金属磁粉芯及其应用设计
磁粉芯材料

磁粉芯材料磁粉芯材料是一种用于电磁元件中的重要材料,具有很高的磁导率和磁饱和感应强度。
磁粉芯材料通常由铁素体材料和磁性粉末组成,通过粉末冶金工艺制备而成。
磁粉芯材料的磁导率和磁饱和感应强度是评价其性能的重要指标。
磁粉芯材料具有许多优异的特性,使其在电子电磁元件中得到广泛应用。
首先,磁粉芯材料具有很高的磁导率,能够有效地集中磁场线,提高电磁元件的磁通量。
其次,磁粉芯材料具有较高的磁饱和感应强度,能够在较小的体积内承受较大的磁场强度,使得电磁元件具有更高的工作效率。
此外,磁粉芯材料还具有低磁损和低温漂移等特点,能够保证电磁元件在各种工作条件下稳定可靠地工作。
磁粉芯材料的制备过程一般采用粉末冶金工艺。
首先,将铁素体材料和磁性粉末按照一定的配方混合均匀,然后通过压制成型和烧结等工艺步骤将其制备成具有一定形状和尺寸的磁粉芯。
在制备过程中,需要控制好材料的粒度和配比,以及烧结温度和时间等参数,以确保磁粉芯材料具有良好的磁导率和磁饱和感应强度。
此外,还可以通过控制添加剂的种类和含量等方法来改变磁粉芯材料的性能,以满足不同应用场合的需求。
磁粉芯材料的应用十分广泛,涵盖了电力电子、通信、计算机、汽车电子等领域。
在电力电子领域,磁粉芯材料被广泛应用于变压器、电感器、滤波器等元件中,以提高其工作效率和性能稳定性。
在通信领域,磁粉芯材料被用于制造高频变压器和滤波器等元件,以提高信号传输的质量和可靠性。
在计算机领域,磁粉芯材料被用于制造存储器和传感器等元件,以实现高速数据存储和处理。
在汽车电子领域,磁粉芯材料被用于制造点火线圈和电磁阀等元件,以提高发动机的燃烧效率和汽车的行驶性能。
磁粉芯材料是一种重要的电磁元件材料,具有很高的磁导率和磁饱和感应强度。
磁粉芯材料的制备过程采用粉末冶金工艺,通过控制材料的配比和烧结参数等来调控其性能。
磁粉芯材料在电力电子、通信、计算机、汽车电子等领域都有广泛的应用。
未来,随着科技的不断进步和应用需求的不断增加,磁粉芯材料将会有更广阔的发展前景。
金 属 软 磁 粉 芯 项 目 介 绍

金属软磁粉芯项目介绍——在赶超世界先进水平中不断前进的武汉浩源磁材有限公司中国武汉:武汉浩源磁材科技发展有限公司名誉总经理陈一平邮编:430035〈为《辉煌中国60年》撰文〉关键词:金属软磁粉芯一、概述1.金属软磁粉芯简介金属软磁粉芯是一种具有磁电转换特种功能的新型软磁材料。
它是用金属或合金软磁材料制成的粉末,通过特殊的工艺生产的磁芯材料。
软磁材料由于具有磁电转换的特殊功能,从而被广泛的应用于各个科技领域和工业领域中。
当今社会,被广泛使用的软磁材料主要有金属软磁、铁氧体软磁、非晶微晶软磁和金属软磁粉芯四大类。
每种新材料的出现,它都有一些新的独特的优良特性,它们都有各自的用武之地,是谁也取代不了的,是永远具有生命力的。
如金属软磁的硅钢在各种大型电机和大功率变压器的应用,铁氧体软磁在某些高频领域的应用等等。
但它们也不可能是十全十美的,人们在使用中总会感到有这样那样的不足之处,于是又先后出现了非晶微晶软磁材料和金属软磁粉芯。
金属软磁材料具有高的饱和磁感应强度和良好的磁性能等优良特性,但它存在两大致命缺点:其一是损耗大、高频特性差;其二是对应力敏感,太骄气,磁性能稳定性差。
铁氧体软磁的最大优点是损耗低,高频特性好,有效导磁率高。
但其饱和磁感应强度低易饱和是其最大的缺陷,其次是磁性能稳定性差。
非晶微晶材料虽然在一定程度上较之金属软磁的损耗小些,使用频率范围广些,但这种改善也是有限的。
且与金属软磁一样存在稳定性差,有效导磁率不高,一致性无法控制的缺陷。
金属软磁粉芯由于是以金属或合金软磁材料制成的粉末为原料,又采用了软磁铁氧体生产相近的粉末冶金生产工艺,所以它既保留了金属软磁和铁氧体软磁二者的一些优良特性,同时又最大限度的克服了二者的一些缺陷,是一种具有许多优良特性的新型软磁材料。
目前广泛使用的有铁粉芯(Iron cores)、铁硅铝磁粉芯(Sendust cores)、高通量磁粉芯(High flux cores)和钼坡莫磁粉芯(MPP Cores)等四大系列。
磁芯的种类及应用

磁芯的种类及应用:1.磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2.软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br⁄Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗 Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3.软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。
金属磁粉芯比较

四种金属磁粉心性能和价格对比金属磁粉心与铁氧体材料应用对比材料典型频率范围(Hz)工作温度范围(℃)尺寸类型极限功率容量价格优(劣)特性MnZn铁氧体NiZn铁氧体10k~1M50k~1G-55~150-55~150Gu、环、E等极限尺寸为500cm3Gu、环、E等极限尺寸为250cm3低低低中高磁导率、高频低损耗(饱和磁通密度低)适中的磁导率和高频低损耗(饱和磁通密度低)高磁导率铁粉心中磁导率铁粉心低磁导率铁粉心—25k~1M1M~1G—-55~125-55~125—极限尺寸为350cm3极限尺寸为350cm3—中中—低低(高损耗,低磁导率)低损耗,良好的稳定性(磁导率低)低损耗,良好的稳定性(磁导率低)铁镍钼磁粉心铁镍50磁粉心铁硅铝磁粉心5k~200k5k~50k5k~200k-55~200-55~200-55~200环型极限外径到φ63.5mm环型极限外径到φ63.5mm环型极限外径到φ63.5mm中中中高高中非常稳定(低的磁导率限定该材料只能用到单端反激变压器上)非常稳定、高BS(低的磁导率限定该材料只能用到单端反激变压器上)非常稳定、高BS(低的磁导率限定该材料只能用到单端反激变压器上)材料典型频率范围(Hz)工作温度范围(℃)尺寸类型极限功率容量价格优(劣)特性MnZn铁氧体NiZn铁氧体1M~5M50k~1G-55~150-55~150大多为环、Gu和其他小类型环、Gu和其他小类型低低低中高磁导率、可调、高Q(稳定性很差)适合的磁导率、可调、在高频具有高Q值高磁导率铁粉心中磁导率铁粉心低磁导率铁粉心—1M~10M25k~1M—-55~125-55~125—极限尺寸为350cm3极限尺寸为350cm3—中中—中(高损耗)良好的稳定性低损耗,良好的稳定性(磁导率低)铁镍钼磁粉心铁镍50磁粉心铁硅铝磁粉心5k~200k——-55~200——环型极限外径到φ63.5mm——低——高——非常稳定(与铁氧体相比具有低的磁导率,低的Q值)——材料典型频率范围(Hz)工作温度范围(℃)尺寸类型极限功率容量价格优(劣)特性MnZn铁氧体NiZn铁氧体10k~5M50k~1G-55~150-55~150Gu、环、E等极限尺寸为500cm3Gu、环、E等极限尺寸为250cm3低中低中高磁导率、高频低损耗、可调(饱和磁通密度低,稳定性很差)适中的磁导率和高频低损耗、可调(饱和磁通密度低)高磁导率铁粉心中磁导率铁粉心低磁导率铁粉心1k~5050k~2M25k~1M-55~125-55~125-55~125环型极限外径到φ63.5mm极限尺寸为350cm3极限尺寸为350cm3高高高低低中高Bs、低价格(损耗高,磁导率低)低损耗,良好的稳定性(磁导率低)低损耗,良好的稳定性(磁导率低)铁镍钼磁粉心铁镍50磁粉心铁硅铝磁粉心DC~300kDC~100kDC~300k-55~200-55~200-55~200环型极限外径到φ63.5mm环型极限外径到φ63.5mm环型极限外径到φ63.5mm高极高高高高中非常稳定、高BS、低磁滞损耗,是金属磁粉心中损耗最低的低损耗、良好的稳定性(低的磁导率)低损耗、良好的稳定性(低的磁导率)材料典型频率范围(Hz)工作温度范围(℃)尺寸类型极限功率容量价格优(劣)特性MnZn铁氧体NiZn铁氧体10k~5M50k~1G-55~150-55~150Gu、环、E等极限尺寸为500cm3Gu、环、E等极限尺寸为250cm3低中低中高磁导率、高频低损耗、可调(饱和磁通密度低,稳定性很差)适中的磁导率和高频低损耗、可调(饱和磁通密度低)高磁导率铁粉心中磁导率铁粉心低磁导率铁粉心1k~5050k~2M25k~1M-55~125-55~125-55~125环型极限外径到φ63.5mm极限尺寸为350cm3极限尺寸为350cm3高高高低低中高Bs、低价格(损耗高,磁导率低)低损耗,良好的稳定性(磁导率低)低损耗,良好的稳定性(磁导率低)铁镍钼磁粉心铁镍50磁粉心铁硅铝磁粉心DC~300kDC~100kDC~300k-55~200-55~200-55~200环型极限外径到φ63.5mm环型极限外径到φ63.5mm环型极限外径到φ63.5mm高极高高高高中非常稳定、高BS、低磁滞损耗,是金属磁粉心中损耗最低的低损耗、良好的稳定性(低的磁导率)低损耗、良好的稳定性(低的磁导率)。
变压器磁芯的种类及应用【最全资料】

变压器磁芯的种类及应用【最全资料】1.磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H 足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms 保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M 并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2.软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B 值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗 Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ 降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3.软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
磁性材料应用

一种变压器设计例:
PWM全桥,f=25kHz,Dmax=0.8 Input:三相整流,最低输入电压Umin=537V*80%=430V Output:DC300V*30A桥式整流 设计如下: 磁 芯 选 择 : 按 8W/g 计 , 磁 芯 重 量 大 约 1.1Kg , 选 R2kB1Φ100*50*40,Ae=10cm2 Np计算:根据电磁感应定律E=ΔΨ/ton即 Umin-10V=Np*Ae*ΔB*2f/Dmax ΔB选0.27T,10V为功率管压降。 计算得Np=24.9,取Np=25Ts Ns 计 算 : Ns=(300V+10V)/(430V-10V)/ Dmax*Np=23.1 , 取 Ns=23Ts 绕组铜截面计算:次级流出平均电流 30A,但有效电流要稍大, 为简化计算,按30A考虑,j取较小的5A/mm2,初、次级铜截面 均取6mm2。
|Z|
H125制作的 差模滤波器
1P制作的等同体 积差模滤波器
0.1
1
10
100
f(MHz)
铁硅铝粉芯(SENDUST):
铁硅铝粉芯与高磁通相比尽管偏磁性较差,但 具有较低的功耗,价格低廉,所以在民用领域 应用最为广泛,主要用于制作功率扼流圈。 我公司生产的铁硅铝粉芯与国外最好的同类型 材料相比,偏磁性指标略好,但在 50kHz 以内 损耗略高, 50kHz以上相当。铁硅铝粉芯是我 公司在民品市场权重最大的金属磁粉芯材料。
互感器磁芯的种类及应用

磁性材料一. 磁性材料的基本特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2. 软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
来源:居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
磁粉芯电感设计

本例题选自《开关电源理论及设计》北京航空航天大学出版社2012年3月1)磁粉芯电感设计磁粉芯是分布气隙,磁粒磁化不均匀引起磁化曲线非线性严重,随着磁场强度增加磁导率下降。
磁粉芯主要用来作为滤波电感或反激变换器变压器磁芯。
由于共模电感工作在初始磁导率附近,µ的非线性不是主要问题。
磁粉芯一般做成环形磁芯,环形磁芯的散磁通较小,体积小,饱和磁感应比铁氧体高。
正是由于其磁导率非线性,特别适合做滤波电感。
但由于环形绕线需要环形绕线机,特别是大电流电感,需要人工绕制,制造成本高。
磁粉芯电感设计与气隙铁氧体电感不同,磁芯选择虽然有制造厂家提供的选择曲线,但有很大的随意性。
通常根据经验选择磁芯尺寸,通过多次迭代确定参数。
初始的取值好坏与否只是影响迭代次数,可能有几个不同的结果。
最终通过比较,在相同电气性能情况下,采用最低的价格设计。
以下通过一个例子来说明设计方法。
【例题4.7.7】设计一个磁粉芯电感,电感用于Buck 变换器输出滤波电感。
为计算简单起见假设输入电压不变为15V ,输出电压和电流5V/2A ,工作频率为250kHZ 。
电感量为35μH ,电流从0到2A 变化,允许磁芯磁通变化不超过20%,即电感量变化不超过20%,绝对损耗为300mW ,自然冷却,温升△T=40°C 。
【解】(1)计算电感量根据以上要求可以得到占空比D =5V/15V=0.33,纹波电流峰峰值/(15V 5V)(0.334μs)/35μH=0.377A I U t L ∆=∆=−×(约为直流分量的20%);电感绝对损耗为300mW ,磁芯损耗和线圈损耗各占一半。
电感变化量小于20%,这就意味着,临界连续时需要的电感是44μH (35μH ÷(1-80%)=44μH ))。
(2)选择磁芯材质因为工作频率高,采用损耗最低的坡膜合金MPP 磁粉芯材料。
因为磁粉芯材料磁导率随直流偏置加大而下降,设计中必须有磁导率与直流偏置关系曲线,以及磁芯尺寸数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属软磁粉芯及其应用设计 1 金属软磁粉芯概述 在当今世界上各种科技领域中,广泛使用的软磁材料有四大类别:金属软磁材料、铁氧体软磁材料、非晶微晶软磁材料和金属软磁粉芯。所谓软磁材料是相对于硬磁或者永磁材料而言的,所有的磁性材料都有一个共同的特性,就是具有高的饱和磁感应强度。硬磁材料由于具有高的饱和磁感而具有高的磁能积;而软磁材料由于具有高的饱和磁感因而具有高的导磁率。所不同的是硬磁材料被感应磁化了后,由于矫顽力大磁性不能消失,所以更确切的称之为永磁材料。软磁材料和永磁材料的区别就是其矫顽力极小,也就是说当你给它一个磁化场时,由于磁感应被磁化了具有磁性能。而当磁化场被去掉时,其磁性能消失不具备有磁性,这就是我们所说的软磁特性。所有的软磁材料的另一共同特性,就是具有磁电转换的特殊功能。正是由于这一特性,使得软磁材料在各个科技领域得到愈来愈广泛的应用。 金属软磁粉芯是一种软磁材料,它是用金属或合金软磁材料制成的粉末,通过特殊的工艺生产出来的一种磁芯。对于金属软磁粉芯的称呼,目前还是较为混乱不确切的:如称为粉芯,铁粉芯、磁粉芯、金属磁粉芯……。粉芯或磁粉芯顾名思义即为磁性粉末做的磁芯。钕铁硼是以合金粉末生产的磁芯,但它是永磁材料。同样,软磁铁氧体和硬磁铁氧体也都是磁性粉末生产的磁芯,如果简单的把金属软磁粉芯看作是磁性粉末做的磁性材料的话,这些材料都可以归作一类,称作粉芯或磁粉芯。同样,金属磁粉芯的称呼也是不确切的,因为铝镍钴合金等永磁材料都可以制成粉末磁芯。所以,我把它定义为金属软磁粉芯。这样称呼既确切、明确指明了它的软磁特性,又不易与其他材料相混淆。 金属软磁粉芯目前主要包括铁粉芯、铁硅铝磁粉芯、高通量磁粉芯和钼坡莫磁粉芯四大系列。 铁粉芯(iron cores)是用高纯铁粉或羟基铁粉经配料、压制、涂覆生产的磁芯。由于生产工艺较其他几种简单,原材料最便宜,且具有较好的磁性能,是四大系列金属软磁粉芯中使用量最大、最为广泛的一种。从μe10的-2材质铁粉芯到μe75的-26、-52等各种材质的铁粉芯,适用于各种不同的使用场合。还有用铁氧体掺入适量铁粉做的复合铁粉芯,具有较高的导磁率,在某些使用场合可以弥补铁粉芯导磁率较低的缺陷。 铁硅铝磁粉芯(sendust cores)是用含铝5.4%、硅9.6%、其余为铁的合金制成的粉末生产出来的一种金属软磁粉芯。铁硅铝合金是二十世纪三十年代,由日本人增本亮和山本宏二人发明的。其发明地在日本仙台县,故又称为Sendust合金,它是一种较好的软磁材料。但由于其性能又硬又脆,无法加工,故作为一种金属软磁材料,它远不及各种坡莫合金那样使用广泛。铁硅铝磁粉芯开始由于其成型性能较差,使用并不多。近年由于镍价的飞涨,使得铁硅铝磁粉芯性价比优良这一特性突出出来,从而使其用量迅速超过了MPP磁粉芯,成为目前三种合金系列的软磁粉芯中使用量最大、最为广泛的一种。μe10~μe147各种性能档的铁硅铝磁粉芯,凡是能取代MPP等的地方,就都可改用铁硅铝磁粉芯了。由于需求量大增,反过来又促使其生产工艺技术的改进及产品质量的提高。 高通量磁粉芯(high flux cores)是以NiFe50坡莫合金制成的粉末生产的,其最大特点是具有高的饱和磁通密度,可高达1300mT以上,导磁率从μe10~μe160的各种性能档磁芯都比其他两种合金系列的饱和值要高。由于这一特点,也使得在某些使用场合就非得用它不可了。 钼坡莫磁粉芯(M.P.P cores)是用Ni81Mo2坡莫合金粉末生产的一种金属软磁粉芯。在四大系列金属软磁粉芯中,又以钼坡莫磁粉芯的综合性能为最好。其导磁率可高达μe500以上。它是最具优良特性的金属软磁粉芯的典型代表。因此在三种合金系列产品中,它是最早获得广泛应用的。特别是在国防、军工产品和高科技产品上,要求比较好的材料时都会选用钼坡莫磁粉芯。 除了上述四大系列的软磁粉芯外,近年铁硅系列及非晶微晶系列的金属软磁粉芯也在逐步扩大使用。 金属软磁粉芯主要以环形磁芯使用,从Φ3.6~77.8mm的各种常用规格,在国际上已形成通用标准化的尺寸。铁粉芯最大规格达Φ130mm。为了增大容量可以数只磁芯叠绕使用。除环形磁芯外,各种U型和E型的金属软磁粉芯在国内外也形成了标准化的统一规格。 2 金属软磁粉芯的一般特性 我们说过,每种新材料的出现,它都具有一些新的独特的优良特性。在软磁材料领域中,从金属软磁到铁氧体软磁、到非晶微晶软磁,进而到金属软磁粉芯,都是在不断发展进步,性能不断改善提高。金属软磁粉芯,它既保留了金属软磁和铁氧体软磁的一些优良特性,同时又最大限度的克服了二者的一些缺陷。到目前为止,在四大类别软磁材料中,是综合性能最好的一种软磁材料。其主要特性如下: (1) 具有高的饱和磁通密度。铁粉芯的饱和磁通密度最高可达1500mT,高通量磁粉芯最高可达1300mT,铁硅铝磁粉芯的饱和磁通密度最高可达1000mT,就连四大系列金属软磁粉芯中饱和磁通密度最低的MPP类磁粉芯最高也可达800mT。这一性能保留了金属软磁的优点,是铁氧体类软磁材料所远为不及的。 (2) 具有高的有效导磁率。如MPP类磁粉芯,在10kHz下,μe值可高达500以上。有效导磁率最低的铁粉芯-26材质,在10kHz下,μe值也可达75左右。而我们曾用超坡莫类金属软磁轧至0.01mm厚,分条后通过电泳涂层卷芯处理后,其初始导磁率高达20万,最大导磁率高于80万。但在10kHz下我们测得μe值只有约60,远不及金属软磁粉芯。 (3) 损耗低,频率稳定性好,使用频率范围广。各种材质和各不同导磁率的金属软磁粉芯,可适於从几十赫兹到高达30兆赫的很宽频带下使用。这一特性是金属软磁和非晶微晶软磁所远不及的。 (4) 由于有上述三条优点,金属软磁粉芯具有良好的交直流叠加稳定性。这对于许多交直流场同时存在的使用情况下是具有重要意义的。这也是它优于其他几种软磁材料的地方。 (5) 具有良好的磁性能稳定性。这一特性对于使用和保证产品质量是非常重要的。如果不能保证磁性能稳定性,非常精密的仪器会变得不能用而造成损失。金属软磁粉芯在频率稳定性和温度稳定性等方面都优于其他几类材料。 (6) 它还有一条非常重要的,也是其他任何软磁材料所不具备的独特优良特性,就是具有良好的性能可控性。也就是说,在各类金属软磁粉芯的生产过程中,人们可以通过控制和改变其生产工艺技术条件,生产出各种具有独特性能的金属软磁粉芯,从而能最大限度地满足各种使用条件下的各种不同要求。这对于提高产品的性能和质量,特别是对于高科技和国防军工领域,是具有非常重要意义的。 如磁性能一致性的控制,武汉浩源磁材科技发展有限公司在这方面取得了可喜的成绩,创造了±0.125%批量交货的世界最先进水平。并且该公司的产品生产控制水平均比国外产品提高了一个档次。铁粉芯由国外产品±10%缩小至±5%,合金系列产品由国外±8%也缩小至±5%,这在使用方面的好处,我们将在后面应用部分说明。其他如温度系数,通过改进处理工艺及添加补赏合金,可使其温度系数低于100ppm以下,从而具有良好的温度稳定性。还有在降低损耗、改善频率特性等方面也可通过改进生产工艺而得到改善。总之,通过改变生产工艺技术,可以使金属软磁粉芯具有某种独特的优良特性,从而为人们很好的加以利用是金属软磁粉芯的又一特性,且是为人们所用最重要的特性。 3 金属软磁粉芯的应用 科学技术和社会的进步,对各个科技领域的发展提出了更高的要求。当今社会,高精度、高灵敏度和大容量、小型化是对各种电子产品提出的总要求和发展方向,这也是对广泛应用于各种电子产品中的软磁材料提出的要求和发展方向。金属软磁粉芯的应用和发展,也正是为了适应这种要求和发展的。 高精度和高灵敏度的要求二者是相一致的,并且是相辅相成的。如一台天平灵敏度越高其感量就越小;而感量越小,其分辨率就越高,也就是具有更高的测量精度了。为了达到高的精度和高灵敏度对软磁材料就提出了高导磁率、高磁性能稳定性和高一致性的要求。高有效导磁率和高磁性能稳定性这正是金属软磁粉芯优于其他软磁材料的特性。高的一致性对产品精度和灵敏度具有决定性的意义,如声纳的应用,离开了高精度和高灵敏度就失去了准头!而我们为了某军品延迟线圈磁芯要求,创造了±0.125%高一致性批量供货的世界最先进水平。 同样,大容量和小型化二者也相一致和相辅相成的。它要求采用具有高的饱和磁通密度、高的导磁率和低的损耗。而这些特性也是金属软磁粉芯优于其他软磁材料的地方。 金属软磁粉芯由于具有优于其他软磁材料的一系列优良特性,从而被迅速广泛的应用于各个科技领域和工业领域。也由于金属软磁粉芯的应用,使得各种产品的性能得到改善,质量得到提高。促使社会和科学技术得到了发展和进步。 金属软磁粉芯主要以制作各种高性能电感元件用于各个科技领域的。各种高性能的电感元件用于各种控制、制导线路中,对于实现高精度、高灵敏度,大容量和小型化是多么重要!因此,在国防军工和尖端科技领域,金属软磁粉芯的应用是具有多么重大的意义。 金属软磁粉芯可以设计应用做成各种变压器,它们不仅能设计制造成各种高性能的小功率变压器,也可设计生产各种较大功率的高频功率变压器。金属软磁粉芯还可用于设计、生产制造各种高性能的电子元器件,如各种滤波器、电感器、互感器、扼流圈等等。这些性能优良的电子元器件,可以应用于各种磁电兼容系统而用于各科技领域和工业领域,也可直接用于各种电子产品上。因此,金属软磁粉芯不仅在各种电子产品上得到广泛应用,同时在飞机制造业、造船工业和汽车制造业等许多重要工业领域中都得到广泛的应用。在各种计算机、电脑、空调、彩电等家电产品及自动门控等各行业中都被广泛的应用。 在各种电源及开关电源产品中,金属软磁粉芯广泛用作各种滤波电感、储能电感和稳流(扼流)电感。因此,在各种电源行业,金属软磁粉芯是具有重要使用意义的。各种通讯电源对于通讯产业的发展,具有决定性的意义,而作为构成各种电源模块的核心部件的金属软磁粉芯的合理选用,更是具有重要实际意义的。可以说,金属软磁粉芯在各种电源模块上的应用,促使整个通讯产业向前大大迈进了一