遥感应用模型-第二章-植被遥感-植被叶面积指数估算模型

合集下载

第二章 植被遥感应用模型

第二章  植被遥感应用模型

37
内部的多次反射与折射,向上反射穿出上表皮层便构成反射光,向下折射穿出下表皮层便 形成透射光,这一过程具有明显的随机性质,因此反射率与透射率是相近的。这一波段范 围内具有很宽很强的反射峰是植被所独有的波谱特征,当叶子发生枯萎或因缺水而凋谢, 这意味着细胞的萎缩,折射率差异的减少,其宏观表现为这一波段的反射率值明显下降。 (3)1.1μm-2.5μm 这一波段范围的波谱特征基本上被液态水的吸收特性所控制,图 2-1-5 展示了液态水 的吸收特征。对可见光而言,液态水是相当透明的,但在近红外波段它存在两个强烈的吸 收峰,中心分别在 1.42μm 与 1.96μm,这就造成了叶子在这两个中心带上存在两个强烈的 吸收谷,其谷深与液态水含量有关。 基于能量守恒原理,反射率(ρλ),透射率(τλ)与吸收率(αλ),三者之和等于“1” 。 ρλ + τλ + αλ = 1 它们三者之间相互关系示意图 2-1-6 (4)单片叶子的波谱从以 0.68μm 为中心的反射率极小值过渡到从 0.8μm 开始的反射 峰, 其间必存在一个拐点,也就是∂(∂ρλ) / ∂(∂λ)= 0 的点,我们称拐点所对应的波长为“红 边” ,显然“红边”的变动与叶子内部的物理状态密切相关,例如任何原因引起近红外反射 峰的降低,均为引起“红边”位置的迁移,所以“红边”概念对排除外来干扰,特别是对 来自土壤背景的干扰,提取植被状态信息是十分有用的,有关问题我们将在成象光谱仪的 遥感信息提取方法一节中详述。 通过以上分析,单叶面的波谱特征基本上被叶子内部所含物质种类、数量以及叶子内 部结构,叶子物理状态所控制,因此可以判断不同生育期的叶子亦可能展示出波谱特征上 的差别 ,图 2-1-7 展示了白色橡树叶的反射率,波谱随季节的变化规律。 应该注意到 4 月 17 日嫩叶的反射率光谱特征是以 0.68μm 为中心的强吸收谷还没有形 成,这表明嫩叶内的叶绿素,含量还较低,同时 0.74μm-1.1μm 波段的反射峰值却很高, 接近 50%,这表明嫩叶内的细胞是充分膨胀的,叶子表面的蜡层还没有充分形成,随着时间 推移吸 收谷和反射峰逐步形成,叶子成熟后其波谱特征少变,当叶子接近枯萎,首先以 0.68μm 为中心的吸收谷被填塞,随之红外反射峰值逐步减小。 多层叶子重迭时叶子反射率波谱特征由图 2-1-8 所示,所展示的为棉花叶子重迭时的 波谱。 当层数增加时, 0.7μm-1.1μm 波段的反射峰值亦随之增加, 并逐步趋近于一个极值, 而吸收谷基本不变,这是因为单叶片在 0.68μm 附近的吸收率往往高达 90%以上,而反射峰 值一般低于 50%,换言之反射与透射具有相近的数值。 1.3 单片叶子波谱特征的理论解释 1977 年 C.J.Tucker 对单片叶子的波谱特征进行了数值模拟, 他把光子与叶子的相互作 用分解为十个相互独立,而又有联系的子过程,由图 2-1-9 展示对该图作如下说明: (1)代表太阳辐射 (2)代表由表面蜡层直接反射的太阳辐射 (3)栅网薄壁组织 (4)薄壁组织内的吸收过程 (5)薄壁组织内的散射过程 (6)由薄壁组织向上的漫辐射 (7)海绵状叶肉层

遥感地学分析—植被遥感原理

遥感地学分析—植被遥感原理

(一)单张叶片光谱特性及影响因素
❖ 3、叶片反射波谱的影响因素 ❖ 1)叶片生化组分
❖ 叶绿素a、b,导致0.45μm与0.67μm为中心形 成两个强烈的吸收带;
❖ 胡萝卜素、叶黄素导致0.43μm-0.48μm范围内 形成强烈的吸收带。
❖ 两吸收谷间(0.54μm附近)吸收相对较少, 形成绿色反射峰(10%-20%)。
✓ 等面叶的组织分化不明显。
(一)单张叶片光谱 特性及影响因素
❖ 1、植物叶片结构
✓ 叶片一般具有三部分:表皮、叶肉和叶脉 ✓ 表皮:包围整个叶片,由一层或多层组成。表
皮细胞扁平,排列紧密,通常不含叶绿体,外 表常有一层角质层。
(一)单张叶片光谱
特性及影响因素
❖ 1、植物叶片结构
✓ 叶肉:为表皮内的同化薄壁组织,有两种: (1)栅栏组织:紧靠上表皮下方,呈圆柱状,
叶方位角:法线在水平面上的投影与正北方向 的交角称为叶子在该点的方位角。
(二)植被冠层光谱特性及影响因素
❖ 2、植被冠层影响因素-植被结构
各参数的描述,如:
同一叶子的不同部位,其倾角和方位角可能有很大 差异,测量时,根据叶片弯曲程度将叶片分成几部 分,对每一部分进行测量。
一个冠层内叶倾角的分布模式可以从0 ° (水平叶 )到90 ° (垂直叶),一般用间隔为10°作出的叶 倾角分布频率图来表示。
植被遥感研究的主要内容:
• (1)通过遥感影像从土壤背景中区分出植被覆盖 区域,并对植被类型进行划分,区分是森林还是 草场或者农田,进而可以问是什么类型的森林, 什么类型的草场,什么样的农作物,如此等等。
• (2)能否从遥感数据中反演出植被的各种重要参 数,例如叶面积指数(LAI)、叶子宽度、平均叶 倾角、植被层平均高度、树冠形状等等,这一类 问题属于更深层次的遥感数据定量分析方法与反 演技术。

叶面积指数提取模型的研究与应用

叶面积指数提取模型的研究与应用

叶面积指数提取模型的研究与应用第一章绪论叶面积指数(Leaf Area Index,简称LAI)是指某一地区上方植物叶片投影面积与该地区地面面积之比。

它是评价植被生物量和能量交换的重要参数之一,广泛应用于气候变化、生态环境监测、农作物生长等领域。

然而,LAI的测量需要大量时间和人力,并且极易受到人为因素的影响,因此研发LAI提取模型技术成为一种重要的研究方向。

本文旨在探讨当前LAI提取模型的研究现状,以及其在应用中的价值和问题。

第二章 Lai提取模型2.1 经验模型经验模型是通过对植被野外观测数据进行处理和分析,获得反映LAI变化规律的数学公式。

常见的经验模型包括指数模型、抛物线模型、对数模型等。

例如,指数模型的公式为:LAI = a * exp(-b * NDVI)其中,a和b为常数,NDVI为归一化植被指数。

经验模型简单易行,适用于小面积的LAI估算,但具有局限性,对于大面积植被的LAI提取精度较低。

2.2 物理模型物理模型是基于植被的光学和辐射学理论和计算方法,通过计算植被与光的相互作用,建立模型,计算LAI估算值。

与经验模型相比,物理模型计算精度较高,但需要测量的参数多,难以实现。

常见的物理模型有植被径向分布函数模型、辐射传输模型等。

2.3 统计学和机器学习方法统计学和机器学习方法是将LAI与遥感数据建立关系模型,利用统计学和机器学习算法来进行求解。

常用的统计学模型有回归模型等,常用的机器学习算法有决策树、支持向量机、神经网络等。

此类模型的优点是准确性高、稳定性好,但需要大量的已知数据进行训练,且对数据的质量和处理要求较高。

第三章 LAI提取模型的应用LAI提取模型可以应用于许多领域:3.1 生态环境监测LAI是评价生态系统健康状况和卫星遥感监测的重要指标之一。

通过LAI提取模型可以快速准确地了解LAI的变化情况,监测土地覆盖变化、绿化程度等,对环境保护和资源管理具有重要作用。

3.2 气候变化研究LAI可以反映植被覆盖面积和密度的变化,对反映区域生长让步变化、干旱监测等气候变化相关研究具有重要意义。

叶面积指数三类遥感估算方法

叶面积指数三类遥感估算方法

叶面积指数三类遥感估算方法叶面积指数(Leaf Area Index,LAI)是一个衡量植物叶片覆盖程度的重要指标,可通过遥感技术进行估算。

下面是关于叶面积指数估算方法的十条描述:1. 植被指数法:植被指数法是通过计算可见光或近红外波段的植被指数(如归一化植被指数,NDVI)并与地面测量的LAI进行回归分析来估算LAI。

这种方法使用简便,但由于植被指数与LAI之间的关系复杂,估算结果的精度有限。

2. 基于VegeSAIL模型的方法:VegeSAIL模型是一种基于光谱的LAI估算模型,它将植被覆盖度和植被构型与LAI进行建模。

通过遥感数据和该模型对比分析,可以估算出植被的LAI。

3. 基于PROSAIL模型的方法:PROSAIL模型是一种基于物理过程的植被辐射传输模型,可以模拟不同植被类型和结构的辐射反射特性。

通过将遥感数据与该模型相结合,可以估算出植被的LAI。

4. 基于NERD模型的方法:NERD模型是一种基于点源和线源的辐射传输模型,可以模拟植被的光谱反射特性。

通过将遥感数据与该模型相结合,可以估算出植被的LAI。

5. 基于深度学习的方法:深度学习是一种利用神经网络模拟大脑处理信息的方法。

通过训练神经网络模型,可以利用遥感数据估算出植被的LAI。

6. 基于回归分析的方法:这种方法通过建立遥感数据与地面测量LAI之间的回归关系,利用回归模型对LAI进行估算。

回归分析方法适用于区域尺度的估算,但可能受到数据不一致性和空间变异性的限制。

7. 基于的时序遥感的方法:时序遥感数据包含不同时期植被的遥感信息,可以通过比较不同时期的遥感数据,推断植被的LAI变化。

这种方法可以监测植被的动态变化,但需要较长的时间序列数据。

8. 基于植被指标的方法:这种方法通过使用特定的植被指标(如NDVI和EVI)与LAI 之间的经验关系,对植被的LAI进行估算。

这种方法简单易用,但精度较低。

9. 基于遥感图像分割的方法:这种方法通过将遥感图像分割为不同的植被对象,然后分别估算每个植被对象的LAI。

植被指数模型详解

植被指数模型详解

ENVI下植被指数模型详解植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。

所有的植被指数要求从高精度的多光谱或者高光谱反射率数据中计算。

未经过大气校正的辐射亮度或者无量纲的DN值数据不适合计算植被指数。

目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。

在ENVI中,根据对植被波谱特征产生重要影响的主要化学成份:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),总结了7大类实用性较强的植被指数,即:宽带绿度、窄带绿度、光利用率、冠层氮、干旱或碳衰减、叶色素、冠层水分含量。

这些植被指数可以简单度量绿色植被的数量和生长状况、叶绿素含量、叶子表面冠层、叶聚丛、冠层结构、植被在光合作用中对入射光的利用效率、测量植被冠层中氮的相对含量、估算纤维素和木质素干燥状态的碳含量、度量植被中与胁迫性相关的色素、植被冠层中水分含量等。

下面是7大类27种植被指数的说明,这些植被指数都是经过严格生物条件下测试的。

1宽带绿度——BroadbandGreenness(5种)宽带绿度指数可以简单度量绿色植被的数量和生长状况,它对植物的叶绿素含量、叶子表面冠层、冠层结构比较敏感,这些都是植被光合作用的主要物质,与光合有效辐射(fAPAR)也有关系。

宽带绿度指数常用于植被物候发育的研究,土地利用和气候影响评估,植被生产力建模等。

宽带绿度指数选择的波段范围在可见光和近红外,一般的多光谱都包含这些波段。

下面的公式中规定波段的中心波长:ρNIR=800nm,ρRED=680nm,ρBLUE=450nm。

1)归一化植被指数(NormalizedDifferenceVegetationIndex——NDVI)NDVI众所周知的一种植被指数,在LAI值很高,即植被茂密时其灵敏度会降低。

其计算公式为:NDVI=(式1)值的范围是-1~1,一般绿色植被区的范围是0.2~0.8。

植被遥感指数公式及简介PPT课件

植被遥感指数公式及简介PPT课件

.
14
PVI的显著特点是较好地滤除了土壤背景的影响,且 对大气效应的敏感程度也小于其它植被指数。正因为它减 弱和消除了大气、土壤的干扰,所以被广泛应用于作物估 产。
从理论上讲,GVI、PVI均不受土壤背景的影响,对植 被具有适中的灵敏度,利于提取各种土壤背景下生长的植 被专题信息。其数值已扩展到TM的6维数据(除TM6热红外 数据),以及AVHRR的可见光——近红外数据,并有现成 的模型和成熟的图象处理算法.
因此,植被、土壤信息主要集中在由TC1、TC2组
成的二维图形中。
.
11
而对于TM而言,可见光—红外6个波段数据 经缨帽变换的前三个分量主要反映土壤亮度、绿 度、湿度特征,第四分量主要为噪声。其中绿度 指数可表示为:
GVI=-0.2848TM1-0.2435TM2-0.5436TM3 +0.7243TM4 +0.084TM5-0.1800TM7
化较为敏感。 实验表明,作物生长初期NDVI将过高估计植
被覆盖度,而在作物生长的结束季节,NDVI值偏 低。因此,NDVI更适用于植被发育中期或中等覆 盖度的植被检测。
.
6
差值植被指数 (Difference Vegetation Index)
差值植被指数(DVI)又称环境植被指数(EVI), 被定义为近红外波段与可见光红波段数值之差。
比值植被指数可表达为: RVI=DNNIR/ DNR 或 RVI=NIR/R
(简单表示为NIR/R)
.
3
RVI是绿色植物的一个灵敏的指示参数。研究表明, 它与叶面积指数(LAI)、叶干生物量(DM)、叶绿素 含量相关性高,被广泛用于估算和监测绿色植物生物 量。在植被高密度覆盖情况下,它对植被十分敏感, 与生物量的相关性最好。但当植被覆盖度小于50%时, 它的分辨能力显著下降。

遥感应用模型5-植被(2)-叶面积指数估算模型

遥感应用模型5-植被(2)-叶面积指数估算模型

由于缺乏卫星过境时详细的大气剖面资料(如气 溶胶和水汽含量等),因此6S模型等大气校正模 型的应用将会受到限制。
利用暗目标法对遥感影像进行大气校正,以获得 地面反射率数据。
地面叶面积指数测量方法
考察路线与采样点的选取应遵循如下原则:一是 植物分布的代表性、均匀性;二是遥感图像可读 性;三是交通可行性。
因此,探讨利用遥感影像估算植被的叶面积指数的 方法已成为当前建立全球及区域气候、生态模型的 基础工作之一。
通常检验遥感反演叶面积指数的精度常常通过地 面实地测量的方式。
地面测量叶面积指数的方法有很多种,大致分为 两类—直接测量法和间接测量法。
➢直接测量法包括系数法和比叶重法等。在叶子 的采集和叶面积的测量过程中,具有一定的破 坏性。
➢光学模型法,基于植被的双向反射率分布函数 ,是一种建立在辐射传输模型基础上的模型, 它把LAI作为输入变量,采用迭代的方法来推算 LAI。
统计模型法输入参数单一,不需要复杂的计算, 因此成为遥感估算LAI的常用方法。但不同植被类 型的LAI与植被指数的函数关系会有所差异,在使 用时需要重新调整、拟合。
第二章 植被遥感本章主来自内容 叶面积指数估算模型
叶面积指数估算模型
叶面积指数(LAI)是指单位地表面积上方植物叶 单面面积的总和,它是叶覆盖的无量纲度量。
叶面积指数作为进行植物群体和群落生长分析的重 要参数和评价指标,在农业、林业及生态学等领域 得到了广泛的应用。
依靠传统的地面样方实测的方法来估算叶面积指数 又是一项花费巨大人力、财力且精度不高的工作。
光学模型法的优点是有物理模型基础,不受植被 类型的影响,然而由于模型过于复杂,反演非常 耗时,且反演估算LAI过程中有些函数并不总是收 敛的。

植被指数的计算方法与遥感图像处理步骤

植被指数的计算方法与遥感图像处理步骤

植被指数的计算方法与遥感图像处理步骤植被指数是研究地表植被覆盖状况的重要指标,可以通过遥感技术获取高空间分辨率的植被信息。

植被指数的计算方法与遥感图像处理步骤是确定植被指数数值的关键环节。

一、什么是植被指数?植被指数是通过遥感技术获取的图像数据来计算植被覆盖状况的指标。

常见的植被指数有归一化植被指数(Normalized Difference Vegetation Index, NDVI)、植被指数(Vegetation Index, VI)等。

这些指标利用遥感图像中红、近红外波段的反射光谱信息来反映植被生长情况,指数数值越高,代表植被覆盖程度越高。

二、植被指数的计算方法1. 归一化植被指数(NDVI)NDVI是最常用的植被指数之一,计算公式为(NIR-RED)/(NIR+RED),其中NIR是近红外波段的反射值,RED是红波段的反射值。

NDVI范围在-1到1之间,数值越接近1代表植被覆盖越高,数值越接近-1代表植被覆盖越低,数值接近0则代表无植被。

2. 植被指数(VI)植被指数是根据遥感图像中的红、蓝、绿波段的反射值计算得到的,常见的植被指数有绿光波段(Green)、蓝光波段(Blue)和红边波段(Red-edge)等。

植被指数的计算公式根据研究的需要而定,比如Normalized Green-Blue Vegetation Index(NGB)、Green-Blue Vegetation Index(GBVI)等。

三、遥感图像处理步骤1. 遥感图像获取遥感图像可以通过卫星、飞机等载体获取,一般包括多个波段的光谱信息。

从遥感图像中选取合适的波段进行植被指数的计算。

2. 数据预处理遥感图像预处理包括大气校正、几何纠正和辐射辐射校正等步骤,以消除由于大气、地表地貌等因素引起的图像噪声。

3. 波段选择根据研究需要和相关指数的计算公式选择合适的波段进行植被指数的计算。

常用的波段有红、近红外、绿、蓝等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因此,探讨利用遥感影像估算植被的叶面积指数的 方法已成为当前建立全球及区域气候、生态模型的 基础工作之一。
通常检验遥感反演叶面积指数的精度常常通过地 面实地测量的方式。
地面测量叶面积指数的方法有很多种,大致分为 两类—直接测量法和间接测量法。
直接测量法包括系数法和比叶重法等。在叶子 的采集和叶面积的测量过程中,具有一定的破 坏性。
一元线性
回归分析
曲线回归模型
利用先前已经做好的研究区遥感影像分类图作为 底图,把研究区分为草甸、沼泽、灌丛和岛状林 等4种湿地植被区;
然后利用各自的LAI估算模型来估算湿地植被LAI 的大小,最后得到整个研究区的湿地植被LAI空间 分布图。
将植被LAI遥感反演结果划分为6个等级:0-1、1-2 、2-3、3-4、4-5 和5-6
冬小麦叶面积指数地面测量方法的比较. 农业工程 学报,2011,27(3):220-224
三江平原湿地植被叶面积指数遥感估算模型.生态 学杂志,2008,28(7):803-808
比叶重法
比叶重法是利用单位叶面积与叶子干重的比值来 获取叶面积指数的一种方法。
选定有代表性的地块,取一定面积(A)的植物样 品于取样袋中,测定前记录取样面积上的总株 数m;
从所取样品中选5株,摘下所有展开绿色叶片, 选取叶片中宽窄较为一致的地方,剪2或3cm长 度的小段,计算面积(S),然后烘干称质量w1, 然后对剩余绿叶全部烘干后称质量w2,其计算 式如下
实际数据获取
首先用长直尺测量进入相机镜头边界的土地区域 面积D;
然后数清区域内的株数N;在拍摄区域内随机抽取 5 株小麦样本,分别测量单株叶数m及每片叶的长 L、宽W,则有单叶叶面积(校正系数K为0.83)。
实际叶面积指数
直方图信息
图像分割
最大类间方差法算法简单、处理速度快,但是小的 目标区域被滤掉,噪声干扰明显;
比叶重法原理简单、较为精确,常被用作林业上 森林树种或农业上作物的比较测定。
但其过程复杂,制作标叶、烘干、称质量操作步 骤多,耗时较长,结果又受到叶片厚度不均匀的 影响,且采样具有破坏性,不能重复测量。
照相法
照相法是基于数字图像处理技术,计算数字相片 上绿叶与已知实际面积(S)的参考物的像素之比(P) 来求绿叶部分所占的面积;
将研究区分为草甸、沼泽、灌丛和岛状林4种湿地 植被类型,NDVI与各植被型LAI的相关性和估算效 果均有很大程度的提高,所建立的LAI遥感反演模 型以三次曲线回归方程拟合精度最高,R2分别达 到0.723%、0.588%、0.837%、0.72%。
以上结果表明,结合地面实测数据并基于遥感植 被分类的基础上, CBERS-02遥感影像可用于较大 区域内湿地植被生理参数的反演研究。
由于缺乏卫星过境时详细的大气剖面资料(如气 溶胶和水汽含量等),因此6S模型等大气校正模 型的应用将会受到限制。
利用暗目标法对遥感影像进行大气校正,以获得 地面反射率数据。
地面叶面积指数测量方法
考察路线与采样点的选取应遵循如下原则:一是 植物分布的代表性、均匀性;二是遥感图像可读 性;三是交通可行性。
光学模型法,基于植被的双向反射率分布函数 ,是一种建立在辐射传输模型基础上的模型, 它把LAI作为输入变量,采用迭代的方法来推算 LAI。
统计模型法输入参数单一,不需要复杂的计算, 因此成为遥感估算LAI的常用方法。但不同植被类 型的LAI与植被指数的函数关系会有所差异,在使 用时需要重新调整、拟合。
第二章 植被遥感
本章主要内容
叶面积指数估算模型
叶面积指数估算模型
叶面积指数(LAI)是指单位地表面积上方植物叶 单面面积的总和,它是叶覆盖的无量纲度量。
叶面积指数作为进行植物群体和群落生长分析的重 要参数和评价指标,在农业、林业及生态学等领域 得到了广泛的应用。
依靠传统的地面样方实测的方法来估算叶面积指数 又是一项花费巨大人力、财力且精度不高的工作。
洪河保护区影像数据由中国资源卫星应用中心提供 ,轨道号为359/46,时相为2007年8月29日;
数据级别为二级,做过辐射校正和几何粗校正处理 ,未做几何精校正,所以要对卫星影像进行消除噪 声、几何精校正、多波段影像合成及裁剪等处理。
考虑到湿地地区的地面控制点较难确定,利用了已 纠正过的一景TM影像数据(2004)和1976年调绘 的1:100000的地形图,结合GPS 野外采样的部分 数据,采用二次多项式法对中巴影像进行几何精纠 正,纠正误差控制在2/3个像元。
研究区为位于我国 东北地区三江平原 东北部的洪河国家 级自然保护区
为了有效地进行保 护管理和可持续发 展,根据区内自然 资源的分布现状, 将保护区划分为核 心区、缓冲区和实 验区
CBERS-02的多光谱数据包括蓝、绿、红3个可见光波 段,1个近红外波段和1个全色波段,5个波段星下 点空间分辨率均为19.5m。
再根据植株的生长密度,进而求得叶面积指数。
A为取样面积;S为参考物的实际面积;P为相片上 绿叶与参考物的像素之比;m为取样面积上的总 株数;n为照片中所拍摄到的植株数。
基于图像处理技术的小麦叶面积指数的提取
针对不同的小麦品种设置了不同密度的栽培条件 ,通过数码相机获取不同发育期内自然生长的小 麦群体冠层数字图像。
最小误差法受目标大小影响小但阈值选择困难,噪 声干扰较大,提取目标精度低;
最小偏态法处理速度快但产生过量噪声干扰,分割 精度低;
改进动态阈值法精度高、噪声干扰小、处理速度快 ,虽然存在较小的噪声点但不会使叶面积的计算产 较大的误差。
利用计算机图像处理技术分别统计出图像总像素 数Msoil、参照物像素数Mrefer 和绿色叶片像素数 Mleaf,从而可知它们的像素数比,也即面积比。
利用计算机图像处理技术对图像进行分析计算从 而得到叶面积指数。
然后利用实测数据与图像分析得到的数据建立数 学模型。
这种方法克服了以往选用单一品种、单一种植条 件样本的局限性,确保了建立的小麦叶面指数估 测模型全面、准确。
数字图像获取
试验在东北农业大学小麦试验田内进行,选择龙辐 麦16号、06-4074、06-4059、06-4075、06-4108 5 个 小麦品种,种植密度为每公顷600 万株、700 万株、 800 万株、900 万株、1000万株5 个级别。
选择在小麦的主叶、分蘖、拔节、孕穗等关键生长 期,于晴天光照强度适中的上午6:00-8:00间采集图 像。
拍摄前人工去除杂草。选择群体长势均匀的地点, 采用5 cm×5 cm 的白色纸板作为参照标准置于小麦 冠层同一平面,采用SONY DSC-F707 数码相机(设置 为640 像素×480 像素)垂直于小麦群体冠层进行拍 摄。
光学模型法的优点是有物理模型基础,不受植被 类型的影响,然而由于模型过于复杂,反演非常 耗时,且反演估算LAI过程中有些函数并不总是收 敛的。
三江平原湿地植被叶面积指数遥感估算模型
利用中巴资源卫星CBERS-02影像提取的归一化植 被指数(NDVI)和同期野外实测的叶面积指数( LAI)数据;
间接测量法包括基于数字图像处理技术的照相 法,基于光学仪器进行LAI测量的仪器测量法, 利用光谱或植被指数与LAI的统计回归关系的模 型法等。
每种方法都有其自身特点所决定的测量误差,有 其所适宜采用的天气、植被生育期等条件。
不同的测量方法,得到的LAI有所差异,在对LAI精 度敏感的研究中,需要对地面测量方法的误差进 行分析。
分析三江平原洪河自然保护区草甸、沼泽植被、 灌丛和岛状林4种湿地植被及样本总体的NDVI与 LAI之间的相关关系;
建立了NDVI与不同湿地植被类型叶面积指数间的 线性和非线性回归模型,并制作完成洪河自然保 护区LAI空间分布图。
整个研究区样本总体的LAI估算效果不太理想,其 NDVI与LAI 的相关性仅为0.532%;
保护区内除了湿地植被类型外,还有一个特殊的 人工植被类型—耕地,对耕地以及无植被覆盖的 水面进行掩膜处理。
参考文献
叶面积指数的研究和应用进展.生态学杂志,2005 ,24(5):537-541
基于图像处理技术的小麦叶面积指数的提取. 农业 工程学报,2010,26(1):205-209
实测 数据用LAI-2000冠层分析仪获得,鉴于保护 区内各植被型的立地条件和生长环境都有所不同 ,涉及的LAI 测量对象包括沼泽、草甸、灌丛和岛 状林等4种植被型,
相关性分析
进行LAI与湿地植被NDVI 间的相关性分析,主要目 的是检验二者之间关系的密切程度,以及是否可 根据所测样点资料来推断总体情况,而相关系数 则是反映这种紧密程度的指标。
参照物的面积已知为25cm2,既可求出叶片面积和
土壤面积,两者的比值即为图像叶面积指数 LAIimage,导出计算公式为
建立叶面积指数模型
卫星遥感法
卫星遥感方法为大范围研究LAI提供了有效的途径 ,目前主要有两种遥感方法可用来估算叶面积指 数:
统计模型法,主要是将遥感图像数据如归一化 植被指数NDVI、比植被指数RVI和垂直植被指数 PVI与实测LAI建立模型。
相关文档
最新文档