CO2气体保护焊短路过渡的和谐控制
熔化极气体保护焊的熔滴过渡形式完整版

滴状过渡时电弧电压较高,由于焊接参数及材料的不同又分为粗滴过渡(大颗粒过渡)及细滴过渡(细颗粒过渡)。
1、粗滴过渡 电流较小而电弧电压较高时,因弧长较长,熔滴与熔池不发生短路,焊丝末端便形成较大的熔滴。当熔滴长大到一定程度后,重力克服表面张力使熔滴脱落。这种过渡方式由于熔滴大,形成的时间长,影响电弧的稳定性,焊缝成型粗糙,飞溅较大,在生产中基本不采用。粗滴过渡形式如图1所示:
气体介质对射流过渡的影响:不同的气体介质对电弧电场强度的影响不同。在Ar气保护下弧柱电场强度较低,电弧弧根容易扩展,易形成射流过渡,临界电流值较低。当Ar气中加入CO2时,随着CO2比例增加临界电流值增大。若CO2的比例超过30%时,则不能形成射流过渡,这是由于CO2气体解离吸热对电弧的冷却作用较强,使电弧收缩,电场强度提高,电弧不易扩展所致。
2、细滴过渡 电流比较大时,电磁收缩力较大,熔滴表面张力减小,熔滴细化,这些都促使熔滴过渡,并使熔滴过渡频率增加。这种过渡形式称为细滴过渡,因为飞溅少,电弧稳定,焊缝成型良好,在生产中被广泛应用。细滴过渡形式如图2所示:
3、射流过渡?
射流过渡是喷射过渡中最富有代表性的且用途广泛的一种过渡形式。获得射流过渡的条件是采用纯氩气或富氩气体保护,大电压,还必须使焊接电流大于临界值。射流过渡电弧稳定,飞溅极少,焊缝成形质量好。由于电弧稳定,对保护气流的扰动作用小,故保护效果好。射流过渡电弧功率大,热流集中,对焊件的熔透能力强。而且过渡的熔滴沿电弧轴线高速流向熔池,使焊缝中心部位熔深明显增大而呈指状熔深。射流过渡形式如图3所示:
熔化极气体保护焊的熔滴过渡形式
熔化极短路过渡主要用于直径小于的细丝CO2气体保护焊或混合气体保护焊,采用低电压,小电流的焊接工艺。由于电压低,电弧较短,熔滴尚未长大成熔滴时即与熔池接触而形成短路液体过桥,在向熔池方向的表面张力及电磁收缩力的作用下,熔滴金属过渡到熔池中去,这样的过渡形式称为短路过渡。这种过渡电弧稳定,飞溅较小,熔滴过渡频率高,焊缝成形良好,广泛用于薄板结构、根部打底焊及全位置焊接。
CO2保护焊焊接工艺标准

CO 2保护焊焊接工艺标准1. CO 2 保护焊焊接施工工艺标准 1.1 适用范围本工艺适用于钢结构制作与焊丝直径不超过 2mm 的 CO 2 保护焊焊接工艺。
工艺规定 了一般低碳钢、 普通 低合金高强度钢 手工电弧焊的基本要求。
凡各工程的工艺中无特殊要求 的结构件 CO 2 保护焊均应按本工艺规定执行。
1.2 引用标准下列标准所包含的条文, 通过在本标准中引用而构成为本标准的条文。
本标准出版时, 所示版本均 为有效。
所有标准都会被修订, 使用本标准的各方应探讨使用下列标准最新版 本的可能性。
(1) 焊缝符号表示法 ( GB/T324-1988 ) ;(2) 气焊手工电弧焊及气体保护焊焊缝坡口的基本形式和尺寸(GB/T985-1988 )(3) 电工名词术语 电焊机 ( GB/T2900. 22-1985 ) ;(4) 焊接术语 ( GB/T337 5-1994 ) ;(5) 金属焊接及钎焊方法在图样上的表示代号( GB/T5185-1985 ) ;(6) 气体保护电弧用碳钢、 低合金钢焊丝(GB/T8110 -1995 ); (7) 电弧焊机 通用技术条件 ( GB/T8118-1995 );(8) 弧焊机 (JB/T8748 -1998 MIG/MAG);(9) 焊接用二氧化碳 (HG/T2537 -1993 )。
1.3 术语焊接工艺 — —制造焊件所有有关的加工方法实施要求, 包括焊接准备、 材料选用、 焊接方法的选定、焊接参数、操作要求等。
坡口 ——根据设计或工艺需要,在焊件的待焊部位加工并装配的一定几何形状的沟槽。
断续焊缝 —— 焊接成具有一定间隔的焊缝。
塞焊缝 —— 两零件相叠, 其中一块开圆孔, 在圆孔中焊接两板所形成的焊缝, 只在孔内焊角 缝者。
焊缝厚度 —— 在焊缝横截面中,从焊缝正面到焊缝背面的距离。
手工焊 —— 手持焊具、焊枪或焊钳进行操作的焊接方法。
预热 —— 焊接开始前,对焊件的全部(或局部)进行加热的工艺措施。
CO2气体保护焊机操作规程

NBC-500S,350S,200A,160CO2气体保护焊操作规程1.焊机应安装在环境温度不高于40℃,相对湿度低于90%(25℃),无腐蚀性气体、水份、蒸气、化学性沉积、尘垢、霉菌及其它爆炸性介质的地方。
同时焊机不应受到严重的振动和撞击。
2.新安装或长时间不用的焊机,在使用前必须检查焊机的绝缘电阻不小于5兆欧,输出侧对地绝缘电阻不小于2兆欧。
(注意:检查时应先将输出接线端短路)如若低于上述值时、焊机先进行干燥处理后在使用。
3.安装:(1)焊机应可靠接地:(2)电路及气路的连接:焊接的输入接线端、进气管接头位于焊机后面板,预热器电源插座位于前面板;输出接线端,焊枪控制电缆插座及出气管接头位于焊机前面。
气路连接次序:气瓶-预热器-减压阀-焊机-焊枪。
电路连接次序:将焊机接到三相(380V、50HZ0电源上,将焊枪控制电缆接到插座上,将焊枪、焊接电缆接到焊机输出端“+”极上,将焊接工件电缆接到焊机输出端“-”极上,将预热器电源线接到焊机预热器插座上。
4.使用:上述连接完毕后,可以给焊机通电。
打开位于焊机前面板上的控制“电源”开关,指示灯亮。
将焊丝通过送丝轮及焊炬、导电嘴,并检查焊丝运行情况,应无阻塞现象。
打开预热器的开关及减压阀,打开“检气”开关,检查并调整保护气体流量,完毕后关闭“检气”开关。
上述准备工作完成后,既可进行焊接,焊接按钮位于焊枪上,按下即可进行焊接,松开焊接停止。
焊接规范调整由位于面板上的电压调节急送丝速度旋钮完成。
电感量的调节需按下不同的焊接要求即电流大小选择不同的接线输出。
(1)电源调节;电压调节分两步一.粗调:粗调开关分三档,调节时电压逐次升高。
二.细调:细调开关分十档,调节时在粗调的基地上调节细调开关旋钮电压将逐次递增。
(2)送丝速度调节:送丝速度调节也就是电流调节,在焊接过程中根据焊接工艺要求,调节前面板上送丝速度旋钮获得最佳焊接电流。
送丝速度:1.5-12m/min.(3)电感量选择:本焊机负极输出选用多端方式,不同的输出端子其电感量不同,以便用户便于选择。
氧化碳气体保护焊的焊接参数设定

氧化碳气体保护焊的焊接参数设定LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】二氧化碳气体保护焊的焊接参数设定二氧化碳气体保护焊的焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角。
一、焊丝直径,焊丝直径影响焊缝熔深。
本文就最常用的焊丝直径实心焊丝展开论述。
牌号:H08MnSiA。
焊接电流在150~300时,焊缝熔深在6~7mm。
二、焊接电流,依据焊件厚度、材质、施焊位置及要求的过渡形式来选择焊接电流的大小。
短路过渡的焊接电流在110~230A之间(焊工手册为40~230A);细颗粒过渡的焊接电流在250~300A之间。
焊接电流决定送丝速度。
焊接电流的变化对熔池深度有决定性的影响,随着焊接电流的增大,熔深明显增加,熔宽略有增加。
三、电弧电压,电弧电压不是焊接电压。
电弧电压是在导电嘴和焊件之间测得的电压,而焊接电压是焊机上的电压表所显示的电压。
焊接电压是电弧电压与焊机和焊件间连接的电缆上的电压降之和。
通常情况下,电弧电压在17~24V之间。
电压决定熔宽。
四、焊接速度,焊接速度决定焊缝成形。
焊接速度过快,熔深和熔宽都减小,并且容易出现咬肉、未熔合、气孔等焊接缺陷;过慢,会出现塌焊、增加焊接变形等焊接缺陷。
通常情况下,焊接速度在80mm/min比较合适。
五、气体流量,CO2气体具有冷却特点。
因此,气体流量的多少决定保护效果。
通常情况下,气体流量为15L/min;当在有风的环境中作业,流量在20L/min以上(混合气体也应当加热)。
六、干伸长度,干伸长度是指从导电嘴到焊件的距离。
保证干伸长度不变是保证焊接过程稳定的重要因素。
干伸长度决定焊丝的预热效果,直接影响焊接质量。
当焊接电流、电压不变,焊丝伸出过长,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,会造成未焊透、未熔合等焊接缺陷;过短,熔滴与熔池温度过高,在全位置焊接时会引起铁水流失,出现咬肉、凹陷等焊接缺陷。
二氧化碳气体保护焊的焊接参数设定

二氧化碳气体保护焊的焊接参数设定二氧化碳气体保护焊的焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角;一、焊丝直径,焊丝直径影响焊缝熔深;本文就最常用的焊丝直径实心焊丝展开论述;牌号:H08MnSiA;焊接电流在150~300时,焊缝熔深在6~7mm;二、焊接电流,依据焊件厚度、材质、施焊位置及要求的过渡形式来选择焊接电流的大小;短路过渡的焊接电流在110~230A之间焊工手册为40~230A;细颗粒过渡的焊接电流在250~300A之间;焊接电流决定送丝速度;焊接电流的变化对熔池深度有决定性的影响,随着焊接电流的增大, 熔深明显增加,熔宽略有增加;三、电弧电压,电弧电压不是焊接电压;电弧电压是在导电嘴和焊件之间测得的电压,而焊接电压是焊机上的电压表所显示的电压;焊接电压是电弧电压与焊机和焊件间连接的电缆上的电压降之和;通常情况下,电弧电压在17~24V之间;电压决定熔宽;四、焊接速度,焊接速度决定焊缝成形;焊接速度过快,熔深和熔宽都减小,并且容易出现咬肉、未熔合、气孔等焊接缺陷;过慢,会出现塌焊、增加焊接变形等焊接缺陷;通常情况下,焊接速度在80mm/min比较合适;五、气体流量,CO2气体具有冷却特点;因此,气体流量的多少决定保护效果;通常情况下,气体流量为15L/min;当在有风的环境中作业,流量在20L/min以上混合气体也应当加热; 六、干伸长度,干伸长度是指从导电嘴到焊件的距离;保证干伸长度不变是保证焊接过程稳定的重要因素;干伸长度决定焊丝的预热效果,直接影响焊接质量;当焊接电流、电压不变,焊丝伸出过长,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,会造成未焊透、未熔合等焊接缺陷;过短,熔滴与熔池温度过高,在全位置焊接时会引起铁水流失,出现咬肉、凹陷等焊接缺陷;根据焊接要求,干伸长度在8~20mm之间;另外,干伸长度过短,看不清焊接线,并且,由于导电嘴过热会夹住焊丝,甚至烧毁导电嘴;七、电源极性,通常采取直流反接反极性;焊件接阴极,焊丝接阳极,焊接过程稳定、飞溅小、熔深大;如果直流正接,在相同条件下,焊丝融化速度快约为反接的倍,熔深浅,堆高大,稀释率小,飞溅大;八、回路电感,回路电感决定电弧燃烧时间,进而影响母材的熔深;通过调节焊接电流的大小来获得合适的回路电感,应当尽可能的选择大电流;通常情况下,焊接电流150A,电弧电压19V;焊接电流280A,电弧电压22~24V比较合适,能够满足大多数焊接要求;九、焊枪倾角,当倾角大于25°时,飞溅明显增大,熔宽增加,熔深减小;所以焊枪倾角应当控制在10~25°之间;尽量采取从右向左的方向施焊,焊缝成形好;如果采用推进手法,焊枪倾角可以达到60度,并且可以得到非常平整、光滑的漂亮焊缝;焊接电流是控制送丝速度,电弧电压是控制焊丝融化速度,电流加大焊丝送进加快、电压增大焊丝熔化加快;焊接电流是根据焊接结构母材厚度及焊缝位置来确定,如平焊时焊接电流一般在160-320A、立焊、仰焊、横焊时一般在100-130A电弧电压是根据焊接电流而定公式如下:1实芯焊丝:当电流≥300A时×+20±2=电压当电流≤300A时×+16±2=电压2药芯焊丝:当电流≥200A时×+20±2=电压当电流≤200A时×+16±2=电压CO2气体保护焊机操作规程CO2气体保护焊机操作规程1、操作者必须持电焊操作证上岗;2、打开配电箱开关,电源开关置于“开”的位置,供气开关置于“检查”位置;3、打开气瓶盖,将流量调节旋钮慢慢向“OPEN”方向旋转,直到流量表上的指示数为需要值;供气开关置于“焊接”位置;4、焊丝在安装中,要确认送丝轮的安装是否与丝径吻合,调整加压螺母,视丝径大小加压;5、将收弧转换开关置于“有收弧”处,先后两次将焊枪开关按下、放开进行焊接;6、焊枪开关“ON”,焊接电弧的产生,焊枪开关“OFF”,切换为正常焊接条件的焊接电弧,焊枪开关再次“ON”,切换为收弧焊接条件的焊接电弧,焊枪开关再次“OFF”焊接电弧停止;7、焊接完毕后,应及时关闭焊电源,将CO2气源总阀关闭;8、收回焊把线,及时清理现场;9、定期清理机上的灰尘,用空压机或氧气吹机芯的积尘物,一般时间为一周一次;CO2气体保护焊焊接工艺钢结构二氧化碳气体保护焊工艺规程1 适用范围本标准适用于本公司生产的各种钢结构,标准规定了碳素结构钢的二氧化碳气体保护焊的基本要求;注:产品有工艺标准按工艺标准执行;编制参考标准气焊、手工电弧焊及气体保护焊焊缝坡口的基本形成与尺寸术语母材:被焊的材料焊缝金属:熔化的填充金属和母材凝固后形成的部分金属;层间温度:多层焊时,停后续焊接之前,相邻焊道应保持的最低温度;船形焊:T形、十字形和角接接头处于水平位置进行的焊接.3 焊接准备按图纸要求进行工艺评定;材料准备3.2.1产品钢材和焊接材料应符合设计图样的要求;焊丝应储存在干燥、通风良好的地方,专人保管;焊丝使用前应无油锈;坡口选择原则焊接过程中尽量减小变形,节省焊材,提高劳动生产率,降低成本;作业条件当风速超过2m/s时,应停止焊接,或采取防风措施;作业区的相对湿度应小于90%,雨雪天气禁止露天焊接;4 施工工艺工艺流程清理焊接部位检查构件、组装、加工及定位按工艺文件要求调整焊接工艺参数按合理的焊接顺序进行焊接自检、交检焊缝返修焊缝修磨合格交检查员检查关电源现场清理4 操作工艺焊接电流和焊接电压的选择不同直径的焊丝,焊接电流和电弧电压的选择见下表焊丝直径短路过渡细颗粒过渡电流A 电压V 电流A 电压V50--100 18--2170--120 18--2290--150 19--23 160--400 25--38140--200 20--24 200--500 26--40焊速:半自动焊不超过0.5m/min.打底焊层高度不超过4㎜,填充焊时,焊枪横向摆动,使焊道表面下凹,且高度低于母材表面㎜――2㎜:盖面焊时,焊接熔池边缘应超过坡口棱边――㎜防止咬边;不应在焊缝以外的母材上打火、引弧;定位焊所用焊接材料应与正式施焊相当,定位焊焊缝应与最终焊缝有相同的质量要求;钢衬垫的定位焊宜在接头坡口内焊接,定位焊厚度不宜超过设计焊缝厚度的2/3,定位焊长度不宜大于40㎜,填满弧坑,且预热高于正式施焊预热温度;定位焊焊缝上有气孔和裂纹时,必须清除重焊;焊接工艺参数见表一和表二表一: Φ焊丝CO2焊对接工艺参数接头形式板厚层数焊接电流A 电弧电压V 焊丝外伸mm 焊机速度m/min 气体流量Lmin 装配间隙mm6 1 270 27 12-14 10-156 2 190210 1930 15 15 0-18 2 0 26-2728-30 15 2010 2 0 20-3030-33 15 2010 2 300-320300-320 37-3937-39 15 2012 310-330 32-33 15 2016 3 0300-340 25-2733-3535-37 15 2016 4 0270-290270-290 24-2636 15 2020 4 0300-340300-340 25-2733-3533-3533-37 15 2520 4 0300-320300-320 24-2637 15 20表二: Φ焊丝CO2气体保护焊T形接头接头形式板厚㎜焊丝直径㎜焊接电流A 电弧电压v 焊接速度m/min 气体流量L/min 焊角尺寸㎜Φ 120 20 10-15Φ 140 10-15Φ 160 21 10-156 Φ 230 23 10-1512 Φ 290 28 10-15控制焊接变形,可采取反变形措施.在约束焊道上施焊,应连续进行,因故中断,再施焊时, 应对已焊的焊缝局部做预热处理. 采用多层焊时,应将前一道焊缝表面清理干净后,再继续施焊.变形的焊接件,可用机械冷矫或在严格控制温度下加热热矫的方法,进行矫正.5 交检6 焊接缺陷与防止方法缺陷形成原因防止措施焊缝金属裂纹1.焊缝深宽比太大2.焊道太窄3.焊缝末端冷却快 1.增大焊接电弧电压,减小焊接电流2.减慢焊接速度3.适当填充弧坑夹杂1.采用多道焊短路电弧2.高的行走速度 1.仔细清理渣壳2.减小行走速度,提高电弧电压气孔1.保护气体覆盖不足2.焊丝污染3.工件污染4.电弧电压太高5.喷嘴与工件距离太远 1.增加气体流量,清除喷嘴内的飞溅,减小工件到喷嘴的距离 2.清除焊丝上的润滑剂 3.清除工件上的油锈等杂物.4.减小电压5.减小焊丝的伸出长度咬边1.焊接速度太高2.电弧电压太高3.电流过大4.停留时间不足5.焊枪角度不正确 1.减慢焊速2.降低电压3.降低焊速4.增加在熔池边缘停留时间5.改变焊枪角度,使电弧力推动金属流动未融合1.焊缝区有氧化皮和锈2.热输入不足3.焊接熔池太大4.焊接技术不高5.接头设计不合理1.仔细清理氧化皮和锈2.提高送丝速度和电弧电压,减慢焊接速度3.采用摆动技术时应在靠近坡口面的边缘停留,焊丝应指向熔池的前沿4.坡口角度应足够大,以便减小焊丝伸出长度,使电弧直接加热熔池底部未焊透1.坡口加工不合适2.焊接技术不高3.热输入不合适 1.加大坡口角度,减小钝边尺寸,增大间隙 2.调整行走角度 3.提高送丝的速度以获得较大的焊接电流 ,保持喷嘴与工件的距离合适飞溅1.电压过低或过高2.焊丝与工件清理不良3.焊丝不均匀4.导电嘴磨损5.焊机动特性不合适 1.根据电流调电压2.清理焊丝和坡口3.检查送丝轮和送丝软管4.更新导电嘴5.调节直流电感蛇行焊道1.焊丝伸出过长2.焊丝的矫正机构调整不良3.导电嘴磨损 1.调焊丝伸出长度2.调整矫正机构3.更新导电CO2气保焊的使用近况 CO2气体保护焊自50年代诞生以来,作为一种高效率的焊接方法,在我国工业经济的各个领域获得了广泛的运用;尤其是近几年,中国成为“世界工厂”后,大量的外贸金属加工、钢结构行业大力发展,CO2气体保护焊以其高生产率比手工焊高1~3倍、焊接变形小和高性价比的特点,得到了前所未有的普及,成为最优先选择的焊接方法之一;但是据我们这几年的工作经历,CO2气体保护焊在实际生产运用中还存在不少问题,综合如下:一、气源的问题我国现在还没有对焊接用CO2气体纯度要求的国家标准,市场上出售的CO2气体主要是制氧厂、酿造厂、化工厂的副产品,如未经处理就作为焊接保护气体使用,其水分及杂质气体含量很高且不稳定,从而增加焊接飞溅、焊缝产生气孔及影响焊缝塑性等焊接缺陷;比对国外多数国家规定,要求焊接用CO2气体纯度不低于%,有些国家甚至要求CO2纯度高于%,水分含量低于%,来作为获得优质焊缝的前提条件;二、焊接参数选择的问题一般焊工培训大多把手工电弧焊作为基础项目,主要让焊工掌握焊接电流的选择、焊接速度及运条方法、焊接电弧的控制;在施焊操作上,一个熟练的手工电弧焊焊工对掌握CO2气保焊基本不成问题,但在焊接参数的选择上,很大一部份焊工显得不够老练,以我国CO2气保焊中应用最为广泛的短路过渡形式为例,归纳下来问题主要在电弧电压、焊接电流、焊接回路电感匹配得不太合适,以及焊丝干伸长不合适,造成焊接电弧不稳定、飞溅以及未焊透等,影响焊缝成形、焊缝的机械性能;只有电弧电压与焊接电流匹配得较合适时,才能获得较稳定的焊接过程,在一定的焊丝直径和焊接电流下,若电弧电压偏低,电弧短、焊缝成型高,甚至会造成冲丝、电弧引燃困难,使焊接过程不稳定;若电弧电压偏高,则熔滴过渡的频率变慢、颗粒变大,电弧长度长、焊缝成型宽,过高的电弧电压会烧毁导电咀;因焊接回路电感量的大小直接影响焊接电弧的燃烧时间,关系到熔滴过渡的稳定、焊接熔深及焊缝成型,在一定的焊丝直径和焊接电流、电压下,若选择过小的电感量,焊接时会造成熔深太浅,即使再增加焊接电流、电压,只能会使过渡到熔池的液态金属溢出熔池,形成未熔合、未焊透;要选择合适的电感量,一般视焊丝直径、母材厚薄及不同的焊接设备通过试焊来确定;合适的焊丝伸出导电咀长度应为焊丝直径的10~12倍一般在10~20mm范围内,焊丝的干伸长太短,就会因为焊枪喷嘴与工件距离近而增加飞溅金属堵塞喷嘴,焊丝的干伸长太长,则会增加飞溅、引起焊接不稳定,气体保护效果变差等;在实际工作中,一般先根据工件厚薄、坡口形式、焊接位置等选好焊丝直径,再确定焊接电流,调节好回路电感量,使飞溅降低到最小;CO2气体保护焊操作规程1.准备工作1认真熟悉焊接有关图样,弄清焊接位置和技术要求;2焊前清理;CO2焊虽然没有钨极氩弧焊那样严格,但也应清理坡口及其两侧表面的油污、漆层、氧化皮以及铁金属等杂物;3检查设备;检查电源线是否破损;地线接地是否可靠;导电嘴是否良好;送丝机构是否正常;极性是否选择正确;4气路检查;CO2气体气路系统包括CO2气瓶、预热器、干燥器、减压阀、电磁气阀、流量计;使用前检查各部连接处是否漏气,CO2气体是否畅通和均匀喷出;2.安全技术1穿好白色帆布工作服,戴好手套,选用合适的焊接面罩;2要保证有良好的通风条件,特别是在通风不良的小屋内或容器内焊接时,要注意排风和通风,以防CO2气体中毒;通风不良时应戴口罩或防毒面具;3CO2气瓶应远离热源,避免太阳曝晒,严禁对气瓶强烈撞击以免引起爆炸;4焊接现场周围不应存放易燃易爆品;3.焊接工艺CO2气体保护焊的工艺参数有焊接电流、电弧电压、焊丝直径、焊丝伸出长度、气体流量等;在其采用短路过渡焊接时还包括短路电流峰值和短路电流上升速度;1 焊接电流和电弧电压短路过渡焊接时,焊接电流和电弧电压周期性的变化;电流和电压表上的数值是其有效值,而不是瞬时值,一定的焊丝直径具有一定的电流调节范围;2焊丝伸出长度是指导电嘴端面至工件的距离;由于CO2焊时选用焊丝较细,焊接电流流经此段所产生的电阻热对焊接过程有很大影响;生产经验表明,合适的伸出长度应为焊丝直径的10~20倍,一般在5~15mm范围内;3气体流量小电流时,气体流量通常为5~15L/min;大电流时,气体流量通常为10~20L /min,并不是流量越大保护效果越好;气体流量过大时,由于保护气流的紊流度增大,反而会把外界空气卷入焊接区;4电源极性 CO2气体保护焊一般都采用直流反接,飞溅小,电弧稳定,成形好;常用焊接术语在实际应用过程中,经常会碰到一些与焊接相关的术语,行话;先总结如下:正极性指直流焊接时,被焊物接+极,焊条、焊丝接-极反极性与正极性直流电弧焊或电弧切割时,焊件与焊接电源输出端正、负极的接法称为极性;极性分正极性和反极性两种;焊件接电源输出端的正极,电极接电源输出端的负极的接法为正极性常表示为DCSP;反之,焊件接电源输出端的负极,电极接电源输出端的正极的接法为反极性常表示为DCRP;欧美常常用另外一种表示方法,将DCSP称为DCEN,而将DCRP称为DCEP;焊接电流为向焊接提供足够的热量而流过的电流电弧电压指电弧部的电压,与电弧长大致成比例地增加,一般电压表所示电压值包括电弧电压及焊丝伸出部,焊接电缆部的电压下降值;弧长弧部长度弧坑在焊缝终点产生的凹坑气孔熔敷金属里有气产生空洞飞溅焊接时未形成熔融金属而飞出来的金属小颗粒焊渣焊后覆盖在焊缝表面上的固态熔渣熔渣包覆在熔融金属表面的玻璃质非金属物咬边由于焊缝两端的母材过烧,致使熔融金属未能填满,形成槽状凹坑;熔深母材熔化部的最深位与母材表面之间的距离熔池因焊弧热而熔化成池状的母材部分熔化速度单位时间里熔敷金属的重量熔敷率有效附着在焊接部的金属重量占熔融焊条、焊丝重量的比例未熔合对焊底部的熔深不良部,或第一层等里面未融合部余高鼓出母材表面的部分或角焊末端连接线以上部分的熔敷金属坡口角度母材边缘加工面的角度预热为防止急热,焊接前先对母材预热如火焰加热后热为防止急冷进行焊后加热如火焰加热平焊从接头上面焊接横焊从接头一侧开始焊接立焊沿接头由上而下或由下而上焊接仰焊从接头下面焊接垫板为防止熔融金属落下,在焊接接头下面放上金属、石棉等支撑物;夹渣夹渣是非金属固体物质残留于焊缝金属中的现象,夹杂物出现在熔焊过程中焊剂焊接时,能够熔化形成熔渣和气体,对熔化金属起保护和冶金处理作用的一种物质; 碳弧气刨使用石磨棒或碳棒与工件间产生的电弧将金属熔化,并用压缩空气将其吹掉,实现在金属表面上加工沟槽的方法保护气体焊接过程中用于保护金属熔滴、熔池及焊缝区的气体,它使高温金属免受外界气体的侵害焊接夹具为保证焊件尺寸,提高装配精度和效率,防止焊接变形所采用的夹具焊接工作台为焊接小型焊件而设置的工作台焊接操作机将焊接机头或焊枪送到并保持在待焊位置,或以选定的焊接速度沿规定的轨迹移动焊剂的装置焊接变位机将焊件回转或倾斜,使接头处于水平或船行位置的装置焊接滚轮架借助焊件与主动滚轮间的摩擦力来带动圆筒形或圆锥形焊件旋转的装置。
二氧化碳气体保护焊安全技术

二氧化碳气体保护焊安全技术二氧化碳气体保护焊(简称CO2焊)是熔化极气体保护焊的一种,广泛用于低碳钢和低合金钢等黑色金属的焊接。
一、二氧化碳气体保护焊特点二氧化碳气体保护焊目前应用较多的是半自动焊,即焊丝送进靠机械自动进行,Array由焊手持焊炬进行焊接操作。
CO2气体保护焊的焊接过程如图3-7所示。
焊丝由送丝机构通过软管经导电嘴送出,而CO2气体从喷嘴内以一定的流量流出,当焊丝与焊件接触引燃电弧后,连续送给的焊丝末端和熔池被CO2气体层流所保护,使熔融金属与大气造成机械隔离,从而防止了空气对熔化金属的有害作用。
二氧化碳气体保护焊具有成本低、抗氢气孔能力强、适合薄板接、易进行全位置焊等优点,广泛应用于低碳钢和低合金钢等黑色金属材料的焊接。
二氧化碳气体保护焊的熔滴过渡型式主要有滴状过渡图3-7 CO2焊的焊接过程示意和短路过渡二种。
由于滴状过渡焊接,飞溅大、工艺过程不稳定,因此生产中较少采用。
短路过渡焊接过程的特点是弧长较短,焊丝端部的熔长达到一定程度时与熔池接触发生短路,此时电弧熄灭,形成焊丝与熔池之间的液体金属过桥,焊丝熔化金属在重力、表面张力和电磁收缩力等力的作用下过渡到熔池,之后电弧重新引燃,再重复上述过程。
如果焊接参数选择得当,短路过渡电弧的燃烧。
熄灭和熔滴过渡过程均较稳定,在要求线能量较小的薄板焊接生产中广为采用,通常提到的CO2气体保护电弧焊指的都是短路过渡CO2气体保护电孤焊。
二氧化碳气体保护焊的主要缺点是焊接过程中产生金属飞溅。
飞溅不但会降低焊丝的熔敷系数,增加焊接成本,而且飞溅金属会粘着导电嘴端面和喷嘴内壁,引起送丝不畅,使电弧燃烧不稳定,降低气体保护作用,并使劳动条件恶化。
必要时需停止焊接,进行喷嘴清理工作。
这对于自动化焊接是不利的。
短路过渡焊接时飞溅的原因有多种:熔滴短路时的电爆炸、溶滴金属内部的气体热膨胀及短路后电弧重新引燃时的动力冲击等。
采用短路过渡CO2焊时,由于焊丝细,电压低,电流小且短路与燃弧过程交替出现,母材熔深主要决定于燃弧期电弧的能量,调间燃弧时间便可控制母材熔深,因此,可以实现薄板或全位置焊接。
二氧化碳气体保护焊的焊接方法和常见的问题

• 1.焊接工艺a.焊接方法可分为:平焊、仰焊、立焊平焊分为:左向焊法、右向焊法左向焊法的优点:焊缝熔深大,能看清焊缝,不易焊偏左向焊法的缺点:不能看到熔池。
右向焊法的优点:能看清熔池,便于焊缝的成形与控制。
右向焊法的缺点:焊缝熔深浅,易焊偏。
立焊分为:下向焊和上向焊总结:平焊适应于全范围的电流焊接,而仰焊和立焊只适应于小电流焊接,焊丝杆伸出导电嘴的长度为焊丝直径的10-15倍,焊接角度为45度。
2.MIG、MAG、CO 2的区别MIG:又称为熔化极氩弧焊,用纯氩气作为气源,主要用于焊接有色金属,如铝、不锈钢、铜等,如果对焊缝质量要求很高,请选用药芯焊丝。
MAG:又称为富氩弧即Ar80%+CO 220%的混合气体焊接,主要用于焊接碳钢、不锈钢等多种母材,此焊接工艺,可降低飞溅,焊缝成形美观,适用于薄板和中厚板,但是焊缝熔深有点欠缺。
CO 2:即纯CO 2气体保护焊接,焊接时飞溅相对于MIG、MAG焊接飞溅稍大,但熔深大,适用于大电流焊接。
注:我们购买的二氧化碳气体基本上是从造酒厂灌装而来,只要打开气体减压阀,闻一下即可,辨别真假二氧化碳气体。
二氧化碳是无毒气体。
3.焊接的三大过渡状态o短路过渡:即小电流焊接时,电弧发出稳定的“ Zi… Zi…”声,声音很连续,此时焊缝成形美观,飞溅少,适用于薄板焊接。
o滴状过渡:中电流焊接,电流范围一般在180~270A之间,此时飞溅稍大,电弧有断续的声音,在焊接工艺中我们称此段为“飞溅区”,此飞溅区,在焊接工艺中,至今还没有办法解决。
o射流过渡:又称亚射流过渡,此时飞溅极小,电流大,声音发出“ Si..Si…”声,焊缝成形美观,从以上几点我们在焊接时应着重选择短路过渡及射流过渡焊接,但在要求不高的场合也可用滴状过渡焊接。
CO2气体保护焊的基本操作技术

CO2气体保护焊的基本操作技术1、注意事项(1)电源、气瓶、送丝机、焊枪等连接方式参阅说明书。
(2)选择正确的持枪姿势:a 身体与焊枪处于自然状态,手腕能灵活带动焊枪平移或转动。
b 焊接过程中软管电缆最小曲率半径应大于300m/m焊接时可任意拖动焊枪。
c 焊接过程中能维持焊枪倾角不变还能清楚方便观察熔池。
d 保持焊枪匀速向前移动,可根据电流大小、熔池的形状、工件熔和情况调整焊枪前移速度,力争匀速前进。
2、基本操作(1)检查全部连接是否正确,水、电、气连接完毕合上电源,调整焊接规范参数。
(2)引弧:CO2气体保护焊采用碰撞引弧,引弧时不必抬起焊枪,只要保证焊枪与工作距离。
a 引弧前先按遥控盒上的点动开关或焊枪上的控制开关将焊丝送出枪嘴,保持伸出长度10 ~15 mm。
b 将焊枪按要求放在引弧处,此时焊丝端部与工件未接触,枪嘴高度由焊接电流决定。
c 按下焊枪上控制开关,焊机自动提前送气,延时接通电源,保持高电压、慢送丝,当焊丝碰撞工件短路后自然引燃电弧。
短路时,焊枪有自动顶起的倾向,故引弧时要稍用力下压焊枪,防止因焊枪抬起太高,电弧太长而熄灭。
3、焊接引燃电弧后,通常采用左焊法,焊接过程中要保持焊枪适当的倾斜和枪嘴高度,使焊接尽可能地匀速移动。
当坡口较宽时为保证二侧熔合好,焊枪作横向摆动。
焊接时,必须根据焊接实际效果判断焊接工艺参数是否合适。
看清熔池情况、电弧稳定性、飞溅大小及焊缝成形的好坏来修正焊接工艺参数,直至满意为止。
4、收弧焊接结束前必须收弧。
若收弧不当容易产生弧坑并出现裂纹、气孔等缺陷。
焊接结束前必须采取措施。
(1)焊机有收弧坑控制电路。
焊枪在收弧处停止前进,同时接通此电路,焊接电流电弧电压自动减小,待熔池填满。
(2)若焊机没有弧坑控制电路或因电流小没有使用弧坑控制电路。
在收弧处焊枪停止前进,并在熔池未凝固时反复断弧、引弧几次,直至填满弧坑为止。
操作要快,若熔池已凝固才引弧,则可能产生未熔合和气孔等缺陷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CO2气体保护焊短路过渡的和谐控制提出了CO2气体保护焊短路过渡的和谐控制思想,并建立了相应的控制系统。
该系统以焊接电流为唯一设定参数,自动确定与调整电弧电压和送丝速度等主要参数;在此基础上,以短路过渡特征参数为目标函数,通过特征参数的检测和目标函数的寻优,对电弧电压粗选值实时微调,实现CO2气体保护焊短路过渡规范参数的和谐实时控制。
前言CO2气体保护焊是一种高效节能、抗锈低氢、有较高综合经济效益的焊接方法,不足之处主要在于飞溅大、成形差,长期以来焊接工作者都在寻求改进的途径。
由于影响金属飞溅的因素众多,金属过渡和飞溅的机理至今仍未得以充分揭示,在这种情形下,一般都是通过对规范参数或主要规范参数的控制或调节,来实现短路过渡和金属飞溅的间接控制,因此要获得焊接过程稳定性最佳的效果显然是困难的。
但是表征短路过渡过程的短路过渡频率、短路发生时刻以及持续时间却是可以检测的,因此,如果能够实时控制这3个参数,就可能实现短路过渡过程熔滴的稳定过渡。
问题是对短路过渡频率等短路过渡参数的控制,只能间接通过规范参数的控制或调节来进行。
因此有必要寻求一种控制理论或控制技术,使得对短路过渡频率等特征参数的控制与规范参数的控制或调节有机地结合起来,用通过对短路过渡频率等特征参数的控制,实现短路过渡熔滴的稳定过渡。
这一问题的解决,对于实现短路过程熔滴的可控过渡,提高熔滴过渡的稳定性,使CO2气体保护焊规范参数的控制达到和谐合适匹配,并使短路过渡获得良好的控制效果,具有重要的意义,但现有技术难以实现这一目标。
基于上述背景,本文提出了和谐控制的思想,并就如何实现CO2气体保护焊短路过渡规范参数的和谐实时控制进行了探讨。
1 和谐控制的思想及策略一般控制,无论是最优控制、自适应控制或神经网络控制等,都是基于一种简单或复杂的数学模型来实现控制思想的。
因此,能否寻求一种精确或合适的数学模型将是至关重要的,它将影响模型的可控性、稳定性、控制精度以及实时性等。
而且,由于各种因素的影响,往往达不到预期的控制效果。
和谐控制的思想是从适度和谐的观点出发,根据影响控制的诸因素及其相互关系、控制及影响控制的层次及程度、各控制参数本身的重要性等,从宏观和整体上把握控制及影响控制的本质因素,实行有重点、有层次,以追求简单快捷、寻求全局整体的控制效果为目标。
和谐控制不刻意追求模型的精确与局部指标的高精度,而是寻求适度、和谐的宏观整体控制效果。
因此,和谐控制的实现主要考虑如下几个方面:(1) 根据影响控制的诸因素及各控制参数本身的重要性,确定最主要的控制参数及影响控制参数的主要因素。
(2) 找出并确定表征控制效果的特征参数,以此作为目标寻优参数。
(3) 确定影响特征参数的主要控制参数,并通过该参数建立特征参数与其他控制参数的联系纽带。
(4) 在确定主要控制参数后,分析实现控制的层次。
2 和谐控制的模式研究为实现CO2气体保护焊短路过渡过程熔滴的可控稳定过渡,改善焊缝成形,根据CO2气体保护焊短路过渡的影响因素和特点,以及和谐控制的思想及实现策略,可通过以下几个步骤有层次地实现。
(1) 确定焊接电流为最主要的控制参数,送丝速度和电弧电压等为配合参数。
因为焊接电流是影响短路过渡的最主要因素,因此应设法使焊接电流恒定。
(2) 短路过渡频率、短路发生时刻以及持续时间为表征短路过渡过程和控制效果的特征参数,可用以作为目标寻优参数。
(3) 在电流恒定的情况下,影响特征参数的主要控制参数是电弧电压,电弧电压的微弱变化都可能影响焊接过程的稳定性,且该参数与焊接电流存在配合关系,可作为特征参数与其他控制参数的联系纽带。
(4) 在确定主要控制参数后,通过如下两个层次(或具体目标)的实现,来达到提高短路过渡稳定性、改善焊缝成形、提高焊缝波纹的细密度及改善控制效果的目的。
具体作法是:首先,建立CO2气体保护焊焊接规范一元化调节微机控制系统,粗选送丝速度和电弧电压等焊接规范,使之获得较为合理的匹配,并通过电流(间接)闭环调节模式以恒定电流,通过电压粗选值的恒定以消除网压波动;其次,在一元化基础上,研究以表征短路过渡过程稳定性的短路频率等特征参数为优化目标函数,自动微调焊接电压粗选值,使得对短路过渡频率的控制与规范参数的调节有机地结合起来,以实现CO2气体保护焊短路过渡过程熔滴的可控过渡。
为此,可通过以下模式逐步达到。
图1 闭环调节焊接电流控制模式2.1 一元化控制模式的研究目前的一元化控制尚未做到真正单旋钮控制,还需要电压微调旋钮的手动微调。
为保证焊接电流与电弧电压的合理匹配和所要求的规范值,本文提出的一元化控制模式的基本思想是:以电流为一元化的调节依据,即输入给定电流值,查表得送丝速度和给定电压粗选值,然后通过短路过渡特征值细调电弧电压。
2.1.1 焊接电流调节模式图1为焊接电流控制模式示意图。
焊接电流的调节模式采用间接调节模式,它以焊接电流作为调节依据,即给定电流值,查表得送丝速度,通过霍尔传感器将焊接电流采样值与给定值比较,以电流比较误差为依据微调送丝速度,从而达到调节焊接电流的目的。
这实际上是一种焊接电流I恒定、间接闭环控制调节模式。
电流是关键参数,速度、熔深主要取决于焊接电流值,其他参数为配合参数。
2.1.2 电弧电压反馈控制模式电弧电压反馈控制模式的主要目的是为了恒定电弧电压粗选表格值,并消除网络波动,即可以消除因网压波动引起电源输出电压变化的静态误差。
电弧电压实际上反映了电弧长度,它不仅影响能量分配、熔滴过渡及短路频率,而且还影响焊接过程的稳定性。
该控制模式反馈的作用是对弧压误差进行检测,并利用测得的结果对被测量U弧进行控制,以消除和减小网压误差。
其反馈控制模式示意图如图2所示。
图2 电弧电压反馈控制模式2.2 焊接短路过渡和谐控制模式的实现和谐控制,即是在一元化的基础上,通过短路过渡特征参数的检测和以特征参数构作的目标函数的寻优,微调焊接规范参数并使之趋于和谐匹配,从而使短路过渡趋于和谐稳定状态。
在一元化控制的基础上,可粗选焊接规范参数;而通过短路过渡特征参数的检测和目标函数的寻优,则可对规范参数粗选值进一步微调,从而使短路过渡趋于和谐稳定状态。
所能达到的功能为:记忆式+微调。
记忆通过表格查询来实现;微调考虑两个方面,一是根据检测到的短路过渡频率在给定的频率范围内调节,二是根据引弧时的断弧时间进行微调。
通过短路过渡特征值的极值化寻优,对电弧电压粗选查表值进行微调,实现规范参数的和谐控制。
和谐控制系统结构框图如图3所示图3 和谐控制系统结构框图。
本文提出的和谐控制实际上也是一种自适应控制,但它不需要复杂的参考模型。
甚至对于仅考虑短路过渡频率,而不考虑其他特征参数的目标寻优时,可不需要参考模型。
当以短路过渡频率的目标寻优时,只要进行以短路过渡频率为目标的极值化搜寻,而无须考虑短路过渡频率的绝对值大小。
因此在电流(间接)恒定的情况下,可根据前后两次短路频率采样值之差(f1-f2)的正负和相对大小,对电弧电压规范参数调节方向和调节量分档进行一维搜索。
如当f1-f2<0时,可继续在原方向搜索,反之,则在相反方向搜索。
因此,控制系统的寻优调节时间短,实时性强。
短路过渡时,过渡熔滴越小、短路频率越高、焊缝波纹越细密,焊接过程越稳定。
在稳定的短路过渡的情况下,要求尽量高的短路频率,短路过渡频率的大小常常作为短路过渡过程稳定性的标志。
如能控制短路频率并使之尽可能高(极值点最大),将有利于提高短路过渡稳定性,减少飞溅,改善焊缝成形,提高焊缝波纹的细密度,改善控制效果。
因此,考虑以短路过渡频率为寻优目标有着本质上的合理性。
至于其他特征参数,如短路发生时间t短、引弧时的断弧时间、冲击值di/dt或短路峰值电流imax等特征值对短路过渡的影响和影响程度,以及考虑其影响的和谐控制还有待于进一步研究。
3 微机控制测试系统及试验分析微机控制测试系统用于规范参数和短路过渡特征值的检测,主要由单片机开发系统、接口电路和存储系统、数据采集卡(AX5412-HG)、霍尔传感器和586微机等组成。
该数据测试系统具有对CO2气体保护焊短路过渡过程实时检测规范参数和短路过渡特征值的功能。
图4 有无和谐控制的短路过渡频率f与电弧电压U弧对应关系曲线曲线1、2——无和谐控制(分别为100 A、110 A时)曲线3、4——有和谐控制(分别为100 A、110 A时)图5 和谐控制的焊缝成形照片试验采用的是NBC-400C型CO2焊机,焊丝为φ1.2(H08Mn2Si),试件为6 mm厚低碳钢板,焊嘴高度15 mm,焊速0.005 m/s。
图4为给定电流100 A和110 A时,有无和谐控制的两组电压与短路过渡频率对应关系曲线。
既然短路过渡频率的大小被作为短路过渡过程稳定性和焊缝波纹细密度的标志[4],从图4可见,和谐控制将使短路频率自动寻优趋于最高值,因而有利于提高CO2保护焊短路过渡过程熔滴的稳定性,提高焊缝波纹的细密度,改善控制效果和焊缝成形。
通过和谐控制使短路频率自寻优的方法,从实际焊接效果来看,焊接的稳定性比无和谐控制情形改善了。
图5是电流为100A、电弧电压为19V、焊速为0.005 m/s和焊丝为φ1.2(H08Mn2Si)和谐控制时的焊缝成形照片,试件为稍经打磨的6 mm厚低碳钢板。
由图5可见,即使在锈迹斑斑的试件上焊接,也能得到波纹细密、成形光滑、焊缝熔高熔宽比合适的焊缝。
因此,通过短路频率的寻优,有利于实现提高焊缝波纹细密度和焊接过程的稳定性的思想,也为从根本上减少飞溅、改善焊缝成形提供了一条思路。
4 结语和谐控制是在一元化的基础上,通过短路过渡特征参数的检测,和以特征参数构作的目标函数的寻优,微调焊接规范参数并使之趋于和谐匹配,从而使焊接规范的调节实现了真正意义上的一元化,使短路过渡趋于和谐稳定状态。
其特点是:(1) 由一元化调节模式粗选焊接规范,而通过短路过渡特征参数微调电弧电压粗选值来实现CO2气体保护焊短路过渡的和谐控制。
(2) 提出的和谐控制实际上也是一种自适应控制,但它不需要复杂的参考模型,甚至对于仅考虑短路过渡频率,而不考虑其他特征参数的目标寻优时,也可不需要参考模型。
因此控制系统的寻优调节时间短,实时性强,能够快速微调焊接规范并使之趋于和谐匹配。
(3) 提出的和谐控制将使短路频率自动寻优趋于最高值,能够快速微调焊接规范参数并使之趋于和谐匹配,因而有利于提高短路过渡过程的稳定性,提高焊缝波纹的细密度,改善控制效果和焊缝成形。