第二章 高分子的聚集态结构
高分子的聚集态结构

热膨胀系数
高分子材料的热膨胀系数与其聚 集态结构密切相关,结晶性高分 子材料的热膨胀系数通常较低。
聚集态结构对光学性能的影响
透明度
高分子材料的透明度与其聚集态结构中的有序程度有关。 结晶性高分子材料通常不透明,而非晶态高分子材料可能 具有较高的透明度。
折射率
高分子材料的折射率与其分子结构和聚集态结构有关。例 如,含有极性基团的高分子材料通常具有较高的折射率。
分子链的堆砌方式
高分子链在聚集态中的排列方式,如结晶态中的晶格排列、非晶 态中的无序堆砌等。
分子链间的相互作用
范德华力、氢键、离子键等相互作用力对分子链排列和堆砌的影 响。
聚集态结构的形成过程
1 2 3
加工过程中的聚集态结构形成
高分子材料在加工过程中,如挤出、注塑、拉伸 等,受到外力作用而发生取向、结晶等结构变化。
聚丙烯等。
优点
非破坏性、高分辨率、 可定量分析等。
局限性
对于非晶态或低结晶度 的高分子材料,分析效
果较差。
电子显微镜法
原理
利用电子束与样品相互作用, 获取高分子的微观形貌、聚集
态结构等信息。
应用范围
适用于各种高分子材料的分析 ,包括结晶性、非晶态和复合 材料等。
优点
高分辨率、直观性强、可观察 三维结构等。
玻璃化转变
非晶态高分子在玻璃化转 变温度下,由玻璃态转变 为高弹态。
取向态结构
分子链取向排列
高分子链在一定条件下,可以沿着特 定方向取向排列。
各向异性
取向度
取向态高分子的取向程度可以用取向 度来表示,取向度越高,物理性能越 优异。
取向态高分子在取向方向上具有优异 的物理性能,如高强度、高模量等。
高分子的聚集态结构

5
分子间作用力的表征: 内聚能与内聚能密度
内聚能:克服分子间作用力,把1摩尔凝聚体(液 体或固体)分子移到其分子间的引力范围之外(汽 化时)所需要的能量△E。 △E = △Hv - RT
(△E为内聚能, △Hv为摩尔蒸发/升华热)
内聚能密度:是单位体积的内聚能(cohesive energy density —简写为CED)。 △E CED = V m
12
影响聚合物单晶生长的因素
溶液的浓度:为了培养完善的单晶,溶液的浓度必须足够 稀,以避免分子链的缠结。通常浓度约0.01%时可得单层片 晶。
结晶温度:若得到完善的单晶,需使结晶速度足够慢,以保 证分子链的规整排列和堆砌。一般过冷程度20-30K时,可形 成单层片晶;增加过冷程度,可生成多层片晶,甚至更复杂 的形式。
6
CED大小与聚合物物理性质间的关系
CED < 290 J/cm3 的高聚物都是非极性高聚物,可 用作橡胶。 CED > 420 J/cm3的高聚物,由于分子链上有强极 性基团,或者分子链间能形成氢键,分子间作用力 大,可做纤维材料或工程塑料。
CED在290-420 J/cm3之间的高聚物分子间力适 中,适合作塑料使用。
15
每个晶胞有Z=2个链节
9
等规聚丙烯晶胞结构
等规聚丙烯(PP)属单斜晶系,a = 0.665 nm, b = 2.096 nm, c=0.650nm。α=γ=90o, β=99.2o 。 但结晶条件不同,还有单斜、六方、拟六方不同的 晶型,晶型不同、聚合物的性能也不同。
每个晶胞含 12个链节
10
3
高分子物理第二章 高聚物的聚集态结构

晶态 非晶态
取向结构 Orientation
决
决
高分子的聚集态 定 聚合物的基本性能特点 定 材料的性能
控制成型加工条件
获 得
预定材料结构
得 到
预定材料性能
高聚物的聚集态
晶态 一般晶态与半晶态
半晶态 取向晶态与半晶态 玻璃态
非晶态 取向态Leabharlann 橡胶态 粘流态液晶态
织态
第二节 结晶高聚物的结构模型
一、樱状微束模型(两相结构模型)
从而存在最大结晶温 度Tmax
Tmax=(0.80~0.85) Tm
低温
高温
Tmax=0.63 Tm+0.37 Tg-18.5
如: PP Tm=176℃ Tmax=0.85(176+273)K=381K
例 如 定向PS
Tc →Tm时,成核少,但生长快,
容易成为大球晶,不透明,脆,
表面粗糙。
Tc →Tg时,成核多,但生长慢, 容易成为小球晶,可能透明, 脆,表面细致。
这是人们多年来所接受和公认的结晶高聚物的结构模 型。
1、依据: 通过X-衍射
证实:除了有晶 相的衍射环外, 还有由于非晶造 成的弥散环。
2、中心论点: 高聚物只能部分结晶,有晶区,同时也有非晶区,
两相同时并存,一条高分子链可以贯穿好几个晶区和非晶 区,在非晶区中分子链仍是卷曲的。
3、应用: 用此模型可以解释一些实验事实,但有另一些实验事
后来许多聚合物如古塔波胶,PP, 聚α-烯烃,纤维素及衍生物等也相 继培养出了单晶。在电镜下可以清楚 的看到这些单晶具有规则的几何外 形。
Andrew Keller (1925~) 英国
远程有序和进程有序贯穿整个晶体。
2高分子的聚集态结构

2高分子的聚集态结构高分子的聚集态结构是指由高分子链相互排列和空间有序排布所形成的特定结构。
高分子材料的聚集态结构直接影响其性质和性能,因此对于高分子材料的研究和应用具有重要意义。
通过研究高分子的聚集态结构,可以揭示高分子材料的力学性能、热学性能、传质性能等方面的规律,为高分子材料的应用提供理论指导。
高分子的聚集态结构主要包括无序态、部分有序态和完全有序态三种。
1.无序态:在无序态下,高分子链相互交织、随机排列,没有任何规则的结构。
这种结构通常是由高分子材料在固态下由熔融态或溶液中形成的,没有特定的结晶形态。
无序态的高分子材料具有良好的可塑性和变形性能,常见于塑料材料。
2.部分有序态:部分有序态是指高分子链部分按照一定规则排列,但整体结构仍然随机分布。
这种结构的高分子材料通常在固态下由无序态经过加工过程形成,如拉伸、压缩、拉伸-轻度热处理等。
部分有序态的高分子材料具有介于无序态和有序态之间的性质,具备较高的力学性能和热学性能,常见于纤维材料。
3.完全有序态:完全有序态是指高分子链按照一定规则有序排列,形成有序的晶体结构。
有序态的高分子材料具有良好的力学性能、热学性能和传质性能,常见于高分子晶体材料、高分子纤维和高分子薄膜等。
完全有序态的高分子材料的结晶形态可以通过X射线衍射、热分析、光学显微镜以及电子显微镜等手段进行表征。
高分子的聚集态结构形成的过程主要与高分子链的构型调整和高分子链之间的相互作用有关。
在高分子合成或高分子材料加工过程中,高分子链可能具有不同的构象,如直线构象、环状构象、扭曲构象等。
同时,高分子链之间的相互作用也会影响聚集态结构的形成。
例如,范德华力、静电相互作用、亲疏水性等会影响高分子链的相互吸引和排斥,进而决定高分子的聚集态结构。
综上所述,高分子的聚集态结构直接影响高分子材料的性质和性能,三种主要的聚集态结构包括无序态、部分有序态和完全有序态。
通过研究高分子的聚集态结构,可以深入了解高分子材料的力学性能、热学性能、传质性能等方面的规律,为高分子材料的应用提供理论指导。
第二章 高分子的聚集态结构详解

晶体结构=空间点阵+结构单元
点阵
Polymer Physics (Yu CAO)
直线点阵——分布在同一直线上的点阵 平面点阵——分布在同一平面上的点阵
空间点阵——分布在三维空间的点阵
晶胞
Polymer Physics (Yu CAO)
晶胞和晶系
1,晶胞:空间格子中划出的大小和形状完全一样 的平行六面体,以代表晶格结构的基本重复单元, 这种在三维空间中具有周期性排列的最小单位 2,晶胞参数:a,b,c 和 ,, 3,晶系:七种晶胞类型构成晶系
结晶聚合物的重 要实验证据
X射线衍射曲线
Inte ns ity (cps )
1000 500 0 10 20 30 40 50 Polar angle (degree)
Polymer Physics (Yu CAO)
2.2.1 晶体结构的基本概念
晶体:物质内部的质点三维有序周期性排列
把组成晶体的质点抽象成为几何点,由这些等同的几何点的集 合所以形成的格子,称为空间格子,也称空间点阵。 点阵结构中,每个几何点代表的是具体内容,称为晶体的结构 单元。
氢键:≦40kJ/mol
小分子间相互作用能 < 共价键键能
2.1.2高分子间的相互作用非常大
高分子的特点:大 其中的链单元数:103~105 链单元间的相互作用
Polymer Physics (Yu CAO)
小分子间的相互作用
高分子间相互作用能 》共价键键能
高聚物无气态
高聚物气化所需的能量 》破坏化学键所需的能量
Polymer Physics (Yu CAO)
内聚能密度—衡量高分子间相互作用力的大小
高聚物 CED(J/cm3) 高聚物 CED(J/cm3)
高分子的聚集态结构(共46张PPT)

聚乙烯单晶的投射电镜照片
折叠链片晶
聚乙烯单晶中分子的排列示意图
2 球晶
聚合物最常见的结晶形态,
为圆球状晶体,尺寸较大,一般
是由结晶性聚合物从浓溶液中 析出或由熔体冷却时形成的。 球晶在正交偏光显微镜下可观察
到其特有的黑十字消光图象。
全同立构聚苯乙烯球晶的偏光显微镜照片
聚丙烯球晶的偏光显微镜照片
式2它次高中的价聚: 聚 力物X集〔表的态又示结结称杂结晶构分晶形质就子度态变间或,与得力下结分十,标构分包子c复括和链杂:a分。范自别德代身华表力热结、晶运氢局键动部〕〔出cr现yst的al〕瞬和非间晶局局部部〔有am序orp排hou列s〕都。 可能作为球晶的晶核,前者为 非均相核(原先已有的核,又称预定核);后者为均相核(又称热成核)。从晶核出发,微 纤首先堆砌成“稻草束〞状,然后向四面八方生长而成为球形。球晶实际上是树枝状往 外生长的,以填满整个空间。
氢键的形成可以是分子内,也可以是分子间。
~
分子间形成氢键的高 分子有蛋白质、纤 维素、尼龙、聚氨 酯、聚丙烯酸、聚 丙烯酰胺、聚乙烯醇 等。
O
C- H-O
~
O H-O
C
C -C
C- C
O O
C
O-H
C
C
C
C
O H-O
C
C -C
C- C
C
O-H
C
C
~
O
-C O-H
~
聚丙烯酸(PAA)分子间的氢键示意
和远程有序称为结晶。所谓短程有序,即分子在一定的距离内,空间排布 固定,叫三维空间有序。所谓长程有序,即在一定方向上,有序排列的情 况重复出现。短程有序和长程有序,同时存在,才叫结晶,高分子的结晶 却是不完全的,“近程有序〞也是有缺陷的,并不是如无机物的结晶。
第二章 高分子的聚集态结构

PVA、聚酯、尼龙等也呈全反式的平 面锯齿型构象。
2. 聚四氟乙烯的构象 H 被F取代,而F的范德华半径为 0.14nm,其两倍0.28nm已大于 0.252nm,如果聚四氟乙烯同样采取 全反式构象,F原子就会出现拥挤, 电子云互相排斥,这种排斥作用使 得聚四氟乙烯被迫采取一种稍稍偏 离全反式平面构象,呈现一种扭转 构象。 聚四氟乙烯采用旁式或反式-旁式相 间的螺旋构象,又如全同立构PP, 聚4-甲基-1-戊烯等。
在某些条件下,球晶呈示出某种特征的黑十字图像。
黑十字消光图像是高聚物球晶的双折射性质和对称性的 反映。 在球晶的偏光显微镜研究中,在某些条件下会出现明 暗相间的消光同心圆环。
同心消光圆环是径向发射的晶片缎带状地协同扭转 的结果,当结晶温度升高时,同心消光圆环的间距 (即晶片扭转的螺距)增大。
在低过冷程度结 晶时,同心消光 圆环可消失。
利用缨状胶束模型解释现象: ① 因为晶区和非晶区的共存,聚合物的密度比晶胞密 度小;
② 由于微晶的大小不同,结晶高聚物熔融时有一定大 小的熔限; ③ 因为非晶区中分子链取向,拉伸聚合物出现双折射 现象。
2. 折叠链模型 由Keller提出 ⑴. 伸展的分子链可以互相聚集在一起形成链束,链 束是由多条分子链组成的;
串晶:高聚物溶液边搅拌边结晶形成。
串晶晶体的中心是伸直链结构的纤维状晶体,外延间 隔的生长着折叠链晶片。 搅拌速度越快,高聚物在结晶过程中受到的切应力就 越大,形成的串晶中折叠链晶体的比例就越大。
ห้องสมุดไป่ตู้
柱晶:高聚物熔体在应力作用下冷却结晶时,形 成的串晶中折叠链晶片密集,使晶体呈柱状。
二、高分子在结晶中的构象和晶胞
(2-4) (2-5) CED<290J/cm3,用作橡胶(PE除外,因为易 结晶而失去弹性) CED>420J/cm3,用作纤维材料 290J/cm3 < CED<420J/cm3,适合作为塑料
第二章高分子的聚集态结构

没有取代基(PE)或取代基较小的(polyester,polyamide,POM,PVA等)的碳氢链中为了使分子链取位能最低的构象,并有利于在晶体中作紧密而规整的堆砌,所以分子取全反式构象,即:取平面锯齿形构象(P.Z)。
例如:PE
1.PE构象(平面锯齿) 2.晶系系: 斜方(正交) 晶系
2-3 内聚能密度(CED)
内聚能密度(cohesive energy density — CED)是聚合物分子间作用力的宏观表征 聚合物分子间作用力的大小,是各种吸引力和排斥力所作贡献的综合反映,而高分子分子量又很大,且存在多分散性,因此,不能简单的用某一种作用力来表示,只能用宏观的量来表征高分子链间作用力的大小。
1-2 高聚物的聚集态结构
高聚物的聚集态结构很长一段时间内搞不清楚,很长而柔的链分子如何形成规整的晶体结构是很难想象的,特别是这些分子纵向方向长度要比横向方向大许多倍;每个分子的长度又都不一样,形状更是变化多端。所以起初人们认为高聚物是缠结的乱线团构成的系统,象毛线一样,无规整结构可言。
1-2 高聚物的聚集态结构
晶胞
3-1 基本概念
3. 晶胞——在空间格子中划分出余割大小和形状完全一样的平行六面体以代表晶体的结构的基本重复单位。这种三维空间中具有周期性排列的最小单位称为晶胞。
3-1 基本概念
4.晶胞参数——描述晶胞结构的参数 有 6个: 平行六面体的三边的长度:a、b、c 平行六面体的三边的夹角:
第一节 概述
分子的聚集态结构: 平衡态时分子与分子之间的几何排列
1-1 小分子的聚集态结构
物质内部的质点(分子、原子、离子)在空间的排列情况可分为: 近程有序——围绕某一质点的最近邻质点的配置有一定的秩序(邻近质点的数目(配位数)一定;邻近质点的距离一定;邻近质点在空间排列的方式一定) 远程有序——质点在一定方向上,每隔一定的距离周期性重复出现的规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 高分子的聚集态结构
1 下表列出了一些聚合物的某些结构参数,试结合链的化学结构,分析比较它们的柔顺性好坏,聚合物
PDMS
PIP PIB PS PAN EC 2
1220)/(fr
h h =σ
1.4-1.6 1.4-1.7
2.13 2.2-2.4 2.6-
3.2
4.2 L 0(nm ) 1.40 1.83 1.83 2.00 3.26 20 结构单元数/链段
4.9
8
7.3
8
13
20
解:以上高分子链柔顺性的次序是:EC<PAN<PS<PIB<PIP ≈PDMS 适于做纤维用的是 EC 、PAN ; 适于做塑料用的是 PS 、(EC); 适于做橡胶用的是 PIB 、PIP 、PDMS 。
2 由X 射线衍射法测得规整聚丙烯的晶胞参数为a=6.666
A ,b=20.87
A ,c=6.488
A ,交角β=98.12 ,
为单斜晶系,每个晶胞含有四条H 31螺旋链(如图所示)。
试根据以上数据,预测完全结晶的规整聚丙烯的比容和密度。
解:比容 A
N M abc M V v /)43(sin 0⨯==
β
)(067.1)
1002.6/(42)43(12
.98sin 488.687.20666.61323
-=⨯⨯⨯⨯⨯⨯=
g cm 密度)(1094.0067
.1101333
-⋅⨯==
=m kg v ρ
文献值)(1095.03
3-⋅⨯=m kg c ρ
3 由文献查得涤纶树脂的密度)(1050.133-⋅⨯=m kg c ρ和)(10335.13
3-⋅⨯=m kg a ρ,内聚能
)(67.661单元-⋅=∆mol kJ E 。
今有一块的涤纶试样361051.096.242.1m -⨯⨯⨯,重量为kg 31092.2-⨯,试由以上数据计算:
(1)涤纶树脂试样的密度和结晶度; (2)涤纶树脂的内聚能密度。
解:(1)密度)(10362.1)
1051.096.242.1(1092.23363
---⋅⨯=⨯⨯⨯⨯==m kg V W ρ 结晶度%36.16335
.150.1335
.1362.10=--=--=
a c a v
f ρρρρ
或%180=--⋅=
a
c a
c W
f ρρρρρρ (2)内聚能密度)(473192
)10362.1/1(1067.663
3
30-⋅=⨯⨯⨯=⋅∆=cm J M V E CED 文献值CED=476)(3
-⋅cm J
4 已知聚丙烯的熔点C T m
176=,结构单元融化热136.8-⋅=∆mol kJ H u ,试计算:
(1)平均聚合度分别为DP =6、10、30、1000的情况下,由于链段效应引起的m T 下降为多大? (2)若用第二组分和它共聚,且第二组分不进入晶格,试估计第二组分占10%摩尔分数时共聚物的熔点为多少? 解:(1)
DP
H R
T T u m m ⋅∆=-2110 式中,K C T m 4491760== ,1
131.8--⋅=K mol J R ,用不同DP 值代入公式计算得到:
C K T m 1043371==,降低值176-104=72C
C K T m 1304032==,降低值176-130=46C C K T m 1594323==,降低值176-159=17C
C K T m 1754484==,降低值176-175=1C
可见,当DP >1000时,端链效应开始可以忽略。
(2)由于10.0=A X ,90.0=B X
A u m m X H R T T ln 110∆-=-
1.0ln 36
.831.844911-=m T C K T m 1568.428==∴
5 某结晶聚合物熔点为200C
,结构单元的摩尔融化热136.8-⋅=∆mol kJ H u 。
若在次聚合物中分
别加入10%体积分数的两种增塑剂,它们与聚合物的相互作用参数分别为1χ=0.2和-0.2,且令聚合物链节与增塑剂的摩尔体积比1/V V u =0.5,试求: (1)加入增塑剂后聚合物熔点各为多少度? (2)对计算结果加以比较讨论。
解:(1)
)(112
1111
0φχφ-⋅∆=-V V H R T T u u m m 式中,10.0=φ,对于2.01=χ时
C
K T T m m 5.1896.462)10.02.010.0(5.036.831.847311121==∴⨯-⋅+= 对于2.01-=χ同样计算可得:
C K T m 18918.4622==
(2)C T T m m
5.105.18920001=-=-
C T T m m
1118920002=-=-
可见二者的影响差别不大,良溶剂的影响大于不良溶剂的影响。
6 聚乙烯有较高的结晶度(一般为70%),当它被氯化时,链上的氢原子被氯原子无规取代,发现当少量的氢(10~50%)被取代时,其软化点下降,而大量的氢(>70%)被取代时则软化点又上升,如图示意,试解释之。
解:PE 氯化反应可简化表示为:
CH 2CH 2CH 2CH 2
CH 2CH 2CH 2CH
(Cl=10%)
CH 2CH 2CH CH 2Cl
CH
Cl
CH 2
(Cl ≈50%)
CH 2CH CH CH Cl CH
Cl
CH Cl Cl Cl
(Cl ≥70%)
由于Cl=35.5,CHCl=48.5,CH 2=14, 当Cl=10%时,225
.48145
.35%10=⇒+=
x x
即相当于 CH 2()CH
22
当Cl ≈50%时,同样解得6.1=x
即相当于
CH 2()CH
1.6
当Cl ≥70%时,解得1.1=x
即相当于
CH 2()CH
1.1
从分子的对称性和链的规整性来比较,PE 链的规整性最好,结晶度最高;链中氢被氯取代后,
在%50≤Cl 前,分子对称性破坏,使结晶度和软化点都下降;当%70≥Cl 时,分子的对称性又有
恢复,因此产物软化温度又有些上升,但不会高于原PE的软化温度。