相遇问题经典例题

相遇问题经典例题
相遇问题经典例题

【知识要点】

行程问题是专门研究物体运动的速度、时间和路程三者之间关系的应用题.主要的数量关系是:路程=速度×时间.

行程问题大致可以分成以下三种情况:

1.相向而行:速度和×相遇时间=路程;

2.相背而行:速度和×时间=相背路程;

3.同向而行:速度差×追击时间=追击路程.

【例题精讲】

例1有两列火车,一列长102米,每秒行20米;另一列长83米,每秒行17米。两列火呈在双轨线上相向而行,从两车相遇到车尾离开共要用多少秒?

例2 一列客车通过860米长的大桥需要45秒,用同样的速度穿过610米的隧道需要35秒。求这列客车行驶的速度及车身的长度。

例3 甲、乙两车分别从A、B两地同时开出,相向而行,经过6小时,甲车行了全程的75%,乙车超过中点16千米。已知甲车比乙车每小时多行4千米。求A、B两地相距多少千米?

例4 一辆汽车从甲地开往乙地,如果把车速提高20%,可以比原定时间提前一小时到达,如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达,则甲、乙两地相距多少千米?

例5 小张、小王、小李同时从湖边同一地点出发,绕湖行走,小张速度是每小时5.4千米,小王速度是每小时4.2千米,他们两人同方向行走,小李与他们反方向行走,半小时后小张与小李相遇,再过5分钟,小李与小王相遇,那么绕湖一周的行程为多少千米?

例6 甲汽车每小时行驶80千米,乙汽车每小时行驶90千米,两汽车同时从同一地点向同一方向行驶,2小时后,乙汽车回原地取东西,并在原地停留半小时后追甲汽车,问距原地多少千米处追上甲车?

例7 甲、乙两人从A、B两地同时出发,相向而行,当甲走到一半时,乙将速度提高一倍,结果两人在距离B地1200米处相遇,并且最后同时到达,那么两地相距多少米?

例8 甲、乙两辆汽车分别以不同的速度,同时从A、B两地相对开出,第一次在离A地80千米处相遇;各自到达对方处后立即返回,第二次在离A地50千米处相遇。两地相距多少千米?

追击和相遇问题典型例题

【学习目标】 1、掌握追及及相遇问题的特点 2、能熟练解决追及及相遇问题 追及问题 1、追及问题中两者速度大小与两者距离变化的关系。 甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离。若甲的速度小于乙的速度,则两者之间的距离。若一段时间内两者速度相等,则两者之间的距离。 2、追及问题的特征及处理方法: “追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种: 初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度相等,即v甲=v乙。 ⑵匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。 判断方法是:假定速度相等,从位置关系判断。 ①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。 ②若甲乙速度相等时,甲的位置在乙的前方,则追上,并会有两次相遇 ③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。 解决问题时要注意二者是否同时出发,是否从同一地点出发。 ⑶匀减速运动的物体甲追赶同向的匀速运动的物体已时,情形跟⑵类似。 判断方法是:假定速度相等,从位置关系判断。

①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。 ②若甲乙速度相等时,甲的位置在乙的前方,则追上,并会有两次相遇 ③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。 解决问题时要注意二者是否同时出发,是否从同一地点出发。 3、分析追及问题的注意点: ⑴要抓住一个条件,两个关系: ①一个条件是两物体的速度满足的临界条件,如 两物体距离最大、最小,恰好追上或恰好追不上等。 ②两个关系是时间关系和位移关系, 通过画草图找两物体的位移关系是解题的突破口。 ⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。 ⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v-t图象的应用。 二、相遇 ⑴同向运动的两物体的相遇问题即追及问题,分析同上。 ⑵相向运动的物体,当各自发生的位移绝对值的和等于开始时两物体间的距离时即相遇。 【典型例题】 1.在十字路口,汽车以的加速度从停车线启动做匀加速运动,恰好有一辆自行车以的速度匀速驶过停车线与汽车同方向行驶,求: 什么时候它们相距最远?最远距离是多少?

行程问题典型例题及答案详解

行程问题典型例题及答案详解 行程问题是小学奥数中的重点和难点,也是西安小升初考试中的热点题型,纵观近几年试题,基本行程问题、相遇追及、多次相遇、火车、流水、钟表、平均速度、发车间隔、环形跑道、猎狗追兔等题型比比皆是,以下是一些上述类型经典例题(附答案详解)的汇总整理,有疑问可以直接联系我。 例1:一辆汽车往返于甲乙两地,去时用了4个小时,回来时速度提高了1/7,问:回来用了多少时间? 分析与解答:在行程问题中,路程一定,时间与速度成反比,也就是说速度越快,时间越短。设汽车去时的速度为v千米/时,全程为s千米,则:去时,有s÷v=s/v=4,则 回来时的时间为:,即回来时用了3.5小时。评注:利用路程、时间、速度的关系解题,其中任一项固定,另外两项都有一定的比例关系(正比或反比)。 例2:A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少? 分析:对于求速度的题,首先一定是考虑用相应的路程和时间相除得到。 解答:后半段路程长:240÷2=120(千米),后半段用时为:6÷2-0.5=2.5(小时),后半段行驶速度应为:120÷2.5=48(千米/时),原计划速度为:240÷6=40(千米/时),汽车在后半段加快了:48-40=8(千米/时)。 答:汽车在后半段路程时速度加快8千米/时。 例3:两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时? 分析:求时间的问题,先找相应的路程和速度。 解答:轮船顺水速度为231÷11=21(千米/时),轮船逆水速度为21-10=11(千米/时),逆水比顺水多需要的时间为:21-11=10(小时) 答:行驶这段路程逆水比顺水需要多用10小时。

奥数行程问题大全完整版

奥数行程问题大全 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

奥数行程问题 一、多人行程的要点及解题技巧 行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”: 这三个量是:路程(s)、速度(v)、时间(t) 三个关系: 1.简单行程:路程=速度×时间 2.相遇问题:路程和=速度和×时间 3.追击问题:路程差=速度差×时间 牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。如“多人行程问题”,实际最常见的是“三人行程”例:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。在途中,甲和乙相遇后3分钟和丙相遇。问:这个花圃的周长是多少米分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38) ×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。总之,行程问题是重点,也是难点,更是锻炼思维的好工具。只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!

七年级-第十讲:行程问题经典例题

第十讲:行程问题分类例析 主讲:何老师 行程问题有相遇问题,追及问题,顺流、逆流问题,上坡、下坡问题等.在运动形式上 分直线运动及曲线运用 (如环形跑道). 相遇问题是相向而行 .相遇距离为两运动物体的距离 和.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追及,追及距离慢 快S S S .顺逆流、顺风逆风、上下坡应注意运动方向,去时顺流,回时则为逆 流. 一、相遇问题例1:两地间的路程为360km ,甲车从A 地出发开往 B 地,每小时行 72km ;甲车出发25分 钟后,乙车从 B 地出发开往 A 地,每小时行使 48km ,两车相遇后,各自按原来速度继续行 使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时? 分析:利用相遇问题的关系式(相遇距离为两运动物体的距离和)建立方程. 解答:设甲车共行使了 xh ,则乙车行使了 h x )(60 25.(如图1) 依题意,有72x+48)(6025x =360+100, 解得x=4. 因此,甲车共行使了4h. 说明:本题两车相向而行,相遇后继续行使100km ,仍属相遇问题中的距离,望读者仔细体 会. 例2:一架战斗机的贮油量最多够它在空中飞行 4.6h,飞机出航时顺风飞行 ,在静风中的速度 是575km/h,风速25 km/h,这架飞机最多能飞出多少千米就应返回 ? 分析:列方程求解行程问题中的顺风逆风问题. 顺风中的速度=静风中速度+风速逆风中的速度=静风中速度-风速解答:解法一:设这架飞机最远飞出xkm 就应返回. 依题意,有 6 425 57525 575.x x 解得:x=1320. 答:这架飞机最远飞出 1320km 就应返回. 解法二:设飞机顺风飞行时间为th. 依题意,有(575+25)t=(575-25)(4.6-t), 解得:t=2.2. (575+25)t=600×2.2=1320. 答:这架飞机最远飞出 1320km 就应返回. 图1

(完整版)追及与相遇问题(含答案)

追及与相遇问题 1、追及与相遇的实质 研究的两物体能否在相同的时刻到达相同的空间位置的问题。 2、理清两大关系: 时间关系、位移关系。 3、巧用一个条件: 两者速度相等;它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。 4、三种典型类型 (1)同地出发,初速度为零的匀加速直线运动A 追赶同方向的匀速直线运动B ①当 B A v v =时,A 、B 距离最大; ②当两者位移相等时, A 追上B ,且有B A v v 2= (2)异地出发,匀速直线运动B 追赶前方同方向的初速度为零的匀加速直线运动A 判断B A v v =的时刻,A 、B 的位置情况 ①若B 在A 后面,则B 永远追不上A ,此时AB 距离最小 ②若AB 在同一处,则B 恰能追上A ③若B 在A 前,则B 能追上A ,并相遇两次 (3)异地出发,匀减速直线运动A 追赶同方向匀速直线运动B ①当B A v v =时,A 恰好追上B ,则A 、B 相遇一次,也是避免相撞刚好追上的临界条件; ②当B A v v =时,A 未追上B ,则A 、B 永不相遇,此时两者间有最小距离; ③当B A v v >时,A 已追上B ,则A 、B 相遇两次,且之后当两者速度相等时,两者间有最大距离。 5、解追及与相遇问题的思路 (1)根据对两物体的运动过程分析,画出物体运动示意图 (2)根据两物体的运动性质,(巧用“速度相等”这一条件)分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中 (3)由运动示意图找出两物体位移间的关联方程 (4)联立方程求解 注意:仔细审题,充分挖掘题目中的隐含条件,同时注意t v -图象的应用 【典型习题】 【例1】在十字路口,汽车以0.5m/s 2的加速度从停车线启动做匀加速运动,恰好有一辆自行车以5m/s 的速度匀速驶过停车线与汽车同方向行驶,求: (1)汽车追上自行车之前,什么时候它们相距最远?最远距离是多少? (2)在什么地方汽车追上自行车?追到时汽车的速度是多大?

五年级行程问题经典例题

行程问题(一) 专题简析: 行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。行程问题的主要数量关系是:路程=速度×时间。知道三个量中的两个量,就能求出第三个量。 例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车在距中点32千米处相遇,东、西两地相距多少千米 分析与解答从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。两车同时出发,为什么甲车会比乙车多行64千米呢因为甲车每小时比乙车多行56-48=8(千米)。64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。 32×2÷(56-48)=8(小时) (56+48)×8=832(千米) 答:东、西两地相距832千米。 练习一 》 1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。学校到少年宫有多少米 2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。甲、乙两地相距多少千米

例2 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。慢车每小时行多少千米 分析与解答快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。此时,慢车行了95-25-7=63(千米),因此慢车每小时行63÷3=21(千米)。 [ (40×3-25×2-7)÷3=21(千米) 答:慢车每小时行21千米。 练习二 1,兄弟二人同时从学校和家中出发,相向而行。哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。弟弟每分钟行多少米 2,汽车从甲地开往乙地,每小时行32千米。4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地 & 例3 甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。求东、西两村相距多少千米 分析与解答二人相遇时,甲比乙多行15×2=30(千米),说明二人已行30÷6=5(小时),上午8时至中午12时是4小时,所以甲的速度是15÷(5-4)=15(千米/小时)。 因此,东西两村的距离是15×(5-1)=60(千米)

奥数题行程问题完整版

奥数题行程问题 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

行程问题 1. 一列客车和一列货车同时从两个车站相对开出,货车每小时行35千米,客车每小时行45千米, 2.5小时相遇,两车站相距多少千米 2. 两个县城相距52.5千米,甲、乙二人分别从两城同时相对而行,甲每小时行5千米,乙每小时比甲快0.5千米,几小时后相遇 3. 甲、乙二人分别从相距110千米的两地相对而行。5小时后相遇,甲每小时行12千米,问乙每小时行多少千米 4. 甲、乙两站相距486千米,两列火车同时从两站相对开出,5小时相遇。第一列火车比第二列火车每小时快1.7千米,两列火车每小时的速度各是多少 5. 两列火车同时从相距650千米的两地相向而行,甲列火车每小时行50千米,乙列火车每小时行52千米,4小时后还差多少千米才能相遇

6. 大陈庄和小王庄相距90千米。小刚和小牛分别由两庄同时反向出发。2小时24分后两人相距46.6千米,如果小刚每小时行9.9千米,小牛每小时行多少千米 7. 学校距活动站670米,小明从学校前往活动站每分钟行80米,2分钟后,小丽从活动站往学校走,每分钟行90米,小明出发多少分钟后和小丽相遇相遇时二人各行了多少米8. 甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖65米,乙队从西往东挖,每天比甲多挖2.5米。两队合挖8天后还差52米,这条水渠全长多少米 9. 张、李两位叔叔计划共同生产一种零件300个,二人一起生产了5小时后还差40个没完成。已知张叔叔每小时生产24个,李叔叔每小时生产多少个 10. 甲、乙两队合修一条长2400米的路,甲队每小时修126米,乙队每小时比甲队多修48米,求完工时两队各修路多少米 11. 东西两村相距64千米。甲、乙二人同时骑车从东西两地相对出发,2.5小时相遇。甲每小时行12.5千米,乙每小时比甲快多少千米

小学奥数比例法行程问题

小升初之行程问题的解法---比例法 根据近千套各类奥数竞赛和"小升初"数学考试试题的分析,平均每套试卷按 12道题,满分100分计算,就有1.8道试题为行程问题(即每120道试题中有1 8道是行程问题),分值为21分。行程问题占一套试卷分值的1/5左右,所以行程问题不论在奥数竞赛中还是在"小升初"的升学考试中,都拥有非常显赫的地位,都是命题者偏爱的题型之一。 小学生"行程问题"普遍是弱项,有几下几个原因: 一、行程分类较细,变化较多。 行程跟工程不一样,工程抓住工作效率和比例关系就可以解决绝大部分问 题,但是行程则没有关键点可以抓住,因为每一个类型关键点都不一样。 二、要求对动态过程进行演绎和推理。 行程问题的题目语言叙述本身就很长,加上所描绘的是一个动态过程,一般很难从复杂的语言叙述中提炼出过程中量的变化关系。 三、行程是一个壳,可以将各类知识往里面加。 很多题目看似行程问题,但是本质不是行程问题。 因为行程的复杂,所以学习行程一定要循序渐进,掌握各类行程问题的解 题关键点。 下面举例讲解用比例法求解一类行程问题。 方法指导:复杂行程问题经常运用到比例知识: 速度一定,时间和路程成正比; 时间一定,速度和路程成正比; 路程一定,速度和时间成反比。 分析时可以抓住题中含有比的句子进行分析,以此作为突破口,一步一步求得结果。也可以从题意的叙述中找出等量关系,从而得出所需的数量之比,再根据比与分数的关系求解。 能用比例法解决的行程问题的特点: 能直接或间接地求出速度比或同一时间内的路程比

例1:甲、乙两车的速度比是4: 7,两车同时从两地相对出发,在距中点15千米处相遇,两地相距多少千米? 边讲边练: 1、甲、乙两车同时从AB两地相对而行,甲、乙两车速度比7:5,相遇时距中点12千米,AB 两地相距多少千米? 例2:两列火车同时从两个城市相对开出,6.5小时相遇。相遇时甲车比乙车多行52千米,乙车的速度是甲车的3。求两城之间的距离。 边讲边练: 1、甲、乙两车分别从AB两地同时相向而行,3小时相遇。已知甲车行1小时距B地340千米,乙车行1小时距A地360千米。AB两地相距多少千米?(420) 2、客车由甲城到乙城需行10小时,货车从乙城到甲城需行15小时,两车同时相向开出,相遇时客车距离乙城还有192千米,求两城间的距离。 例3:甲、乙两车同时从AB两地相对而行,5小时相遇,已知甲、乙两车速度的比是2:3,甲车行完全程需多少小时?

高中物理追击和相遇问题专题带答案

专题:直线运动中的追击和相遇问题 一、相遇和追击问题的实质 研究的两物体能否在相同的时刻到达相同的空间位置的问题。 二、 解相遇和追击问题的关键 画出物体运动的情景图,理清三大关系 (1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系: 两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。 三、追击、相遇问题的分析方法: A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程; B. 找出两个物体在运动时间上的关系 C. 找出两个物体在运动位移上的数量关系 D. 联立方程求解. 说明:追击问题中常用的临界条件: ⑴速度小者追速度大者,追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上, 否则就不能追上. 四、典型例题分析: (一).匀加速运动追匀速运动的情况(开始时v 1< v 2):v 1< v 2时,两者距离变大;v 1= v 2时, 两者距离最大;v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。 【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求: (1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少? 答案:(1) 2s 6m (2)12m/s (二).匀速运动追匀加速运动的情况(开始时v 1> v 2):v 1> v 2时,两者距离变小;v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次;③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。 【例2】一个步行者以6m/s 的最大速率跑步去追赶被红灯阻停的公共汽车,当他距离公共汽车25m 时,绿灯亮了,汽车以1m/s 2的加速度匀加速启动前进,问:人能否追上汽车?若能追上,则追车过程中人共跑了多少距离?若不能追上,人和车最近距离为多少? 答案:不能追上 7m (三).匀减速运动追匀速运动的情况(开始时v 1> v 2):v 1> v 2时,两者距离变小;v 1= v 2时,①若满足x 1 x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。 【例3】汽车正以10m/s 的速度在平直公路上前进,突然发现正前方有一辆自行车以4m/s 的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为 6 m/s 2的匀减速运动,汽车恰好不碰上自

奥数行程问题(含答案)

行程问题 讨论有关物体运动的速度、时间、路程三者关系的应用题叫做行程应用题。 行程问题的主要数量关系是: 路程=速度×时间 如果用字母s表示路程,t表示时间,v表示速度,那么,上面的数量关系可用字母公式样表示为:s=vt。 行程问题内容丰富多彩、千变万化。主要有一个物体的运动和两个或几物体的运动两大类。两个或几个物体的运动又可以分为相遇问题、追及问题两类。 这一讲我们学习一个物体运动的问题的一些简单的相遇问题。 例题与方法 例1.小明上学时坐车,回家时步行,在路上一共用了90分。如果他往返都坐车,全部行程需30分。如果他往返都步行,需多少分? (90-30÷2)×2=150 例2.甲、乙两城相距280千米,一辆汽车原定用8小时从甲城开到乙城。汽车行驶了一半路程,在中途停留30分。如果汽车要按原定时间到达乙城,那么,在行驶后半段路程时,应比原来的时速加快多少? 280÷2÷﹙8÷2-0.5﹚-280÷8=5 例3.一列火车于下午1时30分从甲站开出,每小时行60千米。1小时后,另一列火车以同样的速度从乙站开出,当天下午6时两车相遇。甲、乙两站相距多少千米? 6-1.5=4.5 ﹙60+60﹚×﹙4.5-1﹚+60=480 例4.苏步青教授是我国著名的数学家。一次出国访问,他在电车上碰到了一位外国数学家,这位外国数学家出了一道题目让苏步青做,题目是: 甲、乙两人同时从两地出发,相向而行,距离是100千米。甲每小时行6千米,乙每小时行4千米。甲带着一只狗,狗每小时行10千米。这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇。这只狗一共走了多少千米?

行程问题“九大题型”与“五大方法”

行程问题“九大题型”与“五大方法”。 很多学生对行程问题的题型不太清楚,对行程问题的常用解法也不了解,那么我给大家归纳一下。 1、九大题型: ⑴简单相遇追及问题;⑵多人相遇追及问题;⑶多次相遇追及问题;⑷变速变道问题;⑸火车过桥问题;⑹流水行船问题;⑺发车问题; ⑻接送问题;⑼时钟问题。 2 、五大方法: ⑴公式法:包括行程基本公式、相遇公式、追及公式、流水行程公式、火车过桥公式,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式,而且有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件。 ⑵图示法:在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具。示意图包括线段图、折线图,还包括列表。图图示法即画出行程的大概过程,重点在折返、相遇、追及的地点。另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法。 ps:画图的习惯一定要培养起来,图形是最有利于我们分析运动过程的,可以说图画对了,意味着题也差不过做对了30%! ⑶比例法:行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值。更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等) 往往是不确定的,在没有具体数值的情况下,只能用比例解题。 ps:运用比例知识解决复杂的行程问题经常考,而且要考都不简单。

⑷分段法:在非匀速即分段变速的行程问题中,公式不能直接适用。这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来。 ⑸方程法:在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解。 ps:方程法尤其适用于在重要的考试中,可以节省很多时间。 四、怎样才能学好行程问题? 因为行程的复杂,所以很多学生已开始就会有畏难心理。所以学习行程一定要循序渐进,不要贪多,力争学一个知识点就要能吃透它。学习奥数有四种境界: 第一种:课堂理解。就是说能够听懂老师讲解的题目。 第二种:能够解题。就是说学生听懂了还能做出作业。 第三种:能够讲题。就是不仅自己会做,还要能够讲给家长听。 第四种:能够编题。就是自己领悟这个知识了,自己能够根据例题出题目,并且解出来。 其实大部分学生学习奥数都只停留在第一种境界(有的甚至还达不到),能够达到第三种境界的学生考取重点中学实验班基本上没有什么问题了。而要想在行程上一点问题没有,则要求学生达到第四种境界。即系统学习,还要能深刻理解,刻苦钻研。而这四种境界则是学习行程的四个阶段,或者说是好的方法。

初一数学追及问题和相遇问题列方程的技巧

初一数学追及问题和相遇问题列方程的技巧行程问题 在行车、走路等类似运动时,已知其中的两种量,按照速度、路程和时间三者之间的相互关系,求第三种量的问题,叫做“行程问题”。此类问题一般分为四类:一、相遇问题;二、追及问题;三、相离问题;四、过桥问题等。 行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。 相遇问题 两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。这类问题即为相遇问题。 相遇问题的模型为:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间 基本公式有: 两地距离=速度和×相遇时间 相遇时间=两地距离÷速度和 速度和=两地距离÷相遇时间 二次相遇问题的模型为:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。则有: 第二次相遇时走的路程是第一次相遇时走的路程的两倍。 相遇问题的核心是“速度和”问题。利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。 相离问题

两个运动着的动体,从同一地点相背而行。若干时间后,间隔一定的距离,求这段距离的问题,叫做相离问题。它与相遇问题类似,只是运动的方向有所改变。 解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。 基本公式有: 两地距离=速度和×相离时间 相离时间=两地距离÷速度和 速度和=两地距离÷相离时间 相遇(相离)问题的基本数量关系: 速度和×相遇(相离)时间=相遇(相离)路程 在相遇(相离)问题和追及问题中,必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才能够提高解题速度和能力。 追及问题 两个运动着的物体从不同的地点出发,同向运动。慢的在前,快的在后,经过若干时间,快的追上慢的。有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题。 解答这类问题要找出两个运动物体之间的距离和速度之差,从而求出追及时间。解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。 基本公式有: 追及(或领先)的路程÷速度差=追及时间 速度差×追及时间=追及(或领先)的路程 追及(或领先)的路程÷追及时间=速度差 要正确解答有关“行程问题”,必须弄清物体运动的具体情况。如:运动的方向(相向、相背、同向),出发的时间(同时、不同时),出发的地点(同地、不同地)、运动的路线(封闭、不封闭),运动的结果(相遇、相距多少、追及)常用公式: 行程问题基本恒等关系式:速度×时间=路程,即S=vt. 行程问题基本比例关系式:路程一定的情况下,速度和时间成反比;

五年级行程问题典型练习题

行程问题(一) 【知识分析】 相遇是行程问题的基本类型,在相遇问题中可以这样求全程:速度和×时间=路程,今天,我们学校这类问题。 【例题解读】 例1客车和货车同时分别从两地相向而行,货车每小时行85千米,客车每小时行90千米,两车相遇时距全程中点8千米, 两地相距多少千米? 【分析】根据题意,两车相遇时货车行了全程的一半-8千米,客车行了全程的一半+8千米,也就是说客车比货车多行了8×2=16千米,客车每小时比货车多行90-85=5千米。那么我们先求客车和货车两车经过多少小时在途中相遇,然后再求出总路程。 (1)两车经过几小时相遇?8×2÷(90-85)=3.2小时 (2)两地相距多少千米?(90+85)×3.2=560(千米) 例2小明和小丽两个分别从两地同时相向而行,8小时可以相遇,如果两人每小时多少行1.5千米,那么10小时相遇,两地 相距多少千米? 【分析】两人每小时多少行1.5千米,那么10小时相遇,如果以这样的速度行8小时,这时两个人要比原来少行1.5×2×8=24(千米)这24千米两人还需行10-8=2(小时),那么减速后的速度和是24÷2=12(千米)容易求出两地的距离 1.5×2×8÷(10-8)×=120千米 【经典题型练习】

1、客车和货车分别从两地同时相向而行,2.5小时相遇,如果两车 每小时都比原来多行10千米,则2小时就相遇,求两地的距离? 2、在一圆形的跑道上,甲从a点,乙从b点同时反方向而行,8 分钟后两人相遇,再过6分钟甲到b点,又过10分钟两人再次相遇,则甲环形一周需多少分钟?

【知识分析】 两车从两地同时出发相向而行,第一次相遇合起来走一个全程,第二次相遇走了几个全程呢?今天,我们学习这类问题 【例题解读】 例 a、b两车同时从甲乙两地相对开出,第一次在离甲地95千米处相遇,相遇后两车继续以原速行驶,分别到达对方站点后立即返回,在离乙地55千米处第二次相遇,求甲乙两地之间的距离是多少千米? 【分析】a、b两车从出发到第一次相遇合走了一个全程,当两年合走了一个全程时,a车行了95千米 从出发到第二次相遇,两车一共行了三个全程,a车应该行了95×3=285(千米)通过观察,可以知道a车行了一个全程还多55千米,用285千米减去55千米就是甲乙两地相距的距离 95×3—55=230千米 【经典题型练习】 1、甲乙两车同时从ab两地相对开出,第一次在离a地75千米相 遇,相遇后两辆车继续前进,到达目的地后立即返回,第二次相遇在离b地45千米处,求a、b两地的距离 2、客车和货车同时从甲、乙两站相对开出,第一次相遇在距乙站 80千米的地方,相遇后两车仍以原速前进,在到达对方站点后立即沿原路返回,两车又在距乙站82千米处第二次相遇,甲乙两站相距多少千米?

六年级奥数行程问题汇总

六年级奥数行程问题汇总 行程问题的主要数量关系是:距离=速度×时间。它大致分为以下三种情况: (1)相向而行:相遇时间=距离÷速度和 (2)相背而行:相背距离=速度和×时间。 (3)同向而行:速度慢的在前,快的在后。 追及时间=追及距离÷速度差 在环形跑道上,速度快的在前,慢的在后。 追及距离=速度差×时间。 解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。 两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。甲车行完全程用了多少小时? 解答本题的关键是正确理解“已知甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米”。这句话的实质就是:“乙48分钟行了24千米”。可以先求乙的速度,然后根据路程求时间。也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。 解法一:乙车速度:24÷48×60=30(千米/小时) 甲行完全程的时间:165÷30—=4.7(小时) 解法二:48×(165÷24)—48=282(分钟)=4.7(小时) 答:甲车行完全程用了4.7小时。 1、甲、乙两地之间的距离是420千米。两辆汽车同时从甲地开往乙地。第一辆每小时行42千米,第二辆汽车每小时行28千米。第一辆汽车到乙地立即返回。两辆汽车从开出到相遇共用多少小时? 2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。两车同时从两地开出,相遇时甲车距B地还有多少千米? 3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。到10点钟时两车相距112.5千米。继续行进到下午1时,两车相距还是112.5千米。A、B两地间的距离是多少千米? 两辆汽车同时从东、西两站相向开出。第一次在离东站60千米的地方相遇。之后,两车继续以原来的速度前进。各自到达对方车站后都立即返回,又在距中点西侧30千米处相遇。两站相距多少千米?

复杂的奥数行程问题

比较复杂的行程问题 多人行程例题 多人行程这类问题主要涉及的人数为3人,主要考察的问题就是求前两个人相遇或追及的时刻,第三个人的位置,解题的思路就是把三人问题转化为寻找两两人之间的关系。 例1.甲乙丙三人同时从东村去西村,甲骑自行车每小时比乙快12公里,比丙快15公里,甲行3.5小时到达西村后立刻返回。在距西村30公里处和乙相聚,问:丙行了多长时间和甲相遇? 例2.甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为60千米/时和48千米/时。有一辆迎面开来的卡车分别在他们出发后6时、7时、8时先后与甲、乙、丙三辆车相遇。求丙车的速度。 例3、李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。0.5小时后,营地老师闻讯前来迎接,每小时比李华多走1.2千米,又经过了1.5小时,张明从学校骑车去营地报到。结果3人同时在途中某地相遇。问:张明每小时行驶多少千米?

例4:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。在途中,甲和乙相遇后3分钟和丙相遇。问:这个花圃的周长是多少米? 例5、AB两地相距30千米,甲乙丙三人同时从A到B,而且要求同时到达。现在有两辆自行车,但不许带人,但可以将自行车放在中途某处,后来的人可以接着骑。已知骑自行车的平均速度为每小时20千米,甲步行的速度是每小时5千米,乙和丙每小时4千米,那么三人需要多少小时可以同时到达? 例6、有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。在途中,甲和乙相遇后3分钟和丙相遇。问:这个花圃的周长是多少米?

追击相遇问题专题总结(完整资料).doc

此文档下载后即可编辑 追及相遇问题专题总结 一、 解相遇和追及问题的关键 (1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系:两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。 二、追及问题中常用的临界条件: 1、速度小者追速度大者,追上前两个物体速度相等时,有最大距离; 2、速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上: (1)当两者速度相等时,若追者仍没有追上被追者,则永远追不上,此时两者之间有最小距离。 (2)若两者速度相等时恰能追上,这是两者避免碰撞的临界条件。 (3)若追者追上被追者时,追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,即会相遇两次。 二、图像法:画出v t -图象。

1、速度小者追速度大者(一定追 上) 追击与相遇问题专项典型例题分析 (一).匀加速运动追匀速运动的情况(开始时v1< v2):v1< v2时,两者距离变大;v 时, 2 两者距离最大;v1>v2时,两者距离变小,相遇时满足x1= x2+Δx,全程只相 遇(即追上)一次。 【例1】一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长

时间两者相距最远?此时距离是多少?(2)小汽车什么时候追上自行车,此时小汽车的速度是多少? 【针对练习】一辆执勤的警车停在公路边,当警员发现从他旁边驶过的货车(以8m/s的速度匀速行驶)有违章行为时,决定前去追赶,经2.5s将警车发动起来,以2m/s2的加速度匀加速追赶。求:①发现后经多长时间能追上违章货车?②追上前,两车最大间距是多少? (二).匀速运动追匀加速运动的情况(开始时v1> v2):v1> v2时,两者距离变小;v1= v2时,①若满足x1< x2+Δx,则永远追不上,此时两者距离最近;②若满足x1=x2+Δx,则恰能追上,全程只相遇一次;③若满足x1> x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。 【例2】一辆汽车在十字路口等绿灯,当绿灯亮时汽车以3m/s2的加速度开使行驶,恰在这时一辆自行车在汽车后方相距20m的地方以6m/s的速度匀速行驶,则自行车能否追上汽车?若追不上,两车间的最小间距是多少?

行程问题经典例题

8.如图3-1,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此 圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次 相遇.求此圆形场地的周长. 【分析与解】 注意观察图形,当甲、乙第一次相遇时,甲乙共走完 12圈的路程,当甲、乙第二次相遇时,甲乙共走完1+12=32 圈的路程. 所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路 程为第一次相遇时行走的总路程的3倍,即100×3=300米. 有甲、乙第二次相遇时,共行走(1圈-60)+300,为 32 圈,所以此圆形场地的周长为480米. 行程问题分类例析 欧阳庆红 行程问题有相遇问题,追及问题,顺流、逆流问题,上坡、下坡问题等.在运动形式上 分直线运动及曲线运用(如环形跑道). 相遇问题是相向而行.相遇距离为两运动物体的距离 和.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追 及,追及距离慢快S S S +=.顺逆流、顺风逆风、上下坡应注意运动方向,去时顺流,回时则为逆流. 一、相遇问题 例1:两地间的路程为360km ,甲车从A 地出发开往B 地,每小时行72km ;甲车出发25 分钟后,乙车从B 地出发开往A 地,每小时行使48km ,两车相遇后,各自按原来速度继续 行使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时? 分析:利用相遇问题的关系式(相遇距离为两运动物体的距离和)建立方程.

解答:设甲车共行使了xh,则乙车行使了h x) ( 60 25 -.(如图1) 依题意,有72x+48) ( 60 25 - x=360+100, 解得x=4. 因此,甲车共行使了4h. 说明:本题两车相向而行,相遇后继续行使100km,仍属相遇问题中的距离,望读者仔细体会. 例2:一架战斗机的贮油量最多够它在空中飞行 4.6h,飞机出航时顺风飞行,在静风中的速度是575km/h,风速25 km/h,这架飞机最多能飞出多少千米就应返回? 分析:列方程求解行程问题中的顺风逆风问题. 顺风中的速度=静风中速度+风速 逆风中的速度=静风中速度-风速 解答:解法一:设这架飞机最远飞出xkm就应返回. 依题意,有6 4 25 575 25 575 . = - + + x x 解得:x=1320. 答:这架飞机最远飞出1320km就应返回. 解法二:设飞机顺风飞行时间为th. 依题意,有(575+25)t=(575-25)(4.6-t), 解得:t=2.2. (575+25)t=600×2.2=1320. 答:这架飞机最远飞出1320km就应返回. 说明:飞机顺风与逆风的平均速度是575km/h,则有6 4 575 2 . = x ,解得x=1322.5.错误原因在于飞机平均速度不是575km/h,而是) / (h km v v v v v x v x x 574 550 600 550 600 2 2 2 ≈ + ? ? = + ? = +逆 顺 逆 顺 逆 顺 例3:甲、乙两人在一环城公路上骑自行车,环形公路长为42km,甲、乙两人的速度分别为21 km/h、14 km/h. (1)如果两人从公路的同一地点同时反向出发,那么经几小时后,两人首次相遇? (2)如果两人从公路的同一地点同时同向出发,那么出发后经几小时两人第二次相遇? 分析:这是环形跑道的行程问题. 解答:(1)设经过xh两人首次相遇. 依题意,得(21+14)x=42, 解得:x=1.2. 因此,经过1.2小时两人首次相遇. (3)设经过xh两人第二次相遇. 依题意,得21x-14x=42×2, 图1

奥数:行程问题(6题)_非常有用、经典!

奥数:行程问题(6题) 例1:某校和某工厂间有一条公路,该校下午2点钟派车去该厂接某劳模来较作报告,往返需用1小时,这位劳模在下午1点钟便离厂步行向学校走来,途中遇到接他的汽车,上车去学校,在下午2点40分到,汽车速度是劳模的几倍 解:汽车行驶全程时间是1个小时,现在情况汽车2点出发,2点40分回来,说明汽车行驶40分钟,也就是说走了全程的三分之二。在不管单位的情况下可列式:车速*20min=三分之二路程(因为往返用了40min,所以单程是20min),人步行的时间是1点走到2点的60min,再加上汽车行驶三分之二路程用的20min,即80min,可列式:人速*80min=三分之一路程。两式相除车速=8倍人速 8倍 例2、自行车队出发24分钟后,通信员骑摩托车去追他们。在距出发点9千米处追上了自行车队。通信员立即回出发点,然后又返回去追自行车队,再追上时恰好离出发点18千米。求自行车队和摩托车的速度。 答案:与例1类似,摩托车24分钟行9千米×2,所以速度为9×2×(60÷24)=45(千米/小时) 摩托车行9千米用12(=24÷2)分钟,比自行车快24分钟,所以自行车36(=12+24)分钟行9千米,速度为9×60÷36=15(千米/小时) 例3、刘江骑自行车在一条公共汽车线路上行驶。线路的起点站和终点站间隔相同的时间发一次车,并且车速都相同。他发现从背后每隔12分钟开过来一辆汽车,而迎面每隔4分钟有一辆汽车驶来。问汽车是每隔多少时间发一辆车? 答案:由于每隔12分钟,背后开过来一辆车,而每隔4分钟有一辆车迎面驶来,所以每经过12分钟,恰好有两辆车从不同的方向驶过身边,不妨假设一开始就如此。设相邻两辆车的间隔为1个单位,到开始时,刘江背后的一辆车与刘江相距1个单位,刘江前面的在第三辆车与刘江相距3个单位,经过12分钟,这两辆车从不同方向驶过刘江身边,由于这两辆车之间相距4个单位,车速相等,所以各驶过2个单位,而刘江则走过1个单位,这表明车速是刘江的2倍,于是汽车6(=12÷2)分钟驶过1个单位,即每6分钟发一辆车。 例4、一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍。每隔10分钟有一辆公共汽车超过步行人;每隔20分钟有一辆公共汽车超过骑车人。如果公共汽车从始发站每次隔同样的时间发一辆车,那么每隔多少分钟发一辆公共汽车? 答案:20÷10×3=6,所以骑车人20分钟所走距离是步行人的6倍,多出5倍,也是汽车在20-10=10分钟内所行距离是步行人的5倍。所以两辆汽车(即步行人与身后第一辆车)的间隔是步行人10分钟所走距离的5-1=4倍,汽车10分钟行5个间隔,行4个间隔用10÷5×4=8分钟,即每8分钟发一辆车。

相关文档
最新文档