博弈论的主要均衡概念及其比较

合集下载

博弈论定义与主要思想

博弈论定义与主要思想

Selten and Harsanyi
泽尔腾(1965)将纳 而海萨尼则发展了刻
什均衡的概念引入了 动态分析,提出了 “精炼纳什均衡”概念; 以及进一步刻画不完 全信息动态博弈的 “完备贝叶斯纳什均
画不完全信息静态博 弈的“贝叶斯纳什均 衡”(1967-1968)。 总之,他俩进一步将 纳什均衡动态化,加 入了接近实际的不完 全信息条件。他们的
著名经济学家保罗.萨缪尔森说:“要想在现代 社会做一个有文化的人,您必须对博弈论有一 个大致了解。”
我们从博弈中学习什么
博弈论告诉人们,要学会理解他人都有自己的 思想,每个个体都是理性的,所以必须了解竞 争对手的思想。商业关系被认为是一种相互作 用。但博弈论并不是疗法,并不是处方,它并 不告诉你该付多少钱买东西,这是计算机或者 字典的任务。博弈论只是提供一些关系的例证, 一些有用的解决问题的方法。这种思维方法也 许是企业家应该学习的。对于经济学家,也许 需要学习它的理论模型,它的实验方式 。
2005年诺奖授予有以色列和美国双重国籍的罗 伯特·奥曼和美国人托马斯·谢林,以表彰他们 在博弈论领域作出的贡献。
主要思想
博弈论并不是经济学的一个分支,它只是一种 方法,这也是为什么许多人将其看成数学的一 个分支的缘故。
在对参与者行为研究这一点上,博弈论和经济 学家的研究模式是完全一样的。经济学越来越 转向人与人关系的研究,特别是人与人之间行 为的相互影响和相互作用,人与人之间利益和 冲突、竞争与合作,而这正是博弈论的研究对 象。
4、信息指的是参与人在博弈中所知道的 关于自己以及其他参与人的行动、策略 及其得益函数等知识;
5、得益是参与人在博弈结束后从博弈中 获得的效用,一般是所有参与人的策略 或行动的函数,这是每个参与人最关心 的东西;

博弈论知识考点

博弈论知识考点

博弈是人们的行为之间的交互作用博弈论的含义博弈论是研究在策略性环境中如何进行策略性决策和采取策略性行动的科学。

策略性环境是指,每一个人进行的决策和采取的行动都会对其他人产生影响;策略性决策和策略性行动是指,每个人要根据其他人的可能反应来决定自己的决策和行动。

在所有社会,人们经常互动。

有时,互动是合作,其他的时候,互动是竞争。

在这两种情况下,都可以用一个术语,即相互依赖性来表示一个人的行为对另外一个人的福利造成的影响。

相互依赖的情形可称为策略环境。

因为人们为了确定所采取的最优行动,必须考虑他周围的其他人会怎样选择行动。

策略对于社会的运行来说,是非常基本的。

我们要学会了解在策略环境下,人们实际上是如何采取行动的,以及他们应该怎样采取行动。

这种系统的研究形成了策略互动的理论。

博弈论三要素:博弈的三个基本要素三个基本要素,即参与人、参与人的策略和参与人的支付。

所谓参与人(或称局中人),就是在博弈中进行决策的个体;所谓参与人的策略,指的是一项规则,根据该规则,参与人在博弈的每一时点上选择如何行动;所谓参与人的支付是指,在所有参与人都选择了各自的策略且博弈已经完成之后,参与人获得的效用(或期望效用)。

3.博弈的简单分类根据参与人的数量,可以分为二人博弈和多人博弈;根据参与人的支付情况,可分为零和博弈和非零和博弈;根据参与人拥有的策略的数量多少,可分为有限博弈和无限博弈;根据参与人在实施策略上是否有时间的先后,可分为同时博弈和序贯博弈。

一些概念:局中人或参与者(Players)规则(rules):规定博弈各方的行动顺序、方式、以及最终的结果等。

策略(Strategy):一整套的行动方案,规定了各种情况下的行动。

比如:敌进我退,敌退我追,敌驻我扰,敌疲我打。

相机策略(contingent strategy):仅在不确定事件发生时才会采取的策略。

如:人不犯我,我不犯人;人若犯我,我必犯人。

行动:局中人在特定条件下的行为支付( Pay-off ):博弈结束时,各方得到的收益。

对称均衡 非对称均衡 博弈论

对称均衡 非对称均衡 博弈论

对称均衡非对称均衡博弈论
对称均衡和非对称均衡是博弈论中的重要概念,用于描述博弈中各方的策略选择和结果。

在博弈论中,博弈是指一种决策情形,其中参与者的利益受到彼此的影响。

对称均衡和非对称均衡都是描述博弈中可能出现的情况的概念。

首先,让我们来看看对称均衡。

在博弈论中,对称均衡是指参与者采取相同的策略,并且没有动机去改变自己的策略,因为任何一方的单方面改变都不会使其获益。

对称均衡的一个经典例子是“囚徒困境”博弈,其中两名囚犯面临合作或者背叛的选择。

在对称均衡中,如果两名囚犯都选择背叛,那么他们都会受到最严厉的惩罚,而如果两名囚犯都选择合作,那么他们都会受益。

因此,对称均衡发生在他们都选择背叛或者都选择合作的情况下。

其次,非对称均衡是指参与者采取不同的策略,并且在当前策略下没有动机去改变自己的策略,因为任何一方的单方面改变都不会使其获益。

非对称均衡的一个例子是“买方市场”博弈,其中卖方和买方在价格谈判中采取不同的策略。

在非对称均衡中,如果卖方设定了一个最低价格,而买方愿意接受这个价格,那么双方都没有动机改变自己的策略。

总的来说,对称均衡和非对称均衡是博弈论中用于描述参与者策略选择和结果的重要概念。

通过研究对称均衡和非对称均衡,我们可以更好地理解博弈中参与者的决策行为,以及他们可能达到的结果。

这些概念对于经济学、政治学以及其他社会科学领域都具有重要意义。

希望这个回答能够帮助你更好地理解对称均衡、非对称均衡和博弈论的相关概念。

博弈论重点

博弈论重点

博弈论期末复习要点纳什均衡(P52):指的是参与人的这样一种策略组合,在该策略组合中,每个人的策略都是最优的,任何参与人单独改变策略都不会得到好处。

换句话说,如果在一个策略组合上,当所有其他人都不改变策略时,没有人会改变自己的策略。

完全信息(P34):各个博弈方都完全了解所有博弈方在各种情况下的得益状况。

上策均衡(P41):在某个博弈中,如果不管其他博弈方选择什么策略,一博弈方的某一个策略给他带来的收益始终高于其他策略,至少不低于其他策略。

帕累托上策均衡(P92):多个纳什均衡的某一个均衡策略给所有博弈方带来的得益都大于其他所有纳什均衡带来的得益,则各个博弈方都会倾向于此纳什均衡的策略,博弈能够实现帕累托效率。

聚点均衡(P97):在多重纳什均衡博弈中,双方同时会选择一个聚点构成的纳什均衡。

合并均衡(P268):具有完美信息的博弈方在博弈中,不管自己情况如何,都采取相同的市场均衡。

(在合并均衡中,完美信息博弈方的情况不同,并不会导致他们的行为不同,因此他们的行为不会给不完美信息的博弈方透露任何有用的消息)分开均衡(P268):在不同情况下,完美信息博弈方所采取完全不同的市场策略。

(在分开均衡中,由于博弈方的情况不同,采取的不同的市场策略,因此完美信息博弈方的策略可以完全反映他的情况,因此能够给不完美信息博弈方的“判断”提供充分的信息和依据)海萨尼转换(P292):将得益不了解转化为类型不了解的基础上,进一步将不完全信息静态博弈转化为完全但不完美信息动态博弈进行分析的思路。

完美信息(P34):动态博弈中在轮到行为时对博弈的进程完全了解的博弈。

不完美信息(P34):动态博弈中在轮到行为时对博弈的进程完全不了解的博弈。

混合策略(P72):博弈方以一定的概率分布在可选策略中随机选择的决策方式。

一致性预测(P53):如果所有博弈方都预测一个特定的博弈结果会出现,那么所有的博弈方都不会利用该预测或者这种预测能力,选择与预测结果不一致的策略。

纳什均衡的概念

纳什均衡的概念

纳什均衡的概念纳什均衡是博弈论中的重要概念,指的是在一个博弈中,所有参与者都选择了自己的最佳策略,不存在更好的选择,即达到了一种均衡状态。

纳什均衡是在参与者之间相互博弈的情况下,每个参与者都选择了自己的最佳策略,并且其他参与者也同时选择了最佳策略,从而实现了一种平衡状态。

纳什均衡最早由约翰·纳什提出,他于1950年发表了研究博弈论的著名论文《非合作博弈》。

在该论文中,纳什定义了纳什均衡,并利用数学方法证明了简单博弈的纳什均衡存在性。

由于纳什均衡的提出和研究,他获得了1994年的诺贝尔经济学奖。

纳什均衡的理论适用范围非常广泛,涵盖了众多社会科学领域,如经济学、政治学、社会学等。

在经济学领域,纳什均衡被广泛运用于市场竞争、价格确定、产出决策等方面的分析。

在政治学领域,纳什均衡被应用于国际关系、选举竞争等问题的研究。

在社会学领域,纳什均衡被用于解析社会合作、集体行动的机制等等。

为了更好地理解纳什均衡的概念,我们可以通过一个具体的博弈案例来说明。

假设有两个企业A和B在某个市场上销售相同的产品,它们可以选择两种不同的定价策略:高价策略和低价策略。

企业A和B都知道,如果它们选择相同的策略,市场将会处于均衡状态;如果它们选择不同的策略,市场将会出现不稳定的情况。

在这个博弈中,我们可以使用一个博弈表来表示两个企业的策略和回报。

假设高价策略带来的利润分别为5和2,低价策略带来的利润分别为3和4。

根据这个博弈表,我们可以得到以下结论:如果企业A选择高价策略,那么企业B选择高价策略可以带来较高的利润,所以企业B将会选择高价策略。

如果企业A选择低价策略,那么企业B选择低价策略可以带来较高的利润,所以企业B同样会选择低价策略。

综上所述,无论企业A选择高价策略还是低价策略,企业B都会选择低价策略,从而形成了一个纳什均衡。

在这种均衡状态下,企业A的最佳策略是低价策略,而企业B的最佳策略也是低价策略,两个企业都无法通过改变自己的策略来获得更高的利润。

博弈论和纳什均衡

博弈论和纳什均衡
相同,边际成本MC为常数)。 4. 两个厂商面临共同的市场的线性需求曲线
(记为:Q=a-bP),并且A、B两个厂商都准确地了解市 场的需求曲线(完全信息)。 5. A、B两个厂商各自再作出决策时都假定另一个厂商的行 为是既定不变的。厂商都是在已知对方产量的情况下, 各自确定能够给自己带来最大利润的产量。即每一个产 商都是消极地以自己的产量去适应对方已确定的产量。 6. 两个厂商同时决策,无行动的先后差别。
博弈论和纳什均衡
.
1
博弈无处不在
2
三国中的博弈——联吴抗魏
诸葛亮在《隆中对》中提出“跨有 荆益、东有孙权、北图中原”,他 舌战群儒,力劝东吴孙权与刘备联 盟。
3
三国中的博弈—华容道
火烧赤壁一战,孙刘联军大败曹操,曹操北 逃。诸葛亮明知关羽重义气,必然放走曹操, 为何还将捉曹重任交给关羽? 结论:诸葛亮并不想杀掉曹操——曹操一死,刘备亦亡矣!
11
案例扩展—性别大战
“性别战”:一对恋人有两种选择,或去看足球 比赛,或去看芭蕾舞。男方偏好足球,女方偏好 芭蕾,但他们宁愿在一起,不愿分开。
12
在这个博弈中,如果双方同时决定,则有两个纳 什均衡,即都去看足球比赛或者都去看芭蕾演出。 但是到底最后他们去看足球比赛还是去看芭蕾演 出,并不能从中获得结论。
* i
的最好的策略。
纳什均衡的定义
定义2.1 设 G N,S1,,Sn , u1,, un 为一具有完全信息的策略型博弈模型,称
策略组合s*
(s
* i
,
s
* i
),
s
* i
S i ,
s
*
i
S
\ Si
为G的一个纳什均衡。如果对

中级微观经济学博弈论

中级微观经济学博弈论

迭代法
通过不断迭代和调整参与者 的策略,逐步逼近纳什均衡 。
代数法
利用代数方程组来表示和求 解纳什均衡。
纳什均衡的应用实例
寡头垄断市场
在寡头垄断市场中,企业之间通过博弈来决定产量和价格,纳什均 衡可以用来分析市场均衡的结果。
公共资源利用
在公共资源利用问题中,个体追求自身利益最大化可能导致资源过 度利用或浪费,纳什均衡可以用来分析这种情况下的最优策略。
完全信息博弈的基本概念
01
02
03
完全信息博弈是指参与人拥有完全且 准确的信息,即每个参与人都了解其 他参与人的类型、偏好和战略。
在完全信息博弈中,理性参与人会根 据对手的策略选择最优策略,以达到 自身效用的最大化。
完全信息博弈的均衡通常是纳什均衡 ,即所有参与人都不愿意改变自己策 略的策略组合。
03
动态博弈的典型例子包括国际政治和商业竞争中的谈
判和贸易关系。
完全信息与不完全信息博弈
完全信息博弈中,所有参与者都拥有完全相同的信息,即每个参与者都了 解其他参与者的策略和收益函数。
不完全信息博弈中,参与者之间存在信息不对称,即某些参与者拥有其他 参与者所不了解的信息。
在不完全信息博弈中,参与者需要通过观察对手的行动来推断其类型或策 略,以做出最优决策。
最大化自己的收益。
帕累托最优
03
在合作博弈中,帕累托最优是指所有参与者都认为当前策略是
最优的,即没有任何参与者愿意改变自己的策略。
夏普利值与核仁方法
1 2 3
夏普利值
夏普利值是合作博弈中用于分配收益的一种方法, 它基于每个参与者在联盟中的贡献来分配收益。
核仁方法
核仁方法是另一种用于合作博弈的收益分配方法, 它基于每个参与者在联盟中的相对重要性来分配 收益。

经济学博弈论

经济学博弈论

⒉策略式表述的博弈举例 在掷币游戏中,每个参与人的支付直接用其赢得或输
掉的硬币数量来表示:赢得一枚硬币的支付为1,输掉一 枚硬币的支付为-1。掷币游戏的支付矩阵见表10-3所示。
小孩A
表10-3 掷币游戏
小孩B
正面 反面
正面 反面
1,-1 -1,1
-1,1 1,-1
16 合肥学院 章 蕾
再如下面的斗鸡博弈。试想有两只公鸡遇到一起,每 只公鸡有两个行动选择:一是进攻,一是撤退。如果一只 公鸡撤退,一只公鸡进攻,则进攻的公鸡获得胜利,撤退 的公鸡很丢面子;如果两只公鸡都撤退则打个平手;如果 两只公鸡都进攻,那么两败俱伤。设其支付矩阵见表10-4 所示。
参与人A 合肥学院 章 蕾
U
0,2 1,4
M
3,4
2,3
D
1,1 3,1
2,1 1,0
4,2 23
通过对纳什均衡与占优策略均衡以及重复剔除的占优 均衡的分析,可知它们之间的关系如下:每一个占优策略 均衡、重复剔除的占优均衡一定是纳什均衡,但并非每一 个纳什均衡都是占优策略均衡或重复剔除的占优均衡。
9 合肥学院 章 蕾
③信息是参与人在博弈中的知识,特别是有关其他 参与人(对手)的特征和行动的知识。在囚徒困境模型 中,两囚徒的信息是都知道自己和另一囚徒在选择坦白 和抵赖的不同组合时面对的处罚。
④策略:是参与人在拥有既定信息情况下的行动规 则,它规定参与人在什么时候选择什么行动。一个参与 人的所有可选择的策略的集合就是这个参与人的策略空 间。如果每个参与人选择一个策略,就构成一个策略组 合。
贝叶斯纳什均衡
精炼贝叶斯纳什均衡
12 合肥学院 章 蕾
第二节 完全信息静态博弈
每一个参与人对所有其他参与人(对手)的特征、 策略空间及支付函数有准确的知识,而且博弈的参与人 同时选择行动或虽非同时但后行动者并不知道前行动者 采取了什么具体行动,这种情况下参与人的决策就是完 全信息静态博弈。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

博弈论的主要均衡概念及其比较
均衡概念是博弈论的核心概念,它指的是一种状态,在这种状态下,双方玩家的策略都是最优的,没有一方可以通过改变自己的策略而获得更好的结果。

主要的均衡概念有:
1、纳什均衡:纳什均衡是博弈论中最重要的均衡概念,它是由美国经济学家纳什提出的,它是指当双方玩家的策略都是最优的,没有一方可以通过改变自己的策略而获得更好的结果,即每个玩家都没有动力改变自己的策略。

2、Nash-Subgame均衡:Nash-Subgame均衡是由美国经济学家纳什提出的,它是指在一个博弈中,每个玩家都有一个最优的策略,这种策略可以使每个玩家获得最大的利益,且每个玩家都不会改变自己的策略,从而使得博弈的结果是一个稳定的状态。

3、博弈树均衡:博弈树均衡是由美国经济学家John Nash提出的,它是指在博弈树中,每个玩家都有一个最优的策略,这种策略可以使每个玩家获得最大的利益,且每个玩家都不会改变自己的策略,从而使得博弈的结果是一个稳定的状态。

纳什均衡和Nash-Subgame均衡是两种最重要的均衡概念,它们都是基于每个玩家都有一个最优的策略,而博弈树均衡则是基于博弈树模型的均衡概念。

它们之间的区别在于,纳什均衡和Nash-Subgame均衡是针对一般情况的均衡概念,而博弈树均衡是针对博弈树模型的均衡概念。

相关文档
最新文档