导数与零点含答案

合集下载

函数有三个零点与导数

函数有三个零点与导数

函数有三个零点与导数解:∵f(x)=12x 2-4x+3lnx+m,∴234())3134(x x x x f x x x x x-+--'=-+==(), ∴f(x)在(0,1)上就是增函数,在(1,3)上就是减函数,在(3,+∞)上就是增函数;∴x=1就是f(x)的极大值点,x=3就是f(x)的极小值点。

又f(1)=12-4+m=m-72,f(3)=92-12+3ln3+m=m+3ln3-152,0 lim lim x x f x f x +→∞→=-∞=+∞(),(), ∴函数f(x)=12x 2-4x+3lnx+m 有且只有三个不同的零点,等价于f(1)=12-4+m=m-72>0且f(3)=92-12+3ln3+m=m+3ln3-152<0,∴72<m <152-3ln3.∴m 的取值范围为(72,152).3.(2016•东湖区月考)已知函数f(x)=x 2-(a+2)x+alnx,其中常数a >0.(1)当a >2时,求函数f(x)的单调递增区间;(2)当a=4时,若函数y=f(x)-m 有三个不同的零点,求m 的取值范围.本题第(2)问可以改为:(3)当a=4时,若函数y=f(x)-m 有且只有一个零点,求m 的取值范围.(4)当a=4时,若函数y=f(x)-m 有两个不同的零点,求m 的取值范围.(此问无解) 解:(1)由f(x)=x 2-(a+2)x+alnx 可知,函数的定义域为{x|x >0},且()()()2()2212)22(x a x a a x a x f x x a x x x-++--'-++===,∵a >2,∴2a >1. 当0<x <1或x >2a 时,f ′(x)>0;当1<x <2a 时,f ′(x)<0, ∴f(x)的单调递增区间为(0,1),(2a ,+∞). (2)当a=4时,()21()()2x x f x x --'=.当x 变化时,f ′(x),f(x)的变化情况如下表: x(0,1) 1 (1,2) 2 (2,+∞) f′(x)+ 0 - 0 + f(x) 单调递增 f(x)取极大值 单调递减 f(x)取极小值 单调递增∴f (x )极大值=f (1)=12−6×1+4ln 1=−5,f (x )极小值=f (2)=22−6×2+4ln 2=4ln 2−8.函数f(x)的图象大致如下:∴若函数y=f(x)-m 有三个不同的零点,则m ∈(4ln2-8,-5).4.已知a>0,函数f(x)=ax2-2ax+2lnx,g(x)=f(x)-2x. (Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程; (Ⅱ)讨论g(x)的单调性;(Ⅲ)当a>1时,若函数h(x)=g(x)+5+1a有三个不同的零点,求实数a的取值范围.5.(2015•连云港三模)函数f(x)=a x -x 2(a >1)有三个不同的零点,则实数a 的取值范围就是 . 解:先画草图大致分析一下:令y=a x (a >1),y=x 2,在同一坐标系中画出它们的图象,当x <0时,显然它们的图象,有一个交点,即f(x)=a x -x 2(a >1)有一个零点。

高考数学一轮总复习课件:专题研究 利用导数研究函数的零点

高考数学一轮总复习课件:专题研究 利用导数研究函数的零点

g′(x)=-sinx+(1+1 x)2.
当x∈-1,π2 时,g′(x)单调递减,
由g′(0)=1>0,g′
π 2
=-1+
1 1+π2 2
<0,可得g′(x)在
-1,π2 上有唯一零点,设为α.
当x∈(-1,α)时,g′(x)>0;当x∈α,π2 时,g′(x)<0. 所以g(x)在(-1,α)上单调递增,在α,π2 上单调递减. 故g(x)在-1,π2 上存在唯一极大值点, 即f′(x)在-1,π2 上存在唯一极大值点.
①当 a>1 时,方程 g(x)=a 无解,即 f(x)没有零点; ②当 a=1 时,方程 g(x)=a 有且只有一解,即 f(x)有唯一的 零点; ③当 0<a<1 时,方程 g(x)=a 有两解,即 f(x)有两个零点; ④当 a≤0 时,方程 g(x)=a 有且只有一解,即 f(x)有唯一的 零点. 综上,当 a>1 时,f(x)没有零点; 当 a=1 或 a≤0 时,f(x)有唯一的零点; 当 0<a<1 时,f(x)有两个零点而f
π 2
>0,f(π)=-ln(1+π)<0,所以f(x)在
π2 ,π
上有
唯一零点.
④当x∈(π,+∞)时,ln(x+1)>1,
所以f(x)<0,从而f(x)在(π,+∞)上没有零点.
综上,f(x)有且仅有2个零点.
【答案】 略
状元笔记
证明与零点有关的不等式,函数的零点本身就是一个条 件,即零点对应的函数值为0,证明的思路一般对条件等价转 化,构造合适的新函数,利用导数知识探讨该函数的性质(如单 调性、极值情况等)再结合函数图象来解决.

利用导数研究函数的零点讲义 解析版

利用导数研究函数的零点讲义 解析版

利用导数研究函数的零点题型一 数形结合法研究函数零点1.(2024·南昌模拟节选)已知函数f (x )=(x -a )2+be x (a ,b ∈R ),若a =0时,函数y =f (x )有3个零点,求b 的取值范围.解:函数y =f (x )有3个零点,即关于x 的方程f (x )=0有3个根,也即关于x 的方程b =-x 2ex 有3个根.令g (x )=-x 2e x ,则直线y =b 与g (x )=-x 2ex 的图象有3个交点.g ′(x )=x (x -2)e x,由g ′(x )<0解得0<x <2;由g ′(x )>0解得x <0或x >2,所以g (x )在(-∞,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增.g (0)=0,g (2)=-4e2,当x >0时,g (x )<0;当x →+∞时,g (x )→0;当x →-∞时,g (x )→-∞,作出g (x )的大致图象如图所示,作出直线y =b .由图可知,若直线y =b 与g (x )的图象有3个交点,则-4e 2<b <0,即b 的取值范围为-4e 2,0 .感悟提升 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围.2.设函数f (x )=ln x +m x ,m ∈R ,讨论函数g (x )=f ′(x )-x 3零点的个数.解:由题意知g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,∴x =1也是φ(x )的最大值点,∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图象(如图)可知,①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 利用函数性质研究函数零点3.已知函数f (x )=(2a +1)x 2-2x 2ln x -4,e 是自然对数的底数,∀x >0,e x >x +1.(1)求f (x )的单调区间;(2)记p :f (x )有两个零点;q :a >ln 2.求证:p 是q 的充要条件.要求:先证充分性,再证必要性.(1)解:∵f (x )=(2a +1)x 2-2x 2ln x -4,∴f (x )的定义域为(0,+∞),f ′(x )=4x (a -ln x ).∵当0<x <e a 时,f ′(x )>0,∴f (x )在(0,e a )上单调递增;∵当x >e a 时,f ′(x )<0,∴f (x )在(e a ,+∞)上单调递减.∴f (x )的单调递增区间为(0,e a ),单调递减区间为(e a ,+∞).(2)证明 先证充分性.由(1)知,当x =e a 时,f (x )取得最大值,即f (x )的最大值为f (e a )=e 2a -4.由f (x )有两个零点,得e 2a -4>0,解得a >ln 2.∴a >ln 2.再证必要性.∵a >ln 2,∴e 2a >4.∴f (e a )=e 2a -4>0.∵a>ln2>0,∀x>0,e x>x+1,∴e2a>2a+1>2a.∴f(e-a)=e-2a(4a+1)-4=4a+1e2a -4<4a+12a-4=12a-2<12ln2-2=1ln4-2<0.∴∃x1∈(e-a,e a),使f(x1)=0;∵f(e a+1)=-e2a+2-4<0,∴∃x2∈(e a,e a+1),f(x2)=0.∵f(x)在(0,e a)上单调递增,在(e a,+∞)上单调递减,∴∀x∈(0,+∞),x≠x1且x≠x2,易得f(x)≠0.∴当a>ln2时,f(x)有两个零点.感悟提升 利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.4.(2022·全国乙卷节选)已知函数f(x)=ax-1x-(a+1)ln x,若f(x)恰有一个零点,求a的取值范围.解:由f(x)=ax-1x-(a+1)ln x(x>0),得f′(x)=a+1x2-a+1x=(ax-1)(x-1)x2(x>0).①当a=0时,f(x)=-1x-ln x,f′(x)=1-xx2,当x∈(0,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0,所以f(x)≤f(1)=-1<0,所以f(x)不存在零点;②当a<0时,f′(x)=a x-1a(x-1)x2,当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=a-1<0,所以f(x)不存在零点;③当a>0时,f′(x)=a x-1a(x-1)x2,(ⅰ)当a=1时,f′(x)≥0,f(x)在(0,+∞)上单调递增,因为f(1)=a-1=0,所以函数f(x)恰有一个零点;(ⅱ)当a>1时,0<1a <1,故f(x)在0,1a,(1,+∞)上单调递增,在1a,1上单调递减.因为f(1)=a-1>0,所以f1a>f(1)>0,当x→0+时,f(x)→-∞,由零点存在定理可知f(x)在0,1a上必有一个零点,所以a>1满足条件;(ⅲ)当0<a<1时,1a >1,故f(x)在(0,1),1a,+∞上单调递增,在1,1a上单调递减.因为f(1)=a-1<0,所以f1a<f(1)<0,当x→+∞时,f(x)→+∞,由零点存在定理可知f(x)在1a,+∞上必有一个零点,即0<a<1满足条件.综上,若f(x)恰有一个零点,则a的取值范围为(0,+∞).题型三 构造函数法研究函数零点5.已知函数f(x)=e x-1+ax(a∈R).(1)当x≥0时,f(x)≥0,求a的取值范围;(2)若关于x的方程f(x)-ax+1e a=ln x+a有两个不同的实数解,求a的取值范围.解:(1)由题意,得f′(x)=e x+a.若a≥-1,则当x∈[0,+∞)时,f′(x)≥0恒成立,∴f(x)在[0,+∞)上单调递增,∴当x∈[0,+∞)时,f(x)≥f(0)=0,符合题意;若a<-1,令f′(x)<0,得x<ln(-a),∴f(x)在(0,ln(-a))上单调递减,∴当x∈(0,ln(-a))时,f(x)<f(0)=0,不符合题意.综上,a的取值范围为[-1,+∞).(2)法一 由f(x)-ax+1e a=ln x+a,得e x-a=ln x+a.令e x-a=t,则x-a=ln t,ln x+a=t,∴x+ln x=t+ln t.易知y=x+ln x在(0,+∞)上单调递增,∴t=x,得a=x-ln x.则原问题可转化为方程a=x-ln x有两个不同的实数解.令φ(x)=x-ln x(x>0),则φ′(x)=x-1 x,令φ′(x)<0,得0<x<1;令φ′(x)>0,得x>1,∴φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x)min=φ(1)=1,∴a≥1.当a=1时,易知方程1=x-ln x只有一个实数解x=1,不符合题意.下证当a>1时,a=x-ln x有两个不同的实数解.令g(x)=x-ln x-a(a>1),则g(x)=φ(x)-a,易知g(x)在(0,1)上单调递减,在(1,+∞)上单调递增.∵g(e-a)=e-a>0,g(1)=1-a<0,∴g(x)在(e-a,1)上有一个零点.易知g(e a)=e a-2a,令h(a)=e a-2a,则当a>1时,h′(a)=e a-2>0,∴h(a)在(1,+∞)上单调递增,∴当a >1时,h (a )>h (1)=e -2>0,即g (e a )=e a -2a >0,∴g (x )在(1,e a )上有一个零点.∴当a >1时,a =x -ln x 有两个不同的实数解.综上,a 的取值范围为(1,+∞).法二 由f (x )-ax +1e a=ln x +a ,得e x =e a (ln x +a ),∴xe x =xe a (ln x +a ),即xe x =e a +ln x (ln x +a ).令u (x )=xe x ,则有u (x )=u (a +ln x ).当x >0时,u ′(x )=(x +1)e x >0,∴u (x )=xe x 在(0,+∞)上单调递增,∴x =a +ln x ,即a =x -ln x .下同法一.感悟提升 涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.6.(2021·全国甲卷节选)已知a >0且a ≠1,函数f (x )=x a ax (x >0).若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围.解:曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln a a 有两个不同的解.设g (x )=ln x x (x >0),则g ′(x )=1-ln x x 2(x >0),令g ′(x )=1-ln x x 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增;当x >e 时,g ′(x )<0,函数g (x )单调递减,故g (x )max =g (e )=1e ,且当x >e 时,g (x )∈0,1e ,又g (1)=0,所以0<ln a a <1e,所以a >1且a ≠e ,故a 的取值范围为(1,e )∪(e ,+∞).【A 级 基础巩固】7.已知函数f (x )=x -ae x ,a ∈R ,讨论函数f (x )的零点个数.解:f (x )=0等价于x -ae x =0,即x ex =a .设h (x )=x e x ,则h ′(x )=1-x ex ,当x <1时,h ′(x )>0,h (x )单调递增;当x >1时,h ′(x )<0,h (x )单调递减,∴h (x )max =h (1)=1e.又当x <0时,h (x )<0;当x >0时,h (x )>0,且x →+∞时,h (x )→0,∴可画出h (x )大致图象,如图所示.∴当a ≤0或a =1e时,f (x )在R 上有唯一零点;当a >1e 时,f (x )在R 上无零点;当0<a <1e 时,f (x )在R 上有两个零点.8.(2024·青岛调研)已知函数f (x )=ln x +ax x,a ∈R .(1)若a =0,求f (x )的最大值;(2)若0<a <1,求证:f (x )有且只有一个零点.(1)解:若a =0,则f (x )=ln x x ,其定义域为(0,+∞),∴f ′(x )=1-ln x x 2,由f ′(x )=0,得x =e ,∴当0<x <e 时,f ′(x )>0;当x >e 时,f ′(x )<0,∴f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,∴f (x )max =f (e )=1e.(2)证明 f ′(x )=1x +a x -ln x -ax x 2=1-ln x x 2,由(1)知,f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,∵0<a <1,∴当x >e 时,f (x )=ln x +ax x =a +ln x x>0,故f (x )在(e ,+∞)上无零点;当0<x <e 时,f (x )=ln x +ax x ,∵f 1e =a -e <0,f (e )=a +1e>0,且f (x )在(0,e )上单调递增,∴f (x )在(0,e )上有且只有一个零点,综上,当0<a <1时,f (x )有且只有一个零点.9.(2024·太原模拟节选)已知函数f (x )=xe x -x -1,讨论方程f (x )=ln x +m -2的实根个数.解;由f (x )=ln x +m -2,得xe x -x -ln x +1=m ,x >0,令h (x )=xe x -x -ln x +1,则h ′(x )=e x +xe x-1-1x =(x +1)(xe x -1)x(x >0),令m (x )=xe x -1(x >0),则m ′(x )=(x +1)·e x >0,∴m (x )在(0,+∞)上单调递增,又m 12 =e 2-1<0,m (1)=e -1>0,∴存在x 0∈12,1,使得m (x 0)=0,即e x 0=1x 0,从而ln x 0=-x 0.当x ∈(0,x 0)时,m (x )<0,h ′(x )<0,则h (x )单调递减;当x ∈(x 0,+∞)时,m (x )>0,h ′(x )>0,则h (x )单调递增;∴h (x )min =h (x 0)=x 0e x 0-x 0-ln x 0+1=x 0·1x 0-x 0+x 0+1=2,又易知,当x →0+时,h (x )→+∞;当x →+∞时,h (x )→+∞.∴当m <2时,方程f (x )=ln x +m -2没有实根;当m =2时,方程f (x )=ln x +m -2有1个实根;当m >2时,方程f (x )=ln x +m -2有2个实根.【B 级 能力提升】10.(2024·郑州模拟节选)已知函数f (x )=ln (x +1)-x +1,g (x )=ae x -x +ln a ,若函数F (x )=f (x )-g (x )有两个零点,求实数a 的取值范围.解:函数F (x )=f (x )-g (x )有两个零点,即f (x )=g (x )有两个实根,即ln (x +1)-x +1=ae x -x +ln a 有两个实根,即e x +ln a +x +ln a =ln (x +1)+x +1有两个实根,即e x +ln a +x +ln a =e ln (x +1)+ln (x +1)有两个实根.设函数h (x )=e x +x ,则e x +ln a +x +ln a =e ln (x +1)+ln (x +1)⇔h (x +ln a )=h (ln (x +1)).因为h ′(x )=e x +1>0恒成立,所以h (x )=e x +x 在R 上单调递增,所以x +ln a =ln (x +1),x >-1,所以要使F (x )有两个零点,只需ln a =ln (x +1)-x 有两个实根.设M (x )=ln (x +1)-x ,则M ′(x )=-x x +1.由M ′(x )=-x x +1>0,得-1<x <0;由M ′(x )=-x x +1<0,得x >0,故函数M(x)的单调递增区间为(-1,0),单调递减区间为(0,+∞).故函数M(x)在x=0处取得极大值,也是最大值,且M(x)max=M(0)=0.易知当x→-1时,M(x)→-∞;当x→+∞时,M(x)→-∞.故要使ln a=ln(x+1)-x有两个实根,只需ln a<M(x)max=0,解得0<a<1.所以实数a的取值范围是(0,1).。

导数压轴题之隐零点问题专辑含答案解析纯版

导数压轴题之隐零点问题专辑含答案解析纯版

导数压轴题之隐零点问题导数压轴题之隐零点问题(共13题)1.已知函数f (x) = (ae x-a - x) e x(a>0, e=2.718 …e为自然对数的底数),若f (x)>0对于x € R恒成立.(1)求实数a的值;(2)证明:f (x)存在唯一极大值点x o,且.「「一【解答】(1)解:f (x) =e x(ae x- a - x) >0,因为e x>0,所以ae x- a - x> 0恒成立,即a (e x- 1) >x恒成立,x=0时,显然成立,x>0 时,e x- 1 >0,故只需a> ' 在(0, + %)恒成立,e x-l令h (x) = .「,(x>0),e x-l:',:l<" ' v 0 ,h '()==故h (x)在(0,+ %)递减,而「| .=【I .. =1,-*0e -1 eK故 a >1,x v0 时,e x- 1 v0,故只需a w「在(-%, 0)恒成立,e -1令g (x) =——, (x V 0 ),e K-l/ 厶、(1-X ) E X、八g X) = > 0,d故h (x)在(-g, 0)递增,而I ' -i 二■ j ... =1 ,e x_l s-*[) e K故 a <1,综上:a=1 ;(2)证明:由(1) f (x) =e x(e x- x - 1),故f (x) =e x (2e x- x - 2),令h (x) =2e x- x - 2 , h' (x) =2e x- 1 ,所以h (x)在(-g, In丄)单调递减,在(In 1 , + g)单调递增,H £h (0) =0 , h (IJ ) =2el n 丄-In 丄-2=l n2 - 1V 0, h (- 2) =2e -2 -(- 厶M bl22)- 2=—>0,e••h (- 2) h (I n I )v 0由零点存在定理及h (x)的单调性知,J方程h (x) =0在(-2, In ,[)有唯一根,设为X0且2e x0- X0- 2=0,从而h (x)有两个零点x o和0 ,所以f (x)在(-g, X0)单调递增,在(X0, 0)单调递减,在(0, + g)单调递增,从而f (X )存在唯一的极大值点X0即证,x0+2由2e x0—X0 —2=0 得e x0= —, x0^-1,x n+2 1 i •■•f (X0) =e x0(e x0- X0 - 1) = ( - X0- 1)=」(-X0)(2+x 0)<_ (-叼+2+") 2二丄( 4 ) =1,取等不成立,所以f (X0)V [得证,又•••-2v x o v ln I , f (x)在(—g, x o)单调递增2所以f (x o)> f ( —2) =e —2[e —2—(—2) —1]=e - 4+e - 2 >e - 2 >0 得证, 从而0 v f (x0 )<一成立.42 .已知函数f (x) =ax+xlnx (a € R)(1)若函数f (x)在区间[e, + g)上为增函数,求a的取值范围;(2)当a=1且k € Z时,不等式k (x — 1 )v f (x)在x €( 1, + g)上恒成立,求k 的最大值.【解答】解:(1 )•••函数f (x)在区间[e , + g)上为增函数,••• f 'x)(=a+lnx+1 X)在区间[e , + g)上恒成立,二a>(-lnx - 1) max= - 2 .■ a X—2.••a的取值范围是[-2, + g).(2) a=1 时,f (x) =x+lnx , k € Z 时,不等式k (x 1) v f (x)在x €( 1 ,+ g)上恒成立,•'•k v'J min5令g / 、x+xlnic 血,八x-lnx-2 (x)= .,贝U g ()=. ,T (x-1 ) Z令h (x) =x —lnx — 2 (x > 1).则h ' () =1 —1= '>0 , Ah (x)在(1 , + g)上单增,X K••h (3) =1 —ln3 v 0, h (4) =2 —2ln2 >0 ,存在X0 €( 3 , 4),使h (X0)=0 .即当1 v x v X0 时h (x)v 0 即g ' x)v 0x > X0 时h (x) > 0 即g ' x )> 0g (x )在 (1 , X 0)上单减,在 (x o + x)上单增. 令 h (x o ) =x o - Inx o — 2=0,即 Inx o =x o - 2 ,k v g (x ) min =x o €( 3 , 4),且 k € Z , • °k max =3 .3.函数 f (x ) =alnx - x 2+x , g (x ) = (x - 2) e x - x 2+m (其中 e=2.71828 ••:)(1) 当a O 时,讨论函数f (x )的单调性;(2) 当a= - 1, x €( 0 , 1]时,f (x )>g (x )恒成立,求正整数 m 的最大 值. 【解答】解:(1)函数f (x )定义域是(0 , + x),(i) 当.1 时,1+8a <0,当 x €( 0 , + x)时 f (x )<0,■J函数f (x )的单调递减区间是(0 , + x);(ii) 当―亠二丁二」;/—,- 2x 2+x+a=0的两根分别是:Ul-Vl + 8a4 *」, (4),当x €( 0 , X 1 )时f (x )v 0 .函数f (x )的单调递减. 当x €( X 1, X 2 )时f (x ) > 0,函数f (x )的单调速递增, 当x €( X 2, + x)时f (x ) v 0,函数f (x )的单调递减; 综上所述,(i )当":三时f (x )的单调递减区间是(0 , + x),(ii)当宀匸 时,f (x )的单调递增区间是 「匚"’ m 1'g (x ) min =g(x o )=x o € (3, 4).Xn(l+lnx c )单调递减区间是(0,旦匡)和(凹唾,0)4 4(2)当a= - 1 , x €(0 , 1]时,f (x)>g (x),即m v ( —x+2 ) e x—Inx+x ,设h (x) = ( —x+2 ) e x—Inx+x , x€( 0, 1]. 「:,•••当0 v x <1 时,1 —x X),设・•. 一乂,则•••u (x)在(0 , 1)递增,又tu (x)在区间(0, 1]上的图象是一条不间断的曲线,且i_L I 1 _ • ■ _ ■「--,:.使得u (x o) =0 ,即■- ::当x €( 0 , x o)时,u (x)v 0 , h' (x) v 0;当x €(X0, 1)时,u (x)> 0 , h' (x) > 0;•函数h (x)在(0 , x o]单调递减,在[X0, 1)单调递增,x 1 9•J :' I 15 :, = ■- - 1 IP* 0 A0在x€( 0 , 1)递减,x茗* Q•••当m <3时,不等式m v (-x+2 ) e x—In x+x对任意x €( 0, 1]恒成立,•正整数m的最大值是3.4. 已知函数f (x) =e x+a—Inx (其中e=2.71828 …,是自然对数的底数).(I)当a=0时,求函数a=0的图象在(1 , f (1))处的切线方程;(U)求证:当- “丨-一时,f (x)>e+1 . £【解答】(I)解:T a=0时’1:亠丄••f (1) =e , f ' 1( =e —1,•••函数f (x)的图象在(1 , f (1))处的切线方程:y-e= (e - 1) (x - 1), 即(e - 1) x - y+ 仁0 ;(n)证明■,设g (x) =f ' x(贝U 一」二••g (x)是增函数,••e x+a>e a,「.由•「亠一一…x•••当x > e-a时,f 'x)(> 0 ;若0 v x v 1? e x+a v e a+1,由一L - . ' :. \」,x•••当0v x v min{1 ,e-a-1}时,f 'x)(v 0,故f 'x O =0仅有一解,记为X0,则当0 v x v X0时,当x > X0 时,f 'x)(> 0,f (x)递增;二'":':而V ' ■:' ■■.,x 0 x o记h (x) =lnx+x ,则•------ '':,A o x o-■■ i -一?—a v 1? h (X。

专题12 导数中隐零点的应用(解析版)

专题12 导数中隐零点的应用(解析版)

专题12导数中隐零点的应用【方法总结】利用导数解决函数问题常与函数单调性的判断有关,而函数的单调性与其导函数的零点有着紧密的联系,按导函数零点能否求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法用显性的代数表达的(f′(x)=0是超越形式),称之为“隐零点”.对于隐零点问题,常常涉及灵活的代数变形、整体代换、构造函数、不等式应用等技巧.用隐零点处理问题时,先证明函数f(x)在某区上单调,然后用零点存在性定理说明只有一个零点.此时设出零点x0,则f′(x)=0的根为x0,即有f′(x0)=0.注意确定x0的合适范围,如果含参x0的范围往往和参数a的范围有关.这时就可以把超越式用代数式表示,同时根据x0的范围可进行适当的放缩.从而问题得以解决.基本解决思路是:形式上虚设,运算上代换,数值上估算.用隐零点可解决导数压轴题中的不等式证明、恒成立能成立等问题.隐零点问题求解三步曲(1)用函数零点存在定理判定导函数零点的存在性,列出零点方程f′(x0)=0,并结合f′(x)的单调性得到零点的取值范围.(2)以零点为分界点,说明导函数f′(x)的正负,进而得到f(x)的最值表达式.(3)将零点方程适当变形,整体代入最值式子进行化简证明,有时(1)中的零点范围还可以适当缩小.注意:确定隐性零点范围的方式是多种多样的,可以由零点的存在性定理确定,也可以由函数的图象特征得到,甚至可以由题设直接得到等等.至于隐性零点的范围精确到多少,由所求解问题决定,因此必要时尽可能缩小其范围.进行代数式的替换过程中,尽可能将目标式变形为整式或分式,那么就需要尽可能将指、对数函数式用有理式替换,这是能否继续深入的关键.最后值得说明的是,隐性零点代换实际上是一种明修栈道,暗渡陈仓的策略,也是数学中“设而不求”思想的体现.考点一不等式证明中的“隐零点”【例题选讲】[例1](2015全国Ⅱ)设函数f(x)=e2x-a ln x.(1)讨论f(x)的导函数f′(x)的零点的个数;(2)证明:当a>0时,f(x)≥2a+a ln2a.解析(1)f(x)的定义域为(0,+∞),f′(x)=2e2x-ax(x>0).由f′(x)=0得2x e2x=a.令g(x)=2x e2x,g′(x)=(4x+2)e2x>0(x>0),从而g(x)在(0,+∞)上单调递增,所以g(x)>g(0)=0.当a>0时,方程g(x)=a有一个根,即f′(x)存在唯一零点;当a≤0时,方程g(x)=a没有根,即f′(x)没有零点.(2)由(1)可设f′(x)在(0,+∞)上的唯一零点为x0,当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以[f (x )]min =f (x 0).由2e 2x 0-a x 0=0得e 2x 0=a 2x 0,又x 0=022e x a ,得ln x 0=ln 022ex a =ln a2-2x 0,所以f (x 0)=02e x-a ln x 0=a 2x 0-a2-2x =a 2x 0+2ax 0+a ln 2a≥2a 2x 0·2ax 0+a ln 2a =2a +a ln 2a.故当a >0时,f (x )≥2a +a ln 2a.[例2](2013全国Ⅱ)设函数f (x )=e x -ln(x +m ).(1)若x =0是f (x )的极值点,求m 的值,并讨论f (x )的单调性;(2)当m ≤2时,求证:f (x )>0.解析(1)f ′(x )=e x -1x +m.由x =0是f (x )的极值点得f ′(0)=0,所以m =1.于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=e x -1x +1.函数f ′(x )=e x -1x +1在(-1,+∞)单调递增,且f ′(0)=0.因此当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增.(2)当m ≤2,x ∈(-m ,+∞)时,ln(x +m )≤ln(x +2),故只需证明当m =2时,f (x )>0.当m =2时,函数f ′(x )=e x -1x +2在(-2,+∞)单调递增.又f ′(-1)<0,f ′(0)>0,故f ′(x )=0在(-2,+∞)有唯一实根x 0,且x 0∈(-1,0).当x ∈(-2,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0,从而当x =x 0时,f (x )取得最小值.由f ′(x 0)=0得0e x =1x 0+2,ln(x 0+2)=-x 0,故f (x )≥f (x 0)=1x 0+2+x 0=(x 0+1)2x 0+2>0.综上,当m ≤2时,f (x )>0.[例3]已知函数f (x )=x e x -a (x +ln x ).(1)讨论f (x )极值点的个数;(2)若x 0是f (x )的一个极小值点,且f (x 0)>0,证明:f (x 0)>2(x 0-x 30).解析(1)f ′(x )=(x +1)e x -(x +x =(x +1)(x e x -a )x,x ∈(0,+∞).①当a ≤0时,f ′(x )>0,f (x )在(0,+∞)上为增函数,不存在极值点;②当a >0时,令h (x )=x e x -a ,h ′(x )=(x +1)e x >0.显然函数h (x )在(0,+∞)上是增函数,又因为当x →0时,h (x )→-a <0,h (a )=a (e a -1)>0,必存在x 0>0,使h (x 0)=0.当x ∈(0,x 0)时,h (x )<0,f ′(x )<0,f (x )为减函数;当x ∈(x 0,+∞)时,h (x )>0,f ′(x )>0,f (x )为增函数.所以,x =x 0是f (x )的极小值点.综上,当a ≤0时,f (x )无极值点,当a >0时,f (x )有一个极值点.(2)由(1)得,f ′(x 0)=0,即x 0e x 0=a ,f (x 0)=x 0e x 0-a (x 0+ln x 0)=x 0e x 0(1-x 0-ln x 0),因为f (x 0)>0,所以1-x 0-ln x 0>0,令g (x )=1-x -ln x ,g ′(x )=-1-1x <0,g (x )在(0,+∞)上是减函数,且g (1)=0,由g (x )>g (1)得x <1,所以x 0∈(0,1),设φ(x )=ln x -x +1,x ∈(0,1),φ′(x )=1x -1=1-x x ,当x ∈(0,1)时,φ′(x )>0,所以φ(x )为增函数,φ(x )<φ(1)=0,即φ(x )<0,即ln x <x -1,所以-ln x >1-x ,所以ln(x +1)<x ,所以e x >x +1>0,则e x 0>x 0+1.因为x 0∈(0,1),所以1-x 0-ln x 0>1-x 0+1-x 0=2(1-x 0)>0.相乘得e x 0(1-x 0-ln x 0)>(x 0+1)(2-2x 0),所以f (x 0)=x 0e x 0(1-x 0-ln x 0)>2x 0(x 0+1)(1-x 0)=2x 0(1-x 20)=2(x 0-x 30).故f (x 0)>2(x 0-x 30)成立.[例4]已知函数f (x )=a e x +sin x +x ,x ∈[0,π].(1)证明:当a =-1时,函数f (x )有唯一的极大值点;(2)当-2<a <0时,证明:f (x )<π.解析(1)当a =-1时,f (x )=x +sin x -e x ,f ′(x )=1+cos x -e x ,因为x ∈[0,π],所以1+cos x ≥0,令g (x )=1+cos x -e x ,g ′(x )=-e x -sin x <0,所以g (x )在区间[0,π]上单调递减.因为g (0)=2-1=1>0,g (π)=-e π<0,所以存在x 0∈(0,π),使得f ′(x 0)=0,且当0<x <x 0时,f ′(x )>0;当x 0<x <π时,f ′(x )<0.所以函数f (x )的单调递增区间是[0,x 0],单调递减区间是[x 0,π].所以函数f (x )存在唯一的极大值点x 0.(2)当-2<a <0时,令h (x )=a e x +sin x +x -π,则h ′(x )=a e x +cos x +1,令k (x )=a e x +cos x +1,则k ′(x )=a e x -sin x <0,所以函数h ′(x )在区间[0,π]上单调递减,因为h ′(0)=a +2>0,h ′(π)=a e π<0,所以存在t ∈(0,π),使得h ′(t )=0,即a e t +cos t +1=0,且当0<x <t 时,h ′(x )>0;当t <x <π时,h ′(x )<0.所以函数h (x )在区间[0,t ]上单调递增,在区间[t ,π]上单调递减.h (x )max =h (t )=a e t +sin t +t -π,t ∈(0,π),因为a e t +cos t +1=0,只需证φ(t )=sin t -cos t +t -1-π<0即可,φ′(t )=cos t +sin t +1=sin t +(1+cos t )>0,所以函数φ(t )在区间(0,π)上单调递增,φ(t )<φ(π)=0,即f (x )<π.【对点训练】1.已知函数f (x )=(x -1)e x -ax 的图象在x =0处的切线方程是x +y +b =0.(1)求a ,b 的值;(2)求证函数f (x )有唯一的极值点x 0,且f (x 0)>-32.1.解析(1)因为f ′(x )=x e x -a ,由f ′(0)=-1得a =1,又当x =0时,f (x )=-1,所以切线方程为y -(-1)=-1(x -0),即x +y +1=0,所以b =1.(2)令g (x )=f ′(x )=x e x -1,则g ′(x )=(x +1)e x ,所以当x <-1时,g (x )单调递减,且此时g (x )<0,则g (x )在(-∞,-1)内无零点;当x ≥-1时,g (x )单调递增,且g (-1)<0,g (1)=e -1>0,所以g (x )=0有唯一解x 0,f (x )有唯一的极值点x 0.由x 0e x 0=1⇒e x 0=1x 0,f (x 0)=x 0-1x 0x 0=1=e2-1<0,g (1)=e -1>0⇒12<x 0<1⇒2<1x 0+x 0<52,所以f (x 0)>-32.2.已知函数f (x )=e x -t -ln x .(1)若x =1是f (x )的极值点,求t 的值,并讨论f (x )的单调性;(2)当t ≤2时,证明:f (x )>0.2.解析(1)函数f (x )的定义域(0,+∞),因为f ′(x )=e x -t -1x,x =1是f (x )的极值点,所以f ′(1)=e 1-t -1=0,所以t =1,所以f ′(x )=e x -1-1x,因为y =e x -1和y =-1x ,在(0,+∞)上单调递增,所以f ′(x )在(0,+∞)上单调递增,∴当x >1时,f ′(x )>0;0<x <1时,f ′(x )<0,此时,f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞),(2)当t ≤2时,f (x )=e x -t -ln x ≥e x -2-ln x ,设g (x )=e x -2-ln x ,则g ′(x )=e x -2-1x ,因为y =e x -2和y =-1x在(0,+∞)上单调递增,所以g ′(x )在(0,+∞)上单调递增,因为g ′(1)=1e -1<0,g ′(2)=1-12=12>0,所以存在x 0∈(1,2)使得g ′(x 0)=0,所以在(0,x 0)上使得g ′(x )<0,在(x 0,+∞)上g ′(x )>0,所以g (x )在(0,x 0)单调递减,在(x 0,+∞)上单调递增,所以g (x )≥g (x 0),因为g ′(x 0)=0,即e x 0-2=1x 0,所以ln x 0=2-x 0,所以g (x 0)=e x 0-2-ln x 0=1x 0+x 0-2,因为x 0∈(1,2),所以g (x 0)=1x 0+x 0-2>2-2=0,所以f (x )>0.3.已知函数f (x )=a e x -2x ,a ∈R .(1)求函数f (x )的极值;(2)当a ≥1时,证明:f (x )-ln x +2x >2.3.解析(1)f ′(x )=a e x -2,当a ≤0时,f ′(x )<0,f (x )在R 上单调递减,则f (x )无极值.当a >0时,令f ′(x )=0得x =ln 2a ,令f ′(x )>0得x >ln 2a ,令f ′(x )<0得x <ln 2a ,∴f (x )∞,ln 2a,+∴f (x )的极小值为f 2-2ln 2a,无极大值,综上,当a ≤0时,f (x )无极值.当a >0时,f (x )的极小值为2-2ln 2a ,无极大值.(2)当a ≥1时,f (x )-ln x +2x ≥e x -ln x ,令g (x )=e x -ln x -2,转化为证明g (x )>0,∵g ′(x )=e x -1x (x >0),令φ(x )=e x -1x (x >0),则φ′(x )=e x +1x 2(x >0),则φ′(x )>0,∴g ′(x )在(0,+∞)上为增函数,∵g ′(1)=e -1>0,g =e -2<0,∴∃x 0g ′(x 0)=0,∴函数g (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,∴g (x )≥g (x 0)=0e x-ln x 0-2=1x 0+x 0-2≥21x 0·x 0-2=0,∵x 0≠1,∴g (x )>0,∴f (x )-ln x +2x >2.4.已知函数f (x )=ax+bx ln x ,其中a ,b ∈R .(1)若函数f (x )在点(e ,f (e))处的切线方程为y =x +e ,求a ,b 的值;(2)当b >1时,f (x )≥1对任意x ∈12,2恒成立,证明:a >e +12e .4.解析(1)由题得f ′(x )=-a x 2+b (ln x +1),∴f ′(e)=-a e 2+2b =1,且f (e)=ae+e b =2e ,从而解得a =e 2,b =1.(2)由f (x )≥1对任意x ∈12,2恒成立,得ax+bx ln x ≥1,等价于a ≥x -bx 2ln x ,令g (x )=x -bx 2ln x ,x ∈12,2,则g ′(x )=1-b (2x ln x +x ),令φ(x )=1-b (2x ln x +x ),则φ′(x )=-b (2ln x +3),易知φ′(x )<0,故g ′(x )在12,2上单调递减,因为g ′(e -12)=1-b (-e -12+e -12)=1>0,g ′(1)=1-b (2ln1+1)=1-b <0,故x 0∈(e -12,1),使g ′(x 0)=1-b (2x 0ln x 0+x 0)=0,则g (x )在12,x 0上单调递增,在(x 0,2]上单调递减,故g (x )max =g (x 0)=x 0-bx 20ln x 0=x 0+bx 202,令h (x )=x +bx 22,易知h (x )在(e -12,1)上单调递增,则a ≥x 0+bx 202>e -12+b e -12=e +b 2e >e +12e .5.已知函数f (x )=e x +a -ln x (其中e =2.71828…,是自然对数的底数).(1)当a =0时,求函数f (x )的图象在(1,f (1))处的切线方程;(2)求证:当a >1-1e 时,f (x )>e +1.5.解析(1)∵a =0时,∴f (x )=e x -ln x ,f ′(x )=e x -1x(x >0),∴f (1)=e ,f ′(1)=e -1,∴函数f (x )的图象在(1,f (1))处的切线方程为:y -e =(e -1)(x -1),即(e -1)x -y +1=0.(2)∵f ′(x )=e x +a -1x (x >0),设g (x )=f ′(x ),则g ′(x )=e x +a +1x 2>0,∴g (x )是增函数,∵e x +a >e a ,∴由e a >1x,得x >e -a ,∴当x >e -a 时,f ′(x )>0;若0<x <1,则e x +a <e a +1,由e a +1<1x得,x <e -a -1,∴当0<x <min{1,e -a -1}时,f ′(x )<0,故f ′(x )=0仅有一解,记为x 0,则当0<x <x 0时,f ′(x )<0,f (x )递减;当x >x 0时,f ′(x )>0,f (x )递增;∴f (x )min =f (x 0)=e x 0+a -ln x 0,而f ′(x 0)=e x 0+a -1x 0=0,所以e x 0+a =1x 0,所以a =-ln x 0-x 0,记h (x )=ln x +x ,则f (x 0)=1x 0-ln x 0=a >1-1e ,即-a <1e-1,所以h (x 0)<而h (x )显然是增函数,∴0<x 0<1e ,∴1x 0>e ,∴h (e)=e +1.综上,当a >1-1e 时,f (x )>e +1.考点二不等式恒成立与存在性中的“隐零点”【例题选讲】[例1]已知函数f (x )=ax +x ln x (a ∈R ).(1)若函数f (x )在区间[e ,+∞)上为增函数,求a 的取值范围;(2)当a =1且k ∈Z 时,不等式k (x -1)<f (x )在x ∈(1,+∞)上恒成立,求k 的最大值.解析(1)∵函数f (x )在区间[e ,+∞)上为增函数,∴f ′(x )=a +ln x +1≥0在区间[e ,+∞)上恒成立,∴a ≥(-ln x -1)max =-2,∴a ≥-2.∴a 的取值范围是[-2,+∞).(2)当a =1时,f (x )=x +x ln x ,k ∈Z 时,不等式k (x -1)<f (x )在x ∈(1,+∞)上恒成立,∴k min,令g (x )=x +x ln x x -1,则g ′(x )=x -ln x -2(x -1)2,令h (x )=x -ln x -2(x >1).则h ′(x )=1-1x =x -1x >0,∴h (x )在(1,+∞)上单调递增,∵h (3)=1-ln3<0,h (4)=2-2ln2>0,存在x 0∈(3,4),使h (x 0)=0,即当1<x <x 0时,h (x )<0,即g ′(x )<0,当x >x 0时,h (x )>0,即g ′(x )>0,g (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增.令h (x 0)=x 0-ln x 0-2=0,即ln x 0=x 0-2,g (x )min =g (x 0)=x 0(1+ln x 0)x 0-1=x 0(1+x 0-2)x 0-1=x 0∈(3,4).k <g (x )min =x 0∈(3,4),且k ∈Z ,∴k max =3.[例2](2020·新高考Ⅰ)已知函数f (x )=a e x -1-ln x +ln a .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积;(2)若f (x )≥1,求a 的取值范围.解析(1)当a =e 时,f (x )=e x -ln x +1,∴f ′(x )=e x -1x,∴f ′(1)=e -1.∵f (1)=e +1,∴切点坐标为(1,1+e),∴曲线y =f (x )在点(1,f (1))处的切线方程为y -e -1=(e -1)·(x -1),即y =(e -1)x +2,∴切线与两坐标轴的交点坐标分别为(0,2)∴所求三角形面积为12×2×|-2e -1|=2e -1.(2)解法一(隐零点)∵f (x )=a e x -1-ln x +ln a ,∴f ′(x )=a e x -1-1x,且a >0.设g (x )=f ′(x ),则g ′(x )=a e x -1+1x 2>0,∴g (x )在(0,+∞)上单调递增,即f ′(x )在(0,+∞)上单调递增,当a =1时,f ′(1)=0,则f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴f (x )min =f (1)=1,∴f (x )≥1成立;当a >1时,1a<1,∴11e a<1,∴f ′(1)=11(e 1)(1)0a a a ---<,∴存在唯一x 0>0,使得f ′(x 0)=a e x 0-1-1x 0=0,且当x ∈(0,x 0)时f ′(x )<0,当x ∈(x 0,+∞)时f ′(x )>0,∴a e x 0-1=1x 0,∴ln a +x 0-1=-ln x 0,因此f (x )min =f (x 0)=a e x 0-1-ln x 0+ln a =1x 0+ln a +x 0-1+ln a ≥2ln a -1+21x 0·x 0=2ln a +1>1,∴f (x )>1,∴f (x )≥1恒成立;当0<a <1时,f (1)=a +ln a <a <1,∴f (1)<1,f (x )≥1不恒成立.综上所述,a 的取值范围是[1,+∞).解法二(同构)∵f (x )=a e x -1-ln x +f (x )=a e x -1-ln x +ln a =e ln a +x -1-ln x +ln a ≥1等价于e ln a +x -1+ln a +x -1≥ln x +x =e lnx +ln x ,令g (x )=e x +x ,上述不等式等价于g (ln a +x -1)≥g (ln x ),显然g (x )为单调递增函数,∴又等价于ln a +x -1≥ln x ,即ln a ≥ln x -x +1,令h (x )=ln x -x +1,则h ′(x )=1x -1=1-x x,在(0,1)上h ′(x )>0,h (x )单调递增;在(1,+∞)上h ′(x )<0,h (x )单调递减,∴h (x )max =h (1)=0,ln a ≥0,即a ≥1,∴a 的取值范围是[1,+∞).[例3]已知函数f (x )=ln x -kx (k ∈R ),g (x )=x (e x -2).(1)若f (x )有唯一零点,求k 的取值范围;(2)若g (x )-f (x )≥1恒成立,求k 的取值范围.解析(1)由f (x )=ln x -kx 有唯一零点,可得方程ln x -kx =0,即k =ln xx有唯一实根,令h (x )=ln xx ,则h ′(x )=1-ln x x 2,由h ′(x )>0,得0<x <e ;由h ′(x )<0,得x >e ,∴h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减.∴h (x )≤h (e)=1e ,又h (1)=0,∴当0<x <1时,h (x )<0;又当x >e 时,h (x )=ln xx,则h (x )=ln xx的大致图象如图所示,可知,k =1e或k ≤0.(2)∵x (e x -2)-(ln x -kx )≥1恒成立,且x >0,∴k ≥1+ln x x-e x+2恒成立,令φ(x )=1+ln x x -e x +2,则φ′(x )=1x ·x -(1+ln x )x 2-e x =-ln x -x 2e xx 2,令μ(x )=-ln x -x 2e x ,则μ′(x )=-1x -(2x e x +x 2e x )=-1x-x e x (2+x )<0(x >0),∴μ(x )在(0,+∞)上单调递减,又1-12e e ->0,μ(1)=-e<0,由函数零点存在定理知,存在唯一零点x 0μ(x 0)=0,即-ln x 0=x 200e x ,两边取对数可得ln(-ln x 0)=2ln x 0+x 0,即ln(-ln x 0)+(-ln x 0)=x 0+ln x 0,由函数y =x +ln x 为增函数,可得x 0=-ln x 0,又当0<x <x 0时,μ(x )>0,φ′(x )>0;当x >x 0时,μ(x )<0,φ′(x )<0,∴φ(x )在(0,x 0)上单调递增,在(x 0,+∞)上单调递减,∴φ(x )≤φ(x 0)=1+ln x 0x 0-0e x+2=1-x 0x 0-1x 0+2=1,∴k ≥φ(x 0)=1,即k 的取值范围为k ≥1.[例4]已知f (x )=a sin x ,g (x )=ln x ,其中a ∈R ,y =g -1(x )是y =g (x )的反函数.(1)若0<a ≤1,证明:函数G (x )=f (1-x )+g (x )在区间(0,1)上是增函数;(2)设F (x )=g -1(x )-mx 2-2(x +1)+b ,若对任意的x >0,m <0有F (x )>0恒成立,求满足条件的最小整数b 的值.解析(1)由题意知G (x )=a sin(1-x )+ln x ,G ′(x )=1x-a cos(1-x )(x >0),当x ∈(0,1),0<a ≤1时,1x >1,0<cos(1-x )<1,∴a cos(1-x )<1,∴G ′(x )>0,故函数G (x )在区间(0,1)上是增函数.(2)解法一由对任意的x >0,m <0有F (x )=g -1(x )-mx 2-2(x +1)+b =e x -mx 2-2x +b -2>0恒成立,即b >-e x +mx 2+2x +2恒成立,令h (x )=-e x +mx 2+2x +2,则h ′(x )=-e x +2mx +2,h ′′(x )=-e x +2m <0,∴h ′(x )=-e x +2mx +2在(0,+∞)上单调递减,h ′(x )max <h ′(0)=0,且当x →+∞时,h ′(x )→-∞,则必存在x 0,使得h (x 0)=0,即-0e x +2mx 0+2=0,∴m =0e x -22x 0,∴h (x )在(0,x 0)上单调递增,在(x 0,+∞)上单调递减,∴h (x )max =h (x 0)=-0e x+2mx 0+2,即h (x 0)=-0e x +0e x -22x 0·x 20+2x 0+20e x+x 0+2,令m (x )x +x +2,x ∈(0,ln2),则m ′(x )=12(x -1)e x +1,令n (x )=12(x -1)e x +1,则n ′(x )=12x e x >0,∴m ′(x )在(0,ln2)上单调递增,∴m ′(x )>m ′(0)=12>0,∴m (x )在(0,ln2)上单调递增,∴m (x )<m (ln2)=2ln2,∴b ≥2ln2,又b 为整数,∴最小整数b 的值为2.解法二由对任意的x >0,m <0有F (x )=g -1(x )-mx 2-2(x +1)+b =e x -mx 2-2x +b -2>0恒成立,即x 2m -e x +2x -b +2<0恒成立,令h (m )=x 2m -e x +2x -b +2,h ′(m )=x 2≥0,∴h (m )=x 2m -e x +2x -b +2在(-∞,0)上单调递增,即∴h (m )<h (0)=-e x+2x -b +2<0即可,即b >-e x+2x +2令m (x )=-e x +2x +2,∵m ′(x )=-e x+2,令m ′(x )=0,解得x =ln 2.∴m (x )在(0,ln 2)上单调递增,在(ln 2,+∞)上单调递减,∴m (x )max =m (ln 2)=2ln 2,∴b ≥2ln 2,又b 为整数,∴最小整数b 的值为2.[例5]已知函数f (x )=-2(x +a )ln x +x 2-2ax -2a 2+a ,其中a >0.(1)设g (x )是f (x )的导函数,讨论g (x )的单调性;(2)证明:存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.解析(1)由已知,函数f (x )的定义域为(0,+∞),g (x )=f ′(x )=2(x -a )-2ln x -,∴g ′(x )=2-2x +2a x 2.当0<a <14时,g (x )上单调递增,上单调递减;当a ≥14时,g (x )在(0,+∞)上单调递增.(2)由f ′(x )=2(x -a )-2ln x -=0,解得a =x -1-ln x1+x-1,令φ(x )=-ln x +x 2-x -+x -1-ln x 1+x -1,则φ(1)=1>0,φ(e)=-e (e -2)1+e -1-<0.故存在x 0∈(1,e),使得φ(x 0)=0.令a 0=x 0-1-ln x 01+x -1,u (x )=x -1-ln x (x ≥1),由u ′(x )=1-1x≥0知,函数u (x )在(1,+∞)上单调递增.∴0=u (1)1+1<u (x 0)1+x -10=a 0<u (e)1+e -1=e -21+e-1<1.即a 0∈(0,1),当a =a 0时,有f ′(x 0)=0,f (x 0)=φ(x 0)=0.因为f ′(x )在(1,+∞)上单调递增,故当x ∈(1,x 0)时,f ′(x )<0,从而f (x )>f (x 0)=0;当x ∈(x 0,+∞)时,f ′(x )>0,从而f (x )>f (x 0)=0.∴当x ∈(1,+∞)时,f (x )≥0.综上所述,存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.【对点训练】1.已知函数f (x )=x ln x .(1)求曲线y =f (x )在点(e ,f (e ))处的切线方程;(2)若当x >1时,f (x )+x >k (x -1)恒成立,求正整数k 的最大值.1.解(1)函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1,因为f ′(e )=2,f (e )=e ,所以曲线y =f (x )在点(e ,f (e ))处的切线方程为y -e =2(x -e ),即2x -y -e =0.(2)由f (x )+x >k (x -1),得x ln x +x >k (x -1).即k <x ln x +x x -1对于x >1恒成立,令g (x )=x ln x +x x -1,只需k <g (x )min ,g ′(x )=(x -1)(ln x +2)-x ln x -x (x -1)2=x -ln x -2(x -1)2,令u (x )=x -ln x -2,则u ′(x )=1-1x =x -1x>0,所以u (x )=x -ln x -2在(1,+∞)上单调递增,因为u (2)=-ln 2<0,u (3)=1-ln 3<0,u (4)=2-ln 4>0,所以∃x 0∈(3,4),使得u (x 0)=x 0-ln x 0-2=0,且当1<x <x 0时,g ′(x )<0,g (x )单调递减,当x >x 0时,g ′(x )>0,g (x )单调递增,所以g (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增,所以g (x )min =g (x 0)=x 0ln x 0+x 0x 0-1=x 0(x 0-2)+x 0x 0-1=x 0∈(3,4),又因为k ∈N *,所以k max =3.2.(2012全国Ⅱ)设函数f (x )=e x -ax -2.(1)求f (x )的单调区间;(2)若a =1,k 为整数,且当x >0时,(x -k )f ′(x )+x +1>0,求k 的最大值.2.解析(1)f (x )的定义域为(-∞,+∞),f ′(x )=e x -a .若a ≤0,则f ′(x )>0,所以f (x )在(-∞,+∞)单调递增.若a >0,则当x ∈(-∞,ln a )时,f ′(x )<0,当x ∈(ln a ,+∞)时,f ′(x )>0.所以f (x )在(-∞,ln a )单调递减,在(ln a ,+∞)单调递增.(2)由于a =1,所以(x -k )f´(x )+x +1=(x -k )(e x -1)+x +1.故当x >0时,(x -k )f´(x )+x +1>0等价于k <x +1e x -1+x (x >0)①令g (x )=x +1e x -1+x ,则g ′(x )=e x (e x -x -2)(e x -1)2.由(1)知,函数h (x )=e x -x -2在(0,+∞)单调递增.而h (1)<0,h (2)>0,所以h (x )在(0,+∞)存在唯一的零点,故g ′(x )在(0,+∞)存在唯一的零点,设此零点为x 0,则x 0∈(1,2).当x ∈(0,x 0)时,g ′(x )<0,;当x ∈(x 0,+∞)时,g ′(x )>0,所以g (x )在(0,+∞)的最小值为g (x 0),又由g ′(x 0)=0,可得0e x =x 0+2,所以g (x 0)=x 0+1∈(2,3).,故①等价于k <g (x 0),故整数k 的最大值为2.3.已知函数f (x )=(x -a )e x (a ∈R ).(1)讨论f (x )的单调性;(2)当a =2时,设函数g (x )=f (x )+ln x -x -b ,b ∈Z ,若g (x )≤0对任意的x b 的最小值.3.解析(1)由题意,函数f (x )=(x -a )e x (a ∈R ),可得f ′(x )=(x -a +1)e x ,当x ∈(-∞,a -1)时,f ′(x )<0;当x ∈(a -1,+∞)时,f ′(x )>0,故函数f (x )在(-∞,a -1)上单调递减,在(a -1,+∞)上单调递增.(2)由函数g (x )=f (x )+ln x -x -b =(x -2)e x +ln x -x -b (b ∈Z ),因为g (x )≤0对任意的x b ≥(x -2)e x +ln x -x 对任意的x令函数h (x )=(x -2)e x +ln x -x ,则h ′(x )=(x -1)e x +1x-1=(x -x因为x x -1<0.再令函数t (x )=e x -1x ,可得t ′(x )=e x +1x2>0,所以函数t (x )单调递增.因为e 12-2<0,t (1)=e -1>0,所以一定存在唯一的x 0使得t (x 0)=0,即e x 0=1x 0,即x 0=-ln x 0,所以h (x )(x 0,1)上单调递减,所以h (x )max =h (x 0)=(x 0-2)e x 0+ln x 0-x 0=1-0(-4,-3).因为b ∈Z ,所以b 的最小值为-3.4.已知函数f (x )=x -ln x -e x x.(1)求f (x )的最大值;(2)若f (x )x -bx ≥1恒成立,求实数b 的取值范围.4.解析(1)f (x )=x -ln x -e x x ,定义域为(0,+∞),f ′(x )=1-1x -e x (x -1)x 2=(x -1)(x -e x )x2.令g (x )=x -e x (x >0),则g ′(x )=1-e x <0,所以g (x )在(0,+∞)上单调递减,故g (x )<g (0)=-1<0,当x∈(0,1)时,f′(x)>0,f(x)在(0,1)上单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)在(1,+∞)上单调递减.所以f(x)max=f(1)=1-e.(2)f(x)x-bx≥1,⇔-ln x+x-e xx+x e x+e xx-bx≥1,⇔x e x-ln x-1+xx≥b恒成立,令φ(x)=x e x-ln x-1+xx,则φ′(x)=x2e x+ln xx2.令h(x)=x2e x+ln x,则h(x)在(0,+∞)上单调递增,x→0,h(x)→-∞,且h(1)=e>0,所以h(x)在(0,1)上存在零点x0,即h(x0)=x20e x0+ln x0=0,x20e x0+ln x0=0⇔x0e x0=-ln x0x0=ln1x0 ),由于y=x e x在(0,+∞)上单调递增,故x0=ln 1x0=-ln x0,即e x0=1x0,所以φ(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,φ(x)min=φ(x0)=x0e x0-ln x0-1+x0x0=1+x0-1+x0x0=2,因此b≤2,即实数b的取值范围是(-∞,2].5.设函数f(x)=e x+ax,a∈R.(1)若f(x)有两个零点,求a的取值范围;(2)若对任意的x∈[0,+∞)均有2f(x)+3≥x2+a2,求a的取值范围.5.解析(1)由题意得f′(x)=e x+a,当a≥0时,f′(x)>0,此时函数f(x)在R上单调递增,不符合题意;当a<0时,令f′(x)=0,得x=ln(-a),函数f(x)在(-∞,ln(-a))上单调递减,在(ln(-a),+∞)上单调递增,则f(ln(-a))为f(x)的极小值,要使函数f(x)有两个零点,则f(ln(-a))<0,解得a<-e,所以a的取值范围为(-∞,-e).(2)令g(x)=2f(x)+3-x2-a2=2e x-(x-a)2+3,x≥0,则g′(x)=2(e x-x+a).设h(x)=2(e x-x+a),则h′(x)=2(e x-1)≥0.所以h(x)在[0,+∞)上单调递增,且h(0)=2(a+1).①当a+1≥0,即a≥-1时,g′(x)≥0恒成立,即函数g(x)在[0,+∞)上单调递增,所以g(0)=5-a2≥0,解得-5≤a≤5.又a≥-1,所以-1≤a≤5.②当a+1<0,即a<-1时,则存在x0>0,使h(x0)=0且当x∈(0,x0)时,h(x)<0,即g′(x)<0,函数g(x)在(0,x0)上单调递减;当x∈(x0,+∞)时,h(x)>0,即g′(x)>0,函数g(x)在(x0,+∞)上单调递增,所以g(x)min=g(x0)=2e x0-(x0-a)2+3.又h(x0)=2(e x0-x0+a)=0,从而g(x)min=g(x0)=2e x0-x20+2ax0-a2+3=2x0-2a-x20+2ax0-a2+3=-x20+2(a+1)x0-(a+3)(a-1)=(-x0+a+3)(x0-a+1)≥0,即a-1≤x0≤a+3.由于x0是单调增函数h(x)=2(e x-x+a)在[0,+∞)上的唯一零点,要使得a-1≤x0≤a+3(a<-1),则只需0≤x0≤a+3,故只需保证g′(a+3)=2[e a+3-2(a+3)+2a]≥0,即e a+3≥3,故实数,ln3-3≤a<-1.综上所述,a的取值范围为[ln3-3,5].。

导数与函数的零点

导数与函数的零点

仅有一个交点,即f(x)=2x-6+ln x在(0,+∞)上
有故且函仅 数f有(x有)共1有个2零个点零,
点.
高二数学名师 课程
3.已知函数f(x)=ex-2x+a有零点,则a的取值,2l范n 2围 2
是解:函数f(x)=e.x-2x+a有零点即ex-2x+a=0有根,即 a=2令x-gex(有x)=根2x, -ex,则a的范围即为函数g(x
只有一个零点,求实数 k 的值. [解析] 解法一:f(x)=kx-ln x-1,f′(x)=k-1x=kx-x 1(x>0,k>0), 当 x=1k时,f′(x)=0;当 0<x<1k时,f′(x)<0; 当 x>1k时,f′(x)>0.
∴f(x)在(0,1k)上单调递减,在(1k,+∞)上单调递增, ∴f(x)min=f(1k)=ln k, ∵f(x)有且只有一个零点, ∴ln k=0,∴k=1. 解法二:由题意知方程 kx-ln x-1=0 仅有一个实根, 由 kx-ln x-1=0 得 k=ln xx+1(x>0), 令 g(x)=ln xx+1(x>0),g′(x)=-xln2 x, 当 x=1 时,g′(x)=0;当 0<x<1 时,g′(x)>0;
当x∈(1,+∞)时,u′(x)>0, 所以u(x)在(1,+∞)上单调递增, 所以x=1时,u(x)取得极小值u(1)=-e, 又x→+∞时,u(x)→+∞; x<2时,u(x)<0,所以-e<m<0.
方法二:g(x)=f(x)-3ex-m=ex(x-2)-m, g′(x)=ex·(x-2)+ex=ex(x-1), 当x∈(-∞,1)时,g′(x)<0,所以g(x)在(-∞,1)上单调递减, 当x∈(1,+∞)时,g′(x)>0,所以g(x)在(1,+∞)上单调递增, 所以x=1时,g(x)取得极小值g(1)=-e-m, 又x→-∞时,g(x)→-m,

导数与函数的零点

导数与函数的零点考点一判断零点的个数【例1】已知函数f(x)=ln x-x2+ax,a∈R.(1)证明ln x≤x-1;(2)若a≥1,讨论函数f(x)的零点个数.【训练1】已知函数f(x)=13x3-a(x2+x+1).(1)若a=3,求f(x)的单调区间;(2)证明:f(x)只有一个零点.考点二根据零点个数求参数的值(范围)【例2】函数f(x)=ax+x ln x在x=1处取得极值.(1)求f(x)的单调区间;(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.【训练2】已知函数f(x)=1x2+a ln x(a∈R).(1)求f(x)的单调递减区间;(2)已知函数f(x)有两个不同的零点,求实数a的取值范围.考点三函数零点的综合问题【例3】设函数f(x)=e2x-a ln x. (1)讨论f(x)的导函数f′(x)零点的个数;(2)证明:当a>0时,f(x)≥2a+a ln 2 a.【训练3】已知函数f(x)=2sin x-x cos x-x,f′(x)为f(x)的导数.(1)证明:f′(x)在区间(0,π)存在唯一零点;(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.强化训练一、选择题1.函数f(x)=ln x-x的零点个数是( )A.3B.2C.1D.02.已知函数f(x)的定义域为[-1,4],部分对应值如下表:x -1023 4f(x)12020f (x )的导函数y =f ′(x )的图象如图所示.当1<a <2时,函数y =f (x )-a 的零点的个数为( ) A.1 B.2C.3D.43.若方程8x =x 2+6ln x +m 仅有一个解,则实数m 的取值范围为( ) A.(-∞,7) B.(12-6ln 3,+∞)C.(15-6ln 3,+∞)D.(-∞,7)∪(15-6ln 3,+∞)二、填空题 4.若函数f (x )=ax -ae x+1(a <0)没有零点,则实数a 的取值范围为________.5.已知函数f (x )=x 3-x 2+ax -a 存在极值点x 0,且f (x 1)=f (x 0),其中x 1≠x 0,则x 1+2x 0=________.三、解答题6.已知x =1是函数f (x )=13ax 3-32x 2+(a +1)x +5的一个极值点.(1)求函数f (x )的解析式;(2)若曲线y =f (x )与直线y =2x +m 有三个交点,求实数m 的取值范围.7.已知函数f (x )=2ln x -x 2+ax (a ∈R),若函数g (x )=f (x )-ax +m 在⎣⎡⎦⎤1e ,e 上有两个零点,求实数m 的取值范围.8.已知函数f (x )=e x +(a -e)x -ax 2. (1)当a =0时,求函数f (x )的极值;(2)若函数f (x )在区间(0,1)内存在零点,求实数a 的取值范围.9.设函数f (x )=ln x -a (x -1)e x ,其中a ∈R. (1)若a ≤0,讨论f (x )的单调性; (2)若0<a <1e ,10.(多填题)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ.当λ=2时,不等式f (x )<0的解集是________;若函数f (x )恰有2个零点,则λ的取值范围是________.答 案 导数与函数的零点考点一判断零点的个数【例1】已知函数f (x )=ln x -x 2+ax ,a ∈R. (1)证明ln x ≤x -1;(2)若a ≥1,讨论函数f (x )的零点个数.(1)证明 令g (x )=ln x -x +1(x >0),则g (1)=0, g ′(x )=1x -1=1-x x,可得x ∈(0,1)时,g ′(x )>0,函数g (x )单调递增; x ∈(1,+∞)时,g ′(x )<0,函数g (x )单调递减. ∴当x =1时,函数g (x )取得极大值也是最大值, ∴g (x )≤g (1)=0,即ln x ≤x -1.(2)解 f ′(x )=1x -2x +a =-2x 2+ax +1x,x >0.令-2x 20+ax 0+1=0,解得x 0=a +a 2+84(负值舍去),在(0,x 0)上,f ′(x )>0,函数f (x )单调递增; 在(x 0,+∞)上,f ′(x )<0,函数f (x )单调递减. ∴f (x )max =f (x 0).当a =1时,x 0=1,f (x )max =f (1)=0,此时函数f (x )只有一个零点x =1. 当a >1时,f (1)=a -1>0,f ⎝⎛⎭⎫12a =ln 12a -14a 2+12<12a -1-14a 2+12 =-⎝⎛⎭⎫12a -122-14<0,f (2a )=ln 2a -2a 2<2a -1-2a 2=-2⎝⎛⎭⎫a -122-12<0. ∴函数f (x )在区间⎝⎛⎭⎫12a ,1和区间(1,2a )上各有一个零点. 综上可得:当a =1时,函数f (x )只有一个零点x =1; 当a >1时,函数f (x )有两个零点.规律方法1.利用导数求函数的零点常用方法:(1)构造函数g (x )(其中g ′(x )易求,且g ′(x )=0可解),利用导数研究g (x )的性质,结合g (x )的图象,判断函数零点的个数.(2)利用零点存在定理,先判断函数在某区间有零点,再结合图象与性质确定函数有多少个零点. 2.根据参数确定函数零点的个数,解题的基本思想是“数形结合”,即通过研究函数的性质(单调性、极值、函数值的极限位置等),作出函数的大致图象,然后通过函数图象得出其与x 轴交点的个数,或者两个相关函数图象交点的个数,基本步骤是“先数后形”. 【训练1】已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间; (2)证明:f (x )只有一个零点.(1)解 当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0,解得x =3-23或x =3+2 3.当x ∈(-∞,3-23)∪(3+23,+∞)时,f ′(x )>0; 当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )在(-∞,3-23),(3+23,+∞)单调递增,在(3-23,3+23)单调递减. (2)证明 由于x 2+x +1>0,所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2(x 2+2x +3)(x 2+x +1)2≥0,仅当x =0时g ′(x )=0,所以g (x )在(-∞,+∞)单调递增.故g(x)至多有一个零点,从而f(x)至多有一个零点.又f(3a-1)=-6a2+2a-13=-6⎝⎛⎭⎫a-162-16<0,f(3a+1)=13>0,故f(x)有一个零点.综上,f(x)只有一个零点.考点二根据零点个数求参数的值(范围)【例2】函数f(x)=ax+x ln x在x=1处取得极值.(1)求f(x)的单调区间;(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.解(1)函数f(x)=ax+x ln x的定义域为(0,+∞).f′(x)=a+ln x+1,因为f′(1)=a+1=0,解得a=-1,当a=-1时,f(x)=-x+x ln x,f′(x)=ln x,令f′(x)>0,解得x>1;令f′(x)<0,解得0<x<1.所以f(x)在x=1处取得极小值,f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,可转化为y=f(x)与y=m+1图象有两个不同的交点.由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,当0<x<e时,f(x)=x(-1+ln x)<0;当x>e时,f(x)>0.当x>0且x→0时,f(x)→0;当x→+∞时,显然f(x)→+∞.由图象可知,-1<m+1<0,即-2<m<-1.所以m的取值范围是(-2,-1).规律方法 1.函数零点个数可转化为图象的交点个数,根据图象的几何直观求解.2.与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点判断函数的大致图象,进而求出参数的取值范围.【训练2】已知函数f(x)=1x2+a ln x(a∈R).(1)求f(x)的单调递减区间;(2)已知函数f(x)有两个不同的零点,求实数a的取值范围.解(1)由题意可得,f′(x)=-2x3+ax=ax2-2x3(x>0),当a≤0时,f′(x)<0,函数f(x)在(0,+∞)上单调递减,当a >0时,f ′(x )=a ⎝⎛⎭⎫x +2a ⎝⎛⎭⎫x -2a x 3,由f ′(x )≤0,解得0<x ≤2a, ∴此时函数f (x )的单调递减区间为⎝⎛⎭⎫0,2a a . 综上可得:a ≤0时,函数f (x )的单调递减区间为(0,+∞), a >0时,函数f (x )的单调递减区间为⎝⎛⎭⎫0,2a a . (2)由(1)可得若函数f (x )有两个不同的零点,则必须满足a >0, 且f ⎝⎛⎭⎫2a =a 2+a 2ln 2a<0, 化为ln 2a <-1,解得a >2e.所以实数a 的取值范围是(2e ,+∞). 考点三 函数零点的综合问题 【例3】 设函数f (x )=e 2x -a ln x . (1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +a ln 2a.(1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -ax (x >0).当a ≤0时,f ′(x )>0,f ′(x )没有零点;当a >0时,因为y =e 2x 单调递增,y =-ax 单调递增,所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,当b 满足0<b <a 4,且b <12ln 2时,f ′(b )<0,故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0, 当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0. 故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以当x =x 0时,f (x )取得最小值,最小值为f (x 0). 由于2e2x 0-ax 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a. 故当a >0时,f (x )≥2a +a ln 2a.规律方法 1.在(1)中,当a >0时,f ′(x )在(0,+∞)上单调递增,从而f ′(x )在(0,+∞)上至多有一个零点,问题的关键是找到b ,使f ′(b )<0.2.由(1)知,函数f ′(x )存在唯一零点x 0,则f (x 0)为函数的最小值,从而把问题转化为证明f (x 0)≥2a +a ln 2a.【训练3】已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数. (1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.(1)证明 设g (x )=f ′(x ),则g (x )=cos x +x sin x -1,g ′(x )=x cos x . 当x ∈⎝⎛⎭⎫0,π2时,g ′(x )>0; 当x ∈⎝⎛⎭⎫π2,π时,g ′(x )<0,所以g (x )在⎝⎛⎭⎫0,π2上单调递增,在⎝⎛⎭⎫π2,π上单调递减. 又g (0)=0,g ⎝⎛⎭⎫π2>0,g (π)=-2, 故g (x )在(0,π)存在唯一零点. 所以f ′(x )在区间(0,π)存在唯一零点. (2)解 由题设知f (π)≥a π,f (π)=0,可得a ≤0. 由(1)知,f ′(x )在(0,π)只有一个零点,设为x 0, 当x ∈(0,x 0)时,f ′(x )>0;当x ∈(x 0,π)时,f ′(x )<0, 所以f (x )在(0,x 0)上单调递增,在(x 0,π)上单调递减. 又f (0)=0,f (π)=0,所以当x ∈[0,π]时,f (x )≥0. 又当a ≤0,x ∈[0,π]时,ax ≤0,故f (x )≥ax . 因此,a 的取值范围是(-∞,0].强化训练一、选择题1.(2020·重庆一中训练)函数f (x )=ln x -x 的零点个数是( ) A.3B.2C.1D.0解析 f ′(x )=1x -12x =2-x 2x ,定义域(0,+∞).当0<x <4时,f ′(x )>0;当x >4时,f ′(x )<0. ∴f (x )在(0,4)上递增,在(4,+∞)上递减, 则f (x )max =f (4)=ln 4-2=ln4e 2<0. ∴f (x )<0恒成立,故f (x )没有零点. 答案 D2.已知函数f (x )的定义域为[-1,4],部分对应值如下表:x -1023 4f(x)12020f(x)的导函数y=f′(x)( )A.1B.2C.3D.4解析根据导函数图象,知2是函数的极小值点,函数y=f(x)的大致图象如图所示.由于f(0)=f(3)=2,1<a<2,所以y=f(x)-a的零点个数为4.答案 D3.若方程8x=x2+6ln x+m仅有一个解,则实数m的取值范围为()A.(-∞,7)B.(12-6ln 3,+∞)C.(15-6ln 3,+∞)D.(-∞,7)∪(15-6ln 3,+∞)解析方程8x=x2+6ln x+m仅有一个解等价于函数m(x)=x2-8x+6ln x+m(x>0)的图象与x 轴有且只有一个交点.又m′(x)=2x-8+6x=2(x-1)(x-3)x.当x∈(0,1)时,m′(x)>0,m(x)是增函数;当x∈(1,3)时,m′(x)<0,m(x)是减函数;当x∈(3,+∞)时,m′(x)>0,m(x)是增函数,∴m(x)极大值=m(1)=m-7,m(x)极小值=m(3)=m+6ln 3-15.∵当x趋近于0时,m(x)趋近于负无穷,当x趋近于正无穷时,m(x)趋近于正无穷,∴要使m(x)的图象与x轴有一个交点,必须有m(x)极大值=m-7<0或m(x)极小值=m+6ln 3-15>0,故m<7或m>15-6ln 3.答案 D二、填空题4.若函数f(x)=ax-ae x+1(a<0)没有零点,则实数a的取值范围为________.解析f′(x)=a e x-(ax-a)e xe2x=-a(x-2)e x(a<0).当x<2时,f′(x)<0;当x>2时,f′(x)>0,∴当x=2时,f(x)有极小值f(2)=ae2+1.若使函数f(x)没有零点,当且仅当f(2)=ae2+1>0,解之得a >-e 2,因此-e 2<a <0. 答案 (-e 2,0)5.(2020·湖南长郡中学检测)已知函数f (x )=x 3-x 2+ax -a 存在极值点x 0,且f (x 1)=f (x 0),其中x 1≠x 0,则x 1+2x 0=________.解析 由f (x )=x 3-x 2+ax -a ,得f ′(x )=3x 2-2x +a . ∵x 0为f (x )的极值点,知3x 20-2x 0+a =0.① 因为f (x 1)=f (x 0),其中x 1≠x 0,所以x 31-x 21+ax 1-a =x 30-x 20+ax 0-a , 化为x 21+x 1x 0+x 20-(x 1+x 0)+a =0,把a =-3x 20+2x 0代入上述方程可得x 21+x 1x 0+x 20-(x 1+x 0)-3x 20+2x 0=0, 化为x 21+x 1x 0-2x 20+x 0-x 1=0,即(x 1-x 0)(x 1+2x 0-1)=0, ∵x 1-x 0≠0,∴x 1+2x 0=1. 答案 1 三、解答题6.已知x =1是函数f (x )=13ax 3-32x 2+(a +1)x +5的一个极值点.(1)求函数f (x )的解析式;(2)若曲线y =f (x )与直线y =2x +m 有三个交点,求实数m 的取值范围. 解 (1)f ′(x )=ax 2-3x +a +1,由f ′(1)=0,得a =1, ∴f (x )=13x 3-32x 2+2x +5.(2)曲线y =f (x )与直线y =2x +m 有三个交点,则g (x )=13x 3-32x 2+2x +5-2x -m =13x 3-32x 2+5-m 有三个零点.由g ′(x )=x 2-3x =0,得x =0或x =3.由g ′(x )>0,得x <0或x >3;由g ′(x )<0,得0<x <3.∴函数g (x )在(-∞,0)和(3,+∞)上为增函数,在(0,3)上为减函数. 要使g (x )有三个零点,只需⎩⎪⎨⎪⎧g (0)>0,g (3)<0,解得12<m <5.故实数m 的取值范围为⎝⎛⎭⎫12,5. 7.已知函数f (x )=2ln x -x 2+ax (a ∈R),若函数g (x )=f (x )-ax +m 在⎣⎡⎦⎤1e ,e 上有两个零点,求实数m 的取值范围. 解 g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x. 因为x ∈⎣⎡⎦⎤1e ,e ,所以当g ′(x )=0时,x =1.当1e≤x <1时,g ′(x )>0;当1<x ≤e 时,g ′(x )<0. 故g (x )在x =1处取得极大值g (1)=m -1.又g ⎝⎛⎭⎫1e =m -2-1e 2,g (e)=m +2-e 2, g (e)-g ⎝⎛⎭⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝⎛⎭⎫1e , 所以g (x )在⎣⎡⎦⎤1e ,e 上的最小值是g (e).g (x )在⎣⎡⎦⎤1e ,e 上有两个零点的条件是⎩⎪⎨⎪⎧g (1)=m -1>0,g ⎝⎛⎭⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2, 所以实数m 的取值范围是⎝⎛⎦⎤1,2+1e 2. 8.已知函数f (x )=e x +(a -e)x -ax 2.(1)当a =0时,求函数f (x )的极值;(2)若函数f (x )在区间(0,1)内存在零点,求实数a 的取值范围.解 (1)当a =0时,f (x )=e x -e x ,则f ′(x )=e x -e ,f ′(1)=0,当x <1时,f ′(x )<0,f (x )单调递减;当x >1时,f ′(x )>0,f (x )单调递增,所以f (x )在x =1处取得极小值,且极小值为f (1)=0,无极大值.(2)由题意得f ′(x )=e x -2ax +a -e ,设g (x )=e x -2ax +a -e ,则g ′(x )=e x -2a .若a =0,则f (x )的最大值f (1)=0,故由(1)得f (x )在区间(0,1)内没有零点.若a <0,则g ′(x )=e x -2a >0,故函数g (x )在区间(0,1)内单调递增.又g (0)=1+a -e<0,g (1)=-a >0,所以存在x 0∈(0,1),使g (x 0)=0.故当x ∈(0,x 0)时,f ′(x )<0,f (x )单调递减;当x ∈(x 0,1)时,f ′(x )>0,f (x )单调递增.因为f (0)=1,f (1)=0,所以当a <0时,f (x )在区间(0,1)内存在零点.若a >0,由(1)得当x ∈(0,1)时,e x >e x .则f (x )=e x +(a -e)x -ax 2>e x +(a -e)x -ax 2=a (x -x 2)>0,此时函数f (x )在区间(0,1)内没有零点.综上,实数a 的取值范围为(-∞,0).9.(2019·天津卷)设函数f (x )=ln x -a (x -1)e x ,其中a ∈R.(1)若a ≤0,讨论f (x )的单调性;(2)若0<a <1e, ①证明f (x )恰有两个零点;②设x 0为f (x )的极值点,x 1为f (x )的零点,且x 1>x 0,证明3x 0-x 1>2.(1)解由已知,f (x )的定义域为(0,+∞),且f ′(x )=1x -[a e x +a (x -1)e x ]=1-ax 2e x x. 因此当a ≤0时,1-ax 2e x >0,从而f ′(x )>0,所以f (x )在(0,+∞)内单调递增.(2)证明①由(1)知,f ′(x )=1-ax 2e x x. 令g (x )=1-ax 2e x ,由0<a <1e,知g (x )在(0,+∞)内单调递减. 又g (1)=1-a e>0,且g ⎝⎛⎭⎫ln 1a =1-a ⎝⎛⎭⎫ln 1a 2·1a=1-⎝⎛⎭⎫ln 1a 2<0, 故g (x )=0在(0,+∞)内有唯一解,从而f ′(x )=0在(0,+∞)内有唯一解,不妨设为x 0,则1<x 0<ln 1a. 当x ∈(0,x 0)时,f ′(x )=g (x )x >g (x 0)x=0, 所以f (x )在(0,x 0)内单调递增;当x ∈(x 0,+∞)时,f ′(x )=g (x )x <g (x 0)x=0, 所以f (x )在(x 0,+∞)内单调递减,因此x 0是f (x )的唯一极值点.令h (x )=ln x -x +1,则当x >1时,h ′(x )=1x-1<0, 故h (x )在(1,+∞)内单调递减,从而当x >1时,h (x )<h (1)=0,所以ln x <x -1,从而f ⎝⎛⎭⎫ln 1a =ln ⎝⎛⎭⎫ln 1a -a ⎝⎛⎭⎫ln 1a -1eln 1a=ln ⎝⎛⎭⎫ln 1a -ln 1a+1=h ⎝⎛⎭⎫ln 1a <0.又因为f (x 0)>f (1)=0,所以f (x )在(x 0,+∞)内有唯一零点.又f (x )在(0,x 0)内有唯一零点1,从而,f (x )在(0,+∞)内恰有两个零点.②由题意,⎩⎪⎨⎪⎧f ′(x 0)=0,f (x 1)=0,即⎩⎪⎨⎪⎧ax 20e x 0=1,ln x 1=a (x 1-1)e x 1, 从而ln x 1=x 1-1x 20e x 1-x 0,即e x 1-x 0=x 20ln x 1x 1-1. 因为当x >1时,ln x <x -1,又x 1>x 0>1,故e x 1-x 0<x 20(x 1-1)x 1-1=x 20,两边取对数, 得ln e x 1-x 0<ln x 20,于是x 1-x 0<2ln x 0<2(x 0-1),整理得3x 0-x 1>2.10.(多填题)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ.当λ=2时,不等式f (x )<0的解集是________;若函数f (x )恰有2个零点,则λ的取值范围是________.解析 当λ=2时,f (x )=⎩⎪⎨⎪⎧x -4,x ≥2,x 2-4x +3,x <2, 其图象如图(1).由图知f (x )<0的解集为(1,4).若f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ恰有2个零点有两种情况: ①二次函数有两个零点,一次函数无零点;②二次函数与一次函数各有一个零点.在同一平面直角坐标系中画出y =x -4与y =x 2-4x +3的图象,如图(2),平移直线x =λ,可得λ∈(1,3]∪(4,+∞).答案 (1,4) (1,3]∪(4,+∞)。

导数中的零点问题

导数中的零点问题题型一:零点的基本解法1、已知函数$f(x)=2\ln x-x+mx,x\in[2e,+\infty)$,求实数$m$的取值范围。

2、已知函数$f(x)=x\mathrm e^x-a(x+1)^2/2,x\in[0,+\infty)$有两个零点,求实数$a$的取值范围。

1) 若$a=\mathrm e$,求函数$f(x)$的极值。

2) 若函数$f(x)$有两个零点,求实数$a$的取值范围。

3、已知函数$f(x)=a\mathrm e^{2x}+(a-2)\mathrm e^x-x$。

1)讨论$f(x)$的单调性。

2)若$f(x)$有两个零点,求$a$的取值范围。

4、已知函数$f(x)=-(2ax+ax+(x-2)\mathrm e^x)/2,a>0$。

1)求函数$f(x)$的单调区间。

2)若函数$f(x)$存在$3$个零点,求$a$的取值范围。

题型二:切线与零点关系1、曲线在点$(1,1)$处的切线方程为;过点$(1,1)$处的切线方程为。

2、已知函数$f(x)=\frac{1}{2}x^3+mx+n(m,n\in\mathbb{R})$。

1)若$f(x)$在$x=1$处取得极大值,求实数$m$的取值范围。

2)若$f(1)=\frac{1}{2}$,且过点$p(2,1)$有且只有两条直线与曲线$y=f(x)$相切,求实数$m$的值。

3、已知函数$f(x)=ax^2+bx-3x$在$x=\pm 1$处取得极值。

1)求函数$f(x)$的解析式。

2)若过点$A(1,m)$可作曲线$y=f(x)$的三条切线,求实数$m$的取值范围。

题型三:极值与零点关系1、已知函数$f(x)=x^3-6x^2+3x+t(t\in\mathbb{R})$。

1)求函数$f(x)$的单调区间。

2)设函数$g(x)=f(x)$有三个不同的极值点,求$t$的取值范围。

3)设函数$g(x)=\mathrm e^{f(x)}$有三个不同的极值点,求$t$的取值范围。

导数与函数的零点问题考点与题型归纳

导数与函数的零点问题考点与题型归纳考点一判断函数零点的个数mx[典例]设函数f(x)=ln x+x,m∈R.讨论函数g(x)=f′(x)-3零点的个数.x3x1mx[解]由题设,g(x)=f′(x)-3=x-x2-3(x>0),13令g(x)=0,得m=-3x3+x(x>0).1设φ(x)=-3x3+x( x>0),则φ′(x)=-x2+1=-(x-1)(x+1),当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上单调递减.所以x= 1 是φ(x)的极大值点,也是φ(x)的最大值点.2所以φ(x)的最大值为φ(1)=3.由φ(0)=0,结合y=φ(x)的图象(如图),2可知①当m>3时,函数g(x)无零点;2②当m=3时,函数g(x)有且只有一个零点;2③当0< m<3时,函数g(x)有两个零点;④当m≤0 时,函数g( x)有且只有一个零点.综上所述,当m> 23时,函数g(x)无零点;2当m=3或m≤0 时,函数g(x)有且只有一个零点;2当0< m< 3时,函数g(x)有两个零点.[题组训练 ]1.已知函数 f(x)=3ln x -12x 3+2x -3ln 3 -42,求方程 f(x)=0 的解的个数. 13解:因为 f(x)=3ln x - 2x 2+2x - 3ln 3 - 2( x > 0),当 x ∈(0,3)时, f ′(x)>0,f(x)单调递增; 当 x ∈(3,+∞)时, f ′(x)<0,f(x)单调递减,93所以 f( x) max = f(3) = 3ln 3-2+ 6-3ln 3-2= 0,因为当 x →0 时,f(x)→-∞;当 x →+∞时, f(x)→-∞, 所以方程 f(x)=0 只有一个解.12.设 f(x)=x -x - 2ln x.x(1)求证:当 x ≥ 1 时, f(x)≥ 0 恒成立;1 (2)讨论关于 x 的方程 x -x -f(x)=x 3- 2ex 2+ tx 根的个数. x1解: (1)证明: f(x)=x -x -2ln x 的定义域为 (0,+ ∞). 1 2 x2- 2x +1 x -1 2∵f ′(x)=1+x 12-2x = x 2 = x 2 ≥0, ∴f(x)在[1,+ ∞ )上是单调增函数,∴f(x)≥f(1)=1-1-2ln 1=0 对于 x ∈[1,+ ∞ )恒成立. 故当 x ≥1时,f(x)≥0 恒成立得证.(2)化简方程得 2ln x = x 3- 2ex 2+ tx.2ln x注意到 x > 0,则方程可变为 2ln x x = x 2-2ex + t.x 2ln x 2令 L(x)= x ,H(x)=x 2-2ex + t ,2L(x)max = L(e)=e .3 1- ln x 则 L ′(x)= x 2 .当 x ∈(0,e)时, L ′(x)>0,∴L(x)在(0,e)上为增函数;当 x ∈ (e ,+ ∞ )时, L ′(x)<0,∴L(x)在(e ,+ ∞ )上为减函数.所以 f ′ (x)=x 3-x +2=-x 2+2x +3 x- x -3 x + 1 ∴当 x = e 时,e2ln x函数L(x)=x,H(x)=(x-e)2+t-e2在同一坐标系内的大致图象如图所示.22t-e2> 2e,即t>e2+e2时,方程无实数根;由图象可知,①当②当t-e2=e2,即t=e2+2e时,方程有一个实数根;22③当t-e2< e,即t<e2+e时,方程有两个实数根.考点二由函数零点个数求参数[典例] (2018 全·国卷Ⅱ )已知函数f(x)=e x-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞ )只有一个零点,求 a.[解] (1)证明:当a=1时,f(x)≥1等价于(x2+1)e-x-1≤0.设函数g(x)=(x2+1)e-x-1,则g′(x)=-(x2-2x+1)e-x=-(x-1)2e-x.当x≠1时,g′ (x)< 0,所以g(x)在(0,+∞ )上单调递减.而g(0)=0,故当x≥0时,g(x)≤0,即f(x)≥1.(2)设函数h(x)=1-ax2e-x.f(x)在(0,+∞)上只有一个零点等价于h(x)在(0,+∞)上只有一个零点.(ⅰ)当a≤0 时,h(x)> 0,h(x)没有零点;(ⅱ)当a>0 时,h′(x)=ax(x-2)e-x.当x∈(0,2)时,h′(x)<0;当x∈(2,+∞ )时,h′ (x)> 0.所以h(x)在(0,2)上单调递减,在(2,+∞ )上单调递增.故h(2)=1-h(x)在(0,+∞ )上的最小值.①当h(2)>0,即e2a< 4时,h(x)在(0,+∞ )上没有零点.②当h(2)=0,即e2a=4时,h(x)在(0,+∞ )上只有一个零点.③当h(2)<0,即a>e4时,因为h(0)=1,所以h(x)在(0,2)上有一个零点.x 216a316a3由(1)知,当x>0时,e x> x2,所以h(4a)=1-e4a =1-e2a 2>116a32a4==1-a1>0,故ah(x)在(2,4a)上有一个零点.因此h(x)在(0,+∞)上有两个零点.e2 综上,当f(x)在(0,+∞)上只有一个零点时,a=4.[解题技法] 根据函数零点个数确定参数取值范围的核心思想是“数形结合”,轴的交点个数,或者两个相关函数图象的交点个数确定参数满足的条件,值范围,解决问题的步骤是“先形后数”.即通过函数图象与x 进而求得参数的取[题组训练]x3 x21.(2019 安·阳一模)已知函数f(x)=3+2与g(x)=6x+a 的图象有 3 个不同的交点,则a 的取值范围是 _______ .解析:原问题等价于函数h(x)=x3+x2-6x 与函数y=a 的图象有3 个不同的交点,由h′(x)=x2+x-6=(x-2)(x+3),得x=2 或x=-3,当x∈(-∞,-3)时,h′(x)>0,h(x)单调递增;当x∈(-3,2)时,h′(x)<0,h(x)单调递减;当x∈(2,+∞)时,h′(x)>0,h(x)单调递增.27 22 且h(-3)=2,h(2)=-3,22 27 数形结合可得a的取值范围是-3,2 .答案:-232,2272.(2019 ·赣州模拟)若函数f(x)=ae x-x-2a 有两个零点,则实数 a 的取值范围是解析:∵f(x)=ae x-x-2a,∴f′(x)=ae x-1.当a≤0时,f′(x)≤0恒成立,函数f(x)在R上单调递减,不可能有两个零点;1 1 1当a>0 时,令f′ (x)=0,得x=ln ,函数f(x)在-∞,ln 上单调递减,在ln ,+∞a a a上单调递增,11∴f(x)的最小值为 f ln a=1-ln a-2a=1+ln a-2a.1 令g(a)=1+ln a-2a(a> 0),则g′(a)=-2.a11当a∈0,2时,g(a)单调递增;当a∈2,+∞ 时,g(a)单调递减,1∴g(a)max=g 2=-ln 2<0,1∴f(x)的最小值为 f ln a<0,函数f(x)=ae x-x-2a 有两个零点.a综上所述,实数 a 的取值范围是(0,+∞).答案:(0,+∞ ) [ 课时跟踪检测]1.设 a 为实数,函数f(x)=-x3+3x+a.(1) 求f(x)的极值;(2) 是否存在实数a,使得方程f(x)=0恰好有两个实数根?若存在,求出实数 a 的值;若不存在,请说明理由.解:(1)f′(x)=-3x2+3,令f′(x)=0,得x=-1或x=1.∵当x∈(-∞,-1)时,f ′(x) <0;当x∈(-1,1)时,f′ ( x) > 0;当x∈(1,+∞ )时,f′(x)<0,∴f(x)在(-∞,-1),(1,+∞)上单调递减,在(-1,1)上单调递增.∴f(x)的极小值为f(-1)=a-2,极大值为f(1)=a+2.(2)方程f(x)=0 恰好有两个实数根,等价于直线y=a 与函数y=x3-3x 的图象有两个交点.∵y=x3-3x,∴y′=3x2-3.令y′>0,解得x>1或x<-1;令y<0,解得-1< x<1.∴y=x3-3x 在(-1,1)上为减函数,在(1,+∞)和(-∞,-1)上为增函数.∴当x=-1时,y 极大值=2;当x=1时,y极小值=-2.∴y=x3-3x 的大致图象如图所示.y=a 表示平行于x 轴的一条直线,由图象知,当a=2 或a=-2时,y=a与y=x3-3x有两个交点.故当a=2或a=-2时,方程f( x)=0 恰好有两个实数根.2.(2019 锦·州联考)已知函数f(x)=e x+ax-a(a∈R 且a≠ 0).(1)若函数f(x)在x=0处取得极值,求实数 a 的值,并求此时f(x)在[-2,1]上的最大值;(2)若函数f(x)不存在零点,求实数 a 的取值范围.解:(1)由f(x)=e x+ax-a,得f′ (x)=e x+ a.∵函数f(x)在x=0 处取得极值,∴ f′(0) =e0 +a=0,∴a=- 1.∴f(x)=e x-x+1,f ′ (x)=e x- 1.∴当x∈(-∞,0)时,f′(x)<0,f(x)单调递减;当x∈(0,+∞)时,f′(x)>0,f(x)单调递增.易知f(x)在[-2,0)上单调递减,在(0,1] 1上单调递增,且f(-2)=e2+3,f(1)=e,f(-2)>f(1),1∴f(x)在[-2,1]上的最大值是e2+ 3.(2)f′(x)=e x+a.①当a>0时,f′(x)>0,f(x)在R上单调递增,且当x>1时,f(x)=e x+a(x-1)>0;1 1 1当x<0时,取x=-a,则 f -a<1+a -a-1 =-a<0,∴函数f(x)存在零点,不满足题意.②当a< 0 时,令f′(x)=e x+a=0,则x=ln(-a).当x∈(-∞,ln(-a))时,f′(x)<0,f(x)单调递减;当x∈(ln(-a),+∞)时,f′(x)>0 ,f(x)单调递增,∴当x=ln(-a)时,f(x)取得极小值,也是最小值.函数f(x)不存在零点,等价于f(ln( -a))=e ln( -a)+aln( -a)-a=-2a+aln( -a) > 0,解得-e2<a< 0.综上所述,所求实数 a 的取值范围是(-e2,0).113.(2018 ·郑州第一次质量预测)已知函数f(x)=ln x+-(a∈R 且a≠0).ax a(1)讨论函数f(x)的单调性;(2)当x∈e,e 时,试判断函数g(x)=(ln x-1)e x+x-m 的零点个数. e1ax-1解:(1)f′(x)=ax2 (x>0),ax当a<0时,f′(x)>0恒成立,函数f(x)在(0,+∞)上单调递增;ax- 1 1当a>0 时,由f′ (x)= 2 > 0,得x> ,ax aax- 1 1由f′ (x)=ax2 < 0,得0<x<a,11函数f(x)在a,+∞ 上单调递增,在0,a上单调递减.综上所述,当a<0 时,函数f(x)在(0,+∞)上单调递增;11 当a>0 时,函数f(x)在a,+∞ 上单调递增,在0,a上单调递减.1(2)当x∈e,e 时,函数g(x)=(ln x-1)e x+x-m的零点个数,等价于方程(ln x-1)e x+x=m 的根的个数.令h(x)=(ln x-1)e x+x,1x 则h′ (x)=x+ln x- 1 e x+1.11由(1)知当a=1时,f(x)=ln x+x-1在e,1 上单调递减,在(1,e)上单调递增,x1 ∴当x∈e,e 时,f(x)≥f(1)=0.11∴x+ln x-1≥0 在x∈e,e 上恒成立.xe1x ∴h′(x)=x+ln x- 1 e x+1≥0+1>0,x1∴h(x)=(ln x-1)e x+x 在x∈e,e 上单调递增,1∴h(x)min=h IV V e=-2e e+h(x)max=h(e)= e.1,e111∴当m<-2e e+e或m> e时,函数g(x)在e,e 上没有零点;eeIVV 当-2e e+≤m≤e时,函数g(x)在,e 上有一个零点.ee4.(2019 益·阳、湘潭调研)已知函数f(x)=ln x-ax2+x,a∈R.(1)当a=0 时,求曲线y=f(x)在点(e,f(e))处的切线方程;(2)讨论f(x)的单调性;(3) 若f(x)有两个零点,求 a 的取值范围.1 解:(1)当a=0 时,f(x)=ln x+x,f(e)=e+1,f′(x)=x+1,xf(x)在点(e,f(e))处的切线方程为y-(e+1)=11+e (x-e),即y=1 e+ 1x.(2)f′-2ax2+x+1(x)=(x> 0),①当a≤0 时,显然f′ (x)>0,f(x)在(0,+∞ )上单调递增;②当-2ax2+x+ 1a>0 时,令f′(x)==0,则-2ax2+x+1=0,易知Δ>0 恒成立.设方程的两根分别为x1,1x2(x1< x2),则x1x2=- < 0,∴x1< 0< x2,2a-2ax2+x+1 -2a x-x1 x-x2∴f ′(x)==(x> 0).1+8a+ 1 由f′(x)>0 得x∈(0,x2 ),由f′(x)<0得x∈(x2,+∞),其中x2=4a,∴函数f(x)在0,1+8a+1上单调递增,在1+8a+1,+∞上单调递减.4a4aln x+x(3)函数f(x)有两个零点,等价于方程a=x2 有两解.ln x+x 1-2ln x-x令g(x)=x2 (x>0),则g′(x)=x31-2ln x-x由g′(x)=x3 >0,得2ln x+x<1,解得0<x<1,x∴ g(x)在(0,1)单调递增,在(1,+∞ )单调递减,又∵当x≥1 时,g(x)>0,当x→0 时,g(x)→-∞,当x→+∞ 时,g(x)→0,∴ 作出函数g(x)的大致图象如图,:当a∈(0,1)时符合题意.f′ (e)=1+e1,∴曲线y=面给出证明当a≥1 时,a≥g( x)max,方程至多一解,不符合题意当a≤0 时,方程至多一解,不符合题意;11当a∈(0,1)时,g e<0,∴g e-a<0,2 a2 2 2 a2 2 2g =ln + < +=a,a 4 a a 4 a a2∴ g - a < 0.a12∴ 方程在e,1 与1,a上各有一个根,∴若f(x)有两个零点,a 的取值范围为(0,1).。

微专题 利用导数研究函数的零点问题

利用导数研究函数的零点问题内容概览题型一 利用导数探究函数零点的个数题型二 利用函数零点问题求参数范围题型三 与函数零点有关的证明[命题分析]函数零点问题在高考中占有很重要的地位,主要涉及判断函数零点的个数或范围.高考常考查基本初等函数、三次函数与复合函数的零点问题,以及函数零点与其他知识的交汇问题,一般作为解答题的压轴题出现.题型一 利用导数探究函数零点的个数[典例1](2022·陇南模拟)已知函数f(x)=r1e-a(a∈R),讨论f(x)的零点个数.【解析】令f(x)=r1e-a=0,得a=r1e,设g(x)=r1e,则g'(x)=e−(r1)e(e)2=−e,当x>0时,g'(x)<0,当x<0时,g'(x)>0,所以g(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减,所以g(x)≤g(0)=1,而当x>-1时,g(x)>0,当x<-1时,g(x)<0,g(x)的大致图象如图所示:所以①当a>1时,方程g(x)=a无解,即f(x)没有零点;②当a=1时,方程g(x)=a有且只有一解,即f(x)有唯一的零点;③当0<a<1时,方程g(x)=a有两解,即f(x)有两个零点;④当a≤0时,方程g(x)=a有且只有一解,即f(x)有唯一的零点;综上,当a>1时,f(x)没有零点;当a=1或a≤0时,f(x)有唯一的零点;当0<a<1时,f(x)有两个零点.【方法提炼】利用导数确定函数零点或方程的根的个数的方法:(1)构造函数:构造函数g(x)(要求g'(x)易求,g'(x)=0可解),转化为确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值(最值),并确定定义区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数. (2)应用定理:利用零点存在定理,先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数.【对点训练】(2023·成都模拟)设函数f(x)=ln x+,m∈R.讨论函数g(x)=f'(x)-.3的零点个数【解析】由题设,可知g(x)=f'(x)-3=1-2-3(x>0),令g(x)=0,得m=-13x3+x(x>0),设φ(x)=-13x3+x(x>0),则φ'(x)=-x2+1=-(x-1)(x+1),当x∈(0,1)时,φ'(x)>0,φ(x)在(0,1)上单调递增,当x∈(1,+∞)时,φ'(x)<0,φ(x)在(1,+∞)上单调递减,所以x=1是φ(x)的极大值点,也是φ(x)的最大值点,所以φ(x)的最大值为φ(1)=23,画出y=φ(x)的大致图象(如图),可知①当m>23时,函数g(x)无零点;②当m=23时,函数g(x)有且只有一个零点;③当0<m<23时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点;综上所述,当m>23时,函数g(x)无零点;当m=23或m≤0时,函数g(x)有且只有一个零点;)有两个零点.当0<m<2时,函数g(x【加练备选】已知函数f(x)=x e x+e x.(1)求函数f(x)的单调区间和极值;(2)讨论函数g(x)=f(x)-a(a∈R)的零点的个数.【解析】(1)函数f(x)的定义域为R,且f'(x)=(x+2)e x,令f'(x)=0得x=-2,则f'(x),f(x)的变化情况如表所示:x(-∞,-2)-2(-2,+∞)f'(x)-0+f(x)单调递减-12单调递增所以f(x)的单调递减区间是(-∞,-2),单调递增区间是(-2,+∞),当x=-2时,f(x)有极小值为f(-2)=-1e2,无极大值;(2)令f(x)=0,得x=-1,当x<-1时,f(x)<0;当x>-1时,f(x)>0,且f(x)的图象经过点(-2,-1e2),(-1,0),(0,1);当x→-∞时,与一次函数相比,指数函数y=e-x增长更快,从而f(x)=r1e−→0;当x→+∞时,f(x)→+∞,f'(x)→+∞,根据以上信息,画出f(x)大致图象如图所示,函数g(x)=f(x)-a(a∈R)的零点的个数为y=f(x)的图象与直线y=a的交点个数,当x=-2时,f(x)有极小值f(-2)=-1e2,所以关于函数g(x)=f(x)-a(a∈R)的零点个数有如下结论:当a<-1e2时,零点的个数为0;当a=-1e2或a≥0时,零点的个数为1;当-1e2<a<0时,零点的个数为2.题型二 利用函数零点问题求参数范围[典例2](2022·全国乙卷)已知函数f(x)=ax-1-(a+1)ln x.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.【解析】(1)当a=0时,f(x)=-1-ln x,x>0,则f'(x)=12-1=1−2,当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减;所以f(x)max=f(1)=-1;(2)f(x)=ax-1-(a+1)ln x,x>0,则f'(x)=a+12-r1=(B−1)(K1)2,当a≤0时,ax-1<0,所以当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减;所以f(x)max=f(1)=a-1<0,此时函数无零点,不合题意;当0<a<1时,1>1,在(0,1),(1,+∞)上,f'(x)>0,f(x)单调递增;在(1,1)上,f'(x)<0,f(x)单调递减;又f(1)=a-1<0,由(1)得1+ln x≥1,即ln1≥1-x,所以ln x<x,ln <,ln x<2,当x>1时,f(x)=ax-1-(a+1)ln x>ax-1-2(a+1)>ax-(2a+3),则存在m=(3+2)2>1,使得f(m)>0,所以f(x)仅在(1,+∞)上有唯一零点,符合题意;当a=1时,f'(x)=(K1)22≥0,所以f(x)单调递增,又f(1)=a-1=0,所以f(x)有唯一零点,符合题意;当a>1时,1<1,在(0,1),(1,+∞)上,f'(x)>0,f(x)单调递增;在(1,1)上,f'(x)<0,f(x)单调递减;此时f(1)=a-1>0,由(1)得当0<x<1时,ln x>1-1,ln >1-1,所以ln x>2(1-1),此时f(x)=ax-1-(a+1)ln x<ax-1-2(a+1) (1-1)<-1+2(r1),存在n=14(r1)2<1,使得f(n)<0,所以f(x)在(0,1)上有一个零点,在(1,+∞)上无零点,所以f(x)有唯一零点,符合题意;综上,a的取值范围为(0,+∞).【方法提炼】由函数零点求参数范围的策略(1)涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围;(2)解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法;(3)含参数的函数的零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,得到不含参数的具体函数,作出该函数图象,根据图象特征求参数的范围.【对点训练】(2021·全国甲卷)已知a>0且a≠1,函数f(x)=(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.【解析】(1)a =2时,f (x )=22,f'(x )=2b2−2ln2·2(2)2=o2−En2)2=ln2· 2ln2−g2,当x ∈ 0,2ln2 时,f'(x )>0,f (x )单调递增;当x ∈2ln2,+∞ 时,f'(x )<0,f (x )单调递减;(2)由题知f (x )=1在(0,+∞)上有两个不等实根,f (x )=1⇔x a =a x ⇔a ln x =x ln a ⇔ln=ln,令g (x )=ln,g'(x )=1−ln 2,g (x )在(0,e)上单调递增,在(e,+∞)上单调递减,又g (e)=1e,g (1)=0,lim m+∞g (x )=0,所以0<ln<1e⇒a >1且a ≠e .所以a 的取值范围为(1,e)∪(e,+∞).【加练备选】 (2020·全国卷Ⅰ)已知函数f(x)=e x-a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解析】(1)当a=1时,f(x)=e x-x-2,则f'(x)=e x-1.当x<0时,f'(x)<0;当x>0时,f'(x)>0.所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增;(2)f'(x)=e x-a.当a≤0时,f'(x)>0,所以f(x)在(-∞,+∞)上单调递增,故f(x)至多存在1个零点,不合题意;当a>0时,由f'(x)=0可得x=ln a.当x∈(-∞,ln a)时,f'(x)<0;当x∈(ln a,+∞)时,f'(x)>0.所以f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增,故当x=ln a时,f(x)取得最小值,最小值为f(ln a)=-a(1+ln a).(i)若0<a≤1e,则f(ln a)≥0,f(x)在(-∞,+∞)上至多存在1个零点,不合题意; (ii)若a>1e,则f(ln a)<0.因为f(-2)=e-2>0,所以f(x)在(-∞,ln a)上存在唯一零点.易知,当x>2时,e x-x-2>0,所以当x>4且x>2ln(2a)时,f(x)=e2·e2-a(x+2)>e ln(2a)·2+2 -a(x+2)=2a>0.故f(x)在(ln a,+∞)上存在唯一零点,从而f(x)在(-∞,+∞)上有两个零点.综上,a的取值范围是1题型三 与函数零点有关的证明[典例3](2022·新高考Ⅰ卷)已知函数f(x)=e x-ax和g(x)=ax-ln x有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【解析】(1)f(x)=e x-ax的定义域为R,而f'(x)=e x-a,若a≤0,则f'(x)>0,此时f(x)无最小值,故a>0.g(x)=ax-ln x的定义域为(0,+∞),而g'(x)=a-1=B−1.当x<ln a时,f'(x)<0,故f(x)在(-∞,ln a)上单调递减,当x>ln a时,f'(x)>0,故f(x)在(ln a,+∞)上单调递增,故f(x)min=f(ln a)=a-a ln a.当0<x<1时,g'(x)<0,故g(x)在 0,1上单调递减,当x>1时,g'(x)>0,故g(x)在1,+∞ 上单调递增,故g(x)min=g1=1-ln1.因为f(x)=e x-ax和g(x)=ax-ln x有相同的最小值,故1-ln1=a-a ln a,整理得到K11+=ln a,其中a>0,设t(a)=K11+-ln a,a>0,则t'(a)=2(1+p2-1=−2−1o1+p2<0,故t(a)在(0,+∞)上单调递减,而t(1)=0,故t(a)=0的唯一解为a=1,故K11+=ln a的解为a=1.综上,a=1;(2)由(1)可得f(x)=e x-x和g(x)=x-ln x的最小值为1-ln 1=1-ln11=1.当b>1时,考虑e x-x=b的解的个数,x-ln x=b的解的个数.设S(x)=e x-x-b,S'(x)=e x-1,当x<0时,S'(x)<0,当x>0时,S'(x)>0,故S(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以S(x)min=S(0)=1-b<0,而S(-b)=e-b>0,S(b)=e b-2b,设u(b)=e b-2b,其中b>1,则u'(b)=e b-2>0,故u(b)在(1,+∞)上单调递增,故u(b)>u(1)=e-2>0,故S(b)>0,故S(x)=e x-x-b有两个不同的零点,即e x-x=b的解的个数为2.设T(x)=x-ln x-b,T'(x)=K1,当0<x<1时,T'(x)<0,当x>1时,T'(x)>0,故T(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以T(x)min=T(1)=1-b<0,而T(e-b)=e-b>0,T(e b)=e b-2b>0,T(x)=x-ln x-b有两个不同的零点,即x-ln x=b的解的个数为2.当b=1,由(1)讨论可得x-ln x=b,e x-x=b仅有一个零点,当b<1时,由(1)讨论可得x-ln x=b,e x-x=b均无零点,故若存在直线y=b与曲线y=f(x),y=g(x)有三个不同的交点,则b>1.设h(x)=e x+ln x-2x,其中x>0,故h'(x)=e x+1-2,设s(x)=e x-x-1,x>0,则s'(x)=e x-1>0,故s(x)在(0,+∞)上单调递增,故s(x)>s(0)=0,即e x>x+1,所以h'(x)>x+1-1≥2-1>0,所以h(x)在(0,+∞)上单调递增,而h(1)=e-2>0,h(1e3)=e1e3-3-2e3<e-3-2e3<0,故h(x)在(0,+∞)上有且只有一个零点x0,1e3<x0<1且:当0<x<x0时,h(x)<0,即e x-x<x-ln x,即f(x)<g(x),当x>x0时,h(x)>0,即e x-x>x-ln x,即f(x)>g(x),因此若存在直线y=b与曲线y=f(x),y=g(x)有三个不同的交点,故b=f(x0)=g(x0)>1,此时e x-x=b有两个不同的零点x1,x0(x1<0<x0),此时x-ln x=b有两个不同的零点x0,x4(0<x0<1<x4),故e1-x1=b,e0-x0=b,x4-ln x4-b=0,x0-ln x0-b=0,所以x4-b=ln x4,即e4−=x4,即e4−-(x4-b)-b=0,故x4-b为方程e x-x=b的解,同理x0-b也为方程e x-x=b的解,又e1-x1=b可化为e1=x1+b,即x1-ln(x1+b)=0,即(x1+b)-ln(x1+b)-b=0,故x1+b为方程x-ln x=b的解,同理x0+b也为方程x-ln x=b的解,所以{x1,x0}={x0-b,x4-b},而b>1,故0=4−s1=0−s即x1+x4=2x0.所以x1,x0,x4成等差数列.所以,存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【方法提炼】(1)证明与零点有关的不等式,函数的零点本身就是一个条件,即零点对应的函数值为0;(2)证明的思路一般是对条件进行等价转化,构造合适的新函数,利用导数知识探讨该函数的性质(如单调性、极值情况等),再结合函数图象来解决.【对点训练】 (2019·全国Ⅰ卷)已知函数f(x)=sin x-ln(1+x),f'(x)为f(x)的导数.证明:(1)f'(x)在区间 −1,π2上存在唯一极大值点;(2)f(x)有且仅有2个零点.【证明】(1)设g(x)=f'(x),则g(x)=cos x-11+,g'(x)=-sin x+1(1+p2,当x∈ −1,π2时,g'(x)单调递减,而g'(0)>0,g'(π2)<0,可得g'(x)在 −1,π2上有唯一零点,设g'(x)的零点为α.则当x∈(-1,α)时,g'(x)>0;当x∈ sπ2时,g'(x)<0.所以g(x)在(-1,α)上单调递增,在 sπ2上单调递减,故g(x)在 −1,π2上存在唯一极大值点,即f'(x)在 −1,π2上存在唯一极大值点;(2)f(x)的定义域为(-1,+∞).①当x∈(-1,0]时,由(1)知,f'(x)在(-1,0)上单调递增,而f'(0)=0,所以当x∈(-1,0)时,f'(x)<0,故f(x)在(-1,0)上单调递减,又f(0)=0,从而x=0是f(x)在(-1,0]上的唯一零点.②当x∈ 0,π2时,由(1)知,f'(x)在(0,α)上单调递增,在 sπ2上单调递减,而f'(0)=0, f'π2<0,所以存在β∈ sπ2,使得f'(β)=0,且当x∈(0,β)时,f'(x)>0;当x∈ sπ2时,f'(x)<0.故f(x)在(0,β)上单调递增,在 sπ2上单调递减.又f(0)=0,fπ2=1-ln 1+π2>0,所以当x∈ 0,π2时,f(x)>0.所以f(x)在 0,π2上没有零点.③当x∈π2,π 时,f'(x)<0,所以f(x)在π2,π 上单调递减.而fπ2>0,f(π)<0,所以f(x)在π2,π 上有唯一零点.④当x∈(π,+∞)时,ln(x+1)>1,所以f(x)<0,从而f(x)在(π,+∞)上没有零点.综上,f(x)有且仅有2个零点.【加练备选】 (2023·菏泽模拟)已知函数f(x)=ln x-x+2sin x,f'(x)为f(x)的导函数.(1)求证:f'(x)在(0,π)上存在唯一零点;(2)求证:f(x)有且仅有两个不同的零点.【证明】(1)设g(x)=f'(x)=1-1+2cos x,当x∈(0,π)时,g'(x)=-2sin x-12<0,所以g(x)在(0,π)上单调递减,又因为g(π3)=3π-1+1>0,g(π2)=2π-1<0,所以g(x)在(π3,π2)上有唯一的零点;(2)设f'(x)在(0,π)上的唯一零点为α,由(1)知π3<α<π2.①当x∈(0,π)时,x∈(0,α)时,f'(x)>0,f(x)单调递增;x∈(α,π)时,f'(x)<0,f(x)单调递减;所以f(x)在(0,π)上存在唯一极大值点α.所以f(α)>f(π2)=lnπ2-π2+2>2-π2>0,又因为f(1e2)=-2-1e2+2sin1e2<-2-1e2+2<0,所以f(x)在(0,α)上恰有一个零点.又因为f(π)=ln π-π<2-π<0,所以f(x)在(α,π)上也恰有一个零点.②当x∈[π,2π)时,sin x≤0,f(x)≤ln x-x,设h(x)=ln x-x,h'(x)=1-1<0,所以h(x)在[π,2π)上单调递减,所以h(x)≤h(π)<0,所以当x∈[π,2π)时,f(x)≤h(x)≤h(π)<0恒成立,所以f(x)在[π,2π)上没有零点.③当x∈[2π,+∞)时,f(x)≤ln x-x+2.设φ(x)=ln x-x+2,φ'(x)=1-1<0,所以φ(x)在[2π,+∞)上单调递减,所以φ(x)≤φ(2π)<0,所以当x∈[2π,+∞)时,f(x)≤φ(x)≤φ(2π)<0恒成立,所以f(x)在[2π,+∞)上没有零点.综上,f(x)有且仅有两个零点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


导数与零点
考点一。求参数取值范围
(1)设函数329()62fxxxxa,若方程()0fx有且仅有一个实根,求a的取值范围.

解:(1) '2()3963(1)(2)fxxxxx, 因为 当1x时, '()0fx;当12x时,
'()0fx;当2x时, '
()0fx
;所以 当1x时,()fx取极大值 5(1)2fa; 当
2x

时,()fx取极小值 (2)2fa;
故当(2)0f 或(1)0f时, 方程()0fx仅有一个实根. 解得 2a或52a.
(2)已知函数3()310fxxaxa,(),若()fx在1x处取得极值,直线y=m与
()yfx

的图象有三个不同的交点,求m的取值范围。
解:'22()333(),fxxaxa因为()fx在1x处取得极大值,所以
'2
(1)3(1)30,1.faa

所以3'2()31,()33,fxxxfxx由'()0fx解得121,1xx。()fx在1x处取得极大
值(1)1f,
在1x处取得极小值(1)3f,又直线ym与函数()yfx的图象有三个不同点,则m的
范围是(3,1)。
(3)已知函数2()sincosfxxxxx,若曲线()yfx与直线yb 有两个不同的交点,
求b的取值范围.
解:由2()sincosfxxxxx,得()(2cos)fxxx,令()0fx,得0x.
函数()fx在区间(,0)上单调递减,在区间(0,)上单调递增,(0)1f是()fx的最小值.
当1b时,曲线()yfx与直线yb最多只有一个交点;
当1b时,()yfx与直线yb有且只有两个不同交点.综上可知,b的取值范围是(1,).
(4)已知函数1()1xfxxe,若直线:1lykx与曲线()yfx没有公共点,求k的最大值.
解:11xfxxe,直线l:1ykx与曲线yfx没有公共点, 等价于关于x的方程
111xkxxe在R上没有实数解,即关于x的方程: 1
1xkxe
在R上没有实数解.

①当1k时,方程(*)可化为10xe,在R上没有实数解.
②当1k时,方程(*)化为11xxek. 令xgxxe,则有1xgxxe. 令

0gx
,得1x,

当1x时,min1gxe,同时当x趋于时,gx趋于, 从而gx的取值范围为
1
,e



.

所以当11,1ke时,方程(*)无实数解, 解得k的取值范围是1,1e. 综上,得
k
的最大值为1.
考点二。判断零点个数,证明
(1)已知函数()e,xfxxR. 证明: 曲线y = f (x) 与曲线2112yxx有唯一公共点.
证明:则令,,121121)()(22Rxxxexxxfxhx
所以,曲线y=f(x)与曲线1212xxy只有唯一公共点(0,1).
(2)已知函数3()sin2fxxx,判断函数f(x)在(0,π)内的零点个数,并加以证明。
解:
3
()sin()()sincos2fxxxhxfxxxx

①当x]2,0[时,()0()fxyfx在(0,]2上单调递增,
33(0)()0()222ffyfx


在(0,]2上有唯一零点
②当x[,]2时,()2cossin0()hxxxxfx当x[,]2上单调递减,
2
()()022ff
存在唯一0(,)2x使0()0fx。由①②得:函数)(xf在),0(内有两个零点。

(3)已知函数322()4361fxxtxtxt,证明:对任意的(0,),()tfx在区间(0,1)内
均存在零点.
解:22()1266fxxtxt,令()0fx,解得.2txtx或
当0t时,()fx在0,2t内的单调递减,在,2t内单调递增,以下分两种情况讨论:
(1)当1,22tt即时,()fx在(0,1)内单调递减,
2
(0)10,(1)643644230.ftftt

所以对任意[2,),()tfx在区间(0,1)内均存在零点。

(2)当01,022tt即时,()fx在0,2t内单调递减,在,12t内单调递增,

若33t77(0,1],10.244tfttt,2(1)643643230.fttttt
所以(),12tfx在内存在零点。
若3377(1,2),110.244ttfttt,(0)10ft,所以()0,2tfx在内存
在零点。
所以,对任意(0,),()tfx在区间(0,1)内均存在零点。
(4)已知ab,是实数,1和1是函数32()fxxaxbx的两个极值点,设()(())hxffxc,
其中[22]c,,求函数()yhx的零点个数.

解:由32()fxxaxbx,得2()32f'xxaxb,∵1和1是函数32()fxxaxbx的两个极
值点,
∴ (1)32=0f'ab,(1)32=0f'ab,解得==3ab0,,则3()3fxxx ,
令()=fxt,则()()hxftc,先讨论关于x 的方程()=fxd 根的情况:2, 2d。
当=2d时,()=2fx的两个不同的根为1 和一2 ,()fx是奇函数,∴()=2fx的两个不同的
根为-1和2。
当2d<时,∵(1)=(2)=20fdfdd>,(1)=(2)=20fdfdd< ,∴一2 , -1,1 ,

2 都不是()=fxd的根。
()=311f'xxx,① 当
2x,
时,()0f'x> ,于是()fx是单调增函数,从而
()(2)=2fx>f,此时()=fxd
在2,无实根。
② 当1 2x,时.()0f'x>,于是()fx是单调增函数。又∵(1)0fd<,(2)0fd>,
=()yfxd

的图象不间断,∴()=fxd 在(1 , 2 )内有唯一实根。同理,()=fxd在(一2 ,一I )
内有唯一实根。
③ 当1 1x,时,()0f'x<,于是()fx是单调减两数。又∵(1)0fd>, (1)0fd<,

=()yfxd
的图象不间断,∴()=fxd在(一1,1 )内有唯一实根。
因此,当=2d时,()=fxd有两个不同的根12xx,满足12=1 =2xx,;当2d< 时
()=fxd有三个不同的根315xxx,,,满足2 =3, 4, 5ix的零点:
( i )当=2c时,()=ftc有两个根12tt,,满足12==2tt1,。而1()=fxt有三个不同的根,
2
()=fxt

有两个不同的根,故()yhx有5 个零点。
( 11 )当2c<时,()=ftc有三个不同的根345ttt,,,满足2 =3, 4, 5it
=3,() 4, = 5ifxti

有三个不同的根,故()yhx有9 个零点。
综上所述,当=2c时,函数()yhx有5 个零点;当2c<时,函数()yhx有9 个零点。

相关文档
最新文档