电机变频调速技术

电机变频调速技术
电机变频调速技术

电机变频调速技术

随着电力电子技术、微电子技术、自动控制技术的高速发展和应用,变频器的节能效果尤为显著,基于微处理器数字控制技术,通过内置优化控制软件,不但能实现无级调速,而且动态调整电机运行过程中的电压和频率,在不改变原配套电机的条件下,保证电机的输出转矩与负荷需求精确匹配,实现了高可靠性、高精度的自动控制。现已成为交流电机调速的最新潮流,在各行业中得到了广泛应用,是企事业及各大厦节能降耗的可信赖产品。

一、产品特性:

1、容易实现对现有交流电机进行调速控制,调速范围大而且连续,节电效果显明显;

2、容易实现电机正反转切换和构成自动化控制系统;

3、启动平滑,电流小,可用于频繁启动和制动场合;

4、合理使用变频技术,可减少电机发热及运动部件的磨损程度,有效延长电机使用寿命,降低维修成本;;

5、结构简单,运行安全可靠,保养维修简单,可用于易燃、易爆、腐蚀等环境中

6、微电脑智能控制,自动适应、自动跟随,无需人工调整;

7、市电及节电状态自动转换,故障自动报警,不影响正常工作。

二、变频器的典型作用:

1、改进工艺:

确保工艺过程中的最佳转速、不同负载下的最佳转速以及准确定位等。其优良的调速性能,取得了提高生产率、提高产品质量、设备合理化,适应或改善环境等综合效果,不同的环境,其节电率为0%-30%。

2、节能:以流量或压力需要调节的风机、泵类机械的转速控制来实现节能,改造效果非常显著,节电率高达20%-60%。

三、适用范围和不同行业的典型应用

一、适用范围:

1、注塑机、空压机、立窑风机、水泵等流量、压力及风量需要调节的电动机;

2、冲床、流水线、传送带、起重机等可以调节转速的交流电动机;

3、其他由于工艺需求需调节转速的交流电动机。

二、变频调速技术以其优异的调速性能、高效率、高可靠性在各行各业有着广泛的应用:冶金—轧钢机、辊道、高炉风机、泵、起重机械、高炉送料、钢厂抛光等。

轧钢制线—拉线机、卷绕机、鼓风机、泵、起重机械、定长剪切、自动送料

钢铁—轧机、辊道、风机、泵、起重机、钢包车、转炉倾动等。

电线业—拉丝机、卷绕机、鼓风机等。

化工—挤压机、胶片传送带、搅拌机、离心分离机、压缩机、鼓风机、喷雾器、泵等。

石油—输油泵、电潜泵、注水泵、抽油机等。

化纤和纺织—纺纱机、精纺机、织机、梳棉机、浆纱机、中央空调、鼓风机、泵类等。

汽车制造业—传送带、搬运车、涂料搅拌、中央空调、电瓶车等。

机床制造业—车床、龙门刨、铣床、磨床、机械加工中心、剃齿机等。

电子制造业—中央空调、风机、泵、空压机、注塑机、传送带等。

造纸业—造纸机、造纸机械、风机、泵、粉碎机、搅拌机、鼓风机等。

食品—制面机、制点心机、传送带、搅拌机等。

煤气、自来水——压缩机、鼓风机、泵、搬运机等。

水泥—回转窑、起重机、鼓风机、泵、传动电机、传送带、振动给料机、立窑风机等。

矿业—泥浆泵、传送带、提升机、切削机、掘削机、起重机、鼓风机、泵、压缩机等。交通—电动汽车、电力机车、船舶推进、装卸机械、空压机、电缆车等。

装卸搬运—自动仓库、搬运车、粉体运送器、输出传送带等。

建筑—电梯、传送带、空调设备、鼓风机、泵等。

塑胶—橡胶截断机、注塑机、压出机、塑料薄膜生产线等。

生活、服务—空压机、缝纫机、电风扇、工业及家庭用洗衣机等。

物流—立体车库、自动仓库、传送带等。

电力—锅炉鼓用高低压鼓风机、给水泵、离心混料机、传送带、扬水发电站、飞轮等。宾馆酒店、大厦—中央空调系统、电梯等。

变频电机和普通电机的区别

普通异步电动机与变频电机的区别 变频电机和普通电机的区别 一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。以下为变频器对电机的影响 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。据资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。 2、电动机绝缘强度问题 目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。 3、谐波电磁噪声与震动 普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。 4、电动机对频繁启动、制动的适应能力 由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。 5、低转速时的冷却问题 首先,异步电动机的阻抗不尽理想,当电源频率较低时,电源中高次谐波所引起的损耗较大。其次,普通异步电动机再转速降低时,冷却风量与转速的三次方成比例减小,致使电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出。 二、变频电动机的特点 1、电磁设计 对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下:

(交流电机变频调速系统设计)

机电传动与控制课程综合训练三 一、综合训练项目任务书 综合训练项目:交流电机变频调速系统 目的和要求:加强对交流变频调速系统及变频器的理解;应用交流变频调速系统及变频器解决交流电机变频调速问题。提高分析和解决实际工程问题的能力。促成“富于探索精神,具有较强的自学能力、开拓创新意识和敏锐的观察事物以及分析处理事物的能力”的目标实现。 成果形式:交流电机变频调速系统设计说明书。 相关参数:参看《机电传动控制》(第五版),冯清秀等编著,华中科技大学出版社,P291~316。 一、综合训练项目设计内容 1.变频调速系统 1.1 三相交流异步电动机的结构和工作原理 三相交流异步电动机是把电能转换成机械能的设备。一般电动机主要由两部分组成:固定部分称为定子,旋转部分称为转子。三相交流异步电动机的工作原理是建立在电磁感应定律、全电流定律、电路定律和电磁力定律等基础上的。当磁极沿顺时针方向旋转,磁极的磁力线切割转子导条,导条中就感应出电动势。电动势的方向由右手定则来确定。因为运动是相对的,假如磁极不动,转子导条沿逆时针方向旋转,则导条中同样也能感应出电动势来。在电动势的作用下,闭合的导条中就产生电流。该电流与旋转磁极的磁场相互作用,而使转子导条受到电磁力,电磁力的方向可用左手定则确定。由电磁力进而产生电磁转矩,转子就转动起来。 1.2 变频调速原理 变频器可以分为四个部分,如图1.1所示。 通用变频器由主电路和控制回路组成。给异步电动机提供调压调频电源的电力变换部分,称为主电路。主电路包括整流器、中间直流环节(又称平波回路)、逆变器。

图1.1 变频器简化结构图 ⑴整流器。它的作用是把工频电源变换成直流电源。 ⑵平波回路(中间直流环节)。由于逆变器的负载为异步电动机,属于感性负载。无论电动机处于电动状态还是发电状态,起始功率因数总不会等于1。因此,在中间直流环节和电动机之间总会有无功功率的交换,这种无功能量要靠中间直流环节的储能元件—电容器或电感器来缓冲,所以中间直流环节实际上是中间储能环节。 ⑶逆变器。与整流器的作用相反,逆变器是将直流功率变换为所要求频率的交流功率。逆变器的结构形式是利用6个半导体开关器件组成的三相桥式逆变器电路。通过有规律的控制逆变器中主开关的导通和断开,可以得到任意频率的三相交流输出波形。 ⑷控制回路。控制回路常由运算电路,检测电路,控制信号的输入、输出电路,驱动电路和制动电路等构成。其主要任务是完成对逆变器的开关控制,对整流器的电压控制,以及完成各种保护功能。控制方式有模拟控制或数字控制。 2.系统的控制模型 本系统的结构如图1.2所示。

变频调速电机的选型

变频调速电机的选型

————————————————————————————————作者:————————————————————————————————日期:

变频调速电机的选型 变频调速电机一般均选择4级电机,基频工作点设计在50Hz,频率0-50Hz(转速0-1480r/min)范围内电机作恒转矩运行,频率50-100Hz(转速1480-2800r/min)范围内电机作恒功率运行,整个调速范围为(0-2800r/min),基本满足一般驱动设备的要求,其工作特性与直流调速电机相同,调速平滑稳定。如果在恒转矩调速范围内 要提高输出转矩,也可以选择6级或8级电机,但电机的体积相对要大一点。 由于变频调速电机的电磁设计运用了灵活的CAD 设计软件,电机的基频设计点可以随时进 行调整,我们可以在计算机上精确的模拟电机在各基频点上的工作特性,由此也就扩大了 电机的恒转矩调速范围,根据电机的实际使用工况,我们可以在同一个机座号内把电机的 功率做的更大,也可以在使用同一台变频器的基础上将电机的输出转矩提的更高,以满足 在各种工况条件下将电机的设计制造在最佳状态。变频调速电机可以另外选配附加的转速 编码器,可实现高精度转速、位置控制、快速动态特性响应的优点。也可配以电机专用的 直流(或交流)制动器以实现电机快速、有效、安全、可靠的制动性能。由于变频调速电 机的基频可调性设计,我们也可以制造出各种高速电机,在高速运行时保持恒转矩的特性 ,在一定程度上替代了原来的中频电机,而且价格低廉。变频调速电机为三相交流同步或 异步电动机,根据变频器的输出电源有三相380V或三相220V,所以电机电源也有三相380V 或三相220V的不同区别,一般4KW以下的变频器才有三相220V可,由于变频电机是以电机 的基频点(或拐点)来划分不同的恒功率调速区和恒转矩调速区的,所以变频器基频点和 变频电机基频点的设置都非常重要。 同步变频与异步变频调速电机的区别 异步变频调速电机是由普通异步电机派生而来,由于要适应变频器输出电源的特性,电机在转子槽型,绝缘工艺 ,电磁设计校核等作了很大的改动,特别是电机的通风散热,它在一般情况下附加了一个独立式强迫冷却风机, 以适应电机在低速运行时的高效散热和降低电机在高速运行时的风摩耗。变频器的输出一般显示电源的输出频率 ,转速输出显示为电机的极数和电源输出频率的计算值,与异步电机的实际转速有很大区别,使用一般异步变频 电动机时,由于异步电机的转差率是由电机的制造工艺决定,故其离散性很大,并且负载的变化直接影响电机的 转速,要精确控制电机的转速只能采用光电编码器进行闭环控制,当单机控制时转速的精度由编码器的脉冲数决 定,当多机控制时,多台电机的转速就无法严格同步。这是异步电机先天所决定的。 同步变频调速电机的转子内镶有永磁体,当电机瞬间起动完毕后,电机转入正常运行,定子旋转磁场带动镶有永 磁体的转子进行同步运行,此时电机的转速根据电机的极数和电机输入电源频率形成严格的对应关系,转速不受 负载和其他因数影响。同样同步变频调速电机也附加了一个独立式强迫冷却风机,以适应电机在低速运行时的高 效散热和降低电机在高速运行时的风摩耗。由于电机的转速和电源频率的严格对应关系,使得电机的转速精度主 要就取决于变频器输出电源频率的精度,控制系统简单,对一台变频器控制多台电机实现多台电机的转速一致, 也不需要昂贵的光学编码器进行闭环控制。 TYP 变频调速永磁同步电机具有的三大优点: 1、高效节能与异步变频调速电机相比,高效节能。同规格相比,该系列电机效率比异步变频电机效率高 3~10个百分点。以1.5kW为利,两者效率差近7个百分点; 2、可精确调速与异步变频系统相比,无需编码器即可进行准确的速度控制; 3、高功率因数既可减少无功能量的消耗,又能降低变压器的容量

变频电机与普通电机的区别

答:普通异步电动机与变频电机的区别一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。以下为变频器对电机的影响1、电动机的效率和温升的问题不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。2、电动机绝缘强度问题目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。3、谐波电磁噪声与震动普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。4、电动机对频繁启动、制动的适应能力由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。5、低转速时的冷却问题首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗较大。其次,普通异步电动机再转速降低时,冷却风量与转速的三次方成比例减小,致使电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出。二、变频电动机的特点1、电磁设计对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下:1)尽可能的减小定子和转子电阻。减小定子电阻即可降低基波铜耗,以弥补高次谐波引起的铜耗增2)为抑制电流中的高次谐波,需适当增加电动机的电感。但转子槽漏抗较大其集肤效应也大,高次谐波铜耗也增大。因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。3)变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和,二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。2、结构设计再结构设计时,主要也是考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响,一般注意以下问题:1)绝缘等级,一般为F级或更高,加强对地绝缘和线匝绝缘强度,特别要考虑绝缘耐冲击电压的能力。2)对电机的振动、噪声问题,要充分考虑电动机构件及整体的刚性,尽力提高其固有频率,以避开与各次力波产生共振现象。3)冷却方式:一

交流变频调速电机原理

交流变频调速基本原理 一.异步电动机概述 1.异步电动机旋转原理 异步电动机的电磁转矩是由定子主磁通和转子电流相互作用产生的。 ⑴磁场以n0转速顺时针旋转,转子绕组切割磁力线,产生转子 电流 ⑵通电的转子绕组相对磁场运动,产生电磁力 ⑶电磁力使转子绕组以转速n旋转,方向与磁场旋转方向相同 2.旋转磁场的产生 旋转磁场实际上是三个交变磁场合成的结果。这三个交变磁场应满足: ⑴在空间位置上互差2π/3 rad电度角。这一点,由定子三相绕 组的布置来保证

⑵在时间上互差2π/3 rad相位角(或1/3周期)。这一点,由通 入的三相交变电流来保证 3.电动机转速 产生转子电流的必要条件是转子绕组切割定子磁场的磁力线。因此,转子的转速n必须低于定子磁场的转速n0,两者之差称为转差: Δn=n0-n 转差与定子磁场转速(常称为同步转速)之比,称为转差率:s=Δn / n0 同步转速n0由下式决定: n0=60 f / p 式中,f为输入电流的频率,p为旋转磁场的极对数。 由此可得转子的转速 n=60 f(1-s)/ p 二.异步电动机调速 由转速n=60 f(1-s)/ p可知异步电动机调速有以下几方法: 1.改变磁极对数p (变极调速) 定子磁场的极对数取决于定子绕组的结构。所以,要改变p,必须将定子绕组制为可以换接成两种磁极对数的特殊形式。 通常一套绕组只能换接成两种磁极对数。 变极调速的主要优点是设备简单、操作方便、机械特性较硬、

效率高、既适用于恒转矩调速,又适用于恒功率调速;其缺点是有极调速,且极数有限,因而只适用于不需平滑调速的场合。2.改变转差率s (变转差率调速) 以改变转差率为目的调速方法有:定子调压调速、转子变电阻调速、电磁转差离合器调速、串极调速等。 ⑴定子调压调速 当负载转矩一定时,随着电机定子电压的降低,主磁通减少,转子感应电动势减少,转子电流减少,转子受到的电磁力减少,转差率s增大,转速减小,从而达到速度调节的目;同理,定子电压升高,转速增加。 调压调速的优点是调速平滑,采用闭环系统时,机械特性较硬,调速范围较宽,缺点是低速时,转差功率损耗较大,功率因素低,电流大,效率低。调压调速既非恒转矩调速,也非恒功率调速,比较适合于风机泵类特性的负载。 分体机上的室内风机就是利用定子电压调速的方法进行调速的,其调速电路如下图。 根据风机速度的反馈信号,控制晶闸管SCR导通的相角,从而控制风机定子的输入电压,以控制风机的风速。 前面讲在空间位置上互差2π/3 rad电度角的三相绕组通以在时间上互差2π/3 rad相位角(或1/3周期)三相交变电流可产生旋转磁场,同样,在空间位置上互差π/2 rad电度角的两相绕组通以在时间上互差π/2 rad相位角(或1/2周期)两相交变电

如何给电机选择合适的变频器

如何给电机选择合适的变频器 摘要:变频器让电机传动系统实现了两个愿望,一是让电机实现了更高效率的运行;二是让电机可以做到工况可控,避免大牛拉小车的问题。但摆在工程师面前的问题是:电机负载类型那么多,对所配变频器的性能要求也是千差万别,如何给电机选择合适的变频器呢? 变频器的英文译名是VFD(Variable Frequency Drive),这可能是现代科技由中文反向翻译为英文的为数不多实例之一。变频器是应用在变频技术与微电子技术,通过改变电机工作电源的频率和幅度的方式来控制交流电动机的电力传动元件。 而为整个电机运动系统选择合适的变频器,已是让工程师一个头痛的问题。 总的来说,变频器的选用,应按照被控对象的类型、调速范围、静态速度精度、启动转矩等来考虑,使之在满足工艺和生产要求的同时,既好用,又经济。 一般性的经验是: ●多大的电机就选择多大的变频器,有时也可大一个规格。 ●大功率的变频器功率因数较低最好在变频器的进线端加装交流电抗器。这样一是提高 功率因数,二是抑制高频谐波。如果经常频繁启动,制动,要安装制动单元和制动电阻。 ●如果需要降低噪音,可用选择水冷型变频器; ●如果需要制动,需选配制动斩波器以及制动电阻。或可用选择四象限产品,可以向电 网回馈能量,节省电能; ●如果现场仅有直流电源的话,可以选择单纯的逆变产品(使用直流电源)用以驱动电 动机。

变频器选型的最终依据,是变频器的电流曲线包罗机械负载的电流曲线。 这里罗列了一些选择变频器时,我们需要关注的实际问题。 1.采用变频的目的;恒压控制或恒流控制等。 2.变频器的负载类型;如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定 了应用时的方式方法。 3.变频器与负载的匹配问题; ●电压匹配;变频器的额定电压与负载的额定电压相符。 ●电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。对于特殊的负 载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。 ●转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。 4.在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加导致输出电流 值增大。因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。 5.变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免 变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。 6.对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量 要放大一挡。 对一些电机运动控制系统要求严格的场合,需要准确检测变频器的选配效果如何,直接方法就是通过电机测试系统进行测试。但要想完成变频器与电机系统的整体测试,对电机测试系统也就提出了更高的要求,比如高带宽、高精度的电参数测量,多通道同步测试等。

普通电机变频调速电机的区别

普通电机恒频恒压设计的,如果要了解使用变频器控制普通电机,对电机造成的影响,我们首先来了解变频电机的特点: 1、电磁设计 对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下: 1)尽可能的减小定子和转子电阻。 减小定子电阻即可降低基波铜耗,以弥补高次谐波引起的铜耗增2)为抑制电流中的高次谐波,需适当增加电动机的电感。但转子槽漏抗较大其集肤效应也大,高次谐波铜耗也增大。因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。 3)变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和,二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。 2、结构设计 再结构设计时,主要也是考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响,一般注意以下问题:1)绝缘等级,一般为F级或更高,加强对地绝缘和线匝绝缘强度,特别要考虑绝缘耐冲击电压的能力。 2)对电机的振动、噪声问题,要充分考虑电动机构件及整体的

刚性,尽力提高其固有频率,以避开与各次力波产生共振现象。 3)冷却方式:一般采用强迫通风冷却,即主电机散热风扇采用独立的电机驱动。 4)防止轴电流措施,对容量超过160KW电动机应采用轴承绝缘措施。主要是易产生磁路不对称,也会产生轴电流,当其他高频分量所产生的电流结合一起作用时,轴电流将大为增加,从而导致轴承损坏,所以一般要采取绝缘措施。 5)对恒功率变频电动机,当转速超过3000/min时,应采用耐高温的特殊润滑脂,以补偿轴承的温度升高。 变频变压控制对普通电机的影响: 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。

普通三相异步电动机与变频电动机的区别

普通三相异步电动机与变频电动机的区别 普通的三相异步电动机可以用变频器驱动吗? 普通的三相异步电动机与变频调速的三相异电动机有何区别? 普通异步电机与变频电机的区别——普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。 以下为变频器对电机的影响: 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。据资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%~20%。 2、电动机绝缘强度问题 目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。 3、谐波电磁噪声与震动 普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。 4、电动机对频繁启动、制动的适应能力 由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。 5、低转速时的冷却问题 首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗较大。其次,普通异步电动机在转速降低时,冷却风量与转速的三次方成比例减小,致使电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出。 6、电磁设计

变频器和电机的选型

变频器和电机的选型 一、电机的选择: 首先应该根据负载运动时所需要的平均功率、最高功率,折算到电机轴侧(可能有减速机、皮带轮等减速装置)选择电机的功率,同时也要考虑电机的过载能力。电机厂商可以提供电机的力矩特性曲线,不同温度下电机特性会变化。 顺便说:选型的顺序当然是先选电机再根据电机选择变频器,因为控制的最终目的不是变频器也不是电机,而是机械负载。 二、变频器的选型: 第一应该强调的是,应该根据电流选型。对于一般负载,可以根据电机的额定电流选择变频器,即变频器额定电流(即常规环境下的最大持续工作电流)大于电机额定电流即可。但是必须要考虑极限状况的出现。因此变频器还需要可以提供短时间的过载电流。 (注意:电机的电流是由机械负载决定的) 变频器有一条过载电流曲线,是一条反时限曲线,描述了过载电流和时间的关系。这就是变频器厂商经常说得过载能力可以达到150%额定电流2秒、180%额定电流2秒云云,实际上是一条曲线。因此,只要电机的电流曲线在变频器的过载电流曲线之内,就是正确的选型。这就是为什么有时候变频器功率要大于电机功率1档或2档(比如起重应用),有时候小功率变频器仍然可以驱动大功率电机(比如输送带)的原因。 另一个必须注意的:在非正常环境下,比如高海拔、高环境温度(例如大于50度小于60度环境)、并排安装方式(有些变频器并排安装不降容,有些要降容,根据变频器设计决定)等情况下,要考虑变频器的降容。这方面的资料变频器厂商都可以提供。 结果是:变频器的额定功率可能大于电机功率,也可以小于电机功率,事实上变频器的选型也是根据机械负载决定的。 结论:变频器选型的最终依据,是变频器的电流曲线包罗机械负载的电流曲线。 三、Y型电机和变频电机 Y型电机,应该就是普通异步电机(印象中是,不太确定)。 变频器的根本功能就是改变电源频率,从而改变电机转速。因此理论上讲,不管是什么电机,只要可以通过改变频率调速的,都可以使用变频器。 如上面某位朋友所说,变频电机有着特殊的设计,更适合变频使用,我同意。 因此,并不是有个独立风扇就是所谓变频电机了。 普通异步电机使用变频器控制时,需要注意的是: 1、低频时(一般小于25hz),由于电机采用同轴风扇,低速时散热效果会很差,电机发热后,力矩特性变软,从而出现速度不稳、电流大等问题。

变频调速电机的选型

变频调速电机的选型 变频调速电机一般均选择4级电机,基频工作点设计在50Hz,频率0-50Hz(转速0-1480r/min)范围内电机作恒 转矩运行,频率50-100Hz(转速1480-2800r/min)范围内电机作恒功率运行,整个调速范围为(0-2800r/min) ,基本满足一般驱动设备的要求,其工作特性与直流调速电机相同,调速平滑稳定。如果在恒转矩调速范围内 要提高输出转矩,也可以选择6级或8级电机,但电机的体积相对要大一点。 由于变频调速电机的电磁设计运用了灵活的CAD 设计软件,电机的基频设计点可以随时进 行调整,我们可以在计算机上精确的模拟电机在各基频点上的工作特性,由此也就扩大了 电机的恒转矩调速范围,根据电机的实际使用工况,我们可以在同一个机座号内把电机的 功率做的更大,也可以在使用同一台变频器的基础上将电机的输出转矩提的更高,以满足 在各种工况条件下将电机的设计制造在最佳状态。变频调速电机可以另外选配附加的转速 编码器,可实现高精度转速、位置控制、快速动态特性响应的优点。也可配以电机专用的 直流(或交流)制动器以实现电机快速、有效、安全、可靠的制动性能。由于变频调速电 机的基频可调性设计,我们也可以制造出各种高速电机,在高速运行时保持恒转矩的特性 ,在一定程度上替代了原来的中频电机,而且价格低廉。变频调速电机为三相交流同步或 异步电动机,根据变频器的输出电源有三相380V或三相220V,所以电机电源也有三相380V 或三相220V的不同区别,一般4KW以下的变频器才有三相220V可,由于变频电机是以电机 的基频点(或拐点)来划分不同的恒功率调速区和恒转矩调速区的,所以变频器基频点和 变频电机基频点的设置都非常重要。 同步变频与异步变频调速电机的区别 异步变频调速电机是由普通异步电机派生而来,由于要适应变频器输出电源的特性,电机在转子槽型,绝缘工艺 ,电磁设计校核等作了很大的改动,特别是电机的通风散热,它在一般情况下附加了一个独立式强迫冷却风机, 以适应电机在低速运行时的高效散热和降低电机在高速运行时的风摩耗。变频器的输出一般显示电源的输出频率 ,转速输出显示为电机的极数和电源输出频率的计算值,与异步电机的实际转速有很大区别,使用一般异步变频 电动机时,由于异步电机的转差率是由电机的制造工艺决定,故其离散性很大,并且负载的变化直接影响电机的 转速,要精确控制电机的转速只能采用光电编码器进行闭环控制,当单机控制时转速的精度由编码器的脉冲数决 定,当多机控制时,多台电机的转速就无法严格同步。这是异步电机先天所决定的。 同步变频调速电机的转子内镶有永磁体,当电机瞬间起动完毕后,电机转入正常运行,定子旋转磁场带动镶有永 磁体的转子进行同步运行,此时电机的转速根据电机的极数和电机输入电源频率形成严格的对应关系,转速不受 负载和其他因数影响。同样同步变频调速电机也附加了一个独立式强迫冷却风机,以适应电机在低速运行时的高 效散热和降低电机在高速运行时的风摩耗。由于电机的转速和电源频率的严格对应关系,使得电机的转速精度主 要就取决于变频器输出电源频率的精度,控制系统简单,对一台变频器控制多台电机实现多台电机的转速一致, 也不需要昂贵的光学编码器进行闭环控制。 TYP 变频调速永磁同步电机具有的三大优点: 1、高效节能与异步变频调速电机相比,高效节能。同规格相比,该系列电机效率比异步变频电机效率高 3~10个百分点。以为利,两者效率差近7个百分点; 2、可精确调速与异步变频系统相比,无需编码器即可进行准确的速度控制; 3、高功率因数既可减少无功能量的消耗,又能降低变压器的容量

变频器选型---如何正确选择中小型断路器

如何正确选择中小型断路器 配电(线路)、电动机和家用电器等的过电流保护断路器,因保护对象(如变压器、电线电缆、电动机和家用电器等)的承受过载电流的能力(包括电动机的起动电流和起动时间等)有差异,选用的断路器的保护特性不同。 1.1配电用断路器的选择 配电用断路器是指在低压电网中专门用于分配电能的断路器,包括电源总断路器和负载支路断路器。在选用这一类断路器时,需特别注意下列选用原则: (1)断路器的长延时动作电流整定值≤导线容许载流量。对于采用电线电缆的情况,可取电线电 (2)3 (3) 式中 k Ied (4) 式中 Iedm (5) 时差为0.1 1.2 )进行保护。 电流设定为5~10倍Ied,可以保证在电动机起动时避过浪涌电流。 但对热保护来讲,其过载保护的动作值整定于1.45Ied,也就是说电动机要承受45%以上的过载电流时MCB才能脱扣,这对于只能承受<20%过载的电机定子绕组来讲,是极容易使绕组间的绝缘损坏的,而对于电线电缆来讲是可承受的。因此,在某些场合如确需用MCB对电机进行保护,可选用ABB 公司特有的符合IEC947-2标准中K特性的MCB,或采用MCB外加热继电器的方式,对电动机进行过载和短路保护。 1.3家用保护型断路器的选择 MCB是建筑电气终端配电装置中使用最广泛的一种终端保护电器。 应当像选用塑壳断路器和框架断路器一样,计算最大短路容量后再选择。

MCB的设计和使用是针对50~60Hz交流电网的,如用于直流电路,应根据制造厂商提供的磁脱扣动作电流同电源频率变化系数来换算;当环境温度大于或小于校准温度值时,必须根据制造厂商提供的温度与载流能力修正曲线来调整MCB的额定电流值。 低压配电线路的短路电流与该供电线路的导线截面、导线敷设方式、短路点与电源距离长短、配电变压器的容量大小、阻抗百分比等电气参数有关。 一般工业与民用建筑配电变压器低压侧电压多为0.23/0.4kV,变压器容量大多为1600kVA及以下,低压侧线路的短路电流随配电容量增大而增大。对于不同容量的配变,低压馈线端短路电流是不同的。一般来说,对于民用住宅、小型商场及公共建筑,由于由当地供电企业的低压电网供电,供电线路的电缆或架空导线截面较细,用电设备距供电电源距离较远,选用4.5kA及以上分断能力的MCB 即可。 ,应选 用6kA 压总母排) 10kA下端子 因,MCB 性根据 用场合, 护;B 与A MCB不动作,C;D 2 2.1 (1) (2)线路应保护的漏电电流应小于或等于断路器的规定漏电保护电流; (3)断路器的极限通断能力应大于或等于电路最大短路电流; (4)过载脱扣器的额定电流大于或等于线路的最大负载电流; (5)有较短的分断反应时间,能够起到保护线路和设备的作用。 2.2四极断路器的选用 是否选用四极断路器可遵循以下原则: (2)带漏电保护的双电源转换断路器应采用四极断路器。两个上级断路器带漏电保护,其下级的电源转换断路器应使用四极断路器;

同步电机变频调速

同步电机变频调速 历史上最早出现的是直流电动机19世纪末,出现了交流电和交流电动机为了改善功率因数,同步电动机应运而生。同步电动机也是一种交流电机。既可以做发电机用,也可做电动机用,过去一般用于功率较大,转速不要求调节的生产机械,例如大型水泵,空压机等。 最初的同步电动机只用于拖动恒速负载或用于改善功率因数的场合。在恒定频率下运行的大型同步电动机又存在着容易发生失步和振荡的危险,以及起动困难等问题。 因此,在没有变频电源的情况下,很难对同步电动机的转速进行控制。 同步电动机历来是以转速与电源频率保持严格同步著称的。只要电源频率保持恒定,同步电动机的转速就绝对不变。 采用电力电子装置实现电压-频率协调控制,改变了同步电动机历来只能恒速运行不能调速的面貌。起动费事、重载时振荡或失步等问题也已不再是同步电动机广泛应用的障碍。 同步电机的特点与问题: 优点: (1)转速与电压频率严格同步; (2)功率因数高到1.0,甚至超前。 存在的问题: (1)起动困难; (2)重载时有振荡,甚至存在失步危险。 问题的根源: 供电电源频率固定不变 解决办法: 采用电压-频率协调控制 例如: 对于起动问题: 通过变频电源频率的平滑调节,使电机转速逐渐上升,实现软起动。 对于振荡和失步问题: 可采用频率闭环控制,同步转速可以跟着频率改变,于是就不会振荡和失步了。 同步电机和其它类型的旋转电机一样,由固定的定子和可旋转的转子两大部分组成。 下图给出了最常用的同步发电机的结构模型,其定子铁心的内圆均匀分布着定子槽,槽

内嵌放着按一定规律排列的三相对称交流绕组。这种同步电机的定子又称为电枢,定子铁心和绕组又称为电枢铁心和电枢绕组。 图中用AX 、BY 、CZ 三个 在空间错开120电角度分布的线 圈代表三相对称交流绕组。 同步电机的运行方式: 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。 同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。 同步电机的突出优点:控制励磁来调节它的功率因数,可以使功率因数高到1.0,甚至超前。 同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。 同步调速系统的特点: (1)交流电机旋转磁场的同步转速ω1与定子电源频率 f 1 有确定的关系 同步电动机的稳态转速等于同步转速,转差 ωs = 0。 (2)异步电动机的磁场仅靠定子供电产生,而同步电动机除定子磁动势外,转子侧还有独立的直流励磁,或者用永久磁钢励磁。 目前采用的直流励磁方式分为两大类:一类是用直流发电机作为励磁电源的直流励磁机励磁系统;另一类是用硅整流装置将交流转化成直流后供给励磁的整流器励磁系统。 (3)同步电动机的气隙有隐极与凸极之分。凸极式转子上有明显凸出的成对磁极和励磁线圈。如对水轮发电机来说,由于水轮机的转速较低,要发出工频电能,发电机的极数就比较多,做成凸极式结构工艺上较为简单。另外,中小型同步电机多半也做成凸极式。 隐极式同步电机转子上没有凸出的磁极,气隙均匀。凸极式则不均匀,两轴的电感系 1 1p 2f n πω=

变频电机和普通电机的五大区别分析

变频电机和普通电机的五大区别分析 来源:作者:2017年08月15日15:53 关键词:变频电机电机 在购买使用电机时很多时候都被推荐购买变频电机,那么变频电机和普通电机的区别到底有什么?变频电机一般分为恒转矩专用电动机,用于有反馈矢量控制的带测速装置的专用电动机以及中频电动机等。在实际应用中我们发现变频电机和普通电机还是有蛮大区别的。 两者的稳定性和使用寿命是不一样的,而且变频电机更省电,它的使用范围更广泛。变频电机的散热系统更强劲;变频电机加强了槽绝缘,一是绝缘材料加强,一是加大槽绝缘的厚度,以提高承受高频电压的水平。同时变频电机增大了电磁负荷。普通电机工作点基本在磁饱和拐点,如果用做变频,易饱和,产生较高的激磁电流,而变频电机在设计时增大了电磁负荷,使磁路不易饱和。 变频电机和普通电机的区别 1,电机的效率和温升在变频驱动下,变频电机效率会高10%左右,而温升会小20%左右,尤其是在矢量控制或者直接转矩控制的低频区域。 2,变频电机对于需要频繁启动、频繁调速、频繁制动的场合,要优于普通电动机。 3,在电磁噪声和振动方面,变频电机在变频驱动时较普通电动机有更低的噪音和更小的电磁振动。

4,电动机的绝缘强度问题。由于变频电机专为变频器驱动设计,所以能承受较大的du/dt,所以变频电动机的绝缘强度要高。尤其是在DTC控制模式下,对电动机的绝缘强度是个很大的考验。 5,最主要的区别,还是变频电动机有额外的散热(采用独立的轴流风机强迫通风),在低频、直流制动和一些特殊应用场合下的散热要大大的优于普通的交流异步电动机。 变频电机的优缺点 由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。 调频技术对电机的要求主要是三个方面: 第一,绝缘等级; 第二,强制冷却; 第三,转子轴承。 如果超过基频向上调速,还要考虑电机结构的机械强度。 大家都知道一般国产的普通电机大部分只能在AC380V/50HZ的条件下运行,普通电机能降频或升频使用,但范围不能太大,否则电机会发热甚至烧坏。

普通电机和变频电机主要区别

普通电机和变频电机主要区别 普通电机和变频电机主要有三方面区别: 1、散热系统不一样; 2、变频电机加强了槽绝缘,一是绝缘材料加强,一是加大槽绝缘的厚度,以提高承受高频电压的水平。 3、增大了电磁负荷。普通电机工作点基本在磁饱和拐点,如果用做变频,易饱和,产生较高的激磁电流,而变频电机在设计时增大了电磁负荷,使磁路不易饱和。另外就是变频电机一般分为恒转矩专用电动机,用于有反馈矢量控制的带测速装置的专用电动机以及中频电动机等。调频技术对电机的要求主要是三个方面:第一,绝缘等级;第二,强制冷却;第三,转子轴承。如果超过基频向上调速,还要考虑电机结构的机械强度。笼统地说,将普通电机代替调频电机,采用调频传动。从原理上说,行。从实际产品上说,可能行可能不行。即不可靠。 变频调速电机简称变频电机,是变频器驱动的电动机的统称。 特殊设计 电磁设计 对于变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下: 1)尽可能的减小定子和转子电阻。 减小定子电阻即可降低基波铜耗,以弥补高次谐波引起的铜耗增 2)为抑制电流中的高次谐波,需适当增加电动机的电感。但转子槽漏抗较大其集肤效应也大,高次谐波铜耗也增大。因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。 3)变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和,二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。

结构设计 在结构设计时,主要也是考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响,一般注意以下问题: 1)绝缘等级,一般为F级或更高,加强对地绝缘和线匝绝缘强度,特别要考虑绝缘耐冲击电压的能力。 2)对电机的振动、噪声问题,要充分考虑电动机构件及整体的刚性,尽力提高其固有频率,以避开与各次力波产生共振现象。 3)冷却方式:一般采用强迫通风冷却,即主电机散热风扇采用独立的电机驱动。 4)防止轴电流措施,对容量超过160KW电动机应采用轴承绝缘措施。主要是易产生磁路不对称,也会产生轴电流,当其他高频分量所产生的电流结合一起作用时,轴电流将大为增加,从而导致轴承损坏,所以一般要采取绝缘措施。 5)对恒功率变频电动机,当转速超过3000r/min时,应采用耐高温的特殊润滑脂,以补偿轴承的温度升高。

电机防护等级 变频电机

电机为了可靠运行在带电部件和壳体之间需要用绝缘材料加以隔绝,而绝缘材料的使用寿命与其材料本身的绝缘等级及使用温度有很大的关系。电机作为一个能量或信号转换元件,在运转过程中本身存在着能量损耗,有部分能量损耗造成自身温度升高。在一般状态下,绝缘材料等级,承受最高使用极限温度,用电阻法测量电机的温升极限之间符合以下表里的规定,在此温升限值内电机能正常工作。 绝缘等级使用极限温度温升限值 E 120℃75K B 130℃80K F 155℃105K H 180℃120K 10.电机防护等级;IP23,IP44,IP54,IP56 备注:防护等级主要是防止人体或接近壳内带电部分或转动部分,防止固体异物进入和防止由于进水,油等而引起有害影响,符合GB4942及IEC34-5规定。防护等级的代号及含义如下表: 代号含义第一位数字含义第二位数字含义 3 防淋水 IP 国际防护形式 2 防大于12mm固 体 4 防大于1mm固体 4 防溅水 5 防尘 5 防喷水 6 防海浪 变频电机 一、概述 YJTG系列变频调速三相异步电动机是为适应市场需要,在引进国外先进技术及总结本厂多年生产YJT系列变频调速电机经验的基础上而开发研制的新一代变频调速电机。在电磁设计方面,对定、转子槽形及绕组型式、

接法等进行了调整,使其能适应变频器电源供电的状况,并且,既能保证电机在高频时的过载能力,又能在低频时保持恒转矩输出。在结构设计方面,安装尺寸与Y系列电机相同,除长度尺寸外,其它外形尺寸亦与Y系列电机相同,互换性强,便于用户配套使用。该系列电机采用独立的轴流通风机强迫通风,保证电机在整个频率范围内均具有较好的冷却效果,温升不超过规定值。 YJTG系列变频调速三相异步电动机与变频装置构成的调速系统,与其它调速方式相比,节能效果显著,调速性能好,调速范围广,具有噪音低、振动小,可与国内外各种变频器配套的特点,可广泛应用干轻工、纺织、化工、冶金、机床等行业的恒转矩、恒功率调速的场合及风机、水泵等的节能调速,有助于实现调速系统的自动化控制。 YJTG系列电动机的4极电机符合《小型变频变压调速电动机及电源技术条件》JB/T7118-93的规定,其它极数的电机符合IEC34-1的规定,也符合GB/T755的规定。 二、型号说明 YJTG200L1-6:“YJTG”表示电机型号,“200”表示中心高(mm),“L”表示机座长度代号,“1”表示铁心长度代号,“6”表示电机极数。 三、使用条件 1、海拔不超过1000m。 2、环境空气温度随季节而变化,但不超过40℃,最低不超过-15℃。 3、最湿月平均相对湿度为90%,同时该月月平均最低温度不高于25℃。 四、结构形式 1、外壳防护等级为IP44,也可按用户要求制成IP54。

相关文档
最新文档