国 13. 铁路轨道按轨枕使用材料可分为()轨道和混凝土轨枕轨道 A.铁枕 B.木枕 C.铜枕 D.不锈钢

车辆系统动力学试卷

1、系统动力学有哪三个研究内容? (1)优化:已知输入和设计系统的特性,使得它的输出满足一定的要求,可称为系统的设计,即所谓优化。就是把一定的输入通过选择系统的特性成为最优化的输出。 (2)系统识别:已知输入和输出来研究系统的特性。 (3)环境预测。已知系统的特性和输出来研究输入则称为环境预测。 例如对一振动已知的汽车,测定它在某一路面上行驶时所得的振动响应值(如车身上的振动加速度),则可以判断路面对汽车的输入特性,从而了解到路面的不平特性。 车辆系统动力学研究的内容是什么? (1)路面特性分析、环境分析及环境与路面对车辆的作用; (2)车辆系统及其部件的运动学和动力学;车辆内各子系统的相互作用; (3)车辆系统最佳控制和最佳使用; (4)车辆-人系统的相互匹配和模型研究、驾驶员模型、人机工程等。 2、车辆建模的目的是什么? (1)描述车辆的动力学特性; (2)预测车辆性能并由此产生一个最佳设计方案; (3)解释现有设计中存在的问题,并找出解决方案。 车辆系统动力学涉及哪些理论基础? (1)汽车构造 (2)汽车理论

(3)汽车动力学 (4)信号与系统 在“时间域”及“频率域”下研究时间函数x(t)及离散序列 x(n)及系统特性的各种描述方式,并研究激励信号通过系统 时所获得的响应。 (5)自动控制理论 (6)系统辨识 (7)随机振动分析 研究随机振动中物理量的描述方法(相关函数、功率谱密度), 讨论受随机激励的振动系统的激励、系统特性、响应三者统 计规律性之间的关系。 (8)多体系统动力学 建立车辆系统动态模型的方法主要有哪几种? 数学模型 (1)各种数学方程式:微分方程式,差分方程,状态方程,传递函数等。 (2)用数字和逻辑符号建立符号模型—方框图。 3、路面不平度功率谱密度的表达式有几种?各有何特点?试举出2 种以上路面随机激励方法,并说明其特点。(10分) 路面功率谱密度的表达形式分为幂函数和有理函数两种 (1)路面不平度的幂函数功率谱密度 ISO/DIS8608和国家标准GB7031-1987《车辆振动输入路面平

车辆系统动力学报告

垂直动力学部分 题目:以车辆整车模型为基础,建立车辆1/4模型,并利用模型参数进行: 1)车身位移、加速度传递特性分析; 2)车轮动载荷传递特性分析; 3)悬架动挠度传递特性分析; 4)在典型路面车身加速度的功率谱密度函数计算; 5)在典型路面车轮动载荷的功率谱密度函数计算; 6)在典型路面车辆行驶平顺性分析; 7)在典型路面车辆行驶安全性分析; 8)在典型路面行驶速度对车辆行驶平顺性的影响计算分析; 9)在典型路面行驶速度对车辆行驶安全性的影响计算分析。 模型参数为:m 1= 25 kg;k 1 = 170000 N/m;m 2 = 330 kg;k 2 = 13000 (N/m);c =1000Ns/m 本文拟定应用Matlab/Simulink软件进行分析计算。 1.建模及运动方程 依据课程题目的要求,以Matlab/simulink为仿真平台,建立具有两自由度的1/4车辆模型,如图1所示。 图1双自由度的车辆1/4简化模型 上图中汽车的悬挂(车身)质量m 2 = 330 kg;非悬挂(车轮) 质量m 1= 25 kg;弹簧刚度k 2 = 13000 N/m;轮胎刚度k 2 = 13000 (N/m); 减震器阻尼系数C=1000Ns/m。

车轮与车身垂直位移坐标分别为1z 、2z ,坐标原点选在各自平衡位置,其运动学方程为: 0)()(z 1221222=-+-+z z K z z c m 0)()()(z 112122111=-+-+-+q z K z z K z z c m 根据运动学方程,通过Matlab/Simulink 建立模型,如图2所示: 图2 Matlab/Simulink 仿真图 2. 模型分析 2.1 车身位移、加速度传递特性分析 2.1.1车轮位移 车轮位移1Z 对q 的频率响应函数为: []2 112 2121232142122211)()() (q z K K w jCK w K m K K m w m m jC w m m K jCw w m K ++++-+-++-= 22100000017000000607150035500825221000000170000005610000q z 23421++--++-=jw w jw w jw w 系统传递函数为:

《车辆系统动力学》教学大纲

《车辆系统动力学》教学大纲 Primary theories of V ehicle system dynamics 课程编号: 适用专业:铁道机车车辆课程层次及学位课否:必修课 总学时:32 学分数:2 执笔者:任尊松金新灿 一、课程性质和任务 本课程主要面向本科三年级学生开设,其目的是让学生从动力学角度了解、掌握铁道车辆动力学基本理论和准则。 由于车辆的运行性能主要决定于悬挂装置中诸如弹簧和各种弹簧元件、减振器、弹簧支承以及各种拉杆、定位装置等的结构型式的选择是否合理,设计参数是否选用恰当;因此,本课程将围绕采取哪些措施来提高或获得车辆系统优良的动力学性能来讲解。 二、内容简介和学时分配 第一章概论(2课时) §1-1 研究内容和目的(20分钟) §1-2 车辆动力学研究与实践(30分钟) §1-3 铁路发展趋势(15分钟) §1-4 我国铁路高速技术发展(20分钟) §1-5 铁道部技术引进与动车组(15分钟) 重点:铁道车辆动力学研究目的和世界轮轨铁路发展趋势 第二章世界轮轨高速(2课时) §2-1 世界轮轨高速铁路(40分钟) §2-2 高速列车十大关键技术(60分钟) 重点:高速列车的高性能转向架技术、牵引与制动技术、轻量化技术等 难点:自动控制监测与诊断技术 第三章车辆动力性能与评判标准(2课时) §3-1 车辆运行安全性及其评估标准(50分钟) §3-2 车辆运行品质及其评估标准(50分钟) 重点:GB5599-1985中关于脱轨系数、减载率、轮轨横向力等安全性指标和舒适性指标的限定标准。 难点:脱轨系数、减载率求解公式推导。 第四章车辆系统动力学结构模型(2课时) §4-1 车辆系统基本结构(25分钟) §4-2 车辆系统振动自由度(35分钟) §4-3 车辆系统数学模型(40分钟) 重点:车辆定距、轴距、车轮名义半径、车轮踏面、轮缘等基本概念和车辆运动自由度定义。 第五章轮轨踏面设计与接触几何关系(2课时)

相关文档
最新文档