热压罐成型技术
热压罐介绍

热压罐介绍目录热压罐概述 (2)热压罐性能 (2)控制系统的优越性 (3)安全可靠性 (3)提供多种选择性 (4)主要技术参数 (4)热压罐用途 (4)热压罐工艺成型典型产品 (5)热压罐概述热压罐主要用于金属/非金属胶接结构件和树脂基高强度玻璃纤维、碳纤维、硼纤维、芳纶纤维和环氧树脂复合材料热压固化成型关键设备。
该设备可在对复合材料产品抽真空的情况下,实现加温、加压固化成型。
热压罐是聚合物基复合材料构件制品成型的关键工艺设备。
热压罐成型工艺是将复合材料毛坯、蜂窝夹心结构或胶接结构用真空袋密封在模具上,置于热压罐中,在真空(或非真空)的状态下,经过升温、加压、保温(中温或高温)保压、降温卸压过程,使其成为所需要形状和质量状态制品的成型工艺方法。
热压罐成型工艺是广泛应用的复合材料结构、蜂窝夹心结构及金属或复合材料胶接结构的主要成型方法之一。
材料成型时,利用热压罐提供的均匀温度和压力环境实现固化,所以可得到表面与内部质量较高,结构复杂,面积巨大的符合材料制作。
复合材料基体树脂的固化,除了与树脂分子结构有关,还与其它组分(固化剂,交联促进剂等)有关。
外界条件--温度、压力和时间因素对固化起着重要作用,通常称这三个因素为主要工艺参数,一切热压罐成型工艺方法都要根据基体树脂的分子结构变化规律确定其相应的工艺参数,热压罐必须具备实现控制这些工艺参数的功能。
热压罐性能我公司生产的热压罐温度、压力、真空的控制均满足符合波音BAC5621“K”、D6-56273“B”、D6-49327“E”和AMS2750“D”工艺标准、我公司生产的热压罐可达到真空袋内工件、模具与罐内空气温度的统一性,有效控制工件不同位置的温差,工作温差能够控制在±0.5℃控制系统的优越性1、操作简单:一键式自动化工艺过程控制(可实现无人值守)。
2、系统控制可靠性:采用高品质、高性能控制元件(确保控制系统运行可靠性)。
3、先进的固化控制理念:单台设备及多台设备控制(实现系统冗余及DCS集散控制)。
SEET-神鹰-热压罐成型工艺安全性分析

一、热压罐成型工艺热压罐成型技术是航空、航天领城应用最广泛的成型技术之一,它能在宽广范圈内适应各种材料对加工工艺条件的要求。
二、工艺过程包括:1、模具清理和脱模剂涂抹。
2、预浸料裁切与铺叠。
3、真空袋组合系统制作和坯件装袋.真空袋组合系统制作需要采用各种辅助材料,其中包括:真空袋材料(改性尼龙薄膜或聚酸胺薄膜)、橡胶密封胶条、有孔或无孔隔离膜(聚四氟乙烯或改性氟塑料)。
吸胶材料、透气材料、脱模布和周边胶条等。
按图、所示顺序将坯件与各种辅助材料依次组合并装袋,形成真空组合系统。
装袋后应进行真空检漏,确认无误后,便可闭合锁锁热压罐门,升温固化。
1.真空袋.2.透气材料.3.压板04.有孔隔离层5.预浸料叠层,6.有孔脱模布,7.吸胶材料,8.隔离膜面.9.底模板,10.周边挡条.11.周边密封带 12.热压罐金属基板 13.密封胶条,14.真空管路。
4、固化。
各种树脂体系的固化制度,应根据各种不同树脂体系的固化反应特性和物理特性分别给予制定,要慎重考虑加压时机和关闭真空系统的时机。
固化完毕要控制降温速率,以防止因降温速度过快导致制品内部产生残余应力。
5、出罐脱模。
罐内温度降至接近室温时方可出罐脱模。
6、检测与修整。
三、成型过程中的危险性分析由于根据现场使用方介绍,所有预浸料工序均外委完成,该工房主要进行铺料和成型工序,在此仅对成型过程中的危险性进行分析。
1、辅助材料可燃性由下图可以看出,热压罐成型过程的物理化学变化,一般都会达到120-160℃,因此热压罐成型工艺所选择的辅助材料都应该在此温度范围内不应发生化学变化,物理性能稳定。
各种材料均选用阻燃材料,不应存在发生火灾的危险。
2、设备的阻燃性设备的系统分为:罐体、罐门、开门系统、加热系统、冷却系统、加压系统、空气循环系统、真空系统、隔热系统、控制系统等组成,产品的设计均按照国家机电产品安全标准要求设计。
设备的原材料、电气元器件均按照阻燃设计,隔热材料为阻燃材料,不存在发生火灾的隐患。
热压罐成型法简介

1 归纳热压罐 (HotAirAutoelave或简写Atitoelave)是一种针对聚合物基复合资料成型工艺特色的工艺设备,使用这类设备进行成型工艺的方法叫热压罐法 [ 崔盛瑞 ] 。
热压罐成型法是制造连续纤维加强热固性复合资料制件的主要方法 [ 戴夫 ] ,目前宽泛应用于先进复合资料结构、蜂窝夹层结构及金属或复合资料胶接结构的成型中 [ 何颖 ] 。
资料成型时,利用热压罐内同时供给的平均温度和均布压力而固化,所以可获得表面与内部质量高,形状复杂,面积巨大的复合资料制件 . 我国的西安飞系统造公司于八十年月末同德国的肖尔茨机械工程公司公司联合设计分体加工制造了国内航空工厂最大规格的热压罐。
[ 崔盛瑞 ]2热压罐成型法简介 [ 马军 ]热压罐成型法是目前国内外宽泛采纳的工艺方法之一,主要用于大尺寸、外形较复杂的航空、航天 FRP构件的制造,如蒙皮件、肋、框、各种壁板件、地板及整流罩。
热压罐成型法也有必定的限制性,结构很复杂的构件,用该方法成型有必定困难。
同时此法对模具的设计技术要求很高,模具一定有优异的导热性、热态刚性平和密性。
基根源理将预浸料按铺层要求铺放于模具上,并密封在真空袋中后放入热压罐中,经过热压罐设备加温、加压,完成资料固化反应,使预浸料坯件成为所需形状和满足质量要求的构件的工艺方法。
工艺特色热压罐成型法是 FRP构件的最常用成型方法,可成型夹层结构件和层压板构件,也可成型组合构件和胶接构件。
目前合用于热压罐中温成型复合资料的模具主要有以下几种 [ 何颖 ] : 铝模具、钢模具、碳纤维 / 环氧树脂复合资料模具。
总的来说 , 对于尺寸精度配合要求较高、并且产量不大的复合资料构件可用碳纤维 / 环氧复合资料模具 ; 对于尺寸精度要求不太高的构件或平板产品 , 铝制模具最为合用 ; 当产品批量大 , 尺寸精度要求较高的构件 , 选择钢制模具最为经济、适用。
基本工艺参数[崔盛瑞]复合资料基体树脂的固化、除了与树脂的分子结构有关,还与其余组分 ( 固化剂、交联促进剂等 ) 有关 . 外界条件—温度、压力和时间要素对固化成型起侧重要的作用,平时称这三个要素为工艺参数 .就目前国内外国树脂系统固化所需压力而言,除聚酸亚胺类外,固化压力一般在 0.3-0.6MPa 的范围内 [3]. 用于复合资料成型工艺的热压罐其使用压力一般小于,属于二类低压容器 . 从成型工艺的角度来看,基体树脂从线型结构转变为三维网状结构的所有历程可分为三个阶段 : 流动阶段,凝胶阶段和固化阶段,并且这一过程均是处在必定温度下进行的 . 依据文件〔 3〕, 〔6〕报导,国内重要的航空结构用复合资料基体树脂的固化温度最高在 180士5℃的范围 . 将热压罐的最高使用温度设定在 250℃是适合的。
第4章热压罐成型工艺(PDF)

胶膜压延法
树脂含量可由胶膜 厚度,辊压力与间 距、纤维张力、加 热温度等控制
线速度大,效率高 树脂含量容易控制 挥发分含量低,污染小 制膜和浸渍过程分步进
行,减少对纤维损伤
预浸料制备
大纱束或织物难于浸透 高粘度树脂难于浸渍 设备投资高,纤维用量大
2 辅助材料 Auxiliary material
碳纤维 其热膨胀系数与所成型复合材料构件一致,质量轻,材料模量高,模具
复合材料
刚度大;适用于高精度的大型构件的成型,但材料成本高,耐温低,表 面易划伤,有吸湿问题
玻璃纤维 质量轻,材料价格低;但材料模量低,模具刚度差;一般用于简单成型 复合材料 或型面要求不高的结构
3 模具材料-模具的分类
根据模具用材料
可很好的排除挥发物
4 袋压成型——压力袋成型
密封装置
盖板
压缩空气
空气压缩机
压力袋
特点:
模具
复合材料坯料
通过向橡皮囊构成的压力袋(气压室)内注入压缩空气,实现对 复合材料坯料的加压,也叫气压室成型;
真空袋基础上发展而来,气压均匀垂直作用在毛胚的表面,压 力可达0.25-0.5MPa,对模具强度和刚度的要求较高;
真空薄膜
具有较好的强度、延展性、耐温性、耐磨性和韧性。使用时,用腻子 将成型中的构件密封在模具上,形成真空袋
密封胶带
具有常温下的粘性,高温下密封性好,固化后易清理和贮存时间长等 特点
吸胶材料
可定量吸出复合材料毛坯中的多余树脂,并有一定透气性能的材料。 有吸胶毡、玻璃布、吸胶纸等,其单位面积吸树脂量随材料而异
成型工 艺稳定 可靠
热压罐内的压力和温度均匀,可以保证成型构件的质量稳定。一般热压罐成型 工艺制造的构件孔隙率较低、树脂含量均匀,相对其他成型工艺热压罐制备构 件的力学性能稳定可靠,迄今为止,航空航天领域要求高承载的绝大多数复合 材料构件都采用热压罐成型工艺。
碳纤维热压罐成型工艺

碳纤维热压罐成型工艺
碳纤维热压罐是一种常见的复合材料制品,具有轻质、高强度和耐腐蚀等优点,被广泛应用于航空航天、汽车、体育器材等领域。
本文将详细介绍碳纤维热压罐的成型工艺。
碳纤维热压罐的成型工艺包括预制、层压和热压三个主要步骤。
预制阶段主要是将碳纤维布料按照设计要求剪裁成各个零件,并进行表面处理,以提高与树脂的结合力。
层压阶段是将预制好的碳纤维零件按照设计规定的层次和方向进行堆叠,加入树脂粘合剂,并通过压力和温度控制使其固化。
热压阶段是将层压好的碳纤维零件放入热压机中进行加热和压缩,以进一步提高固化效果。
碳纤维热压罐成型工艺中的关键环节是层压和热压。
在层压过程中,需要注意将碳纤维布料按照设计要求的方向进行堆叠,以确保所制作的热压罐具有所需的强度和刚度。
同时,在层压过程中要保证每一层之间有足够的树脂粘合剂,以确保层与层之间的粘接牢固。
在热压过程中,需要控制良好的温度和压力,以保证树脂充分固化,并使得热压罐的形状和尺寸满足设计要求。
碳纤维热压罐成型工艺还需要考虑一些其他因素。
例如,对于大型热压罐的制作,需要采用分段制作和拼接的方式,以保证整体结构的一致性。
同时,要注意对热压罐进行后续的热处理,以提高其性能和稳定性。
碳纤维热压罐的成型工艺是一个复杂的过程,需要在设计、预制、层压和热压等多个环节中进行精确控制。
只有在每个环节都保证质量和工艺的合理性,才能制作出优质的碳纤维热压罐。
未来,随着科技的进步和工艺的创新,碳纤维热压罐的制作工艺将进一步完善,为各个领域的应用提供更好的解决方案。
热压罐成型复合材料成型工艺的常见缺陷及对策

热压罐成型复合材料成型工艺的常见缺陷及对策【摘要】热压罐成型复合材料在制造领域具有重要性,然而在成型工艺中常见气泡、毛刺、表面质量不佳、尺寸偏差等缺陷影响产品质量。
为解决这些问题,需控制材料质量和工艺参数、提高模具精度、优化成型工艺、实施质量控制措施。
重视对策的实施能有效预防缺陷出现,提高成品质量和生产效率。
未来可继续改进工艺技术和质量管理,以应对挑战,实现更高水平的产品制造。
不断总结对策的重要性,展望未来改进方向,将对提高复合材料成型工艺的质量和效率起到积极的推动作用。
【关键词】热压罐、复合材料、成型工艺、缺陷、气泡、气孔、毛刺、分层、表面质量、尺寸偏差、材料质量、工艺参数、成型模具、精度、优化、质量控制、改进方向。
1. 引言1.1 热压罐成型复合材料成型工艺的重要性热压罐成型复合材料成型工艺在现代工业生产中起着至关重要的作用。
复合材料具有轻质、高强度、抗腐蚀等优点,被广泛应用于航空航天、汽车制造、船舶工业等领域。
热压罐成型是一种常用的制备复合材料制品的工艺方法,通过热压的方式将树脂基复合材料与增强材料加热固化,形成具有特定性能和形状的制品。
热压罐成型复合材料成型工艺的重要性体现在以下几个方面:通过热压罐成型可以实现复合材料高效率、高质量的生产,提高生产效率和制品质量。
热压罐成型工艺可以实现复合材料的复杂成型,满足不同领域对复合材料制品的各种需求。
热压罐成型技术可以有效控制制品的成型过程,减少工艺参数对成品性能的影响,确保制品的稳定性和一致性。
热压罐成型复合材料成型工艺的重要性在于提高生产效率、提高制品质量、满足市场需求,是现代工业制造中不可或缺的一环。
通过对该工艺的研究和不断改进,可以更好地发挥其优势,推动复合材料产业的发展。
1.2 研究目的和意义1.了解热压罐成型复合材料成型工艺的重要性和发展趋势,为提高产品质量和性能提供技术支持。
2.分析常见缺陷对产品品质和成型效率的影响,找出问题根源,提出相应的改进措施。
热压罐_VARTM组合成型新工艺设计

的成型条件,或者可以满足立体织物 强度高质量的纤维增强树脂基复合
增强低粘度树脂基复合材料的成型 材料。COMPRIS技术需要一个压
条件。在能够满足包括各种织物形 力容器或热压罐(或者其他提供压力
的手段)来制造复合材料部件。它 实际上就是热压罐与VARTM的组 合技术。
德国DLR German Aerospace Center和INVENT GmbH的技 术人员也进行了相关的研究。他 们同样考虑将热压罐成型工艺和 VA RTM工艺的优点结合在一起。 由此提出了所谓的SLI(Single Line Injection)技术的概念。SLI 是指纤维预成型体抽真空和树脂体 系的注射通过同一根树脂传递管道 进行。
(1)树脂导入与流动方式。 液体成型工艺中树脂的导入方 式和流动方式决定了树脂对纤维的 浸渍质量,是影响制品性能的重要因 素。在普通的RTM成型工艺中,树 脂流动方式均采用平面流动方式,即 树脂的流动前沿以与铺层平面平行 的方向往前推进,流动前锋过后的预 制件中均充满树脂,这种方式适合于 流动路径较短的制品。对于比较大 的制件,流动路径可能要几米甚至十 几米,这时树脂流动的原动力——压 力差会随着流动距离的增加而减弱,
居建国 研究员。在读博士,从事航天领域
先进复合材料及其制造技术的研究工 作20余年。主要研究方向为复合材料 加工工程。
随着复合材料专业的发展,复合 材料制备技术也在不断地发展和完 善。迄今为止,已有的复合材料制备 技术有:手糊或湿法铺覆工艺,真空 袋压、真空成型和热压罐成型工艺, 模压成型工艺,热压/冷压模塑成型 工艺,注射模塑成型工艺,缠绕成型 工艺,拉挤成型工艺,复合材料液体 成型工艺等。
2007年第12期·航空制造技术73
万方数据
热压罐成型复合材料成型工艺的常见缺陷及对策

热压罐成型复合材料成型工艺的常见缺陷及对策热压罐成型复合材料成型工艺是一种广泛应用于航空、汽车、船舶等领域的高性能材料成型技术。
由于其具有质量轻、刚性高、耐高温耐腐蚀等优点,因此备受青睐。
在实际生产中,热压罐成型复合材料成型工艺常常会出现各种缺陷,影响产品质量和性能。
本文将重点介绍热压罐成型复合材料成型工艺中常见的缺陷及相应的对策。
一、气泡气泡是热压罐成型复合材料成型工艺中常见的缺陷之一。
气泡的存在会导致制品的密度不均匀,影响其力学性能和耐久性。
气泡的形成原因主要包括树脂充填不足、工装表面粗糙和工艺参数设置不当等。
对策:1. 提高树脂充填效率,保证充填充分;2. 提高工装表面光洁度,减少气泡的产生;3. 调整工艺参数,如温度、压力和时间,使树脂更好地充填并排除气泡。
二、裂纹裂纹是热压罐成型复合材料成型工艺中另一个常见的缺陷。
裂纹的存在会降低制品的强度和韧性,影响其使用寿命。
裂纹的形成主要受到成型温度、成型压力和成型时间的影响,同时也与工装的设计和加工精度有关。
对策:1. 控制成型温度,避免温度过高导致树脂的膨胀收缩,产生裂纹;2. 合理控制成型压力,保证树脂充填充分但不会过大导致裂纹;3. 控制成型时间,避免过长造成树脂过度固化产生裂纹;4. 设计合理的工装结构,减少应力集中和变形,避免裂纹的产生。
三、毛刺对策:1. 优化模具的设计,减少脱模力和剪切力,避免毛刺的产生;2. 提高模具表面的加工精度和光洁度,减少毛刺的生成;3. 采用表面喷涂、电镀等方法,形成一层平滑的保护层,减少毛刺的产生。
四、变形变形是热压罐成型复合材料成型工艺中常见的内部缺陷。
制品的变形会导致尺寸偏差和形状不规则,影响其使用功能和外观美观。
变形的产生主要与工装设计、成型参数和材料性能有关。
对策:1. 优化工装设计,减少应力集中和变形;2. 调整成型参数,如温度、压力和时间,使成型过程更加稳定;3. 选择合适的复合材料,提高材料的强度和韧性,减少变形的产生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热压罐成型技术
热压罐成型技术是一种常用的金属成型工艺,通过加热和压力作用,将金属材料加工成所需形状和尺寸的零件。
这种技术在航空航天、汽车制造、机械制造等领域得到了广泛应用。
热压罐成型技术的工艺流程通常包括以下几个步骤:原料准备、预热、成型、冷却和后处理。
首先,需要准备好所需的金属材料,并根据设计要求切割成适当的尺寸。
然后,将金属材料放入预热设备中进行加热,以提高材料的塑性和可塑性。
在进行成型前,需要将预热后的金属材料放入热压罐中,并施加适当的压力。
这样可以使金属材料在高温和高压的环境下发生塑性变形,从而实现所需的形状和尺寸。
成型过程需要控制好温度和压力,以保证成品的质量和性能。
成型完成后,需要将成品从热压罐中取出,并进行冷却。
冷却过程可以通过水冷或自然冷却等方式进行。
冷却后的成品通常具有较高的强度和硬度,但也可能存在一些内部应力和变形。
因此,需要进行后处理,如退火、淬火等,以消除内部应力和改善成品的性能。
热压罐成型技术具有以下几个优点。
首先,成型过程中金属材料处于高温和高压的状态,可以提高材料的塑性和可塑性,使得复杂形状的零件成型更容易。
其次,在成型过程中可以加入适量的合金元素,以改善材料的性能和使用寿命。
此外,热压罐成型技术还可以
实现高效、快速的生产,提高生产效率和降低成本。
然而,热压罐成型技术也存在一些限制和挑战。
首先,成型过程中需要控制好温度和压力,以避免材料的过热或过压,从而影响成品的质量。
其次,成型过程中可能会产生一些废品和副产品,需要进行处理和回收利用。
此外,热压罐设备的成本较高,需要投入较大的资金。
热压罐成型技术是一种重要的金属成型工艺,具有广泛的应用前景和发展潜力。
随着材料科学和工艺技术的不断进步,热压罐成型技术将进一步推动各个领域的发展和创新。
通过不断改进和优化成型工艺,可以提高产品质量,降低生产成本,为各行业的发展做出贡献。