积分和微分运算电路

积分和微分运算电路积分运算电路

微分运算电路

1. 积分运算电路积分运算电路

dt i C u u c C ?-=-=1O dt u CR

I ?-=1-

u u ≈≈+0R

i R i u c I ==1)0(1O I O U dt u CR

u +-=?当电容两端在积分之前,已经有初始电压时:

(a) 阶跃输入信号

积分器的输入和输出波形

(b)

方波输入信号当输入信号是阶跃直流电压V I 时:

t RC

V t u RC u I i O d 1-=-=?

当输入信号是正弦信号时:

t

U u m ωsin I =t RC

U t t U RC u m m ωωcos d sin 1O -=-=?

2. 微分运算电路R

i R i u C R O -=-=微分电路

t

u RC d d C -=t u RC d d I -=当输入信号是正弦信号时:t

U u m ωsin I =t RC U u m ωωcos O -=

积分电路和微分电路

积分电路 这里介绍积分电路的一些常识。下面给出了积分电路的基本形式和波形图。 当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。而其充电电流则随着电压的上升而减小。电流通过电阻(R)、电容(C)的特性可有下面的公式表达: i = (V/R)e-(t/CR) ?i--充电电流(A); ?V--输入信号电压(V); ?C--电阻值(欧姆); ?e--自然对数常数(2.71828);

?t--信号电压作用时间(秒); ?CR--R、C常数(R*C) 由此我们可以找输出部分即电容上的电压为V-i*R,结合上面的计算,我们可以得出输出电压曲线计算公式为(其曲线见下图): Vc = V[1-e-(t/CR)]

微分电路 微分电路是电子线路中最常见的电路之一,弄清它的原理对我们看懂电路图、理解微分电路的作用很有帮助,这里我们将对微分电路做一个简单介绍。图1给出了一个标准的微分电路形式。为表达方便,这里我们使输入为频率为50Hz的方波,经过微分电路后,输出为变化很陡峭的曲线。图2是用示波器显示的输入和输出的波形。 当第一个方波电压加在微分电路的两端(输入端)时,电容C上的电压开始因充电而增加。而流过电容C的电流则随着充电电压的上升而下降。电流经过微分电路(R、C)的规律可用下面的公式来表达(可参考右图): i = (V/R)e-(t/CR)

?i-充电电流(A); ?v-输入信号电压(V); ?R-电路电阻值(欧姆); ?C-电路电容值(F); ?e-自然对数常数(2.71828); ?t-信号电压作用时间(秒); ?CR-R、C常数(R*C) 由此我们可以看出输出部分即电阻上的电压为i*R,结合上面的计算,我们可以得出输出电压曲线计算公式为(其曲线见下图): iR = V[e-(t/CR)]

积分、微分、比例运算电路

模拟电路课程设计报告 题目:积分、微分、比例运算电路 一、设计任务与要求 ①设计一个可以同时实现积分、微分和比例功能的运算电路。 ②用开关控制也可单独实现积分、微分或比例功能 ③用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 二、方案设计与论证 用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V),为运算电路提供偏置电源。此电路设计要求同时实现比例、积分、微分运算等功能。即在一个电路中利用开关或其它方法实现这三个功能。

方案一: 用三个Ua741分别实现积分、微分和比例功能,在另外加一个Ua741构成比例求和运算电路,由于要单独实现这三个功能,因此在积分、微分和比例运算电路中再加入三个开关控制三个电路的导通与截止,从而达到实验要求。 缺点:开关线路太多,易产生接触电阻,增大误差。此运算电路结构复杂,所需元器件多,制作难度大,成本较高。并且由于用同一个信号源且所用频率不一样,因此难以调节。 流程图如下: 图1 方案二: 用一个Ua741和四个开关一起实现积分、微分和比例功能,并且能够单独实现积分、微分或比例功能。 优点:电路简单,所需成本较低。 电路图如下: 积分运算电路 微分运算电路 比例运算电路 比例求和运算电路

图2 三、单元电路设计与参数计算 1、桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V )。 其流程图为: 图3 直流电源电路图如下: 电源变 压器 整流电路 滤波电路 稳压电路

V1220 Vrms 50 Hz 0?? U11_AMP T1 7.32 1D21N4007 D3 1N4007D4 1N4007 C13.3mF C23.3mF C3220nF C4220nF C5470nF C6470nF C7220uF C8220uF U2LM7812CT LINE VREG COMMON VOLTAGE U3LM7912CT LINE VREG COMMON VOLTAGE D51N4007D61N4007 LED2 LED1 R11k|?R21k|?23 4 5 D1 1N400715 16 6 7 14 17 图4 原理分析: (1)电源变压器: 由于要产生±12V 的电压,所以在选择变压器时变压后副边电压应大于24V,由现有的器材可选变压后副边电压为30V 的变压器。 (2)整流电路: 其电路图如下: 图5 ①原理分析: 桥式整流电路巧妙地利用了二极管的单向导电性,将四个二极管分为两组,

模拟电路课程设计积分微分比例运算电路

物理与电子信息学院模拟电路课程设计成绩评疋表

2013 年1 月1U 口模拟电路课程设计报告设计课题:积分、微分、比例运算电路 专业班级:__________________ 学生姓名;_______________________ 学号:_______________________ 指导教师:_______________ 设计时间:2012.12-2013.1 ______

积分、微分、比例运算电路 .设计任务与姜求 1. 设计一个叮以同时实现积分、徼分和比例功能的运算电路; 2. 用开关控制也町单独实现积分、微分或比例功能: 3. 用桥式整流电容滤液集成稳压块电路设计电路所需的正负直谎电源(土 12V ). 二、方案设计与论证 用桥式娄流电容滤波集成稳压块电路设计电路所需的正负直潦电流(±12人 为运篦电路捉供了电源。此电蹄要求设汁同时宝现积分、微分利比例功能的运算 电路。在电路中用开关控制也可实现这个功能. L 方案一、用丄个论741分别实现积分、微分和比例功能”另外加一个l :MI 比 例求和运算电路「耍单独实现这功能,所以要再加二个开关分别控制电路的导通, 达到现象赳 不足Z 处見线路欽产生接触电阻,误兼儿述有电路复朵*器件欽成本 高,频率不一,难调节甘 设计框图如下: 图2-1 设计框图 造计原理电路图如F: JU -AW 10hQ 图2 2 设计凍理电路图

2?方案二* 用一个和四个开关-?起实规这功能,并能单独枳分、微分和比例功能。优点:电路简单。 方案二 三、单元电路设计与参数计算 1?盲流稳压电源电路 直流源的制作由四部分组成:电源变压器.整流电路,滤波电踣及稳压电路。变压器部分通过变压器降压使得进入整流的电床减小:整流道路部分利用二极管的单向亍电件实现交流电流电压的转变*即将正眩波电压转换为单一方向的脉冲电压;滤波部分采用大电容,利用电容的允殷电作用便输出电圧趋于平滑;稳压通过稳压管的稳压作用使输出II流电乐莹木不受电网电斥波动和负载电阻变化的影响口稳用电源的组成框图如图3-1所示「直流稳压电源电路原理图如图3-2所示.

电路微分与积分电路

微分电路与积分电路分析 积分与微分电路 (ZT) 转贴电子资料2010-11-23 10:51:25 阅读166 评论1字号:大中小订阅 积分与微分电路 积分电路与微分电路是噪讯对策上的基本,同时也是具备对照特性的模拟电路。事实上积分电路与微分电路还细分成数种电路,分别是执行真积分/微分的完全积分/微分电路,以及具有与积分/微分不同特性的不完全积分/微分电路。除此之外积分/微分电路又分成主动与被动电路,被动型电路无法实现完全积分/微分,因此被动型电路全部都是不完全电路。 积分/微分电路必需发挥频率特性,为了使电路具备频率特性使用具备频率特性的电子组件,例如电容器与电感器等等。 被动电路 不完全积分/微分电路 图1是被动型不完全积分电路,如图所示组合具备相同特性的电路与,就可以制作上述两种电 路。 图1与图2分别是使用电容器与电感器的电路,使用电容器的电路制作成本比较低,外形尺寸比较低小,容易取得接近理想性的组件,若无特殊理由建议读者使用电容器的构成的电路。此外本文所有内容原则上全部以电容器的构成的电路为范例作说明。

图1与图2的两电路只要更换串联与并联的组件,同时取代电容器与电感器,就可以制作特性相同的电路。 不完全积分电路与微分电路一词,表示应该有所谓的完全积分电路与微分电路存在,然而完全积分电路与微分电路却无法以被动型电路制作,必需以主动型电路制作。 不完全积分电路与微分电路具有历史性的含义,主要原因是过去无法获得增幅器的时代,无法以主动型电路制作真的积分/微分电路,不得已使用不完全积分/微分电路。 由于不完全积分/微分电路本身具备与真的积分/微分电路相异特性,因此至今还具有应用价值而不是单纯的代用品。 不完全积分/微分电路又称为积分/微分电路,它的特性与真积分/微分电路相异,单纯的积分/微分电路极易与真积分/微分电路产生混淆,因此本讲座将它区分成: *完全积分电路/微分电路 *不完全积分电路/微分电路 不完全积分电路的应用 不完全积分电路属于低通滤波器的一种,它与1次滤波器都是同一类型的电路,不完全积分电路经常被当成噪讯滤波器使用,广泛应用在模拟电路、数字电路等领域。此处假设: T: 时定数 R: 阻抗 C: 电容 : 切除(cut-off)频率 如此一来: 图3是不完全积分电路的频率特性,虽然不完全积分电路属于模拟电路,不过在数字电路中它可以产生一定的延迟,因此不完全积分电路经常被当作延迟电路使用。不完全积分电路比纯数字电路更简易、低价、省空间(图4),然缺点是它的时间精度很低只能作概略性应用。图4的缓冲器为施密特触发器(schmitt trigger)。

实验七比例求和运算及微分运算电路

实验七比例求和运算及微分运算电路 一.实验目的 1.掌握集成运算放大器的特点,性能及使用方法。 2.掌握比例求和电路,微积分电路的测试和分析方法。 3.掌握各电路的工作原理和理论计算方法。 二.实验仪器 1.GOS-620模拟示波器 2.GFG-8250A信号发生器 3.台式三位半数字万用表 4.指针式交流毫伏表 5.SPD3303C直流电源 三.实验内容及步骤 1.搭接电压跟随器并验证其跟随特性,测量2-3组数据进行验证。 2.测量反向比例电路的比例系数,测量其计算值与理论值进行比较

理论值:Uo=-(R F/Ri)*Ui,ui=7mV,uo=-70mV 实际值: uo=7mV,ui=69mV 3.测量同相比例放大器的比例系数及上限截止频率 理论值:uo=-(1+RF/Ri)*ui,ui=6.9mV,uo=75.9mV 实际值:ui=6.9mV,uo=76mV 4.测量反相求和电路的求和特性,注意多路输入信号可通过电阻分压法获取 仿真值如下图所示, Ui1=3.185mV,Ui2=1.706mV,Uo=48.899mV, 满足输入与输出运算关系: Uo=-[(RF /R1)*Ui1+( RF /R2)*Ui2]

5.验证双端输入求和的运算关系

6.积分电路 如图所示连接积分运算电路,检查无误后接通±12V直流电源 ①取ui=-1V,用示波器观察波形uo,并测量运放输出电压值的正向饱和电压值 正向饱和电压值为11V ②取ui=1V,测量运放的负向饱和电压值。注意±1V的信号源可用1Hz交流信号代替 反向饱和电压值为-11V ③将电路中的积分电容改为0.1uF,ui分别输入1kHz幅值为2V的方波和正弦波信号, 观察ui和uo的大小及相位关系并记录波形,计算电路的有效积分时间。 Ui=1.414V,Uo=222.157mV

实验九积分与微分电路

实验九积分与微分电路 学院:信息科学与技术学院专业:电子信息工程 :刘晓旭 学号:2011117147

一.实验目的 1.掌握集成运算放大器的特点、性能及使用方法。 2.掌握比例求和电路、微积分电路的测试和分析方法。 3.掌握各电路的工作原理和理论计算方法。 二.实验仪器 1.数字万用表2.直流稳压电源3.双踪示波器4.信号发生器5.交流毫伏表。三.预习要求 1.分析图7-8 实验电路,若输入正弦波,u o 与u i 的相位差是多少?当输入信号为100Hz、有 效值为2V时,u o =? 2.图7-8 电路中,若输入方波,u o 与u i 的相位差?当输入信号为160Hz幅值为1V时,输出 u o =? 3.拟定实验步骤,做好记录表格。 四.实验原理 集成运放可以构成积分及微分运算电路,如下图所示: 微积分电路的运算关系为: 五.实验内容: 1.积分电路 按照上图连接积分电路,检查无误后接通+12,-12V直流电源。 (1)取U i=-1v,用示波器观察波形u0,并测量运放输出电压的正向饱和电压值。

(2)取U i=1V,测量运放的负向饱和电压值。 (3)将电路中的积分电容改为改为0.1uF,u i分别输入1KHz幅值为2v的方波和正弦信号,观察u i和u o的大小及相位关系,并记录波形,计算电路的有效积分时间。 (4)改变电路的输入信号的频率,观察u i和u o的相位,幅值关系。 2.微分电路 实验电路如上图所示。 (1)输入正弦波信号,f=500Hz,有效值为1v,用示波器观察u i和u o的波形并测量输出电压值。 (2)改变正弦波频率(20Hz-40Hz),观察u i和u o的相位,幅值变化情况并记录。 (3)输入方波,f=200Hz,U=5V,用示波器观察u0波形,并重复上述实验。 (4)输入三角波,f=200Hz,U=2V,用示波器观察u0波形,并重复上述实验 3.积分-微分电路 实验电路如图所示 (1)输入f=200Hz,u=6V的方波信号,用示波器观察u i和u o的波形并记录。 (2)将f改为500Hz,重复上述实验。 解答: 1.(1)取U i=-1v,用示波器观察波形u0,并测量运放输出电压的正向饱和电压值 电路仿真图如下图所示:

微分和积分电路的异同

电子知识 微分电路(13)积分电路(20) 输出电压与输入电压成微分关系的电路为微分电路,通常由电容和电阻组成;输出电压与输入电压成积分关系的电路为积分电路,通常由电阻和电容组成。微分电路、积分电路可以分别产生尖脉冲和三角波形的响应。积分运算和微分运算互为逆运算,在自控系统中,常用积分电路和微分电路作为调节环节;此外,他们还广泛应用于波形的产生和变换以及仪器仪表之中。以集成运放作为放大电路,利用电阻和电容作为反馈网络,可以实现这两种运算电路。 (一)积分电路和微分电路的特点 1:积分电路可以使输入方波转换成三角波或者斜波 微分电路可以使使输入方波转换成尖脉冲波 2:积分电路电阻串联在主电路中,电容在干路中 微分则相反 3:积分电路的时间常数t要大于或者等于10倍输入脉冲宽度 微分电路的时间常数t要小于或者等于1/10倍的输入脉冲宽度 (二)他们被广泛的用于自控系统中的调节环节中,此外还广泛应用于波形的产生和变换以及仪表之中。 (三)验证:你比如说产生三角波的方法,有这样两个简单的办法,第一就是在方波发生电路中,当滞回比较器的阈值电压数值比较小时,咱们就可以把电容两端的电压看成三角波,第二呢直接把方波电压作为积分运算电路的发生电路的输出电压uo1=+Uz,时积分电路的输出电压uo将线性下降;而当

uo1=-Uz时,uo将线性上升;从而产生三角波,这时你就会发现两种方法产生的三角波的效果还是第二种的好,因为第一种方法产生的三角波线性度太差,而且如果带负载后将会使电路的性能发生变化。你可以用我说的这两种方法分别试试就知道差别优势了。 积分电路和微分电路当然是对信号求积分与求微分的电路了,它最简单的构成是一个运算放大器,一个电阻R和一个电容C,运放的负极接地,正极接电容,输出端Uo再与正极接接一个电阻就是微分电路,设正极输入Ui,则Uo=-RC(dUi/dt)。 当电容位置和电阻互换一下就是积分电路,Uo=-1/RC*(Ui 对时间t的积分),这两种电路就是用来求积分与微分的。方波输入积分电路积分出来就是三角波,而输入微分电路出来就是尖脉冲。 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。 IBIS模型优点可以概括为:在I/O非线性方面能够提供准

微分与积分电路分析

一、微分电路 输出信号与输入信号的微分成正比的电路,称为微分电路。 原理:从图一得:Uo=Ric=RC(duc/dt),因Ui=Uc+Uo,当,t=to时,Uc=0,所以Uo=Uio随后C充电,因RC≤Tk,充电很快,可以认为Uc≈Ui,则有: Uo=RC(duc/dt)=RC(dui/dt)---------------------式一 这就是输出Uo正比于输入Ui的微分(dui/dt) RC电路的微分条件:RC≤Tk 图一、微分电路 二、积分电路 输出信号与输入信号的积分成正比的电路,称为积分电路。 原理:从图2得,Uo=Uc=(1/C)∫icdt,因Ui=UR+Uo,当t=to时,Uc=Oo.随后C充电,由于RC≥Tk, 充电很慢,所以认为Ui=UR=Ric,即ic=Ui/R,故 Uo=(1/c)∫icdt=(1/RC)∫icdt 这就是输出Uo正比于输入Ui的积分(∫icdt) RC电路的积分条件:RC≥Tk 图2、积分电路 微分电路电路结构如图W-1,微分电路可 把矩形波转换为尖脉冲波,此电路的输出波 形只反映输入波形的突变部分,即只有输入 波形发生突变的瞬间才有输出。而对恒定部 分则没有输出。输出的尖脉冲波形的宽度与 R*C有关(即电路的时间常数),R*C越小, 尖脉冲波形越尖,反之则宽。此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的1/10就可以了。 积分电路 电路结构如图J-1,积分电路可将矩形 脉冲波转换为锯齿波或三角波,还可将锯 齿波转换为抛物波。电路原理很简单,都 是基于电容的冲放电原理,这里就不详细 说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于

RC积分电路与微分电路

1 无源微、积分电路 ( 一).输出信号与输入信号的微分成正比的电路,称为微分电路。 原理:从图1得:)(dt dU RC C R U C i O ==,因O C i U U U ==,当,0t t =时,0=C U ,所以0i O U U =随后C 充电,因RC≤Tk,充电很快,可以认为 i C U U =,则有: dt dU RC dt dU RC U i C O == ---------------------式1 这就是输出O U 正比于输入i U 的微分dt dU i RC 电路的微分条件:RC≤Tk (二)输出信号与输入信号的积分成正比的电路,称为积分电路。 原理:从图2得,? = =iCdt C U U C O 1,因O R i U U U +=,当0t t =时,C O U U =.随后C 充电,由于RC≥T k,充电很慢,所以认为C R U U i R i ==,即R U iC i =,故 ??==iCdt RC iCdt C U O 11 这就是输出O U Uo 正比于输入i U 的积分?iCdt . RC 电路的积分条件:RC≥Tk 图1 图2

(三)积分电路和微分电路的特点 积分电路和微分电路的特点 1:积分电路可以使输入方波转换成三角波或者斜波 微分电路可以使使输入方波转换成尖脉冲波 2:积分电路电阻串联在主电路中,电容在干路中 微分则相反 3:积分电路的时间常数t要大于或者等于10倍输入脉冲宽度 微分电路的时间常数t要小于或者等于1/10倍的输入脉冲宽度 4:积分电路输入和输出成积分关系 微分电路输入和输出成微分关系 微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。而对恒定部分则没有输出。输出的尖脉冲波形的宽度与R*C有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。此电路的R*C 必须远远少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的1/10就可以了。 积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于

积分电路和微分电路

什么是积分电路 输出信号与输入信号的积分成正比的电路,称为积分电路。 基本积分电路: 积分电路如下图所示,积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于或等于10倍于输入波形的宽度。 原理:从图得,Uo=Uc=(1/C)/icdt,因Ui=UR+Uo当t=to 时,Uc=Oo随后C 充电,由于ROTk,充电很慢,所以认为Ui=UR=Ric,即ic=Ui/R,故 Uo=(1/c) / icdt=(1/RC) / Uidt 这就是输出Uo正比于输入Ui的积分(/ Uidt ) RC电路的积分条件:RO Tk 积分电路的作用: 积分电路能将方波转换成三角波,积分电路具有延迟作用,积分电路还有移相作用。积分电路的应用很广,它是模拟电子计算机的基本组成单元,在控制和测量系统中也常常用到积分电路。此外,积分电路还可用于延时和定时。在各种波形(矩形波、锯齿波等)发生电路中,积分电路也是重要的组成部分。 微分电路 可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。而对恒定部分则没有输出。输出的尖脉冲波形的宽度与R*C有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换

的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的1/10 就可以了。 积分电路 这里介绍积分电路的一些常识。下面给出了积分电路的基本形式和波形图 R=10K o輸出 匚=0-3 F=5OHZ o ---- 当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。而其充电电流则随着电压的上升而减小。电流通过电阻(R)、电容(C)的特性可有下面的公式表达:

基于运放的微积分电路设计1

电子与通信工程学院 课程设计报告 2011 ~ 2012 学年第1学期 基于运放的微积分电路设计 专业:电子与信息科学技术 班级:电信091 学号: 200905402136 姓名:黄宝健 指导教师姓名:闭吕庆 指导教师职称:讲师 2011年 12 月 3 日

【课题名称】:基于运放的微积分电路设计 【摘要】:基于运放的微积分电路是微分电路和积分电路的统称。输出电压与输入电压成微分关系的电路为微分电路,通常由电容和电阻组成;输出电压与输入电压成积分关系的电路为积分电路,通常由电阻和电容组成。广泛用于计算机、自动控制和电子仪器中。积分运算和微分运算互为逆运算,在自控系统中,常用积分电路和微分电路作为调节环节;此外,他们还广泛应用于波形的产生和变换以及仪器仪表之中。以集成运放作为放大电路,利用电阻和电容作为反馈网络,可以实现这两种运算电路。 积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。电路原理基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于t。 积分电路能将方波转换成三角波。 积分电路具有延迟作用。 积分电路还有移相作用。 【关键词】:UA741 积分电路微分电路

目录 1、引言 (4) 2、总体方案设 (4) 2.1设计原理 (4) 2.2 具体要求 (4) 3、设计原理分析 (5) 3.1微分电路 (5) 3.2积分电路 (6) 4、具体电路实现 (6) 4.1微分电路的实现 (6) 4.2积分电路的实现 (7) 5、总结和体会 (8) 6、参考文献 (9)

RC积分电路与微分电路

1 无源微、积分电路 (一).输出信号与输入信号的微分成正比的电路,称为微分电路。 原理:从图1得:)(dt dU RC C R U C i O ==,因O C i U U U ==,当,0t t =时,0=C U ,所以0i O U U =随后C 充电,因RC≤Tk,充电很快,可以认为i C U U =,则有: dt dU RC dt dU RC U i C O == ---------------------式1 这就是输出O U 正比于输入i U 的微分dt dU i RC 电路的微分条件:RC≤Tk (二)输出信号与输入信号的积分成正比的电路,称为积分电路。 原理:从图2得,?= =iCdt C U U C O 1,因O R i U U U +=,当0t t =时,C O U U =.随后C 充电,由于RC≥Tk,充电很慢,所以认为C R U U i R i ==,即R U iC i =,故 ??==iCdt RC iCdt C U O 11 这就是输出O U Uo 正比于输入i U 的积分?iCdt . RC 电路的积分条件:RC≥Tk (三) 积分电路和微分电路的特点 积分电路和微分电路的特点 1:积分电路可以使输入方波转换成三角波或者斜波 图 1 图2

微分电路可以使使输入方波转换成尖脉冲波 2:积分电路电阻串联在主电路中,电容在干路中 微分则相反 3:积分电路的时间常数t要大于或者等于10倍输入脉冲宽度 微分电路的时间常数t要小于或者等于1/10倍的输入脉冲宽度 4:积分电路输入和输出成积分关系 微分电路输入和输出成微分关系 微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。而对恒定部分则没有输出。输出的尖脉冲波形的宽度与R*C有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的1/10就可以了。 积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于 积分电路能将方波转换成三角波。 积分电路具有延迟作用。 积分电路还有移相作用。 积分电路的应用很广,它是模拟电子计算机的基本组成单元。在控制和测量系统中也常常用到积分电路。此外,积分电路还可用于延时和定时。在各种波形(矩形波、锯齿波等)发生电路中,积分电路也是重要的组成部分。(四)验证:你比如说产生三角波的方法,有这样两个简单的办法,第一就是在方波发生电路中,当滞回比较器的阈值电压数值比较小时,咱们就可以把电容两端的电压看成三角波,第二呢直接吧方波电压作为积分运算电路的发生电路的输出电压uo1=+Uz,时积分电路的输出电压uo将线性下降;而当uo1=-Uz时,uo

积分电路与微分电路

积分电路与微分电路 积分电路和微分电路实验的目的和要求 1: (1)进一步掌握微分电路和积分电路的相关知识(2)学会使用运算放大器形成积分微分电路 (3)设计了一个RC差分电路,将方波转换成锐脉冲波(4)设计了一个RC积分电路,将方波转换成三角波(5)进一步学习和熟悉Multisim软件的使用(6)得出分析结论,写出模拟经验 工作原理: 积分电路: 积分是一种常见的数学运算,同时积分电路是一种常见的波形转换电路,它是一种将矩形脉冲(或方波)转换成三角波的电路最简单的集成电路(一阶RC电路)在 实验中,增加了一个运算放大器。原理图如下: 使用虚拟接地和虚拟断路的概念:n?0,i1?i2?I,电流为i1的电容器c?充电V1/电阻假设电容器c的初始电压为vc(o)?0,输出电压为 1 V0=?钢筋混凝土?vdt 1的上述公式表明,输出电压V0是输入电压Vi随时间的积分,负号表示它们相位相反。

当输入信号Vi为阶跃电压(方波)时,电容将在其作用下以近似恒定的电流模式充电,输出电压V0与时间t近似线性,因此 viviv??t。?到 RC?其中τ=R C是 中的时间常数由此可以推断,运算放大器的输出电压的最大V om受到DC调节电源的限制,这导致运算放大器进入饱和状态,V o保持不变,并且积分停止 差分电路: 替换积分电路中的电阻和电容元件,并选择较小的时间常数RC,以获得如图4所示的差分电路该电路还具有虚拟接地和虚拟断路 图4差分电路与运算放大器 设置t=0,电容的初始电压Vc(0)=0,当信号卡电压Vi连接时,dvii??c有1个dtdv??RC odt 的公式显示,输出电压V o与输入电压Vi相对于时间的微分成比例,负号表示它们的相位相反。当输入信号是方波时,电路可以将方波转换成尖峰脉冲波。 实验内容 我们先画出差分和积分电路图,然后进行实验,观察输出波形 差分电路图:

基本运算电路比例积分微分

第一节基本运算电路 一、比例运算电路 比例运算电路有反相输入、同相输入和差动输入三种基本形式。1.反相比例运算电路 ·平衡电阻――使两个差分对管基极对地的电阻一致,故R 2 的阻值为 R 2=R 1 //R F 反相比例运算电路 ·虚地概念 运放的反相输入端电位约等于零,如同接地一样。“虚地”是反相比例运算电路的一个重要特点。 可求得反相比例运算放大电路的输出电压与输入电压的关系为 反相比例运算电路的输入电阻:由于反相输入端为“虚地”,显然电路的输 入电阻为 R i =R 1 。 反相比例运算电路有如下几个特点: ①输出电压与输入电压反相,且与R F 与R 1 的比值成正比,与运放内部各项 参数无关。当R F =R 1 时,u O =-u I ,称为反相器。 ②输入电阻R i =R 1 ,只决定于R 1 ,一般情况下反相比例运算电路的输入电阻 比较低。 ③由于同相输入端接地,反相输入端为“虚地”,因此反相比例运算电路没有共模输入信号,故对运放的共模抑制比要求相对比较低。 2.同相比例运算电路 利用“虚短”和“虚断”,可得输出电压与输入电压的关系为

同相比例运算电路有如下几个特点: ①输出电压与输入电压同相,且与R F 与R 1 的比值成正比,电压放大倍数 当R f =∞或R 1 =0时,则u O =u I 。这种电路的输出电压与输入 电压幅度相等、相位相同,称为电压跟随器,又称为同相跟随器。 ②同相比例运算电路的输入电阻很高。由于电路存在很深的负反馈实际的输入电阻要比R id 高很多倍。 ③同相比例运算电路由于u +=u - 而u + =u I ,因此同相比例运算电路输入端 本身加有共模输入电压u IC =u I 。故对运放的共模抑制比相对要求高。 无论是反相比例运算电路还是同相比例运算电路由于引入的是电压负反馈(详细分析见第七章),所以输出电阻R o 很低。 3.差分比例运算电路 利用“虚短”和“虚断”,即i +=i - =0、u + =u - ,应用叠加定理可求得 当满足条件R 1=R 2 、R F =R 3 时, 电路的输出电压与两个输入电压之差成正比,实现了差分比例运算。 电路的差模输入电阻为R i =2R 1 。 缺点:对元件的对称性要求较高,外接电阻要求精密匹配,即使选用误差为±0.1%的电阻,也往往不能满足要求。在要求改变运算关系时,又必须同时选配两对高精密电阻,非常不方便。输入电阻不够高。 4.比例电路应用实例 二、加法电路

积分电路和微分电路 实验报告书

积分电路和微分电路实验报告书学号:姓名:学习中心:

(1)按如图连接电路 (2)设置信号发生器的输出频率为1HZ,幅值为5V的方波,如图 (3)激活仿真电路 双击示波器图标弹出示波器面板,观察并分析示波器波形

(4)按表1给出的电路参数依次设置R和C的取值,分别激活仿真运行,双击示波器图标,弹出示波器面板,给出输入/输出信号的波形图,并说明R和C的取值对输出信号的影响表1 实验电路参数 序号输入为方波信号电路参数 频率/HZ幅值/V R/KO C/uF 1 1 5 100 1 2 1 5 100 2 3 1 5 100 4.7 2.微分电路实验 (1)按图连接电路 (2)设置R和C (3)激活电路仿真运行, (4)双击示波器的面板,给出输入/输出信号的波形图 (5)说明R和C的取值对输出信号的影响

表2 实验电路参数 序号输入为方波信号电路参数 频率/HZ幅值/V R/KO C/uF 1 1 5 100 1 2 1 5 100 2 3 1 5 100 4.7

三、实验过程原始数据(数据、图表、计算等) 1.积分电路实验 R=100KO,C=1uF R=100 KO C=2UF R=100KO C=4.7uF 2.微分电路实验 R=100KO,C=1uF

R=100 KO C=2UF R=100KO C=4.7uF 四、实验结果及分析 积分电路实验 由积分电路的特点:时间常数t远大于输入信号的周期T,在此条件下Uc(t)<

比例、求和、积分、微分电路讲解

深圳大学实验报告课程名称:模拟电路 实验名称:比例、求和、积分、微分电路 学院:信息工程学院 专业:班级: 3 组号:指导教师:吴迪 报告人:李子茜学号:2014130116 实验时间:2015 年10 月9 日星期五实验地点N102 实验报告提交时间:2015 年10 月21 日

一、实验目的 1、掌握用集成运算放大电路组成比例、求和电路的特点及性能; 2、掌握用运算放大器组成积分微分电路; 3、学会上述电路的测试和分析方法 二、实验仪器 1、数字万用表 2、双踪示波器 3、信号发生器 三、预习要求 (1)复习比例、求和、积分微分电路的基本工作原理; (2)估算所有要填入表格的理论值; (3)拟定实验步骤,做好记录表格。 对于理想运放,当其工作在线性状态时,若U+≈U-,则这一特性称为理想运放输入端的“虚短路”特性;若I+=I-≈0,则这一特性称为理想运放输入端的“虚开路”特性。 四、实验内容 1.熟悉电压跟随电路 运算放大器UA741上的引脚排列如图5-5所示。1和5为偏置(调零端),2为反向输入端,3为正向输入端,4为-Vcc,6为输出端,7接+Vcc,8为空脚。 电压跟随实验电路如图5-6所示。按表5-18内容实验并测量记录。注意:集成运放实验板上的+12V、-12V和GND孔必须与实验箱上电源部分的+12V、-12V和GND孔连接,以保证集成运放的正常供电。 图5-5 UA741引脚排列图

图5-6 电压跟随电路 表5-18 电压跟随电路测试表 2.熟悉反相比例放大器 反相比例放大电路的实验电路如图5-7,已知Uo=-RF*Ui/R1,按表5-19的实验内容测量并测量记录。 表5-7 反相比例放大电路 U i(V) -2 -0.5 0 +0.5 1 U0(V) R L=∞ R L=5.1KΩ

实验七积分与微分电路

实验七积分与微分电路 一、实验目的 1.学会用运算放大器组成积分微分电路。 2.学会积分微分电路的特点及性能。 二、实验仪器 1.数字万用表。 2.信号发生器。 3.双踪示波器。 三、预习要求 1.分析图7.1,若输入正弦波,V o与V i相位差是多少?当输入信号为100Hz 有效值为2V时,V o=? 2.分析图7.2电路,若输入方波,V o与V i相位差是多少?当输入信号为160Hz有效值为1V时,输出V o=? 3.拟定实验步骤、做好记录表格。 四、实验内容 1.积分电路: 实验电路如图7.1所示 (1)取V i=-1V,断开开关K(开关K用一连线代替,拔出连线一端作为断开)用示波器观察V o的变化。 (2)测量饱和输出电压及有效积分时间。 (3)使图7.1中积分电容改为0.1u,断开K,V i分别输入100Hz幅值为2V 的方波和正弦波信号,观察V o和V i大小及相位关系,并记录波形。 (4)改变图7.1电路的频率,观察V o和V i的相位,幅值关系。 当f=1000Hz时 2.微分电路 实验电路如图7.2所示。 (1)输入正弦波信号,f=160Hz有效值为1V,用示波器观察V o与V i波形并测量输出电压。 由上图V o=9V (2)改变正弦波频率(20Hz~400Hz),观察V o和V i的相位、幅值变化情况并记录。 f=300Hz (3)输入方波,f=200Hz,V=+-5V,用示波器观察V o波形;按上述步骤重复试验。 V=5V 3.积分——微分电路

实验电路如图7.3所示 (1)在V i输入f=200Hz,V=+-6V的方波信号,用示波器观察V o和V i的波形并记录。 . (2)将f改为500Hz ,重复上述试验。

积分电路和微分电路实验报告

积分电路和微分电路实验报告 篇一:积分电路与微分电路实验报告 四、积分电路与微分电路 目的及要求:(1)进一步掌握微分电路和积分电路的相关知识。 (2)学会用运算放大器组成积分微分电路。 (3)设计一个RC微分电路,将方波变换成尖脉冲波。(4)设计一个RC积分电路,将方波变换成三角波。(5)进一步学习和熟悉Multisim软件的使用。(6)得出结论进行分析并写出仿真体会。 一.积分电路与微分电路 1. 积分电路及其产生波形 1.1运算放大器组成的积分电路及其波形 设计电路图如图所示: 图 1.1积分电路 其工作原理为:积分电路主要用于产生三角波,输出电压对时间的变化率与输入阶跃电压的负值成正比,与积分时间常数成反比,即 ?U0?t ?? UinR1C 式中,R1C积分时间常数,Uin为输入阶跃电压。

反馈电阻Rf的主要作用是防止运算放大器LM741饱和。 C为加速电容,当输入电压为方波时,输入端U01的高电平等于正电源?Vcc,低电平等于负电源电压?Vdd,比较器的U??U??0时,比较器翻转,输入U01从高电平跳到低电平?Vdd。输出的是一个上升速度与下降速度相等的三角波形。 图1.2积分电路产生的波形 1.2微分电路及其产生波形 2. 运算放大器组成的微分电路及其波形 设计的微分电路图: 图2.1微分电路 其工作原理为:将积分电路中的电阻与电容对换位子,并选用比较小的 时间常数RC,便得到了微分电路。微分电路中,输出电压与输入电压对时间的变化率的负值成正比,与微分时间常数成反比,所以 Rin U0??RfC ?U?t in 的主要作用是防止运放LM741产生自激振荡。v0??RCdV/dt,输出 电压正比与输入电压对时间的微商,符号表示相位相反,

仿真实验一 RC微分积分电路

一、RC 一阶微积分电路仿真实验 一、电路课程设计目的 1、测定RC 一阶电路的积分、微分电路; 2、掌握有关微分电路和积分电路的概念。 二、仿真电路设计原理 1.RC 电路的矩形脉冲响应 若将矩形脉冲序列信号加 在电压初值为零的RC 串联电路 上,电路的瞬变过程就周期性地 发生了。显然,RC 电路的脉冲 响应就是连续的电容充放电过 程。如图所示。 若矩形脉冲的幅度为U ,脉 宽为tp 。电容上的电压可表示为: 电阻上的电压可表示为: 21010 0)(0)1()(t t t e U t u t t e U t u t t ≤≤?=≤≤-=--K Λττ 即当 0到t1时,电容被充电;当t1到t2 时,电容器经电阻R 放电。 2110 )(0)(t t t e U t u t t e U t u t R t R ≤≤?-=≤≤?=--K Λττ (也可以这样解释:电容两端电压不能突变,电流可以,所以反映在图中就是电阻两端的电压发生了突变。) 2.RC 微分电路 取RC 串联电路中的电阻两端为输出端,并选择适当的电路参数使时间常数τ<

dt t du RC dt du RC i R t u i C C )()(0?≈?=?= 上式说明,输出电压uo(t)近似地与输入电压ui(t)成微分关系,所以这种电路称微分电路。 3.RC 积分电路 如果将RC 电路的电容两端作为输出端,电路参数满足τ>>tp 的条件,则成为积分电路。由于这种电路电容器充放电进行得很慢,因此电阻R 上的电压ur(t)近似等于输入电压ui(t),其输出电压uo(t)为: ? ???≈?=?==dt t u RC dt R t u C dt t i C t u t u R R C C )(1)(1)(1)()(0 上式表明,输出电压uo(t)与输入电压ui(t)近似地成积分关系。 4.时间常数 RC 电路中,时间常数τ=R*C ; RL 电路中,时间常数τ=L/R 。 三、仿真实验电路搭建与测试 1、一阶RC 微分电路: 1u c u

实验九-积分与微分电路

实验九-积分与微分电路

实验九积分与微分电路 学院:信息科学与技术学院专业:电子信息工程 姓名:刘晓旭 学号:2011117147

一.实验目的 1.掌握集成运算放大器的特点、性能及使用方法。 2.掌握比例求和电路、微积分电路的测试和分析方法。 3.掌握各电路的工作原理和理论计算方法。二.实验仪器 1.数字万用表2.直流稳压电源3.双踪示波器4.信号发生器5.交流毫伏表。 三.预习要求 1.分析图7-8 实验电路,若输入正弦波,u o 与u i 的相位差是多少?当输入信号为100Hz、有效值为2V时,u o =? 2.图7-8 电路中,若输入方波,u o 与u i 的相位差?当输入信号为160Hz幅值为1V时,输出u o =? 3.拟定实验步骤,做好记录表格。 四.实验原理 集成运放可以构成积分及微分运算电路,如下图所示:

微积分电路的运算关系为: 五.实验内容: 1.积分电路 按照上图连接积分电路,检查无误后接通+12,-12V直流电源。 (1)取U i =-1v,用示波器观察波形u 0, 并测 量运放输出电压的正向饱和电压值。 (2)取U i =1V,测量运放的负向饱和电压值。 (3)将电路中的积分电容改为改为0.1uF, u i 分别输入1KHz幅值为2v的方波和正弦信 号,观察u i 和u o 的大小及相位关系,并记录波 形,计算电路的有效积分时间。 (4)改变电路的输入信号的频率,观察u i 和u o 的相位,幅值关系。 2.微分电路 实验电路如上图所示。

(1)输入正弦波信号,f=500Hz,有效值为 1v,用示波器观察u i 和u o 的波形并测量输 出电压值。 (2)改变正弦波频率(20Hz-40Hz),观察u i 和u o 的相位,幅值变化情况并记录。 (3)输入方波,f=200Hz,U=5V,用示波器观 察u 波形,并重复上述实验。 (4)输入三角波,f=200Hz,U=2V,用示波器 观察u 波形,并重复上述实验 3.积分-微分电路 实验电路如图所示 (1)输入f=200Hz,u=6V的方波信号,用示波 器观察u i 和u o 的波形并记录。 (2)将f改为500Hz,重复上述实验。解答: 1.(1)取U i =-1v,用示波器观察波形u 0, 并测量 运放输出电压的正向饱和电压值电路仿真图如下图所示:

相关文档
最新文档