苏科版七年级数学上册 相反数、倒数与绝对值专题提高培优
苏科版七年级数学上册 相反数、倒数与绝对值专题提高培优

相反数、倒数与绝对值专题提高1、【相反数】:【代数定义】:只有符号不同的两个数叫做互为相反数,规定:零的相反数是零。
相反数是成对出现的,指两个数字之间的关系,一个数与它的相反数时一对数字。
【几何意义】:从数轴上看,互为相反数的两个数所对应的点关于原点对称,即这两个数分居在原点两侧,并且到原点距离相等。
【解题技巧】:①表示一个数的相反数,只要在这个数的前面添一个“-”号。
如:a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
②多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
【重要结论】:如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
【知识应用】:Eg1:【相反数的理解】:相反数反应的是两个数字之间的关系:①运算关系:和为0;②数字特征关系:只有符号不同。
而不体现大小关系1.有理数的相反数是,它们之间的大小关系().A.> B.< C.> 或= D.不能确定2.如果,那么- =______ ;如果-x=-(-12),那么x= __________Eg2:【相反数结论】:若a与b互为相反数,则a+b=0【例】:若a+5与—1互为相反数,则a=________Eg3:【多重符号的化简】:下列各式中,化简正确的是().A. -[+(-7)]=-7 B. +[-(+7)]=7 C. -[-(+7)]=7 D. -[-(-7)]=7★ Eg4 :【相反数的几何意义】:1.数轴上,若A .B 表示互为相反数,A 在B 的右侧,并且这两点的距离为8,则这两点所表示的数分别是_______【跟踪练习1】:一个数在数轴上所对应的点向右移动5个单位长度后得到它的相反数的对应点,则这个数是( ).A .-2B .2C .D .【跟踪练习2】:有理数a,b 在数轴上的位置如图所示,试比较a,b,-a,-b 的大小,并用“<”把它们连接起来。
相反数和绝对值重难点题型专训(12大题型+15道拓展培优)原卷版—24-25学年七年级数学上册重难点

相反数和绝对值重难点题型专训(12大题型+15道拓展培优)题型一相反数的辨别与定义题型二判断是否互为相反数题型三利用相反数的意义化简多重符号题型四相反数与数轴的综合题型五绝对值的意义题型六求一个数的绝对值题型七化简绝对值题型八绝对值非负性解题题型九绝对值方程题型十绝对值的其他应用题型十一有理数的大小比较题型十二有理数大小比较的实际应用知识点1:相反数的概念只有符号不同的两个数叫做互为相反数。
①一般地,a与-a互为相反数,a表示任意一个数,可以是正数、负数,也可以是0;②正数的相反数是负数,负数的相反数是正数,0的相反数是本身;③相反数是成对出现的(0除外)。
知识点2:相反数的意义互为相反数的两个数在数轴上对应的点应分别位于原点两侧,且到原点的距离相等。
求任意一个数的相反数,只要在这个数的前面添上“-”号即可(当然最后结果如果出现多重符号需要化简)。
知识点3:多重符号的化简1、一个正数前面不管有多少个“+”号,都可以全部去掉;2、一个正数前面有偶数个“-”号,也可以把“-”号全部去掉;3、一个正数前面有奇数个“-”号,则化简后只保留一个“-”号。
口诀“奇负偶正”,其中“奇偶”是指正数前面的“-”号的个数,“负、正”是指化简的最后结果的符号。
注意:此判断方法是在没有其它运算的情况下适用,如出现其它运算,要视具体情况而论。
知识点4:绝对值1、绝对值的概念:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a 。
2、绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。
3、绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
即:(1)如果0a >,那么a a =;(2)如果0a =,那么0a =;(3)如果0a <,那么a a =-.可整理为:(0)0(0)(0)a a a a a a >ìï==íï-<î,或(0)(0)a a a a a ³ì=í-<î,或(0)(0)a a a a a >ì=í-£î。
2021-2022学年七年级数学上册同步培优(苏科版)2-4 绝对值与相反数(2)(原卷版)

2.4 绝对值与相反数(2)(满分100分 时间:40分钟) 班级 姓名 得分 一、单项选择题:(本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题意要求的.)1.如果对于某一特定范围内的x 的任意允许值,P =|10﹣2x |+|10﹣3x |+|10﹣4x |+|10﹣5x |+…+|10﹣10x |为定值,则此定值是( )A .20B .30C .40D .50 2.若a 是最小的正整数,b 是绝对值最小的数,c 是相反数等于它本身的数,d 是到原点的距离等于2的负数,e 是最大的负整数,则a+b+c+d+e 的值为( ) A .1 B .2 C .-1 D .-23.已知,,,a b c x 为实数,且c a b <<,则代数式222+++-+-+-a b b c a c x x x 的最小值是( )A .2a b c++ B .2a b + C .2-b c D .2b c + 4.数轴上A 、B 、C 三点所代表的数分别是a 、1、c ,且11c a a c ---=-.若下列选项中,有一个表示A 、B 、C 三点在数轴上的位置关系,则此选项为何?( ) A .B .C .D .5.下列说法正确的个数有( )①已知0a b <,+且00a b >,<,则数a b 、在数轴上距离原点较近的是a ;①若一个数小于它的绝对值,则这个数是负数;①a -一定是负数;①若0a a +=,则a 是非正数.A .4个B .3个C .2个D .1个 6.如果a+b+c=0,且|a|>|b|>|c|.则下列说法中可能成立的是( )A .b 为正数,c 为负数B .c 为正数,b 为负数C .c 为正数,a 为负数D .c 为负数,a 为负数二、填空题7.如图A ,B ,C ,D ,E 分别是数轴上五个连续整数所对应的点,其中有一点是原点,数a 对应的点在B 与C 之间,数b 对应的点在D 与E 之间,若3ab +=则原点可能是_________.8.已知 10a =,211a a =-+,322a a =-+,…,依此类推,则 2019a =_______. 9.代数式|x -1|-|x +6|-5的最大值是_______.10.x 是有理数,则10095221221x x -++的最小值是________. 11.已知有理数a 、b 表示的点在数轴上的位置如图所示,化简:1b a a --+=_______.三、解答题12.观察下列每对数在数轴上的对应点间的距离4与﹣2,3与5,﹣2与﹣6,﹣4与3.并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?(2)若数轴上的点A 表示的数为x ,点B 表示的数为﹣1,则A 与B 两点间的距离可以表示为 ;若|x ﹣6|=3,则x = .(3)结合数轴求出|x ﹣2|+|x+1|的最小值为 ,此时符合条件的整数x 为 .13.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?14.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题.(1)请直接写出a 、b 、c 的值.a =b =c =。
2.3绝对值与相反数(相反数必考考点提升开学练)+2024—2025学年苏科版数学七年级上册

2024-2025学年苏科版数学七年级上册2.3绝对值与相反数(相反数必考考点提升开学练)【典型例题】类型一、相反数的概念【例1】的相反数是A .B .3C .D .举一反三:【变式1】下列各对数中,互为相反数的是( )A .﹣|﹣7|和+(﹣7)B .+(﹣10)和﹣(+10) C .﹣(﹣43)和﹣(+43) D .+(﹣54)和﹣(+54) 【变式2】的相反数是A .B .C .D . 【变式3】下面说法正确的有①符号相反的数互为相反数;②的相反数是3.8;③一个数和它的相反数不可能相等;④正数与负数互为相反数.A .0个B .1个C .2个D .3个|3|--()3-13-13a b c +-()a b c --+a b c -+a b c -++a b c ---()( 3.8)--【变式4】在数轴上表示下列各数:0, 2.5-,3-,5+,113,4.5及它们的相反数.类型二、多重符号的化简 【例2】化简()20--的结果是( )A .120- B .20 C .120D .20-举一反三:【变式1】下列计算结果为2的是( )A .2B .()2+-C .()2-+D .2--【变式2】下列说法中,正确的是( )A .﹣(﹣3)与|﹣3|互为相反数B .相反数等于它本身的数有无数个C .有理数a 一定比﹣a 大D .﹣a 的相反数就是a【变式3】下列化简正确的是()A.−(+1)=1B.−(−1)=−1C.−[−(−1)]=−1D.−[−(+1)]=−1【变式4】已知a是﹣[﹣(﹣5)]的相反数,b比最小的正整数大4,c是相反数等于它本身的数,则3a+2b+c的值是.类型三、相反数的性质【例3】如图,表示互为相反数的两个点是()A.点A和点D B.点B和点C C.点A和点C D.点B和点D举一反三:【变式1】若a,b互为相反数,则代数式a+b−2的值为 .【变式2】a+2和b−3互为相反数,那么a+b=.【变式3】已知+(﹣)的相反数是x,﹣(+3)的相反数是y,z相反数是z,求x+y+z的相反数.【变式4】请根据下面的对话解答下列问题.小锦:我不小心把老师留的作业题弄丢了,只记得式子是6﹣a﹣b﹣c.小军:我告诉你“a的相反数是4,b的绝对值是2,c与b的和是﹣8.”这时数学老师笑着补充说:a和b的符号相反哦!(1)填空:a=,b=,c=;(2)求6﹣a﹣b﹣c的值.类型四、相反数与数轴的综合【例4】数轴上,若点A和点B分别表示互为相反数的两个数,A在B的左侧,并且这两点的距离是6.4,则这两点所表示的数分别是和.举一反三:【变式1】已知表示数a的点在数轴上的位置如图所示.(1)在数轴上标出表示数a的相反数的点的位置;(2)若表示数a的点与表示其相反数的点相距20个单位长度,则a是多少?(3)在(2)的条件下,若表示数b的点与表示数a的相反数的点相距5个单位长度,求b 是多少.【变式2】(1)如图,数轴的单位长度为1,如果点A,B表示的数互为相反数,那么点C表示的数是;(2)数轴上点A表示﹣3,B,C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数应该是.【变式3】如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?【变式4】有理数a,b在数轴上的位置如图所示.(1)在数轴上分别用A、B两点表示﹣a,﹣b.(2)若数b与﹣b表示的点相距20个单位长度,则b与﹣b表示的数分别是什么?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,则a 与﹣a表示的数是多少?。
【精品】初中数学七年级上册《相反数、绝对值》提高训练

《相反数、绝对值》提高训练一、选择题1.a﹣b+c的相反数()A.﹣a﹣b﹣c B.﹣a﹣b+c C.﹣a+b﹣c D.a+b﹣c2.若m﹣2的相反数是5,那么﹣m的值是()A.+7B.﹣7C.+3D.﹣33.a为有理数.定义符号“※”:当a>﹣2时,※a=﹣a;当a<﹣2时,※a =a;当a=﹣2时,※a=0.根据这种定义.则※[﹣4+※(2﹣3)]的值为()A.3B.﹣3C.5D.﹣54.当|a﹣2|=2﹣a时,成立的条件是()A.a=2B.a≥2C.a≤2D.a=05.若a≠0,b≠0,且,则的值为()A.1或﹣1B.﹣1C.1D.0二、填空题6.若m,n互为相反数,则5m+5n+3=.7.下列各对数:+(﹣3)与﹣3,+(﹣)与+(﹣2),﹣(﹣)与+(﹣),﹣(+3)与+(﹣3),+3与﹣3中,互为相反数的有对.8.设P=2y﹣2,Q=2y+3,且|3P﹣Q|=5,则y的值是9.若|x﹣2|+(y+3)2互为相反数,则y x=.10.若2<x<6,则化简|6﹣x|﹣|3﹣2x|的结果为.三、解答题11.①已知x的相反数是﹣2,且2x+3a=5,求a的值.②已知﹣[﹣(﹣a)]=8,求a的相反数.12.化简:(1)+(﹣0.5)(2)﹣(+10.1)(3)+(+7)(4)﹣(﹣20)(5)+[﹣(﹣10)](6)﹣[﹣(﹣)].13.a的相反数是2b+1,b的相反数是3,求a2+b2的值.14.若|a|=4,|b|<2,且b为整数.(1)求a,b的值;(2)当a,b为何值时,a+b有最大值或最小值?此时,最大值或最小值是多少?15.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a 0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.《相反数、绝对值》提高训练参考答案与试题解析一、选择题1.a﹣b+c的相反数()A.﹣a﹣b﹣c B.﹣a﹣b+c C.﹣a+b﹣c D.a+b﹣c【分析】直接利用相反数的定义分析得出答案.【解答】解:a﹣b+c的相反数为:﹣(a﹣b+c)=﹣a+b﹣c.故选:C.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.若m﹣2的相反数是5,那么﹣m的值是()A.+7B.﹣7C.+3D.﹣3【分析】直接利用相反数的定义求出m的值,进而得出答案.【解答】解:∵m﹣2的相反数是5,∴m﹣2=﹣5,解得:m=﹣3,故﹣m=3.故选:C.【点评】此题主要考查了相反数,正确得出m的值是解题关键.3.a为有理数.定义符号“※”:当a>﹣2时,※a=﹣a;当a<﹣2时,※a =a;当a=﹣2时,※a=0.根据这种定义.则※[﹣4+※(2﹣3)]的值为()A.3B.﹣3C.5D.﹣5【分析】直接利用已知当a>﹣2时,※a=﹣a;当a<﹣2时,※a=a;当a=﹣2时,※a=0,分别化简得出答案.【解答】解:※[﹣4+※(2﹣3)]=※(﹣4+※﹣1)=※(﹣4+1)=﹣3.故选:B.【点评】此题主要考查了相反数,正确理解题意是解题关键.4.当|a﹣2|=2﹣a时,成立的条件是()A.a=2B.a≥2C.a≤2D.a=0【分析】根据绝对值的性质知a﹣2≤0,解之可得.【解答】解:∵|a﹣2|=2﹣a,∴a﹣2≤0,解得a≤2,故选:C.【点评】本题主要考查绝对值,解题的关键是掌握绝对值的性质:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.5.若a≠0,b≠0,且,则的值为()A.1或﹣1B.﹣1C.1D.0【分析】根据绝对值的性质及知a和b异号,据此得ab<0,再利用绝对值性质化简即可.【解答】解:∵a≠0,b≠0,且,∴a,b异号,则ab<0,∴原式==﹣1,故选:B.【点评】本题主要考查绝对值,解题的关键是掌握绝对值的性质及有理数的运算法则.二、填空题6.若m,n互为相反数,则5m+5n+3=3.【分析】直接利用相反数的定义分析得出答案.【解答】解:∵m,n互为相反数,∴m+n=0,∴5m+5n+3=5(m+n)+3=3.故答案为:3.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.7.下列各对数:+(﹣3)与﹣3,+(﹣)与+(﹣2),﹣(﹣)与+(﹣),﹣(+3)与+(﹣3),+3与﹣3中,互为相反数的有2对.【分析】两数互为相反数,它们的和为0.本题可对几个选项进行一一分析,看选项中的两个数和是否为0,如果和为0,则那组数互为相反数.【解答】解:+(﹣3)=﹣3与﹣3,不是互为相反数;+(﹣)=﹣与+(﹣2)=﹣2,不是互为相反数;﹣(﹣)=与+(﹣)=﹣,是互为相反数;﹣(+3)=﹣3与+(﹣3)=﹣3,不是互为相反数;+3与﹣3,是互为相反数;故互为相反数的有2对.故答案为:2.【点评】本题考查的是相反数的概念,两数互为相反数,它们的和为0.8.设P=2y﹣2,Q=2y+3,且|3P﹣Q|=5,则y的值是或1【分析】直接利用绝对值的性质把已知代入化简得出答案.【解答】解:∵P=2y﹣2,Q=2y+3,且|3P﹣Q|=5,∴|3(2y﹣2)﹣(2y+3)|=5,则|4y﹣9|=5,当4y﹣9=5或4y﹣9=﹣5,解得:y=或1.故答案为:或1.【点评】此题主要考查了绝对值,正确利用绝对值的性质分析是解题关键.9.若|x﹣2|+(y+3)2互为相反数,则y x=9.【分析】由互为相反数的两数之和为0可知|x﹣2|+(y+3)2=0,然后由非负数的性质求得x=2,y=﹣3,最后将x、y的值代入计算即可.【解答】解:∵|x﹣2|和(y+3)2互为相反数,∴|x﹣2|+(y+3)2=0.∴x=2,y=﹣3.将x=2,y=﹣3代入得:原式=(﹣3)2=9,故答案为9.【点评】本题主要考查的是求代数式的值、非负数的性质、求得x、y的值是解题的关键.10.若2<x<6,则化简|6﹣x|﹣|3﹣2x|的结果为9﹣3x.【分析】先根据x的取值范围判断出6﹣x与3﹣2x的正负情况,然后根据绝对值的性质去掉绝对值号,合并同类项即可得解.【解答】解:∵2<x<6,∴4<2x<12,∴6﹣x>0,3﹣2x<0,∴|6﹣x|﹣|3﹣2x|=6﹣x﹣(2x﹣3)=9﹣3x.故答案为:9﹣3x.【点评】本题考查了绝对值的性质,合并同类项法则,根据x的取值范围判断出(6﹣x)与(3﹣2x)的正负情况是去掉绝对值号的关键.三、解答题11.①已知x的相反数是﹣2,且2x+3a=5,求a的值.②已知﹣[﹣(﹣a)]=8,求a的相反数.【分析】①直接利用相反数的定义得出x的值,进而得出a的值;②直接去括号得出a的值,进而得出答案.【解答】解:①∵x的相反数是﹣2,且2x+3a=5,∴x=2,故4+3a=5,解得:a=;②∵﹣[﹣(﹣a)]=8,∴a=﹣8,∴a的相反数是8.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键.12.化简:(1)+(﹣0.5)(2)﹣(+10.1)(3)+(+7)(4)﹣(﹣20)(5)+[﹣(﹣10)](6)﹣[﹣(﹣)].【分析】(1)直接去括号化简求出即可;(2)直接去括号化简求出即可;(3)直接去括号化简求出即可;(4)直接去括号化简求出即可;(5)直接去括号化简求出即可.【解答】解:(1)+(﹣0.5)=﹣0.5;(2)﹣(+10.1)=﹣10.1;(3)+(+7)=7;(4)﹣(﹣20)=20;(5)+[﹣(﹣10)]=10;(6)﹣[﹣(﹣)]=﹣.【点评】此题主要考查了相反数的定义以及去括号法则,正确化简各数是解题关键.13.a的相反数是2b+1,b的相反数是3,求a2+b2的值.【分析】根据相反数的定义列出关于a、b的方程组,求出a、b的值,再代入a2+b2进行计算即可.【解答】解:∵a的相反数是2b+1,b的相反数是3,∴,解得.∴a2+b2=52+(﹣3)2=34.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数.14.若|a|=4,|b|<2,且b为整数.(1)求a,b的值;(2)当a,b为何值时,a+b有最大值或最小值?此时,最大值或最小值是多少?【分析】(1)直接利用绝对值的性质得出a,b的值;(2)直接利用(1)中所求,分别分析得出答案.【解答】解:(1)∵|a|=4,∴a=±4.∵|b|<2,且b有整数,∴b=﹣1,0,1;(2)当a=4,b=1时,a+b有最大值为5;当a=﹣4,b=﹣1时,a+b有最小值为5.【点评】此题主要考查了绝对值,正确分类讨论是解题关键.15.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,c﹣a>0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【分析】(1)根据数轴判断出a、b、c的正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.【点评】本题考查了绝对值的性质,数轴,熟记性质并准确识图观察出a、b、c 的正负情况是解题的关键.。
2021-2022学年七年级数学上册同步培优(苏科版)2-4 绝对值与相反数(1)(原卷版)

2.4 绝对值与相反数(1)(满分100分 时间:40分钟) 班级 姓名 得分 一、单项选择题:(本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题意要求的.)1.设有理数a 、b 、c 满足(0)a b c ac >><,且c b a <<,则222a b b c a c x x x ++++++﹣﹣的最小值是( )A .2a c -B .22a b c ++C .22a b c ++D .22a b c +- 2.在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①(1)(1)(1)0a b c ---<;①a b b c a c -+-=-;①()()()0a b b c c a +++>;①1a bc <-,其中正确的结论有( )个A .4个B .3个C .2个D .1个 3.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为() A .-1009 B .-2019 C .-1010 D .-2020 4.有理数,,a b c 在数轴上的对应点如图所示,则化简代数式a b a b b c --++-的结果是( )A .2a b c -+B .b c -C .b c +D .b c -- 5.若015p <<,则代数式()1515x p x x p -+-+-+在15p x ≤≤的最小值是( ) A .30B .0C .15D .一个与p 有关的整式6.若m 满足方程20192019m m -=+,则2020m -等于( )A .2020m -B .2020m --C .2020m +D .2020m -+ 二、填空题7.已知式子|x+1|+|x ﹣2|+|y+3|+|y ﹣4|=10,则x+y 的最小值是_____.8.点A ,B 在数轴上分别表示有理数a 、b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离ABa b ,若x 是一个有理数,且31x -<<,则13x x -++=__________.9.已知有理数m ,n ,p 满足则35m n p m n p ++-=+-+,则()()14m n p ++-=_______.10.当x=_____时,﹣10+|x ﹣1|有最小值,最小值为_____. 三、解答题12.数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a .数轴上表示数a 的点与表示数b 的点的距离记作a b -,如35-表示数轴上表示数3的点与表示数5的点的距离,()3535+=--表示数轴上表示数3的点与表示数-5的点的距离,3a -表示数轴上表示数a 的点与表示数3的点的距离.根据以上材料回答下列问题:(将结果直接填写在答题卡相应位置,不写过程) (1)若22x x -=+,则x =_______,若31x x -=+,则x =_______;(2)若314x x -++=,则x 能取到的最小值是_______;最大值是_______; (3)若314x x --+=,则x 能取到的最大值是_______;(4)关于x 的式子21x x -++的取值范围是_______.13.阅读下面材料,回答问题距离能够产生美.唐代著名文学家韩愈曾赋诗:“天街小雨润如酥,草色遥看近却无.当代印度著名诗人泰戈尔在《世界上最遥远的距离》中写道:“世界上最遥远的距离不是瞬间便无处寻觅而是尚未相遇便注定无法相聚”距离是数学、天文学、物理学中的热门话题,唯有对宇宙距离进行测量,人类才能掌握世界尺度.已知点A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点之间的距离表示为AB .(1)当A ,B 两点中有一点在原点时,不妨设点A 在原点,如图1,AB =OB =|b |-|a |=b -a =|a -b |. (2)当A ,B 两点都不在原点时,①如图2,点A ,B 都在原点的右边,AB =OB -OA =|b |-|a |=b -a =|a -b |;①如图3,点A ,B 都在原点的左边,AB =OB -OA =|b |-|a |=-b -(-a )=a -b =|a -b |; ①如图4,点A ,B 在原点的两边,AB =OA +OB =|a |+|b |=a +(-b )=a -b =|a -b |.综上,数轴上A ,B 两点的距离AB =|a -b |,如数轴上表示4和-1的两点之间的距离是5.。
绝对值与相反数(解析版) 2021-2022学年七年级数学上册(苏科版)教材同步培优专练 (2)

苏科版2.4绝对值与相反数 同步练习一、单选题1.12-的绝对值是( ) A .2 B .2- C .12 D .12- 2.如图表示互为相反数的两个点是( )A .点A 与点B B .点A 与点DC .点C 与点BD .点C 与点D3.下列数中,与-2的和为0的数是( )A .2B .-2C .12D .12- 4.3-的相反数是( )A .3B .13C .13-D .3-5.一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A .B .C .D .6.已知3a =,5b =,则a b -的值为( )A .8B .2C .8或2D .以上都不对7.如图所示,a 、b 是有理数,则式子|a |﹣|b |+|b ﹣a |化简的结果为( )A .﹣2aB .﹣2bC .0D .2a ﹣2b8.下列各式正确的是( )A .55--=B .()55--=-C .55-=-D .()55--=9.在2+,()2--,12⎛⎫+-⎪⎝⎭,2--这四个数中,负数的个数是( ) A .1个 B .2个C .3个D .4个10.如果a 与1互为相反数,那么|2|a +等于( )A .3B .3-C .1D .1-11.下列化简正确的是( )A .+(-5)=5B .-(-3)=-3C .-(+1)=-1D .-[-(+8)]=-812.如果一个数在数轴上的对应点与它的相反数在数轴上的对应点间的距离是5个单位长度,那么这个数是( )A .5或5-B .52或52-C .5或5-D .5-或5213.下列说法中,正确的是( )A .-4是相反数B .37-是37的相反数 C .-5和10互为相反数 D .13-是3的相反数 14.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7±二、填空题15.已知3a =,8b =-,0ab >,则-a b 的值为______.16.542-的相反数是___________,542-的绝对值是_________. 17.已知点A ,B 在数轴上分别表示有理数a ,b ,A ,B 两点之间的距离||AB a b =-,所以|3|x -的几何意义是数轴上表示有理数3的点与表示有理数x 的点之间的距离.(1)若|3|5x -=,则x =______;(2)若|3||(1)|x x -=--,则x =______.18.化简:(1)-(+6)=_______;(2)-(-6)=________;(3)-[-(+6)]=________.19.比较大小:364--_____________()6.25--. 20.若4a +9与3a +5互为相反数,则a 的值为_____.21.给出下列各对数:(3)+-与3-,1()2+-与(2)+-,1()4--与1()4+-,(3)-+与(3)+-,3+与3-中,互为相反数的有__22__________,它的绝对值是__________;数4__________. 23.已知||2018x =,||2019y =,且x y >,则x =______,y =______.24.比较大小:()4.85-+______________748--.三、解答题25.求下列各数的绝对值-1.6 ,85 0, -10, +1026.求出下列各数,并在数轴上把它们表示出来:(1) 3 的相反数;(2) 2- 的相反数;(3) 112- 的相反数的相反数; (4) 0 的相反数.27.化简下列各数:(1)(10)-+;(2)(0.15)+-;(3)(3)++;(4)(20)--;(5)23⎛⎫-- ⎪⎝⎭;(6)[(4)]--+.28.有理数a 、b 在数轴上如图,(1)在数轴上表示﹣a 、﹣b ;(2)试把这a 、b 、0、﹣a 、﹣b 五个数按从小到大用“<”连接.(3)用>、=或<填空:|a | a ,|b | b .29.已知4m =,6n =,且m n m n +=+,求m n -的值.30.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞)+10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?(2) 据记录的情况,你能否知道该车送完最后一个乘客是,他在A 地的什么方向?距A 地多远?31.有理数a 、b 、c 在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c ﹣b 0,a +b 0,a ﹣c 0.(2)化简:|c ﹣b |+|a +b |﹣|a ﹣c |.32.同学们都知道,|52|-表示5与2之差的绝对值,|52|-也可以利用数轴理解为数轴上5与2这两个数所对的两点之间的距离,如图(1)所示.试回答:(1)|52|--=_____,这个算式利用数轴可理解为__________;(2)求使|5|7x +=成立的所有整数;(3)求出使| 5.3|| 2.6|7.9x x ++-=成立的所有整数;(4)如图(2),在笔直的公路一侧有A ,B ,C ,D 四个村庄,且AB BC CD ==,现要在公路上开一家超市,使各村庄到超市的距离之和最小,则超市的位置应在哪两个村庄之间?33.探索研究:(1)比较下列各式的大小(用“<”“>”或“=”连接)①|3||2|+-_________|32|-; ①1123+_______1123+; ①|6||3|+-________|63|-.(2)通过以上比较,请你归纳出当a ,b 为有理数时||||a b +与||a b +的大小关系.(直接写出结果)(3)根据(2)中得出的结论,当||20152015x x +=-时,x 的取值范围是________.若123415a a a a +++=,12345a a a a +++=,则12a a +=________.。
【举一反三系列】相反数、绝对值(十大题型)2023-2024学年七年级数学上册(苏科版)(解析版)

相反数、绝对值【十大题型】【苏科版】【题型1 相反数与绝对值的概念辨析】 (1)【题型2 相反数的几何意义的应用】 (3)【题型3 绝对值非负性的应用】 (5)【题型4 化简多重符号】 (6)【题型5 化简绝对值】 (8)【题型6 利用相反数的性质求值】 (9)【题型7 解绝对值方程】 (11)【题型8 绝对值几何意义的应用】 (13)【题型9 有理数的大小比较】 (15)【题型10 应用绝对值解决实际问题】 (17)【知识点1 相反数与绝对值】相反数:1.概念:只有符号不同的两个数叫做互为相反数.相反数的表示方法:一般地,a和-a互为相反数,这里的a表示任意一个数可以是正数、负数也可以是零,特别地,一个数的相反数等于它本身这个数是零.2.性质:若a与b互为相反数,那么a+b=0.绝对值:1.定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.2.性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【题型1 相反数与绝对值的概念辨析】【例1】(2023秋·福建龙岩·七年级校考阶段练习)与-4的和为0的数是()A.14B.4C.-4D.−14【答案】B【分析】与-4的和为0的数,就是-4的相反数4.【详解】解:与-4的和为0的数,就是求出-4的相反数4,故选:B.【点睛】此题考查相反数的意义,掌握互为相反数的两个数的和为0的性质是解决问题的基础.【变式1-1】(2023·江苏·七年级假期作业)将符号语言“|a|=a(a≥0)”转化为文字表达,正确的是()A.一个数的绝对值等于它本身B.负数的绝对值等于它的相反数C.非负数的绝对值等于它本身D.0的绝对值等于0【答案】C【分析】根据绝对值的含义及绝对值的性质逐项判断即可解答.【详解】解:∵一个非负数的绝对值等于它本身,一个负数的绝对值等于它的相反数,∴A项不符合题意;∵a≥0,表示的是非负数的绝对值,不是负数的绝对值,∴B不符合题意;∵一个非负数的绝对值等于它本身,∴C符合题意;∵a≥0,表述的是非负数的绝对值,不只是0的绝对值,∴选项D不符合题意;故选:C.【变式1-2】(2023·江苏·七年级假期作业)下列各对数中,互为相反数的是()A.−(+1)和+(−1)B.−(−1)和+(−1)C.−(+1)和−1D.+(−1)和−1【答案】B【分析】先化简各数,然后根据相反数的定义判断即可.【详解】解:A、−(+1)=−1,+(−1)=−1,不是相反数,故此选项不符合题意;B、−(−1)=1,+(−1)=−1,是相反数,故此选项符合题意;C、−(+1)=−1,不是相反数,故此选项不符合题意;D、+(−1)=−1,不是相反数,故此选项不符合题意;故选:B.【点睛】本题主要考查了相反数.先化简再求值是解题的关键.【变式1-3】(2023秋·江苏盐城·七年级江苏省响水中学阶段练习)绝对值小于2016的所有的整数的和________.【答案】0【详解】绝对值小于2016的所有整数为:−2015,...,0,1, (2015)故-2015+(-2014)+(-2013)+…+2013+2014+2015=(-2015+2015)+( -2014+2014)+( -2013+2013)+…+(-1+1)+0=0;故答案为0.点睛:由于数比较多,不可能挨个求和,故考虑用“互为相反数的两个数的和等于0”这个性质.【题型2 相反数的几何意义的应用】【例2】(2023·全国·七年级假期作业)如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?【答案】(1)-1(2)点C表示的数是0.5,D表示的数是-4.5【分析】(1)根据互为相反数的定义确定出原点的位置,再根据数轴写出点C表示的数即可;(2)根据互为相反数的定义确定出原点的位置,再根据数轴写出点C、D表示的数即可.【详解】(1)由点A、B故点C表示的数是-1.(2)由点D、B表示的数是互为相反数可知数轴上原点的位置如图,故点C表示的数是0.5,D表示的数是-4.5.【点睛】本题考查了相反数的定义和数轴,解题的关键是根据题意找出原点的位置.【变式2-1】(2023秋·七年级课时练习)如图,数轴上两点A、B表示的数互为相反数,若点B表示的数为6,则点A表示的数为()A.6B.﹣6C.0D.无法确定【答案】B【分析】根据数轴上点的位置,利用相反数定义确定出点A表示的数即可.【详解】解:∵数轴上两点A,B表示的数互为相反数,点B表示的数为6,∴点A表示的数为﹣6,故选:B.【点睛】此题考查数轴与有理数,相反数的定义,理解相反数的定义是解题的关键.【变式2-2】(2023·全国·七年级假期作业)如图,A,B,C,D是数轴上的四个点,已知a,b均为有理数,且a+b=0,则它们在数轴上的位置不可能落在()A.线段AB上B.线段BC上C.线段BD上D.线段AD上【答案】A【分析】根据相反数的性质,数轴的定义可知,a,b位于原点两侧,据此即可求解.【详解】解:∵a,b均为有理数,且a+b=0,∴a,b位于原点两侧,∴a,b在数轴上的位置不可能落在线段AB上,故选:A.【变式2-3】(2023秋·江苏无锡·七年级校考阶段练习)用“⇒”与“⇐”表示一种法则:(a⇒b)=﹣b,(a⇐b)=﹣a,如(2⇒3)=﹣3,则(2023⇒2018)⇐(2023⇒2015)=__________【答案】2018.【分析】根据题意,(a⇒b)=-b,(a⇐b)=-a,可知(2023⇒2018)=-2018,(2023⇒2015)=-2015,再计算(-2018⇐-2015)即可.【详解】解:∵(a⇒b)=-b,(a⇐b)=-a,∴(2023⇒2018)⇐(2023⇒2015)=(-2018⇐-2015)=2018.故答案为:2018.【点睛】本题这是一种新定义问题,间接考查了相反数的概念,一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.解题的关键是根据题意掌握规律.【题型3 绝对值非负性的应用】【例3】(2023秋·云南昭通·七年级校考阶段练习)已知|a﹣2|与|b﹣3|互为相反数,求a+b的值.【答案】5.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列非常求出a、b的值,然后代入代数式进行计算即可得解.【详解】∵|a-2|与|b-3|互为相反数,∴|a-2|+|b-3|=0,∴a-2=0,b-3=0,解得a=2,b=3,所以,a+b=2+3=5.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.【变式3-1】(2023秋·云南楚雄·七年级校考阶段练习)对于任意有理数a,下列式子中取值不可能为0的是()A.|a+1|B.|−1|+a C.|a|+1D.−1+|a|【答案】C【分析】根据绝对值的非负性即可得出答案.【详解】解:A.当a=−1时,a+1=0,则|a+1|=0,故A选项不符合题意;B.当a=−1时,|−1|+a=1−0,故B选项不符合题意;C.|a|≥0,则|a|+1≥1,不可能为0,故C选项符合题意;D.当a=±1时,−1+|a|=−1+1=0,故D选项不符合题意;故选:C.【点睛】本题考查了绝对值的非负性,解题的关键是掌握任何数的绝对值都是非负数,两个非负数的和一定为非负数.【变式3-2】(2023秋·山东潍坊·七年级统考期中)若|a−1|+|b+2|=0,求a+|−b|.【答案】3【分析】根据绝对值的非负性求解即可.【详解】解:∵|a−1|+|b+2|=0,∴a−1=0,b+2=0,解得:a=1,b=−2,故a +|−b |=1+2=3.【点睛】本题考查了绝对值的非负性,准确的计算是解决本题的关键.【变式3-3】(2023秋·七年级课时练习)对于任意有理数m ,当m 为何值时,5−|m −3|有最大值?最大值为多少?【答案】5【分析】根据绝对值的非负性得到|m −3|≥0,得到当m =3时,|m −3|最小,代入求解即可;【详解】解:由绝对值都是非负数,得|m −3|≥0.当m =3时,|m −3|最小,最小值为0,此时5−|m −3|有最大值,最大值是5.【点睛】本题主要考查了绝对值的非负性应用,准确计算是解题的关键.【题型4 化简多重符号】【例4】(2023秋·全国·七年级专题练习)化简下列各数:(1)−(−23)=________ ;(2)−(+45)=________;(3)−{+[−(+3)]}=________.【答案】 23 −45 3【分析】根据多重符合化简的法则,化简结果的符合由符号的个数决定,确定符号后可得结果.【详解】解:−(−23)=23,−(+45)=−45,−{+[−(+3)]}=3,故答案为:23,−45,3.【点睛】本题考查了化简多重符号,多重符号的化简是由“−”的个数来定,若“−”个数为偶数个时,化简结果为正;若“−”个数为奇数个时,化简结果为负.【变式4-1】(2023·浙江·七年级假期作业)下列化简正确的是( )A .+(−6)=6B .−(−8)=8C .−(−9)=−9D .−[+(−7)]=−7 【答案】B【分析】根据化简多重符号的方法逐项判断即可求解.【详解】解:A. +(−6)=−6,原选项计算错误,不合题意;B. −(−8)=8,原选项计算正确,符合题意;C. −(−9)=9,原选项计算错误,不合题意;D. −[+(−7)]=7,原选项计算错误,不合题意.故选:B.【点睛】本题考查有理数的多重符合化简,化简多重符号就是看数字前负号的个数,如果负号的个数是奇数个则最终符号为负号,如果负号个数为偶数个则最终符号为正号.【变式4-2】(2023秋·江苏无锡·七年级统考期末)在−(+2.5),−(−2.5),+(−2.5),+(+2.5)中,正数的个数是()A.1B.2C.3D.4【答案】B【分析】根据多重符号化简原则逐一进行判断即可得到答案.【详解】解:∵−(+2.5)=−2.5,−(−2.5)=2.25,+(−2.5)=−2.5,+(+2.5)=2.5,∴正数的个数是2个,故选B.【点睛】本题考查了多重符号化简,解题关键是掌握多重符号化简的原则:若一个数前有多重符号,则看该数前面的符号中,符号“−”的个数来决定,即奇数个符号则该数为负数,偶数个符号,则该数为正数.【变式4-3】(2023·全国·七年级假期作业)化简下列各式的符号:(1)﹣(+4);(2)+(﹣37);(3)﹣[﹣(﹣325)];(4)﹣{﹣[﹣(﹣π)]}.化简过程中,你有何发现?化简结果的符号与原式中的“﹣”号的个数与什么关系吗?【答案】(1)-4;(2)−37;(3)−325;(4)π;最后结果的符号与﹣的个数有着密切联系,如果一个数是正数,当﹣的个数是奇数,最后结果为负数,当﹣的个数是偶数,最后结果为正数【分析】根据已知数据结合去括号的法则化简各数,进而得出结果的符号与原式中的“-”号的个数的关系.【详解】解:(1)﹣(+4)=﹣4;(2)+(−37)=−37;(3)﹣[﹣(﹣325)]=﹣325;(4)﹣{﹣[﹣(﹣π)]}=π.最后结果的符号与“﹣”的个数有着密切联系,如果一个数是正数,当“﹣”的个数是奇数,最后结果为负数,当“﹣”的个数是偶数,最后结果为正数.【点睛】本题考查了相反数的意义,正确发现数字变化规律是解题的关键.【题型5 化简绝对值】【例5】(2023春·黑龙江哈尔滨·六年级统考期中)有理数a,b,c在数轴上的位置如图所示,化简|b+c|+ |a−c|=_______.【答案】a−b−2c【分析】先由数轴判断a,b,c与0的大小关系,其中a>0,b<0,c<0,则b+c<0,a−c>0,再根据绝对值的意义,正数的绝对值是其本身,负数的绝对值是其相反数,0的绝对值是0,进而得出结果.【详解】解:∵a>0,b<0,c<0,∴b+c<0,a−c>0,∴b+c+a−c=−(b+c)+a−c=−b−c+a−c=a−b−2c故答案为:a−b−2c.【点睛】本题主要考查了数轴上的点以及绝对值的意义,其中正确掌握正负数的绝对值是解题的关键.【变式5-1】(2023秋·江苏宿迁·七年级统考期中)如果|m|=|n|,那么m,n的关系()A.相等B.互为相反数C.都是0D.互为相反数或相等【答案】D【分析】利用绝对值的代数意义化简即可得到m与n的关系.【详解】解:∵m=n,∴m=n或m=−n,即互为相反数或相等,故选:D.【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.【变式5-2】(2023·浙江·七年级假期作业)化简:(1)|−(+7)|;(2)−|−8|;【答案】(1)7(2)−8【分析】(1)先化简括号的符号,然后再根据绝对值的性质化简即可;(2)直接化简绝对值即可.【详解】(1)解:|−(+7)|=|−7|=7(2)−|−8|=−8.【点睛】本题主要考查绝对值的化简,熟练掌握运算法则是解题关键.【变式5-3】(2023·全国·七年级假期作业)求下列各数的绝对值:(1)−38;(2)0.15;(3)a(a<0);(4)3b(b>0);【答案】(1)38(2)0.15(3)−a(4)3b【分析】根据正数与0的绝对值是其本身,负数的绝对值是其相反数即可求解.【详解】(1)|−38|=38;(2)|0.15|=0.15;(3)∵a<0,∴|a|=−a;(4)∵b>0,∴3b>0,∴|3b|=3b【点睛】本题考查了绝对值的性质,准确把握“正数与0的绝对值是其本身,负数的绝对值是其相反数”是解题的关键.【题型6 利用相反数的性质求值】的相反数是x,-5的相反数是y,z的相反数是0,求x+y 【例6】(2023·全国·七年级专题练习)已知-213+z的相反数.【答案】-713【分析】根据相反数的概念求出x ,y ,z 的值,代入x+y+z 即可得到结果.【详解】解:∵-213的相反数是x ,-5的相反数是y ,z 相反数是0,∴x=213,y=5,z=0,∴x+y+z=213+5+0=713. ∴x+y+z 的相反数是-713 . 【点睛】本题考查了相反数的定义,熟记相反数的概念是解题的关键.【变式6-1】(2023秋·湖北孝感·七年级统考期中)在数轴上表示整数a 、b 、c 、d 的点如图所示,且a +b =0,则c +d 的值是________.【答案】−4.【分析】根据题意先确定原点的位置,然后得到c 、d 表示的数,再进行计算即可.【详解】解:∵a +b =0,∴a 与b 互为相反数,由数轴可知,如图:∴a =−2,b =2,c =−8,d =4,∴c +d =−8+4=−4;故答案为:−4.【点睛】本题考查了数轴的定义,相反数的定义,解题的关键是熟练掌握所学的知识进行解题.【变式6-2】(2023春·广东河源·七年级校考开学考试)若 a +b =0,则 a b 的值是 ( ) A .−1B .0C .无意义D .−1或无意义【答案】D 【分析】分b =0,b ≠0两种情形计算即可.【详解】当b ≠0时,∵a +b =0,∴a=−b,∴a b =−bb=−1;当b=0时,∵a+b=0,∴a=0,∴ab无意义,∴ab的值是−1或无意义,故选D.【点睛】本题考查了相反数的意义,及其商的意义,熟练掌握相反数的意义是解题的关键.【变式6-3】(2023秋·湖南永州·七年级校考阶段练习)已知a,b互为相反数,则a+2a+3a+⋯+49a+50a+ 50b+49b+⋯+3b+2b+b=________.【答案】0【分析】根据相反数的概念,得到a+b=0,继而可得出答案.【详解】解:∵a,b互为相反数,∴a+b=0.∴a+2a+3a+...+49a+50a+50b+49b+...+3b+2b+b=(a+b)+2(a+b)+3(a+b)+50(a+b)=0.故答案为:0.【点睛】本题考查了相反数的概念,属于基础题,注意掌握相反数的概念是关键.【题型7 解绝对值方程】【例7】(2023秋·江苏宿迁·七年级泗阳致远中学校考阶段练习)若|−m|=|−12|,则m的值为()A.±2B.−12或12C.12D.−12【答案】B【分析】根据绝对值的性质,进行化简求解即可.【详解】解:|−m|=|−12||−m|=12,∴m=±1,2故选:B.【点睛】本题考查了绝对值方程问题,解题的关键是掌握绝对值化简的性质,正数的绝对值是本身,负数的绝对值是其相反数.【变式7-1】(2023秋·海南省直辖县级单位·七年级校考阶段练习)如果|x|−2=2,那么x是()A.4B.-4C.±2D.±4【答案】D【分析】根据绝对值意义进行解答即可.【详解】解:∵|x|−2=2,∴|x|=4,∴x=±4,故选:D.【点睛】本题考查了绝对值的意义,绝对值表示该数在数轴表示的点距原点的距离.【变式7-2】(2023秋·湖北孝感·七年级统考期中))已知|a+1|=2,|2b−1|=7,a<b,求|a|+|b|.【答案】5或7【分析】根据绝对值的意义以及a与b的关系求出a和b的值,代入计算即可.【详解】解:∵|a+1|=2,|2b−17,∴a=1或-3,b=4或-3,∵a<b,∴a=1,b=4,或a=-3,b=4,|a|+|b|=5或7.【点睛】本题考查了绝对值的意义,解题的关键是掌握已知一个数的绝对值,求这个数.【变式7-3】(2023秋·江苏·七年级专题练习)解方程:3x−|x|+5=1.【答案】x=−1【分析】根据绝对值的意义,分类讨论求解即可.【详解】解:当x≥0时,3x−x+5=1,解得:x=−2(不符合题意,舍去),当x<0时,3x+x+5=1,解得:x=−1,综上所述:x=−1,∴原方程的解为:x=−1.【点睛】本题考查了绝对值方程,解本题的关键在熟练掌握绝对值的意义.正数的绝对值为它本身,负数的绝对值则是它的相反数,0的绝对值还是为0.【题型8 绝对值几何意义的应用】【例8】(2023秋·全国·七年级专题练习)|x−1|+|x−2|+|x−3|+⋅⋅⋅+|x−2021|的最小值是()A.1B.1010C.1021110D.2020【答案】C【分析】x为数轴上的一点,|x-1|+|x-2|+|x-3|+…|x-2021|表示:点x到数轴上的2021个点(1、2、3、…2021)的距离之和,进而分析得出最小值为:|1011-1|+|1011-2|+|1011-3|+…|1011-2021|求出即可.【详解】解:在数轴上,要使点x到两定点的距离和最小,则x在两点之间,最小值为两定点为端点的线段长度(否则距离和大于该线段);所以:当1≤x≤2021时,|x-1|+|x-2021|有最小值2020;当2≤x≤2020时,|x-2|+|x-2020|有最小值2018;…当x=1011时,|x-1011|有最小值0.综上,当x=1011时,|x-1|+|x-2|+|x-3|+…|x-2021|能够取到最小值,最小值为:|1011-1|+|1011-2|+|1011-3|+…|1011-2021|=1010+1009+…+0+1+2+…+1010=1011×1010=1021110.故选:C.【点睛】本题考查了绝对值的性质以及利用数形结合求最值问题,利用已知得出x=1011时,|x-1|+|x-2|+|x-3|+…|x-2021|能够取到最小值是解题关键.【变式8-1】(2023秋·七年级单元测试)小亮把中山路表示成一条数轴,如图所示,把路边几座建筑的位置用数轴上的点,其中火车站的位置记为原点,正东方向为数轴正方向,公交车的1站地为1个单位长度(假设每两站之间距离相同)回答下列问题:(1)到火车站的距离等于2站地的是和.(2)到劝业场的距离等于2站地的是和.(3)在数轴上,到表示1的点的距离等于2的点有个,表示的数是.(4)如果用a表示图中数轴上的点,那么|a|表示该点到火车站的距离,当|a|=2时,a=2或−2.请你结合图形解释等式|a−1|=2表达的几何意义,并求出当|a−1|=2时,a的值.【答案】(1)烈士陵园,北国商城(2)人民商场,博物馆(3)2,−1或3(4)表达的几何意义见解析,a的值为3或−1【分析】(1)由图即可直接得出结论;(2)由图即可直接得出结论;(3)结合数轴即可直接得出结论;(4)结合图形可知|a−1|=2的几何意义为:该点到劝业场的距离等于2,进而可直接得出a的值.【详解】(1)解:由图可知到火车站的距离等于2站地的是人民商场和劝业场.故答案为:烈士陵园,北国商城;(2)解:由图可知到劝业场的距离等于2站地的是人民商场和博物馆.故答案为:人民商场,博物馆;(3)解:在数轴上,到表示1的点的距离等于2的点有2个,分别是−1和3.故答案为:2,−1或3;(4)解:该题中|a−1|=22,且为人民商场或博物馆.即到表示1的点的距离等于2的点.结合图形可知当|a−1|=2时,a的值为3或−1.【点睛】本题考查数轴上两点之间的距离,用数轴上的点表示有理数,绝对值的意义.利用数形结合的思想是解题关键.【变式8-2】(2023春·浙江·七年级期末)方程|x|+|x−2022|=|x−1011|+|x−3033|的整数解共有()A.1010B.1011C.1012D.2022【答案】C【详解】根据绝对值的意义,方程表示整数x到0与2022的距离和等于到1011与3033的距离的和,进而得出x为1011与2022之间的整数,据此即可求解.【分析】解:方程的整数解是1011至2022之间的所有整数,共有1012个.故选:C.【点睛】本题考查了绝对值的意义,数轴上两点的距离,理解绝对值的意义是解题的关键.【变式8-3】(2023秋·七年级单元测试)阅读材料:因为|x|=|x−0|,所以|x|的几何意义可解释为数轴上表示数x的点与表示数0的点之间的距离.这个结论可推广为:|x1−x2|的几何意义是数轴上表示数x1的点与表示数x2的点之间的距离.根据上述材料,解答下列问题:(1)等式|x−2|=3的几何意义是什么?这里x的值是多少?(2)等式|x−4|=|x−5|的几何意义是什么?这里x的值是多少?(3)式子|x−1|+|x−3|的几何意义是什么?这个式子的最小值是多少?【答案】(1)几何意义为数轴上表示数x的点与表示数2的点之间的距离等于3,x=−1或5(2)几何意义是点P到点A的距离等于点P到点B的距离,x=412(3)几何意义是点P到点M的距离与点P到点N的距离的和,最小值为2【分析】(1)根据|x1−x2|的几何意义求解可得;(2)先去绝对值,再解方程即可求解;(3)由题意知|x−1|+|x−3|表示数x到1和3的距离之和,当数x在两数之间时式子取得最小值.【详解】(1)解:等式|x−2|=3的几何意义为数轴上表示数x的点与表示数2的点之间的距离等于3,这里x=−1或5.(2)解:设数轴上表示数x,4,5的点分别为P,A,B,则等式|x−4|=|x−5|的几何意义是点P到点A的距离等于点P到点B的距离,即PA=PB,所以x=41.2(3)解:设数轴上表示数x,1,3的点分别为P,M,N,则式子|x−1|+|x−3|的几何意义是点P到点M的距离与点P到点N的距离的和,即PM+PN.结合数轴可知:当1≤x≤3时,式子|x−1|+|x−3|的值最小,最小值为2.【点睛】本题考查了一元一次方程的应用,数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示是解题的关键.【题型9 有理数的大小比较】这四个数中,绝对值最小的数是()【例9】(2023·湖北孝感·七年级统考期中))在1,−2,0,32A.1B.−2C.0D.32【答案】C【分析】先求绝对值,然后根据有理数大小比较即可求解.【详解】解:∵1,−2,0,32这四个数的绝对值分别为1,2,0,32∴绝对值最小的数是0,故选:C .【点睛】本题考查了绝对值,有理数的大小比较,熟练掌握绝对值的定义,有理数的大小比较是解题的关键.【变式9-1】(2023秋·广东河源·七年级校考开学考试)已知下列有理数,在数轴上表示下列各数,并按原数从小到大的顺序用“<”把这些数连接起来.−5,+3,−|−3.5|,0,−(−2),−1【答案】数轴见解析,−5<−|−3.5|<−1<0<−(−2)<+3【分析】先去括号,去绝对值符号,把各数在数轴上表示出来,按原数从小到大的顺序用“<”把这些数连接起来即可.【详解】解:−|−3.5|=−3.5,−(−2)=2,如图,故−5<−|−3.5|<−1<0<−(−2)<+3.【点睛】本题主要考查数轴上有理数的表示及大小比较,熟练掌握数轴上有理数的表示及大小比较是解题的关键.【变式9-2】(2023·浙江·七年级假期作业)(1)试用“<”“ >”或“=”填空:①|+6|−|+5| |(+6)−(+5)|;②|−6|−|−5| |(−6)−(−5)|;③|+6|−|−5| |(+6)−(−5)|;(2)根据(1)的结果,请你总结任意两个有理数a 、b 的差的绝对值与它们的绝对值的差的大小关系为|a|−|b| |a −b|;(3)请问,当a 、b 满足什么条件时,|a|−|b|=|a −b|?【答案】(1)①=;②=;③<;(2)≤;(3)①当a >b >0,②a <b <0,③a =b ,④b =0,时|a|−|b|=|a −b|.【分析】(1)先计算,再比较大小即可;(2)根据(1)的结果,进行比较即可;(3)根据(1)的结果,可发现,当a 、b 同号时,|a|−|b|=|a −b|.【详解】解:(1)①|+6|−|+5|=1,|(+6)−(+5)|=1,∴|+6|−|+5|=|(+6)−(+5)|;②|−6|−|−5|=1,|(−6)−(−5)|=1,∴|−6|−|−5|=|(−6)−(−5)|;③|+6|−|−5|=1,|(+6)−(−5)|=11,∴|+6|−|−5|<|(+6)−(−5)|;故答案为:=,=,<;(2)|a|−|b|⩽|a−b|;故答案为:≤;(3)①当a>b>0,②a<b<0,③a=b,④b=0,时|a|−|b|=|a−b|.【点睛】本题考查了有理数的大小比较及绝对值的知识,解题的关键是注意培养自己由特殊到一般的总结能力.【变式9-3】(2023秋·湖北黄冈·七年级统考期末)有理数a,b,c在数轴上的位置如图所示,下列关系正确的是()A.|a|>|b|B.a>﹣b C.b<﹣a D.﹣a=b【答案】C【分析】先根据各点在数轴上的位置得出b﹤-c﹤0﹤a﹤c,再根据绝对值、相反数、有理数的大小逐个判断即可.【详解】从数轴可知:b﹤-c﹤0﹤a﹤c,∴∣a∣﹤∣b∣,a﹤-b,b﹤-a,-a≠b,所以只有选项C正确,故选:C.【点睛】本题考查了有理数的大小比较、相反数、绝对值、数轴的应用,解答的关键是熟练掌握利用数轴比较有理数的大小的方法.【题型10 应用绝对值解决实际问题】【例10】(2023·浙江·七年级假期作业)某汽车配件厂生产一批圆形的零件,现从中抽取6件进行检查,比标准直径长的毫米数记作正数,比标准直径短的毫米数记作负数,检查记录如下表:(1)找出哪件零件的质量相对好一些?(2)若规定与标准直径相差不大于0.2毫米的产品为合格产品;则这6件产品中有哪些产品不合格?【答案】(1)第4件质量最好;(2)第1件、第2件产品不合格.【分析】(1)根据绝对值越小质量越好,越大质量越差即可知道哪件零件的质量相对来讲好一些;(2)按绝对值由大到小排即可.【详解】(1)解:∵|+0.5|=0.5,|-0.3|=0.3,|+0.1|=0.1,|0|=0,|-0.1|=0.1,|+0.2|=0.2,∵0<0.1=0.1<0.2<0.3<0.5,∴|0|<|+0.1|=|-0.1|<|+0.2|<|-0.3|<|+0.5|,∴第4件质量最好;(2)解:∵|+0.5|=0.5>0.2,|-0.3|=0.3>0.2,∴第1件、第2件产品不合格.【点睛】本题主要考查绝对值的意义,可以结合绝对值的意义进行解答.【变式10-1】(2023秋·辽宁沈阳·七年级统考期中)如图,为了检测4个足球质量,规定超过标准质量的克数记为正数,不足标准质量的克数记为负数.下列选项中最接近标准的是()A.B.C.D.【答案】B【分析】根据绝对值最小的最接近标准,可得答案.【详解】解:|−1.4|=1.4,|−0.5|=0.5,|0.6|=0.6,|−2.3|=2.3,0.5<0.6<1.4<2.3,则最接近标准的是−0.5.故选:B.【点睛】本题考查了正数和负数,利用绝对值的意义是解题关键.【变式10-2】(2023秋·山东济南·七年级校考阶段练习)按规定,食品包装袋上都应标明袋内装有食品多少克,下表是几种饼干的检验结果,“+”“-”分别表示比标准重量多和少,用绝对值判断最符合标准的一种食品是_____.【答案】甜味【分析】找出表格中四个数值的绝对值最小的即可得.【详解】解:|+10|=10,|−8.5|=8.5,|+5|=5,|−7.3|=7.3,因为5<7.3<8.5<10,所以最符合标准的一种食品是甜味,故答案为:甜味.【点睛】本题考查了绝对值的应用,理解题意,正确求出各数的绝对值是解题关键.【变式10-3】(2023秋·浙江金华·七年级校考阶段练习)已知零件的标准直径是100mm,超过标准直径的数量记作正数,不足标准直径的数量记作负数,检验员抽查了五件样品,检查结果如下:(1)指出哪件样品的直径最符合要求;(2)如果规定误差的绝对值在0.18mm之内是正品,误差的绝对值在0.18~0.22mm之间是次品,误差的绝对值超过0.22mm是废品,那么这五件样品分别属于哪类产品?【答案】(1)第4件样品的直径最符合要求;(2)第1,2,4件样品是正品;第3件样品为次品;第5件样品为废品.【分析】(1)表中的数据是零件误差数,所以这些数据中绝对值小的零件较好;(2)因为绝对值越小,与规定直径的偏差越小,每件样品所对应的结果的绝对值,即为零件的误差的绝对值,看绝对值的结果在哪个范围内,就可确定是正品、次品还是废品.【详解】解:(1)∵|−0.05|<|+0.10|<|−0.15|<|+0.20|<|+0.25|,∴第4件样品的直径最符合要求.(2)因为|+0.10|=0.10<0.18,|−0.15|=0.15<0.18,|−0.05|=0.05<0.18.所以第1,2,4件样品是正品;因为|+0.20|=0.20,0.18<0.20<0.22,所以第3件样品为次品;因为|+0.25|=0.25>0.22,所以第5件样品为废品.【点睛】考查了绝对值,绝对值越小表示数据越接近标准数据,绝对值越大表示数据越偏离标准数据.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相反数、倒数与绝对值专题提高1、【相反数】:【代数定义】:只有符号不同的两个数叫做互为相反数,规定:零的相反数是零。
相反数是成对出现的,指两个数字之间的关系,一个数与它的相反数时一对数字。
【几何意义】:从数轴上看,互为相反数的两个数所对应的点关于原点对称,即这两个数分居在原点两侧,并且到原点距离相等。
【解题技巧】:①表示一个数的相反数,只要在这个数的前面添一个“-”号。
如:a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
②多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
【重要结论】:如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
【知识应用】:Eg1:【相反数的理解】:相反数反应的是两个数字之间的关系:①运算关系:和为0;②数字特征关系:只有符号不同。
而不体现大小关系1.有理数的相反数是,它们之间的大小关系().A.> B.< C.> 或= D.不能确定2.如果,那么- =______ ;如果-x=-(-12),那么x= __________Eg2:【相反数结论】:若a与b互为相反数,则a+b=0【例】:若a+5与—1互为相反数,则a=________Eg3:【多重符号的化简】:下列各式中,化简正确的是().A. -[+(-7)]=-7 B. +[-(+7)]=7 C. -[-(+7)]=7 D. -[-(-7)]=7★ Eg4 :【相反数的几何意义】:1.数轴上,若A .B 表示互为相反数,A 在B 的右侧,并且这两点的距离为8,则这两点所表示的数分别是_______【跟踪练习1】:一个数在数轴上所对应的点向右移动5个单位长度后得到它的相反数的对应点,则这个数是( ).A .-2B .2C .D .【跟踪练习2】:有理数a,b 在数轴上的位置如图所示,试比较a,b,-a,-b 的大小,并用“<”把它们连接起来。
2、【绝对值】:(字面意思:只要值,不要符号)【代数定义】:①一个正数的绝对值是它本身; ②一个负数的绝对值是它的相反数; ③0的绝对值是0.也可以写成: ()()()||0a a a a a a ⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数 【拓展】:=b -a【说明】:遇到|a-b|或|a+b|或|a+b+c|……等形式时,也可以采用整体思想来解决。
绝对值里面看成一个整体,问题即转化为求方程a 的问题,但是注意,为了防止出错,采用整体法去绝对值时要添上括号,然后再去括号就可以了b a 0a-b (a>b)0 (a=b)【几何定义】:一般地,数轴上表示数a 的点与原点的距离叫做a 的绝对值,记作|a|,或者说|a|表示数a 到原点的距离。
【拓展】:b -a 的机会意义:表示数字上表示a 的数与表示b 的数之间的距离。
【绝对值应用】:比较大小法则 :①两个正数,绝对值大的正数大;②两个负数,绝对值大的负数小,绝对值小的负数反而大.绝对值有关的【重要结论】:①一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;②即|a|+|b|=0,则a=0且b=0。
即:【0+0模型】:若几个非负数的和为0,则有且只有这几个非负数同时为0 ③绝对值相等的两数相等或互为相反数。
即:|a|=|b|,则a=b 或a=-b ;反之也成立;④任何数的绝对值都不小于原数。
即:|a|≥a ;⑤绝对值是相同正数的数有两个,它们互为相反数。
即:若|x|=a (a>0),则x=±a ;【知识应用】:Eg1.【绝对值代数意义】:【例】:若|a |=4,|b |=3,且a >b ,则a -b =______.【跟踪练习1】:若)5(--=-x ,则=x ________,【跟踪练习2】:3.已知|a|=3, |b |=5,且a<b,则a +b 等于【跟踪练习3】:(整体的思想)若x x -=-20082008 ,则满足条件x 的个数有( )A .1个B .2个C .3个D .无穷多个★【跟踪练习4】:已知:abc ≠0,且M=,当a 、b 、c 取不同的值时,M 有( )A .惟一确定的值B .3种不同的取值C .4种不同的取值D .8种不同的取值Eg2.【绝对值几何意义】:【例】:绝对值小于4且不小于2的整数是____【跟踪练习1】:若1<a <3,则=-+-a a 13__________ ★【跟踪练习2】:(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,两点之间的距离为8,求这两个数。
【跟踪练习3】:(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3. 并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___ .(2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距离可以表示为 .(3)结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值范围为 ______.(4) 满足341>+++x x 的x 的取值范围为Eg3.【整体思想+数形结合】:【例】:已知a 、b 、c 在数轴上位置如图:则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( )A .-3aB . 2c -aC .2a -2bD . b【跟踪练习1】:3π-= .【跟踪练习2】:已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( )A .是正数B .是负数C .是零D .不能确定符号【跟踪练习3】:计算: 91101415131412131-++-+-+-Eg4.【非负性即0+0型应用】:【例】.若|m -1|+|n -5|=0,则m =____,n =____.★【跟踪练习】已知|a b -2|与|a -1|互为相互数,试求下式的值.()()()()()()1111112220072007ab a b a b a b ++++++++++Eg5.【绝对值实际应用】:【例】:某检修小组乘一辆汽车沿公路检修线路,约定向南为正,某天从A 地出发到收工时,行走记录为(单位:千米):+18,-9,+14,-7,-6,+12,-5,-8.(1)收工时,检修小组在A 地何方,距A 地多远?(2)若汽车行驶每千米耗油0.3升,则从出发到收工共耗油多少升?【跟踪练习】:出租车司机小王某天下午营运全是在东西走向的太湖大道上进行的.如果向东记作“+”,向西记作“﹣”.他这天下午行车情况如下:(单位:千米)﹣2,+5,﹣1,+10,﹣3,﹣2,﹣5,+6 请回答:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.那么小王这天下午共收到多少钱?3、【倒数】倒数:乘积为1的两个数互为倒数。
从它的定义中我们可以发现倒数不是独立存在的,而是相对的,也就是说倒数不是一个具体的数,而是表示两个数之间的一种关系。
【解题技巧】:①求一个分数的倒数,只须把这个分数的分子和分母交换位置,即得它的倒数;②求一个整数的倒数,只须把这个整数看成是分母为1的分数,然后再按求分数倒数的方法即可得到。
【重要结论】:如果a与b互为倒数,则有ab=1,反之亦成立;零没有倒数;倒数等于本身的数是1和-1。
【知识应用】:Eg1.【倒数意义】:【例】:已知a、b互为相反数,c、d互为倒数,|m|=3,求:m-(-1)+2016)(2015ba-cd的值是。
【跟踪练习】:a与b互为相反数,c与d互为倒数,求的值.Eg2.【倒数在运算中的应用】:巧解【例】:【跟踪练习】:【巩固练习】:1. 下列说法中:①有理数的绝对值一定是正数; ②互为相反数的两个数,必然一个是正数,一个是负数; ③若b a =,则a 与b 互为相反数; ④绝对值等于本身的数是0;⑤任何一个数都有它的相反数. 其中正确的个数有( )A.0个B.1个C.2个D.3个2.关于数0,下列几种说法不正确的是 ( )A. 0既不是正数,也不是负数B. 0的相反数是0C. 0的绝对值是0D. 0是最小的数3.下列说法中,正确的是( )①0是绝对值最小的有理数; ②相反数大于本身的数是负数;③数轴上原点两侧的数互为相反数;④两个数大小比较,绝对值大的反而小.A.①、②B.①、②、③C.①、③D.①、②、③、④4.41-的相反数与绝对值等于41的数的和应等于最大的负整数是 ,最小的自然数是6、-221的倒数的是______,-2-的相反数是______.相反数大于-3但不大于2的整数是______7. 2018-的倒数的相反数是8.已知:a 与b 是互为相反数,c 与d 互为倒数,m 是绝对值最小的数,n 是最大的负整数,则:(1)a+b= ,c d= ,m= ,n= . cd b a +-+3=(2)求:220192n b a d c m +++⋅-=____________. 9.a ,b 为有理数,且,则a ,b ,-a ,-b 的大小关系是( ) A. B.C. D.10.若:0y x <<,则化简xxyx xy +的结果为( )A. 0B.2-C. 2D. 111. a 是不为1的有理数,我们把11a -称为a 的差倒数.如:2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数, 4a 是3a 的差倒数……依此类推.则2018a = . 12.已知整数1234,,,,a a a a ⋅⋅⋅满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+, 43|3|a a =-+,…,依次类推,则a 2019的值为________________.13.已知013=-++b a ,则b a +的相反数是 ( )A.-4B.4C.2D.-214.下列说法正确的是 ( )a >0,b<0,a <b b<-a <a <-b -a <a <b<-b -a <b<a <-b -b<-a <a <-bA )与(2)21(+-互为相反数 B.5的相反数是5-C.数轴上表示-a 的点一定在原点的左边D.任何负数都小于它的相反数15.若与互为相反数,则_________. 16.在等式的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立,则第一个方格内的数是__________.17.计算=_________.18.观察一列数:1,2,4,8……我们发现,从这列数的第二项起,每一项与它前面的一项的比都是2.一般地,如果一列数从第二项起,每一项与它前面的一项的比都等于同一个常数,我们就把这样的一列数叫做等比数列,这个常数叫等比数列的公比.(1)等比数列5,-15, 45的第四项为 ;(2)若一个等比数列的第二项是10,第三项是-20,则它的第一项是 ,第四项是 .★19.数轴上两点之间的距离等于相对应的两数差的绝对值.(1)数轴上表示2和5的两点之间的距离是___________;数轴上表示﹣2和﹣8的两点之间的距离是___________;(2)数轴上表示数x 和﹣1的两点之间的距离是2,那么x 为_____________;(3)若某动点表示的数为x ,当式子|x+1|+|x ﹣2|取得最小值时,相应的x 的范围是____(4)若某动点表示的数为x,已知数轴上两点A,B 对应的数分别为-1、3,点P 为点A 点B 之间的一点(不与A,B 重合),点P 对应的数为p 。