经济博弈论第五章 离散博弈中的纳什均衡
盘点博弈论纳什均衡囚徒困境零和博弈智猪博弈

盘点博弈论&纳什均衡&囚徒困境&零和博弈&智猪博弈1.博弈论是什么博弈论(game theory),又译为对策论,或者赛局理论,经济学的一个分支,1944年冯·诺伊曼与奥斯卡·摩根斯特恩合著《博弈论与经济行为》,标志着现代系统博弈理论的的初步形成,因此他被称为“博弈论之父”。
博弈论被认为是20世纪经济学最伟大的成果之一。
目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。
主要研究公式化了的激励结构(游戏或者博弈)间的相互作用。
是研究具有斗争或竞争性质现象的数学理论和方法。
也是运筹学的一个重要学科。
具有竞争或对抗性质的行为称为博弈行为。
在这类行为中,参加斗争或竞争的各方各自具有不同的目标或利益。
为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。
比如日常生活中的下棋,打牌等。
博弈论就是研究博弈行为中斗争各方是否存在着最合理的行为方案,以及如何找到这个合理的行为方案的数学理论和方法。
2.纳什均衡(Nash equilibrium)3.囚徒困境(Prisoner’s Dilemma)纳什平衡的经典例子就是囚徒困境。
囚徒困境(Prisoner’s Dilemma)是博弈论的非零和博弈中具代表性的例子,反映个人最佳选择并非团体最佳选择。
或者说在一个群体中,个人做出理性选择却往往导致集体的非理性。
虽然困境本身只属模型性质,但现实中的价格竞争、环境保护等方面,也会频繁出现类似情况。
1950年,由就职于兰德公司的梅里尔·弗勒德和梅尔文·德雷希尔拟定出相关困境的理论,后来由顾问艾伯特·塔克以囚徒方式阐述,并命名为“囚徒困境”。
经典的囚徒困境如下:警方逮捕甲、乙两名嫌疑犯,但没有足够证据指控二人有罪。
于是警方分开囚禁嫌疑犯,分别和二人见面,并向双方提供以下相同的选择:若一人认罪并作证检控对方(相关术语称“背叛”对方),而对方保持沉默,此人将即时获释,沉默者将判监10年。
博弈论66个经典例子(9)不会令人后悔的纳什均衡

不会令人后悔的均衡在纳什均衡中,你不一定满意其他的策略,但你的策略是回馈对手招数的最佳策略。
从囚徒困境中我们会发现,作为博弈各方的行动就是针对对方行动而确定的最佳对策,而一旦知道对方在做什么,就没人愿意改变自己的做法。
博弈论学把这么一个结果称为均衡。
这个概念是有普林斯顿大学数学家约翰·纳什提出的,因此被称为纳什均衡。
诺贝尔经济学奖获得者萨缪尔森有句名言,你可以将一只鹦鹉训练成经济学家,因为它所需要学习的只有两个词,供给与需求。
博弈论专家坎多瑞引申说:“要成为现代经济学家,这只鹦鹉必须再多学一个词,这个词就是纳什均衡”。
1950年,还是一名研究生的纳什写了一篇论文,题为《n人博弈的均衡问题》,该文只有短短一页纸,可就这短短一页纸成了博弈论的经典文献。
纳什的贡献是,他证明了在这一类的竞争中,在很广泛的条件下是有稳定解存在的,只要是别人的行为确定下来,竞争者就可以有最佳的策略。
那么,什么纳什均衡呢?简单说,就是一策略组合中,所有的参与者面临这样的一种情况:给定你的策略,我的策略是我最好的策略。
给定我的策略,你的策略也是你最好的策略,即双方在对方给定的策略下不愿意调整自己的策略。
纳什均衡从此成为经济学家用来分析商业竞争到贸易谈判现象的有力工具,所以纳什均衡是对冯诺依曼和摩根斯坦的合作博弈论的重大发展,甚至说是一场革命。
纳什均衡首先对亚当斯密“看不见的手”的原理提出挑战,按照斯密的理论,在市场经济中,每一个人都从利己的目的出发,而最终全社会达到利他的效果,从纳什均衡引出一个悖论:从利己的目的触发,结果损人不利己。
“囚徒困境”就是如此,从这个意义说,纳什均衡提出的悖论实际上动摇了西方经济学的基石。
纳什的想法成为我们指导“同时行动博弈”的最后一个法则的基础。
这个法则如下:走完寻找优势策略和剔除劣势策略的捷径之后,下一步就是寻找这个博弈的均衡。
所谓博弈均衡,它是一稳定的博弈结果。
均衡是博弈的一结果,但不是说博弈的结果都能成为均衡。
管理经济学5第五讲 博弈论

(三)从静态博弈到动态博弈
静态博弈是指双方同时决策,或者在决 策时不知道对方决策的结果
动态博弈是指一方先决策,另一方后决 策
(三)从静态博弈到动态博弈
先发优势与后发优势
乙 a 0 A 甲 100 B 10 5 0 10 5 b 4
(三)从静态博弈到动态博弈
乙 a b c 10 3 12 B 3 2 10 1
12
A 甲
12 2
11
4
(三)从静态博弈到动态博弈
到后推理的基本思想 防鲨网的突破 避免恶意收购的防鲨网:董事会共有5位成员, 按目前选举办法,一年只能更换一位。要改变 选举程序,可以提交建议,按规定,投票以顺 时针次序沿着董事会圆桌进行,一份提议必须 获得50%以上支持(缺席算反对),且任何人 若是提交一份建议而未获得通过,他及其赞同 者都将失去自己的董事席位和股份,由其他人 平分
如果某一信息是所有参与人都知道的 如果每个参与人都知道所有参与人知道这一信息 如果每个参与人都知道所有参与人都知道所有参 与人知道这一信息 如此这般以至无穷 这一信息就成为共同知识
(二)纳什均衡及其判断方法
一个博弈的纳什均衡不一定只有一个, 可能有两个,也可能更多
(二)纳什均衡及其判断方法
情侣博弈
女 拳击 拳 击 芭 蕾 1 2 0 0 1 0 2 芭蕾 0
男
(二)纳什均衡及其判断方法
如果出现两个以上的均衡应该如何选择
乙 a 2 A 甲 -1 B -1 1 1 2 -1 b -1
(一)基本概念
以囚徒困境为例
囚徒 A
坦白 不坦白 -1,-10 -2,-2
囚徒 B
博弈论-混合策略纳什均衡

政治学的案例分析
总结词:国际关系
详细描述:在国际关系中,混合策略纳什均衡可以用来解释 国家之间的竞争和合作。例如,两个国家可能会以一定的概 率选择不同的外交政策,例如结盟、中立或对抗,以达到各 自的利益最大化。
生物学的案例分析
总结词
捕食者-猎物博弈
详细描述
在生物学中,混合策略纳什均衡可以用来解释捕食者与猎物之间的博弈。例如,捕食者 可能会采用追逐和放弃两种策略来捕猎猎物,而猎物也可能会采用逃跑和装死两种策略 来避免被捕食。最终,捕食者和猎物都以一定的概率随机选择不同的策略,以达到均衡
非合作博弈论
研究个体如何在不知道其 他个体如何行动的情况下 做出最优决策。
博弈论的基本概念
参与者
参与博弈的决策主体, 可以是个人、组织或国
家。
行动
参与者根据给定的信息 所做出的决策。
信息
参与者在进行决策时所 拥有的数据、情报或知
识。
策略
参与者为达到最优结果 而采取的一系列行动的
方案。
博弈论的应用场景
状态。
生物学的案例分析
总结词:繁殖竞争
VS
详细描述:在生物种群中,不同个体 之间会存在繁殖竞争。为了最大化自 己的遗传贡献,个体可能会采用不同 的交配策略,例如追求高繁殖成功率 的策略或避免过度竞争的策略。混合 策略纳什均衡可以用来描述这种竞争 状态下的交配行为。
THANKS FOR WATCHING
繁殖博弈
在繁殖博弈中,生物个体通过选择不同的繁殖和竞争策略来繁衍后代。混合策略纳什均衡可以用来分 析繁殖过程的均衡结果,解释生物多样性的形成机制。
05 混合策略纳什均衡的案例 分析
经济学的案例分析
《产业经济学》第五章--(博弈1)讲解

在上述“囚徒困境”的例子中,每个囚徒 都有两种可选择的策略:坦白或抵赖。显然不 论同伙选择什么策略,每个囚徒的最优策略是 “坦白”。如果一个博弈中,某个参与人有占 优策略,那么该参与人的其他可选择策略就被 称为“劣策略”。
在一个博弈里,如果所有参与人都有占优 策略存在,那么占优策略均衡是可以预测到的 唯一的均衡,因为没有一个理性的参与人选择 劣策略。所以在“囚徒困境”博弈里,“坦白、 坦白”是占优策略均衡。
第五章 博弈
第一节 博弈论的基本概念与应用
一、博弈论的定义 博弈论,英文为Game theory,是研究相互依赖、相 互影响的决策主体的理性决策行为以及这些决策的均衡 结果的理论。一些相互依赖、相互影响的决策行为及其 结果的组合称为博弈。 博弈论研究的是存在相互外部效应条件下的主体的 决策问题。
在寡头垄断的市场上,只有少数几家厂商 在相互竞争,寡头们面对的市场环境或者说竞 争对手的行为将随着他们本身的决策行为而变 动,即寡头们的决策是相互作用的,每个企业 的得益和利润不仅取决于自身的决策,也取决 于其他厂商的决策。寡头厂商之间可能有激烈 的竞争,这些竞争涉及价格、产量、广告、投 资等许多方面的决策,在分析寡头垄断市场中 的企业决策行为时,就必须把各种决策者之间 的策略相互作用纳入到经济模型中,这就是一 种博弈分析。
1.从行动的先后次序来划分,博弈可以分为静态博 弈和动态博弈。静态博弈指在博弈中,参与人同时选择行 动或虽非同时但后行动者并不知道先行动者采取了什么具 体行动;动态博弈指的是参与人的行动有先后顺序,且后 行动者能够观察到先行动者所选择的行动的博弈。
2.从参与人对其他参与人的各种特征信息 的获得差异来划分,博弈可分为完全信息博弈 和不完全信息博弈。完全信息博弈指的是每一 个参与人对所有其他参与人的特征,如策略集 合及得益函数都有准确完备的知识;否则就是 不完全信息博弈。
博弈论原理与方法-关于均衡的分析

同时自己又要尽可能猜出对方的策略。
在一次博弈中结果取决于机会,在多次重复
中,如果双方决策都正确,则我们可求得平
均的双方收益。彼此得益相同。
绪论-博弈基本要素
参与人players
又称“局中人”或”博弈方”,是指博弈中独
立决策、独立承担后果、以自身利益最大化来
选择行动的决策主体(可以是个人、也可以是
策略,假设寡头2采用低价策略,那么寡头1采用高
价策略得益20,采用低价策略得益60,它也应采用
低价策略。用同样方法可得寡头2也应采用低价策略。
低价-低价对双方不是理想的结果,但因为双方均无
法信任,所以均坚持采用低价策略。
绪论-几个典型模型
猜方
正面
猜硬币游戏
反面
正面
盖方
反面
分析:
在本博弈什均衡动态化,加入了
接近实际的不完全信息条件。他们的工作为后
人继续发展博弈论,提供了基本思路和模型
绪论-博弈论的历史沿革
博弈论根据其所采用的假设不同而分为合作博
弈理论和非合作博弈理论。两者的区别在于参
与人在博弈过程中是否能够达成一个具有约束
力的协议(binding agreement) 。倘若不能,则
博弈理论开始于1944年由冯·诺依曼(Von
Neumann)和摩根斯坦恩(Oskar Morgenstern)合
作的《博弈论和经济行为》(The Theory of
Games and Economic Behaviour)一书由Princeton
University Press出版。
20世纪50年代以来,纳什(Nash)、泽尔腾
关于纳什与纳什均衡

关于纳什与纳什均衡纳什是一个天才的数学家,早在上大学时就开始从事纯数学的博弈论研究。
1948 年进入普林斯顿大学后更是如鱼得水,20岁出头已成为闻名世界的数学家。
特别是在经济博弈论领域,他作出了划时代的贡献,是继冯·诺依曼之后最伟大的博弈论大师之一。
他提出的著名的纳什均衡的概念在非合作博弈理论中起着核心的作用。
后续的研究者对博弈论的贡献,都是建立在这一概念之上的。
纳什均衡的提出和不断完善为博弈论广泛应用于经济学、管理学、社会学、政治学、军事科学等领域奠定了坚实的理论基础。
纳什也因此被授予诺贝尔经济学奖。
纳什的主要贡献是1950至1951年在普林斯顿读博士学位时做出的。
那两年他发表的两篇关于非合作博弈论的重要论文(包括一篇博士论文),彻底改变了人们对竞争和市场的看法。
因为他在文中证明了非合作博弈及其均衡解,并证明了均衡解的存在性,即著名的纳什均衡,从而揭示了博弈均衡与经济均衡的内在联系。
然而,他的天才发现——非合作博弈的均衡,即“纳什均衡”并不是一帆风顺的。
1948年纳什到普林斯顿大学读数学系的博士。
那一年他还不到20岁。
当时普林斯顿可谓人杰地灵,大师如云。
纳什不是一个按步就班的学生,据他的同学们回忆,他们根本想不起来曾经什么时候和纳什一起完完整整地上过一门必修课,但纳什广泛涉猎数学王国的每一个分支,如拓扑学、代数几何学、逻辑学、博弈论等等,深深地为之着迷。
纳什经常显示出他与众不同的自信和自负,充满咄咄逼人的学术野心。
1950年整个夏天纳什都忙于应付紧张的考试,他的博弈论研究工作被迫中断,他感到这是莫大的浪费。
殊不知这种暂时的“放弃”,使原来模糊、杂乱和无绪的若干念头,在潜意识的持续思考下,逐步形成一条清晰的脉络,突然来了灵感!这一年的10月,他骤感才思潮涌,梦笔生花。
其中一个最耀眼的亮点就是日后被称之为“纳什均衡”的非合作博弈均衡的概念。
1950年纳什才把自己的研究成果写成题为“非合作博弈”的长篇博士论文,1950 年11月刊登在美国全国科学院每月公报上,立即引起轰动。
博弈论与纳什均衡

《博弈论与纳什均衡理论》姓名张贺祺学号 2010010404 专业政治经济学指导老师张秉云摘要博弈论是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题,具有斗争或竞争性质现象的数学理论和方法,也是运筹学的一个重要学科。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。
即在给定别人策略的情况下,没有人有足够理由打破这种均衡。
纳什均衡,从实质上说,是一种非合作博弈状态。
关键字:博弈论;纳什均衡;合作博弈;非合作博弈目录摘要 (2)关键字 (2)一、引言 (4)二、博弈论与纳什均衡的主要内容 (4)(一)博弈论的主要思想 (4)(二)博弈论的分类 (5)三、经典案例 (7)(一)博弈论的经典案例 (7)(二)纳什均衡经典案例 (7)四、博弈论和纳什均衡的重要影响 (8)(一)博弈论的重要影响 (8)(二)纳什均衡的重要影响 (8)参考文献 (9)博弈论与纳什均衡理论一、引言近代对于博弈论的研究,开始于策墨咯(Zermelo),波雷尔(Borel)及冯·诺伊曼(von Neumann)。
1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。
1950~1951年,约翰·福布斯·纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。
纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。
今天博弈论已发展成一门较完善的学科。