比例线段.1比例线段

合集下载

比例线段的相关概念

比例线段的相关概念

比例线段的相关概念及性质
1. 线段的比:两条线段的比是两条线段的长度之比.
2. 比例中项:如果b a =c b ,即b 2= ac ,我们就把b 叫做a ,c 的比例中项.
3. 比例的基本性质
性质1: b a =d
c ⇔ a
d =bc (abcd ≠0) 性质2: 如果
b a =d
c ,那么b b a ±=
d d c ± 性质3:如果b a =d c =...=
n
m (b +d +...+n ≠0) 那么n d b m c a ++++++......= b a 4.黄金分割:在线段 AB 上,点 C 把线段AB 分成两条线段AC 和BC ( AC >BC ),如果是 AB
AC AC BC =,那么称线段 AB 被点 C 黄金分割,点 C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比,黄金比为 2
15- ,一条线段有 两 个黄金分割点. 5.平行线之间的比例线段:
一般地,我们有以下基本事实:两条直线被一组平行线(不少于3条)所截,所得的对应线段成比例。

例如:如图所示,AB/A´B´=BC/B´C´,AB/AC=A´B´/A´C´等等。

A B C A’ B’ C’。

比例线段及有关定理

比例线段及有关定理

射影定理
总结词
射影定理是指在直角三角形中,斜边的平方等于两直角边的平方和减去两直角边的乘积。
详细描述
射影定理是几何学中的一个重要定理,它描述了直角三角形中斜边与两直角边之间的关系。具体来说 ,在直角三角形中,斜边的平方等于两直角边的平方和减去两直角边的乘积。这个定理在解决实际问 题中具有广泛的应用,如测量、建筑等领域。
03
比例线段的计算方法
利用平行线分线段成比例定理计算平行线分线段成比例定理如果一组平行线被一组横截线所截,那么这些截线段之比是相等的。
应用
通过已知的比例线段,利用平行线分线段成比例定理,可以计算出其他相关的 比例线段长度。
利用相似三角形的性质和判定定理计算
相似三角形的性质
两个三角形对应角相等, 则这两个三角形相似。相 似三角形对应边之比为相 似比。
成比例的线段具有传递性,即如果a:b:c:d且b:c:d:e,则必有 a:b:c:e。
比例线段的性质
01
02
03
比例线段的性质
如果线段a、b、c、d成比 例,那么它们的长度之比 是常数,即|a/b|=|c/d|。
比例线段的性质
如果线段a、b、c、d成比 例,那么它们的面积之比 是常数的平方,即 |a×d/b×c|=1。
判定定理
如果两个三角形两组对应 角相等,则这两个三角形 相似。
应用
通过已知的比例线段,利 用相似三角形的性质和判 定定理,可以计算出其他 相关的比例线段长度。
利用射影定理计算
射影定理
在直角三角形中,斜边上的高将直角三角形分为两个小三角形,这两个小三角形 是相似的,且它们的边长之比等于原三角形的边长之比。
利用面积关系计算线段长度
通过已知的线段和面积比例关系,可以计算出未知线段的长度。

第28讲 图形的相似与位似(解析版)

第28讲 图形的相似与位似(解析版)

第28讲图形的相似与位似1.比例线段(1)比例线段:已知四条线段a,b,c,d,若ab=cd或a∶b=c∶d,那么a,b,c,d叫做成比例线段,a,d叫做比例外,b,c叫做比例内项;若有ab=bc,则b叫做a,c的比例中项.(2)比例的基本性质及定理①ab=cd⇒ad=bc;②ab=cd⇒a±bb=c±dd;③ab=cd=…=mn(b+d+…+n≠0)⇒a+c+…+mb+d+…+n=ab.4.相似三角形的性质及判定(1)相似三角形的性质相似三角形的对应角相等,对应边成比例,对应高、对应中线、对应角平分线的比都等于相似比,周长比等于相似比,面积比等于相似比的平方.(2)相似三角形的判定①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截得的三角形与原三角形相似;②两角对应相等,两三角形相似;③两边对应成比例且夹角相等,两三角形相似;④三边对应成比例,两三角形相似;⑤两个直角三角形的斜边和一条直角边对应成比例,两直角三角形相似;⑥直角三角形中被斜边上的高分成的两个三角形都与原三角形相似.5.射影定理如图,△ABC中,∠ACB=90°,CD是斜边AB上的高,则有下列结论.(1)AC2=AD·AB;(2)BC2=BD·AB;(3)CD2=AD·BD;(4)AC2∶BC2=AD∶BD;(5)AB·CD=AC·BC.6.相似三角形的实际应用(1)运用三角形相似的判定条件和性质解决实际问题的方法步骤: ①将实际问题所求线段长放在三角形中; ②根据已知条件找出一对可能相似的三角形; ③证明所找两三角形相似;④根据相似三角形的性质,表示出相应的量;并求解.(2)运用相似三角形的有关概念和性质解决现实生活中的实际问题.如利用光的反射定律求物体的高度,利用影子计算建筑物的高度.同一时刻,物高与影长成正比,即身高影长=建筑物的高度建筑物的影长.7.相似多边形的性质(1)相似多边形对应角相等,对应边成比例.(2)相似多边形周长之比等于相似比,面积之比等于相似比的平方. 8.图形的位似(1)概念:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,这样的图形叫做位似图形.这个点叫做位似中心.(2)性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.(3)在平面直角坐标系中,如果位似变换是以原点为中心,相似比为k ,那么位似图形对应点的坐标比等于k 或-k.(4)利用位似变换将一个图形放大或缩小,其步骤为:①确定位似中心;②确定原图形中各顶点关于位似中心的对应点;③依次连接各对应点描出新图形考点1: 相似三角形的性质【例题1】(2019湖南常德3分)如图,在等腰三角形△ABC 中,AB =AC ,图中所有三角形均相似,其中最小的三角形面积为1,△ABC 的面积为42,则四边形DBCE 的面积是( )A.20 B.22 C.24 D.26【答案】D利用△AFH∽△ADE得到,所以S△AFH=9x,S△ADE=16x,则16x﹣9x=7,解得x=1,从而得到S△ADE=16,然后计算两个三角形的面积差得到四边形DBCE的面积.【解答】解:如图,根据题意得△AFH∽△ADE,设S△AFH=9x,则S△ADE=16x,∴16x﹣9x=7,解得x=1,∴S△ADE=16,∴四边形DBCE的面积=42﹣16=26.故选:D.归纳:1.在三角形问题中计算线段的长度时,若题中已知两角对应相等或给出的边之间存在比例关系,则考虑证明三角形相似,通过相似三角形对应边成比例列关于所求边的比例式求解.2.判定三角形相似的五种基本思路:(1)若已知平行线,可采用相似三角形的基本定理;(2)若已知一对等角,可再找一对等角或再找该角的两边对应成比例;(3)若已知两边对应成比例,可找夹角相等;(4)若已知一对直角,可考虑再找一对等角或证明斜边、直角边对应成比例;(5)若已知等腰三角形,可找顶角相等,或找一对底角相等,或找底和腰对应成比例.考点2:相似三角形的判定【例题2】在正方形ABCD中,AB=4,点P,Q分别在直线CB与射线DC上(点P不与点C,点B重合),且保持∠APQ=90°,CQ=1,求线段BP的长.解:分三种情况:设BP=x.①当P在线段BC上时,如图1,∵四边形ABCD是正方形,∴∠B=∠C=90°.∴∠BAP+∠APB=90°.∵∠APQ=90°,∴∠APB+∠CPQ=90°.∴∠BAP=∠CPQ,∴△ABP∽△PCQ.∴ABBP=PCCQ,∴4x=4-x1,∴x1=x2=2.∴BP=2;②当P在CB的延长线上时,如图2,同理,得BP=22-2;③当P在BC的延长线上时,如图3,同理,得BP=2+2 2. 归纳:基本图形(1)斜边高图形有以下基本结论:①∠BAD=∠C,∠B=∠DAC;②△ADB∽△CDA∽△CAB.(2)一线三等角有以下基本结论:①∠B=∠C,∠BDE=∠DFC;②△BDE∽△CFD.特殊地:若点D为BC中点,则有△BDE∽△CFD∽△DFE.考点3:相似三角形的综合应用【例题3】(2017·河北模拟)修建某高速公路,需要通过一座山,指挥部决定从E,D两点开挖一个涵洞.工程师从地面选取三个点A,B,C,且A,B,D三点在一条直线上,A,C,E也在同一条直线上,若已知AB=27米,AD=500米,AC=15米,AE=900米,且测得BC=22.5米.(1)求DE的长;(2)现有甲、乙两个工程队都具备打通能力,且质量相当,指挥部派出相关人员分别到这两个工程队了解情况,获得如下信息:信息一:甲工程队打通这个涵洞比乙工程队打通这个涵洞多用25天;信息二:乙工程队每天开挖的米数是甲工程队每天开挖的米数的1.5倍;信息三:甲工程队每天需要收费3 500元,乙工程队每天需要收费4 000元.若仅从费用角度考虑问题,试判断选用甲、乙哪个工程队比较合算.【解析】:(1)连接DE.∵AB=27米,AD=500米,AC=15米,AE=900米,∴ABAE=ACAD=3100.又∵∠A=∠A,∴△ABC∽△AED.∴BCDE=22.5DE=3100,即DE=750米.(2)设甲工程队每天开挖涵洞x 米,则乙工程队每天开挖涵洞1.5x 米,依据题意,得 750x -7501.5x =25,解得x =10. 经检验,x =10是原方程的解. 则1.5x =15.∴甲工程队打通这个涵洞的时间为75010=75(天),甲工程队打通这个涵洞所需的费用为 75×3 500=262 500(元); 乙工程队打通这个涵洞的时间为 7501.5x =75015=50(天), 乙工程队打通这个涵洞所需的费用为 50×4 000=200 000. ∵200 000<262 500, ∴选用乙工程队较合算.一、选择题:1. (2018•玉林)两三角形的相似比是2:3,则其面积之比是( ) A .:B .2:3C .4:9D .8:27【答案】C【解答】解:∵两三角形的相似比是2:3, ∴其面积之比是4:9, 故选:C .2. (2018•临沂)如图.利用标杆BE 测量建筑物的高度.已知标杆BE 高1.2m ,测得AB=1.6m .BC=12.4m .则建筑物CD 的高是( )A .9.3mB .10.5mC .12.4mD .14m【答案】B【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴=,即=,∴CD=10.5(米).故选:B.3. (2019,四川巴中,4分)如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG=()A.2:3 B.3:2 C.9:4 D.4:9【答案】D【解答】解:设DE=x,∵DE:AD=1:3,∴AD=3x,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=3x,∵点F是BC的中点,∴CF=BC=x,∵AD∥BC,∴△DEG∽△CFG,∴=()2=()2=,故选:D.4. (2019▪贵州毕节▪3分)如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF 后,剩余部分的面积为()A.100cm2B.150cm2C.170cm2D.200cm2【答案】A【解答】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∴△AEF∽△ABC,∴EFBC=AFAC=13,∴BC=6x,在Rt△ABC中,AB2=AC2+BC2,即302=(3x)2+(6x)2,解得,x=25,∴AC=65,BC=125,∴剩余部分的面积=×125×65﹣45×45=100(cm2),故选:A.5. (2018•泸州)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.【答案】C【解答】解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是解析式,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,故选:C.二、填空题:6.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B (1,0),则点C的坐标为.【答案】(1,-1)【解答】:连接BC,∵△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,且B(1,0),即OB=1,∴OD=2,即B为OD中点,∵OC=DC,∴CB⊥OD,在Rt△OCD中,CB为斜边上的中线,∴CB=OB=BD=1,则C坐标为(1,-1),故答案为:(1,-1)7. (2019•山东省滨州市•5分)在平面直角坐标系中,△ABO三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0).以原点O为位似中心,把这个三角形缩小为原来的,得到△CDO,则点A的对应点C的坐标是(﹣1,2)或(1,﹣2).【答案】(﹣1,2)或(1,﹣2)【解答】解:以原点O为位似中心,把这个三角形缩小为原来的,点A的坐标为(﹣2,4),∴点C的坐标为(﹣2×,4×)或(2×,﹣4×),即(﹣1,2)或(1,﹣2),故答案为:(﹣1,2)或(1,﹣2).8. (2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,则AE的长为.【答案】4【解答】解:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,∵AB∥CD,∴∠D=∠ABD,∴∠D=∠CBD,∴BC=CD,∵BC=4,∴CD=4,∵AB∥CD,∴△ABE∽△CDE,∴=,∴=,∴AE=2CE,∵AC=6=AE+CE,∴AE=4.9. (2018•遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD 为直径的圆交AC于点E.若DE=3,则AD的长为.【答案】2,【解答】解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,则AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,三、解答题:10. (2018·江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.【解析】:∵BD为∠ABC的平分线,∴∠ABD=∠CBD.∵AB∥CD,∴∠D=∠ABD.∴∠D=∠CBD.∴BC=CD.∵BC=4,∴CD=4.∵AB∥CD,∴△ABE∽△CDE.∴ABCD=AECE.∴84=AECE.∴AE=2CE.∵AC=AE+CE=6,∴AE=4.11. (2019湖北荆门)(10分)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.【分析】设E关于O的对称点为M,由光的反射定律知,延长GC、FA相交于点M,连接GF并延长交OE于点H,根据GF∥AC得到△MAC∽△MFG,利用相似三角形的对应边的比相等列式计算即可.【解答】解:设E关于O的对称点为M,由光的反射定律知,延长GC、FA相交于点M,连接GF并延长交OE于点H,∵GF∥AC,∴△MAC∽△MFG,∴,,即:,∴,∴OE=32,答:楼的高度OE为32米.12. (2018·福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.【解析】:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10.∴∠ABD=45°.∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF.∴∠BDF=∠ABD=45°.(2)由平移的性质,得AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°. ∵∠DAB=90°,∴∠ADE=90°.∵∠ACB=90°,∴∠ADE=∠ACB.∴△ADE∽△ACB.∴ADAC=AEAB.∵AC=8,AB=AD=10,∴AE=12.5,由平移的性质,得CG=AE=12.5.13.△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.(1)如图1,当射线DN经过点A时,DM交边AC于点E,不添加辅助线,写出图中所有与△ADE相似的三角形;(2)如图2,将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于点E,F(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论;(3)在图2中,若AB=AC=10,BC=12,当S△DEF=14S△ABC时,求线段EF的长.【点拨】(1)由题意得AD⊥BD,DE⊥AC,可考虑从两角对应相等的两个三角形相似来探究;(2)依据三角形内角和定理及平角定义,结合等式的性质,得∠BFD=∠CDE,又由∠B=∠C,可得△BDF∽△CED;由相似三角形的性质得BDCE=DFED,进而有CDCE=DFED,从而△CED∽△DEF;(3)首先利用△DEF的面积等于△ABC 的面积的14,求出点D 到AB 的距离,进而利用S △DEF 的值求出EF 即可.【解答】解:(1)图1中与△ADE 相似的有△ABD ,△ACD ,△DCE. (2)△BDF ∽△CED ∽△DEF.证明:∵∠B +∠BDF +∠BFD =180°,∠EDF +∠BDF +∠CDE =180°, 又∵∠EDF =∠B ,∴∠BFD =∠CDE.由AB =AC ,得∠B =∠C ,∴△BDF ∽△CED.∴BD CE =DF ED .∵BD =CD ,∴CD CE =DFED.又∵∠C =∠EDF ,∴△BDF ∽△CED ∽△DEF.(3)连接AD ,过点D 作DG ⊥EF ,DH ⊥BF ,垂足分别为G ,H.∵AB =AC ,D 是BC 的中点,∴AD ⊥BC ,BD =12BC =6.在Rt △ABD 中,AD 2=AB 2-BD 2,∴AD =8. ∴S △ABC =12BC·AD =48.S △DEF =14S △ABC =12.又∵12AD·BD =12AB·DH ,∴DH =4.8.∵△BDF ∽△DEF ,∴∠DFB =∠EFD. ∵DG ⊥EF ,DH ⊥BF ,∴DH =DG =4.8. ∵S △DEF =12EF·DG =12,∴EF =5.14. (2019•湖南常德•10分)在等腰三角形△ABC 中,AB =AC ,作CM ⊥AB 交AB 于点M ,BN ⊥AC 交AC 于点N .(1)在图1中,求证:△BMC ≌△CNB ;(2)在图2中的线段CB 上取一动点P ,过P 作PE ∥AB 交CM 于点E ,作PF ∥AC 交BN 于点F ,求证:PE+PF =BM ;(3)在图3中动点P 在线段CB 的延长线上,类似(2)过P 作PE ∥AB 交CM 的延长线于点E ,作PF ∥AC 交NB 的延长线于点F ,求证:AM•PF+OM•BN =AM•PE .【分析】(1)根据等腰三角形的性质得到∠ABC=∠ACB,利用AAS定理证明;(2)根据全等三角形的性质得到BM=NC,证明△CEP∽△CMB、△BFP∽△BNC,根据相似三角形的性质列出比例式,证明结论;(3)根据△BMC≌△CNB,得到MC=BN,证明△AMC∽△OMB,得到=,根据比例的性质证明即可.【解答】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵CM⊥AB,BN⊥AC,∴∠BMC=∠CNB=90°,在△BMC和△CNB中,,∴△BMC≌△CNB(AAS);(2)∵△BMC≌△CNB,∴BM=NC,∵PE∥AB,∴△CEP∽△CMB,∴,∵PF∥AC,∴△BFP∽△BNC,∴,∴,∴PE+PF=BM;(3)同(2)的方法得到,PE﹣PF=BM,∵△BMC≌△CNB,∴MC=BN,∵∠ANB=90°,∴∠MAC+∠ABN=90°,∵∠OMB=90°,∴∠MOB+∠ABN=90°,∴∠MAC=∠MOB,又∠AMC=∠OMB=90°,∴△AMC∽△OMB,∴∴AM•MB=OM•MC,∴AM×(PE﹣PF)=OM•BN,∴AM•PF+OM•BN=AM•PE.。

《比例线段》课件

《比例线段》课件

在建筑设计中的应用
在建筑设计中,比例线段的应用同样 不可忽视。建筑师需要利用比例来协 调各个部分之间的关系,以创造和谐 、平衡的建筑外观。
例如,在建筑设计图中,建筑师会使 用比例尺来表示实际建筑与设计图纸 之间的比例关系,以确保施工过程中 的准确性。
在地图绘制中的应用
在地图绘制中,比例线段的应用至关重要。地图上的比例尺可以帮助我们了解地 图上的距离与实际距离之间的比例关系。
比例线段的等比性
总结词
比例线段的等比性是指两条线段的长度比值是常数,与线段所在的位置无关。
详细描述
如果两条线段AB和CD的长度比值是常数k,即$frac{AB}{CD} = k$,那么无论这 两条线段在平面上的位置如何变化,它们的长度比值始终保持为k。这个性质在 解决几何问题时非常有用。
比例线段的传递性
02 比例线段的性质
CHAPTER
比例线段的相似性
总结词
比例线段的相似性是指两条线段在长度上成比例,且夹角相 等。
详细描述
如果两条线段AB和CD在长度上成比例,即$frac{AB}{CD} = k$(k为常数),并且它们之间的夹角相等,那么这两条线段 被称为相似的。相似线段在几何学中具有很多重要的性质和 应用。
利用代数方法计算
总结词
利用代数方法,通过建立方程式来求解比例线段问题。
详细描述
代数方法是解决比例线段问题的另一种常用方法。通过建立方程式来表示比例线段的关 系,我们可以求解未知的线段长度。这种方法适用于解决一些涉及比例线段的代数问题

05 练习与思考
CHAPTER
基础练习题
基础题目1
已知线段a=10cm,b=5cm, c=2.5cm,d=5cm,判断线段a 、b、c、d是否成比例。

比例线段

比例线段
������
������ = ������������
������
即 ������
������
= ������������
������
类型二
2. 若点C为线段AB的黄金分割点,且AC>BC,则:①AB= 5-1 AC;
②AC= 3-
5 AB;
③AB∶AC=AC∶CB;
2
④AC≈0.618AB.
2
其中正确的有( D )
A.1个
B.2个
C.3个
D.4个
3. 已知-1,9,x,其中一个数是其他两个数的比例中项,求 x 的值.
7. 如图,在△ABC 中,∠ACB=90°,过点 C 作 CD∥AB, 且 BD⊥AB,连结 AD.
(1) 判断线段 AC,AB,BD,BC 是否成比例,并说明理由. (2) 若 AB=5,AC=3,求 BD 的长. (3) 若 AB=2AC,求△ACD 与△ABC 的面积比.
6.
已知
������−������������ = ������
������
������
,求
������ ������
的值.
解:������ − ������ = ������
������
������
������ ������
=
������������ ������
解:������������ − ������������������ = ������������
度单位(即统一长度单位).
2.四条线段成比例与它们的排列顺序有关.线段 a,b,c,d
成比例表示成a=c,而线段 bd
b,a,c,d
成比例则表示成ba=cd.

4.1比例线段1

4.1比例线段1
【变式】已知点(a,1),(a+2,a)在同一 个正比例函数的图象上,求:
(1)a的值; (2)这个正比例函数的解析式。
谢谢
bd f h b
成立吗?
若 a c m(其中 b d n 0 )
bd
n
ac
仍有
ma 吗?
bd n b
【例5】已知: bccaabk
ab c
,当 abc0时,求k的值。
若去掉限制条件呢?
课堂练习4
如果 a b ca b c a b c k
c
b
a
成立,那么k的值为( )
A.1
B.—2
例2 求比例式中x的值: x:(x+1)=(1-x):3
课堂练习1
1、《课堂冲浪》P.49——夯实基础:#2,#3 2、《课堂冲浪》P.49——夯实基础:#1,#4
3、《课堂冲浪》P.49——拓展提升:#1
【例3】已知 a c ,判断下列
bd
比例式是否成立,并说明理由。
(1 )abcd (2 )aac
4.1比例线段1
为什么翩翩起舞 的芭蕾舞演员要掂 起脚? 为什么身材 苗条的时装模特还 要穿高跟鞋?为什么 她们会给人感到和 谐、平衡、舒适、 美的感觉?
“黄金分割”
怎样利用相似三角形的有关知 识测量旗杆的高度?
4.1 比例线段(1)
——比例的基本性质
比? 比例? 成比例?
知识琏接1—— 什么叫比?
bd
b bd
课堂练习2
1、《课堂冲浪》P.49—— 例题,夯实 基础:#5,#6
2、《课堂冲浪》P.49——拓展提升: #2,3,4,中考琏接
课堂练习3
已知 a 3 。求下列算式的值 b2

比例线段知识点及练习题

第十八章 相似形——比例线段及相似知识点讲解【知识点讲解】一、比例线段1.线段的比:如果选用同一长度单位量得两条线段a ,b 的长度分别是m ,n ,那么就说这两条线段的比是a:b=m:n ,或写成nm b a = ,其中a 叫做比的前项;b 叫做比的后项。

2.成比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.3.比例的项:已知四条线段a,b,c,d,如果dc b a = ,那么a,b,c,d,叫做组成比例的项,线段a,d 叫做比例外项,线段b,c叫做比例内项,线段d还叫做a,b,c的第四比例项. 4.比例中项:如果作为比例线段的内项是两条相同的线段,即a:b=b:c 或c b b a =,那么线段b叫做线段a和c的比例中项.二、比例的性质:(1)比例的基本性质:bc ad d c b a =⇔= ac b cb b a =⇔=2 (2)反比性质: cd a b d c b a =⇔= (3)更比性质: 或 d b c a d c b a =⇒=或ac bd = (4)合比性质: d d c b b a d c b a ±=±⇒= (5)等比性质: n m fe d c b a ====...且 ba n f db m ec a n fd b =++++++++⇒≠++++......0...比例线段练习 1、判断下列四条线段是否成比例① a=2,b=5,c=15,d=23; ② a=2,b=3, c=2,d=3; ③ a=4,b=6, c=5,d=10;④ a=12,b=8, c=15,d=102、已知:ad=bc(1) 将其改写成比例式;(2) 写出所有以a ,d 为内项的比例式;(3) 写出使b 作为第四项比例项的比例式;(4)若db c a =;写出以c 作第四比例项的比例式; 3 、计算.(1)已知:x ∶y=5∶4,y ∶z=3∶7.求x ∶y ∶z.(2)已知:a ,b ,c 为三角形三边长,(a-c) ∶(c+b) ∶(c-b)=2∶7∶(-1),周长为24.求三边长.4 、在相同时刻的物高与影长成比例,如果一古塔在地面上影长为50m ,同时,高为1.5m 的测竿的影长为2.5m ,那么,古塔的高是多么米?5、EF BE CD AB =,AB=10cm ,AD=2cm ,BC=7.2cm ,E 为BC 中点.求EF ,BF 的长.6.(1)已知:x :(x+1)=(1—x):3,求x 。

比例线段(1)

4.1比例线段(1)一、教学目标:知识目标:1、理解比例的基本性质。

2、利用比例的基本性质进行一些简单的变形或求值。

能力目标:理解并初步掌握两种基本方法(或技能);一是利用比例的基本性质进行变形或求值;二是用“设比值”的方法进行变形或求值。

情感目标:通过探索、观察、归纳、运用,培养学生数学应用的能力,体会探索的乐趣。

二、教学重点或难点重点:比例的基本性质难点:例2根据条件判断一个比例式是否成立,不仅要运用比例的基本性质,还要运用等式的性质等,是本节的难点。

三、教学过程:【复习引入】-2与3 的比4与-6的比这两个比值相等吗?那我们就可以写成-2:3=4:-6。

-2,3,4,6这四个数就成比例。

【探究新知】想一想:比和比例有什么区别?假如四个实数a,b,c,d 成比例,通常可以表示成a:b=c:d 或dc b a = a,b,c,d 叫做组成比例的项,a,d 为外项,b,c 为内项。

做一做:1、分别计算下列比例式的两个内项的积与两个外项的积。

(1)46.023.0= (2)3162= 2、利用等式的性质,能从dc b a =推导出ad=bc 吗?反过来呢? 归纳:比例的基本性质:bc ad dc b a =⇔=(a,b ,c,d 都不等于0) 练一练:1、下列各组数能否成比例?如果能成比例,请写出一个比例式,并指出比例的内项和外项。

(1)3,-9,-2,6 (2)5,10,6,12(3)2,2,3,3 (4)3,6,6,12如果三个数a,b,c 满足比例式dc b a =(或a:b=b:c),那么b 就叫做a,c 的比例中项。

性质:ac b cb b a =⇔=2 【例题解析】例1、根据下列条件,求m:n 的值(1)2a=3b (2)45b a = 练一练:1.求下列比例式中的x(1)4:3=5:x (2)213-=x x 2、已知两个数3,6,求它们的比例中项。

3、已知-2与y 的比例中项是6,那么y 的值是多少?4、已知43=b a ,求ab a +的值。

湘教版数学九年级上册3.1《比例线段》说课稿1

湘教版数学九年级上册3.1《比例线段》说课稿1一. 教材分析湘教版数学九年级上册3.1《比例线段》是整个初中数学的重要内容,是对比例的基本概念和性质的进一步延伸。

本节内容通过比例线段的概念,引入了线段之间的比例关系,让学生体会数学与实际生活的联系,培养学生的抽象思维能力。

教材从生活实例出发,引出比例线段的概念,然后通过大量的例题和练习,使学生掌握比例线段的性质和运用。

教材在编写上注重引导学生主动探究,培养学生的动手操作能力和合作意识。

二. 学情分析九年级的学生已经掌握了比例的基本概念和性质,对数学知识有一定的积累。

但是,对于比例线段的理解和运用,还需要进一步的引导和培养。

因此,在教学过程中,我将以学生为主体,注重启发式教学,引导学生主动探究,提高学生的数学素养。

三. 说教学目标根据新课程标准的要求,本节课的教学目标如下:1.知识与技能:让学生理解比例线段的概念,掌握比例线段的性质,并能运用比例线段解决实际问题。

2.过程与方法:通过观察、操作、讨论等数学活动,培养学生的抽象思维能力和解决问题的能力。

3.情感态度与价值观:让学生感受数学与实际生活的联系,培养学生的合作意识,激发学生学习数学的兴趣。

四. 说教学重难点1.教学重点:比例线段的概念及其性质。

2.教学难点:比例线段的运用和解决实际问题。

五. 说教学方法与手段为了实现本节课的教学目标,我将以学生为主体,采用启发式教学法、讨论法、案例教学法等多种教学方法,引导学生主动探究,提高学生的数学素养。

同时,利用多媒体课件和教具,辅助教学,使抽象的数学概念形象化、直观化。

六. 说教学过程1.导入:从生活实例出发,引出比例线段的概念,激发学生的学习兴趣。

2.新课导入:介绍比例线段的性质,引导学生主动探究,培养学生的抽象思维能力。

3.案例分析:分析实际问题,引导学生运用比例线段解决问题,提高学生的动手操作能力。

4.课堂练习:设计具有针对性的练习题,巩固所学知识,提高学生的应用能力。

第28讲 图形的相似与位似(原卷版)

第28讲图形的相似与位似1.比例线段(1)比例线段:已知四条线段a,b,c,d,若ab=cd或a∶b=c∶d,那么a,b,c,d叫做成比例线段,a,d叫做比例外,b,c叫做比例内项;若有ab=bc,则b叫做a,c的比例中项.(2)比例的基本性质及定理①ab=cd⇒ad=bc;②ab=cd⇒a±bb=c±dd;③ab=cd=…=mn(b+d+…+n≠0)⇒a+c+…+mb+d+…+n=ab.4.相似三角形的性质及判定(1)相似三角形的性质相似三角形的对应角相等,对应边成比例,对应高、对应中线、对应角平分线的比都等于相似比,周长比等于相似比,面积比等于相似比的平方.(2)相似三角形的判定①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截得的三角形与原三角形相似;②两角对应相等,两三角形相似;③两边对应成比例且夹角相等,两三角形相似;④三边对应成比例,两三角形相似;⑤两个直角三角形的斜边和一条直角边对应成比例,两直角三角形相似;⑥直角三角形中被斜边上的高分成的两个三角形都与原三角形相似.5.射影定理如图,△ABC中,∠ACB=90°,CD是斜边AB上的高,则有下列结论.(1)AC2=AD·AB;(2)BC2=BD·AB;(3)CD2=AD·BD;(4)AC2∶BC2=AD∶BD;(5)AB·CD=AC·BC.6.相似三角形的实际应用(1)运用三角形相似的判定条件和性质解决实际问题的方法步骤: ①将实际问题所求线段长放在三角形中; ②根据已知条件找出一对可能相似的三角形; ③证明所找两三角形相似;④根据相似三角形的性质,表示出相应的量;并求解.(2)运用相似三角形的有关概念和性质解决现实生活中的实际问题.如利用光的反射定律求物体的高度,利用影子计算建筑物的高度.同一时刻,物高与影长成正比,即身高影长=建筑物的高度建筑物的影长.7.相似多边形的性质(1)相似多边形对应角相等,对应边成比例.(2)相似多边形周长之比等于相似比,面积之比等于相似比的平方. 8.图形的位似(1)概念:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,这样的图形叫做位似图形.这个点叫做位似中心.(2)性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.(3)在平面直角坐标系中,如果位似变换是以原点为中心,相似比为k ,那么位似图形对应点的坐标比等于k 或-k.(4)利用位似变换将一个图形放大或缩小,其步骤为:①确定位似中心;②确定原图形中各顶点关于位似中心的对应点;③依次连接各对应点描出新图形考点1: 相似三角形的性质【例题1】(2019湖南常德3分)如图,在等腰三角形△ABC 中,AB =AC ,图中所有三角形均相似,其中最小的三角形面积为1,△ABC 的面积为42,则四边形DBCE 的面积是( )A .20B .22C .24D .26考点2:相似三角形的判定【例题2】在正方形ABCD中,AB=4,点P,Q分别在直线CB与射线DC上(点P不与点C,点B重合),且保持∠APQ=90°,CQ=1,求线段BP的长.考点3:相似三角形的综合应用【例题3】(2017·河北模拟)修建某高速公路,需要通过一座山,指挥部决定从E,D两点开挖一个涵洞.工程师从地面选取三个点A,B,C,且A,B,D三点在一条直线上,A,C,E也在同一条直线上,若已知AB=27米,AD=500米,AC=15米,AE=900米,且测得BC=22.5米.(1)求DE的长;(2)现有甲、乙两个工程队都具备打通能力,且质量相当,指挥部派出相关人员分别到这两个工程队了解情况,获得如下信息:信息一:甲工程队打通这个涵洞比乙工程队打通这个涵洞多用25天;信息二:乙工程队每天开挖的米数是甲工程队每天开挖的米数的1.5倍;信息三:甲工程队每天需要收费3 500元,乙工程队每天需要收费4 000元.若仅从费用角度考虑问题,试判断选用甲、乙哪个工程队比较合算.一、选择题:1. (2018•玉林)两三角形的相似比是2:3,则其面积之比是()A.:B.2:3 C.4:9 D.8:272. (2018•临沂)如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是()A.9.3m B.10.5m C.12.4m D.14m3. (2019,四川巴中,4分)如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG=()A.2:3 B.3:2 C.9:4 D.4:94. (2019▪贵州毕节▪3分)如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF 后,剩余部分的面积为()A.100cm2B.150cm2C.170cm2D.200cm25. (2018•泸州)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.二、填空题:6.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B (1,0),则点C的坐标为.7. (2019•山东省滨州市•5分)在平面直角坐标系中,△ABO三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0).以原点O为位似中心,把这个三角形缩小为原来的,得到△CDO,则点A的对应点C的坐标是.8. (2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,则AE的长为.9. (2018•遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD 为直径的圆交AC于点E.若DE=3,则AD的长为.三、解答题:10. (2018·江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.11. (2019湖北荆门)(10分)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.12. (2018·福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.13.△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.(1)如图1,当射线DN经过点A时,DM交边AC于点E,不添加辅助线,写出图中所有与△ADE相似的三角形;(2)如图2,将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于点E,F(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论;(3)在图2中,若AB=AC=10,BC=12,当S△DEF=14S△ABC时,求线段EF的长.14. (2019•湖南常德•10分)在等腰三角形△ABC中,AB=AC,作CM⊥AB交AB于点M,BN⊥AC交AC 于点N.(1)在图1中,求证:△BMC≌△CNB;(2)在图2中的线段CB上取一动点P,过P作PE∥AB交CM于点E,作PF∥AC交BN于点F,求证:PE+PF =BM;(3)在图3中动点P在线段CB的延长线上,类似(2)过P作PE∥AB交CM的延长线于点E,作PF∥AC交NB的延长线于点F,求证:AM•PF+OM•BN=AM•PE.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) 若a,b,c,d四个不为零的实数成比例,则我们 可以把它表示成?
a c a : b c : d或 b d
a,d叫做比例外项,b,c叫做比例内项.
1、分别指出下列比例式的两个内项与两个外项,并计 算出它们的乘积
( 1 )0.3 : 2 0.6 : 4; (2)
0.3 4 1.2
a 例1:根据下列条件,求 的值. b
(1) 3a 2b
a b (2) 6 5
a c 例2:已知 ,判断下列比例式是否成立, b d
并说明理由。
d c (1) b a
a ac (3) b bd
根据
ab cd (2) b d
(b d 0)
a c b d
你还能写出其他成立的比例式吗?
2x 3y z x y z 已知 ,且xyz≠0,求 x 3 y z 的值 2 3 4
探究活动

在平面直角坐标系中,过点(a,b) 和坐标原点的直线是一个怎样的 正比例函数?如果a,b,c,d四个数 成比例,你认为点(a,b),点(c,d) 和坐标原点在一条直线上吗?请 说明理由.
1 2 1 : (3) 2 : 6 或 3 6 像这样,如果两个数的比值与另两个数的比值相等, 那么我们就说这四个数成比例。
如上我们就可以说1,-3,-2,6这四个数成比例
思考: 1 1 1 : ( 3 ) (1)1与-3的比可以表示为? 3 3 1 2 -2与6的比呢? 2:6 6 3
课堂小结: 1、比例基本性质:
a c ad bc (a,b,c,d均不为零) b d
2、对比例式变形检验:
是否满足” 外项之积等于内项之积”
3、比例式变形的常用方法: 利用等式性质 设比值
2 3 6
2 6
由此你得 出什么结 论?
1 3
2 0.6 项之积
2、根据发现我们能把
a c b d
写成
ad bc 形式吗?
a c b d
两边同乘以bd
ad bc
a c b d
两边同除以bd
反过来呢?
ad bc
相关文档
最新文档