酰化反应
合集下载
酰化反应-药物合成反应

9
第三章 酰化反应
氧原子上的酰化反应(酯的制备)
•醇的结构对酰化反应的影响 •立体影响因素使酯化反应速度:伯醇>仲醇>叔醇
醇 CH3OH C2H5OH n-C3H7OH CH2=CHCH2OH PhCH2OH i-PrOH t-BuOH v 1 0.84 0.84 0.64 0.68 0.47 0.026
RCOOR'' +R'OH R'COOR'' +RCOOH RCOOR''' +R''COOR'
上述三种酯交换方式都是利用反应的可逆性来实现的,其中第 一种酯交换方式应用最广,其反应过程常用质子酸或醇钠进行 催化。
23
第三章 酰化反应
氧原子上的酰化反应(酯的制备)
酸催化机理:增强羧酸酯(酰化剂)的活性
第三章
酰化反应
Chapter 3 Acylation Reaction
1
概 论
酰化反应: 有机分子中碳、氧、氮等原子引入酰基的 反应。
碳原子(R´-)
酰化
(RCO-)
制醛、酮〔 RCO-R´〕 (制芳香醛、芳香酮) 制酯〔 RCO-OR´〕
氧原子(R´O-)
酰化(RCO-)
氮原子〔R'
R"N-〕
酰化(RCO-)
羧酸酯(RCOOR’)的结构对活性的影响: 1)酯羰基的a-位上连有吸电子基团时,吸电子效应使酯羰基 的碳原子上的电子云密度降低,亲核能力增强,所以活性顺序 为:a-位有吸电子基的酯> a-位无吸电子基的酯。同样酯羰基 的a-位有不饱和烃基和芳基时,除受到这些基团的吸电子诱导 效应外,还受到共轭效应的影响,所以一般地,不饱和脂肪酸 酯、芳酸酯的活性稍强于相应的饱和脂肪酸酯。 2)酰化能力与羧酸酯的OR’的共轭酸R’OH的酸性大小有关, R’OH酸性越强,酯的酰化能力越强,所以一般而言, RCOOAr>RCOOMe>RCOOEt. 3)由于在反应过程中常常采用蒸出所生成的低沸点的醇(如 甲醇、乙醇等)来打破平衡,所以一般选用甲酯和乙酯。
第三章 酰化反应

N
RCOOH + N S S N
2,2-二吡啶二硫化物
NO2
Ph3P Ph3P=O Et3N
RCOOH +
O N S C Cl
O N S C R
RCOCl + N SH
吡啶硫酚
Et3N
2-吡啶硫醇酯
优点:对仲、叔醇以及有位阻的伯醇效果较好;缺点: 硫醇酯具有特殊气味及毒性,应用受到限制。
CH3 H3C CH3 CH 3 (CH3)3COH/CH3CN/CuCl2 r.t. , 12min (96%) H3C CH3 COCl N SH H3C
CH3 CO CH3 S N
COOC(CH3)3
b.羧酸吡啶酯
OH HO(CH3)nCOOH I N CH3 (CH2)n O C O N CH3 O X Et3N , 7.5~8h I N CH3 O (CH2)n C O
c.羧酸三硝基苯酯 d. 羧酸异丙烯酯
3. 酸酐为酰化剂 酸酐是一个强酰化剂,反应具有不可逆性。酸酐多用 在反应困难或位阻较大的醇羟基的酰化上。 ①催化剂 酸性催化剂:硫酸、对甲苯磺酸、三氟化硼、氯化锌、 氯化钴 碱性催化剂:羧酸钠、吡啶、三乙胺、喹啉、N、N-二 甲基苯胺,作用:a.除掉氯化氢;b.催化作用。
C2H5
喹诺酮类抗菌药依诺沙星中间体 ③转变成其它基团
CH3 AlCl3/CS2 5℃, 3h CH3 COCH3 CH3COCl
CH(CH3)2
CH(CH3)2
(2)药物结构修饰 )
S OAc COO NHCOCH3 F3C N CH2CH2CH2 N (1) CH2OCOCH2CH2COOH CO HO OH NHCOCHCl2 CH OH O (3) O2N (4) CH CH2OCOC15H31 (2) N CH2CH2OCOC6H13
酰化反应

R CH=CH COOR'
RCOCCl3 + R'OH
RCOOR' + CHCl3
9
7.1.1 羧酸为酰化剂
• 用羧酸和醇合成酯是典型的酯化反应,这种酯化也 叫直接酯化法 直接酯化法: 直接酯化法 •活性 活性:伯醇的酯化产率较高,仲醇较低,叔醇和酚 活性 直接酯化产率很低。
H+ R'OH + RCOOH RCOOR' + H2O
• 酸酐比羧酸的酰化活性大. • 适用于较难反应的酚类化合物及空间位阻较大的叔 羟基衍生物的直接酯化,也可与多元醇、糖类、纤 维素及长碳链不饱和醇等进行酯化。
R'OH + (RCO)2O
RCOOR' + RCOOH
25
催化剂
• 酸:质子酸 质子酸:如硫酸、高氯酸等 Lewis酸 Lewis酸:氯化锌、三氯化铁等 有机酸:PTS、MS等。 有机酸 • 碱:有机碱 有机碱:吡啶、三乙胺、哌嗪等 无机碱:无水乙酸钠等。 无机碱 酸催化剂活性通常比碱强。 酸催化剂活性通常比碱强。
11
催化剂
• 常用酸性催化剂 常用酸性催化剂:硫酸、盐酸、磺酸;氯化锡、 有机钛酸酯、硅胶、阳离子交换树酯等。 • 质子酸 质子酸缺点是可能存在形成氯代烃、脱水、异构 化或聚合等副反应; • Lewis酸催化剂可以减少副反应,但往往需要更高 Lewis酸 的反应温度。
12
有机质子酸
H OH H O OH TsOH/PhH ∆ , 10min, 97% H O O H
R'OH + RCOCl
RCOOR' + HCl
31
酰氯活性比较
RCOCCl3 + R'OH
RCOOR' + CHCl3
9
7.1.1 羧酸为酰化剂
• 用羧酸和醇合成酯是典型的酯化反应,这种酯化也 叫直接酯化法 直接酯化法: 直接酯化法 •活性 活性:伯醇的酯化产率较高,仲醇较低,叔醇和酚 活性 直接酯化产率很低。
H+ R'OH + RCOOH RCOOR' + H2O
• 酸酐比羧酸的酰化活性大. • 适用于较难反应的酚类化合物及空间位阻较大的叔 羟基衍生物的直接酯化,也可与多元醇、糖类、纤 维素及长碳链不饱和醇等进行酯化。
R'OH + (RCO)2O
RCOOR' + RCOOH
25
催化剂
• 酸:质子酸 质子酸:如硫酸、高氯酸等 Lewis酸 Lewis酸:氯化锌、三氯化铁等 有机酸:PTS、MS等。 有机酸 • 碱:有机碱 有机碱:吡啶、三乙胺、哌嗪等 无机碱:无水乙酸钠等。 无机碱 酸催化剂活性通常比碱强。 酸催化剂活性通常比碱强。
11
催化剂
• 常用酸性催化剂 常用酸性催化剂:硫酸、盐酸、磺酸;氯化锡、 有机钛酸酯、硅胶、阳离子交换树酯等。 • 质子酸 质子酸缺点是可能存在形成氯代烃、脱水、异构 化或聚合等副反应; • Lewis酸催化剂可以减少副反应,但往往需要更高 Lewis酸 的反应温度。
12
有机质子酸
H OH H O OH TsOH/PhH ∆ , 10min, 97% H O O H
R'OH + RCOCl
RCOOR' + HCl
31
酰氯活性比较
酰化反应

第三节 氮原子上的酰化反应
一、脂肪胺的N-酰化反应 1. 羧酸为酰化剂 (1)反应通式
(2) 反应机理
由于胺具有碱性,可以与羧酸成盐
成盐后,胺的亲核性减弱。一般不宜用羧酸 为酰化剂对胺进行直接酰化 高温下,铵盐会分解
把羧酸转化为活性成分, 酰化条件温和,产率较高
(3)应用特点
① DCC为催化剂的酰化反应
X, Y = NO2, CHO, COR, COOR, CN, CONHR ② 酰化剂的影响 酰氯,酸酐,酯,活性酰胺 ③ 催化剂的影响 碱,所用碱的碱性视亚甲基的酸性而定,X, Y的吸电子能力越弱,所需碱的碱性越强
(4)应用特点 ① β-酮酸酯的制备
② 不对称酮的制备
2. Claisen反应和Dieckmann反应
(1)反应通式
酯为酰化剂
(2)反应机理
有时不存在这种情况
后处理
(3) 影响因素
① 酯结构的影响 如果两种都含有α活泼氢的不同酯进行 claisen反应,将有四种产物,体系复杂, 缺乏实际意义 通常会通过选择同一种酯进行claisen反 应,或选择其一种酯不含有α活泼氢使其 只能提供酯羰基
② 催化剂的影响 i. 催化剂的种类选择 催化剂碱的选择取决于酯α氢的酸性, 如果酸性足够,常选用与酯相应的醇钠 α氢的酸性较弱时,可选用碱性较强的
2. Hoesch反应
(1)反应通式
(2) 反应机理
(3) 影响因素
① 被酰化物 电子密度高的芳环或芳杂环 供电子基多 取代的芳环 供电子基单 取代的芳环
需强活性的腈
② 腈结构的影响
α-碳上吸电子基越多,腈的活性越高 ③ 催化剂 Lewis酸:AlCl3, ZnCl2, FeCl3, BX3
酰化反应名词解释

酰化反应名词解释
1.酰化反应或称酰基化反应,是在有机化学中氢或另一基团被酰基
取代的反应,提供酰基的化合物称为酰化剂。
2.氧原子上的酰化反应为氧原子上的酰化反应是指醇或酚分子中的
羟基氢原子被酰基所取代而生成酯的反应,因此又叫酯化反应。
规律为其反应难易程度取决于醇或酚的亲核能力、位阻及酰化剂的活性。
3.酰化反应在有机物分子中的氧、氮、碳、硫等原子上引入酰基的
反应
4.酰化反应可用下式表示:RCOZ SH→RCOS HZ其中RCOZ是酰化剂,
Z代表OCOR,OH,OR 3等。
SH是酰化的化合物,并且S表示RO,R”NH,Ar等。
酰化反应-碳原子上的酰化反应

溶剂和添加剂
溶剂和添加剂对酰化反应的影响也很 大。选择合适的溶剂和添加剂可以促 进反应的进行,提高产物的纯度和收 率。
04
碳原子酰化反应的合成 策略
选择性碳酰化反应
选择性碳酰化反应是指在特定条件下,优先在目标分子中的特定碳原子上进行酰化反应,以获得所需 产物。这种反应通常需要使用特异的催化剂或试剂,控制反应条件,如温度、压力、溶剂等,以确保 选择性。
环境影响
传统的碳酰化反应通常需要使 用有害的有机溶剂和大量的能 源,对环境造成压力。
反应条件苛刻
许多碳酰化反应需要在高温或 高压下进行,增加了操作的难
度和成本。
前景展望
新反应路径探索
随着绿色化学的发展,研究者正在寻找 更环保、更温和的碳酰化反应条件和路
径。
模块化反应
通过模块化反应策略,将不同的官能 团组合在一起,实现一锅多步反应,
提高合成效率。
高选择性催化剂
开发高选择性催化剂是解决选择性难 题的重要方向,有助于在复杂体系中 实现单一组分的酰化。
计算机辅助设计
利用计算机辅助设计技术,预测和优 化反应条件,提高碳酰化反应的效率 和选择性。
THANKS FOR WATCHING
感谢您的观看
碳原子酰化反应的定义
01
碳原子酰化反应是指有机化合物 中的碳原子与酰基(如羧基)结 合,生成新的有机化合物的化学 反应。
02
在碳原子酰化反应中,酰基通常 来自羧酸或其他酰化试剂,如酸 酐、酰氯等。
碳原子酰化反应的机理
碳原子酰化反应通常通过亲核取代机理进行,其中碳原子上的氢原子被酰基取代。
反应过程中,酰化试剂首先与强酸(如硫酸、磷酸等)反应,生成亲电的酰基正离子,然后与碳原子上的电子云密度较高的 区域结合,形成新的碳-酰基键。
溶剂和添加剂对酰化反应的影响也很 大。选择合适的溶剂和添加剂可以促 进反应的进行,提高产物的纯度和收 率。
04
碳原子酰化反应的合成 策略
选择性碳酰化反应
选择性碳酰化反应是指在特定条件下,优先在目标分子中的特定碳原子上进行酰化反应,以获得所需 产物。这种反应通常需要使用特异的催化剂或试剂,控制反应条件,如温度、压力、溶剂等,以确保 选择性。
环境影响
传统的碳酰化反应通常需要使 用有害的有机溶剂和大量的能 源,对环境造成压力。
反应条件苛刻
许多碳酰化反应需要在高温或 高压下进行,增加了操作的难
度和成本。
前景展望
新反应路径探索
随着绿色化学的发展,研究者正在寻找 更环保、更温和的碳酰化反应条件和路
径。
模块化反应
通过模块化反应策略,将不同的官能 团组合在一起,实现一锅多步反应,
提高合成效率。
高选择性催化剂
开发高选择性催化剂是解决选择性难 题的重要方向,有助于在复杂体系中 实现单一组分的酰化。
计算机辅助设计
利用计算机辅助设计技术,预测和优 化反应条件,提高碳酰化反应的效率 和选择性。
THANKS FOR WATCHING
感谢您的观看
碳原子酰化反应的定义
01
碳原子酰化反应是指有机化合物 中的碳原子与酰基(如羧基)结 合,生成新的有机化合物的化学 反应。
02
在碳原子酰化反应中,酰基通常 来自羧酸或其他酰化试剂,如酸 酐、酰氯等。
碳原子酰化反应的机理
碳原子酰化反应通常通过亲核取代机理进行,其中碳原子上的氢原子被酰基取代。
反应过程中,酰化试剂首先与强酸(如硫酸、磷酸等)反应,生成亲电的酰基正离子,然后与碳原子上的电子云密度较高的 区域结合,形成新的碳-酰基键。
酰化反应

酰化反应
定义:有机化合物分子中的碳、氧、氮、硫等原子上引入 酰基的反应称为酰化反应。 用途:制备特定活性化合物 结构修饰和前体药物 羟基、胺基等基团的保护 直接酰化反应 酰化反应: 间接酰化反应
直接酰化反应是指将酰基直接引入到有机化合物分子中,由 于反应机理不同,分成三类:
• 直接亲电酰化
• 直接亲核酰化 • 直接自由基酰化
O 2N O
+
R -C -O R '
OH O 2N
NO2
3. 酸酐为酰化剂
① 质子酸催化
O R C O R C O R C O O O R C OH R O OH
H
C
+R
C
② Lewis酸催化
O R C O O
O
R C O
AlCl3
R
C
+ R C
OAlCl3
③ 其它催化剂催化
例:镇痛药阿法罗定(安那度尔)的合成
R R'
H N C Cl O P O C l2
R R' N CH Cl
R R' N CH Cl O P O C l2 N R '' 2
N R '' 2 C l H CH Cl N R '' 2 NRR'
N R '' 2 -H CH Cl NRR' H 2O
CHO + R R 'N H 2 C l
H3 C H3 C
RCOOH
R
C O
C Cl
碳酸酯
4. 酰卤为酰化剂
O RC X + R'OH RCOOR' + HX
定义:有机化合物分子中的碳、氧、氮、硫等原子上引入 酰基的反应称为酰化反应。 用途:制备特定活性化合物 结构修饰和前体药物 羟基、胺基等基团的保护 直接酰化反应 酰化反应: 间接酰化反应
直接酰化反应是指将酰基直接引入到有机化合物分子中,由 于反应机理不同,分成三类:
• 直接亲电酰化
• 直接亲核酰化 • 直接自由基酰化
O 2N O
+
R -C -O R '
OH O 2N
NO2
3. 酸酐为酰化剂
① 质子酸催化
O R C O R C O R C O O O R C OH R O OH
H
C
+R
C
② Lewis酸催化
O R C O O
O
R C O
AlCl3
R
C
+ R C
OAlCl3
③ 其它催化剂催化
例:镇痛药阿法罗定(安那度尔)的合成
R R'
H N C Cl O P O C l2
R R' N CH Cl
R R' N CH Cl O P O C l2 N R '' 2
N R '' 2 C l H CH Cl N R '' 2 NRR'
N R '' 2 -H CH Cl NRR' H 2O
CHO + R R 'N H 2 C l
H3 C H3 C
RCOOH
R
C O
C Cl
碳酸酯
4. 酰卤为酰化剂
O RC X + R'OH RCOOR' + HX
(8)酰化反应

(3) 酰氯:碳酸二酰氯(光气)、乙酰氯、苯甲酰氯、三聚氰酰氯、 苯磺酰氯、三氯氧磷和三氯化磷等。
(4) 羧酸酯:乙酰乙酸乙酯、羧酸酯、氯甲酸三氯甲酯(双光气) 和二(三氯甲基)碳酸酯(三光气)等。 (5) 酰胺:如尿素和N,N-二甲基甲酰胺等。 (6) 其他:如乙烯酮和双乙烯酮等。
2
8.1.2 酰化剂的反应活性 酰化是亲电取代反应,酰化剂以亲电质点参与反应,最常 用的酰化剂是羧酸、相应的酸酐或酰氯。羧酸、相应的酸酐和
第八章 酰化反应
8.1概述 8.2 N-酰化反应 8.3 C-酰化反应
第八章
8.1 概述
酰化反应
酰化指的是有机分子中与碳原子、氮原子、磷原子、氧原子 或硫原子相连的氢被酰基所取代的反应。氨基氮原子上的氢被 酰基所取代的反应称N-酰化,生成的产物是酰胺。羟基氧原子 上的氢被酰基取代的反应称O-酰化,生成的产物是酯,故又称 酯化。碳原子上的氢被酰基取代的反应称C-酰化,生成产物是 醛、酮或羧酸。 反应通式:
的N-酰化。反应结束后蒸出多余的含水乙酸 ,再减压蒸馏出
多余的乙酸,即得产品。
(2) 溶剂共沸蒸馏脱水酰化法:此法主要用于甲酸(b.p.100.8℃)
与芳胺的N-酰化。由于甲酸与水的沸点相近,不能采用一般精 馏法分离,必须加入甲苯、甲二苯等惰性溶剂,用共沸蒸馏带 出反应生成的水。
7
O O H -C -O H + NH2
CONH
+
NO2 NO2
+ HCl
NO2 NO2
用芳磺酰氯的N-酰化可得到一系列的芳磺酰胺类药物中间体, 一般可在水介质中、在弱碱下进行。
14
CH3 S O 2C l H 2N
C a (O H ) 2 /H 2 O 60~62℃
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
54
4. 酰氯为酰化剂
(1)反应通式 (2)反应机理
55
(3)影响因素
A 酰氯结构的影响
■ 脂肪族酰氯 > 芳酰氯 ■ 羰基的α位连有吸电子基团时,活性增强 ■ 芳酰氯邻位有取代基时,活性降低
B 催化剂的影响
■ 有机碱:吡啶、三乙胺、N,N-二甲基苯胺、N,N-二甲基吡啶 ■ 无机碱:NaOH、KOH、Na2CO3、K2CO3 ■ 采用吡啶类碱不仅可以中和反应生成的HCl,还有催化作用,增强活性
S
R CH S
n-C4H9Li
S RC Li S
H2O/HgCl22
第二节 氧原子上的酰化反应
• 醇的O-酰化反应 • 酚的O-酰化反应 • 醇、酚羟基的保护
13
一、醇的O-酰化反应
1. 羧酸为酰化剂
(1)反应通式
(2)反应机理
提高收率:
■ 增加反应物浓度
19
(iii) Vesley法 采用强酸型离子交换树脂加硫酸钙 催化能力强、收率高、条件温和
Vesley法
CH3COOH + CH3OH 10min
CH3COOCH3 (94%)
20
(iv) DCC法( dicyclohexylcarbodiimide,二环己基碳二亚胺)
21
DCC类似物:
CH3-N=C=N-C(CH3)3
N
r.t., 12 min
(96%)
H3C
CH3 COOC(CH3)3
金属离子Hg2+、Ag+、Cu+、Cu2+等对反应有催化作用
35
(ii) 羧酸吡啶酯
36
(iii) 羧酸三硝基苯酯( 一锅煮合成法 )
37
(iv) 其他活性酯
羧酸异丙烯酯
羧酸二甲硫基烯醇酯
1-羟基苯并三唑(HOBt)的羧酸酯
多羟基化合物 ,一般采用以硅藻土为载体的Lewis酸或强酸型离子交换树脂。
31
(4)应用特点
反应条件温和,可利用减压蒸馏迅速将生成的醇蒸出,反应温度较低,反应时间较短 A 羧酸甲酯或羧酸乙酯的应用
32
B 活性酯的应用 一些取代的酚酯、芳杂环酯和硫醇酯的活性较强, 可用于活性较差的醇和结构复杂的化合物的酯化
24
例:镇痛药盐酸哌替啶的合成 例:降血脂药氯贝丁酯的合成
25
B 仲醇酯的制备:仲醇羟基活性中等,一般需加催化剂 构型翻转的应 用
26
C 叔醇酯的制备:叔醇羟基活性较差,反应中一般需加入DCC类催化剂
27
D 内酯的制备:一般分子内酰化优于分子间酰化
28
2. 羧酸酯为酰化剂
(1)反应通式 (2)反应机理
■ 减少生成物的浓度
■ 除去反应中生成的水
■ 添加催化剂,增加反应物的活性
14
(3)影响因素
A 羧酸结构的影响
羧酸的酸性越强,其酰化能力越强
空间位阻的影响
15
B 醇结构的影响
醇羟基的亲核能力越强,其反应活性越强 甲醇 > 伯醇 > 仲醇 > 叔醇、烯丙醇、苄醇
16
C 催化剂的影响
a 用来提高羧酸反应活性的催化剂
38
羧酸异丙烯酯:
n-C18H37
A
C4H9-n C COOH + H3C C C7H15-n
Zn2+
CH
175℃
n-C18H37 OH/H+ △ ,6min
C4H9-n n-C18H37 C COO C18H37-n
C7H15-n
92%
n-C18H37
O + H3C C
C4H9-n C COO C7H15-n
羧酸是一个弱酰化剂,与胺高温下脱水生成酰胺(注意: 胺与羧酸成盐后亲核能力下降)。高温下脱水的目的是打 74 破平衡,但对热敏感的化合物则不适用于此法。
(3)应用实例
盐酸罗匹尼罗
卡多曲
舒必利
75
活性磷酸酯为催化剂:活化能力强,反应条件温和,光学化合物不发生消旋化
EtO O P
EtO O N NN
56
C 溶剂的影响
■ 氯仿、乙醚、THF、DMF、DMSO等作为溶剂 ■ 过量的酰氯或醇作为溶剂
D 温度的影响
通常在低温下将酰氯滴加入反应体系中,室温反应,较难酰化醇可升温回流反应
57
(4)应用特点
A 选择性酰化
i. 1,2-二醇的酰化反应 : ii.非1,2-二醇的酰化反应 :
58
B 仲醇的酰化
BDP
H
H
CbzNH C COOH + H2N C COOMe
CH2Ph
CH2OH
BDP TEA/DMF
rt, 20min
H
H
采用羧酸、羧酸酯和酰胺等为酰化剂的酰化反应趋向于双分子历程进行。
9
(3)酰化剂的反应活性
(活性酯和活性酰胺除外) (4)被酰化物的活性
10
2.亲核反应机理
O CO
O
NH4Cl
s-BuLi -110 0C
s-BuC
Li
-110 0C
OH C Bu-s O
HS R CHO +
HS
R`X
RS
C
- LiX R S
29
(3)影响因素
A 羧酸酯结构的影响
■ R基团的影响:α位连有吸电子基团或不饱和烃基或芳基时,活性较强 ■ R1基团的影响:RCOOAr > RCOOCH3 > RCOOC2H5
B 醇结构的影响
醇羟基的亲核能力越强,其反应活性越强 甲醇 > 伯醇 > 仲醇 > 叔醇、烯丙醇、苄醇
30
C 催化剂的影响 含有碱性基团的醇或叔醇进行酯交换反应,一般适宜采用醇钠等碱性催化剂。
(i) 羧酸硫醇酯(气味难闻,有毒性)
33
34
OO
OH
CH3
COOH
HO
CH3
N SH
H3C
CH3
COCl
N S
N 2
(V)
CH3
N S
N 2
(VI)
O (IV) 或(V)Ph3P/HOAc/THF O
OO
OH O CH3
O
O
O (75%)
CH3
CH3
H3C
CS O CH3
(CH3)3COH/CH3CN/CuCl2
(ii)羧酸-磺酸混合酸酐
适用于对酸敏感的醇,多用于大位阻的酯及酰胺的制备!
51
(iii)羧酸-磷酸混合酸酐(一锅煮合成法,条件温和)
52
(iv)羧酸-多取代苯甲酸混合酸酐
53
(iv)其他混合酸酐 羧酸与氯代甲酸酯(ClCOOR)、光气(ClCOCl)、草酰氯(COCl)2、氧氯化磷 (POCl3)等可形成混合酐,从而提高酰化能力,用于结构复杂的酯化反应。
R-N=C=N-R CH3CH2-N=C=N-(CH2)3-NEt2
(CH3)2CH-N=C=N-CH(CH3)2
N C N (CH2)2 N O
22
(v)偶氮二羧酸二乙酯法(DEAD)(Mitsunobu reaction)
23
(4)应用特点
A 伯醇酯的制备:伯醇羟基活性最大,对伯醇进行选择性酰化或保护 伯、仲醇的选 择性
46
C 反应溶剂的影响
■ 采用乙酸酐、丙酸酐等简单酸酐为酰化剂时,通常以酸酐本身作为溶剂 ■ 作为催化剂的吡啶、三乙胺也可作为溶剂 ■ 其他溶剂:水、二氯甲烷、氯仿、石油醚、乙腈、乙酸乙酯、苯、甲苯等
D 反应温度的影响
通常在低温下将酰化剂滴加入反应体系中,然后缓慢升温至室温,或加热回流
47
(4)应用特点
质子酸 Lewis酸 Vesley法
DCC
b 用来提高醇反应活性的催化剂 (偶氮二羧酸二乙酯法)
17
(i) 质子酸催化法 ■无机酸:浓硫酸、磷酸、氯化氢气体、高氯酸、四氟硼酸等 ■有机酸:苯磺酸,萘磺酸、对甲苯磺酸等 ■简单,但对于位阻大的醇及叔醇容易脱水。
18
(ii) Lewis酸催化法 (BF3、AlCl3、FeCl3、CoCl2、SnCl4 等)
H2C C O + t-BuOH
CH3COOBu-t 86-89%
对于某些难以酰化的叔羟基,酚羟基以及位阻较大的羟基采用本法
62
63
二、酚的O-酰化反应
(1)反应通式
(2)反应机理:
酰化剂对酚O原子的亲电反应机理
(3)影响因素
A 酰化剂的影响 B 酚结构的影响
64
(4)应用特点
A 酰氯为酰化剂
44
(ii)碱催化:常用吡啶(Py)、对二甲氨基吡啶(DMAP)、4-吡咯烷基吡啶 (PPY)、三乙胺(TEA)及醋酸钠(CH3COONa)等。 4-吡咯烷基吡啶对酸酐催 化能力强,在有位阻的醇的酰化中均取得较好效果。
45
(iii)三氟甲磺酸盐:Sc(CF3SO3)3 、 Cu(CF3SO3)2 、 Bi(CF3SO3)3
酰化反应
Acylation Reaction
石磊 E-mail: shilei@
1
概述
• 1 定义:在有机分子中的碳,氧,氮,硫等原子上引 入酰基的反应
2
• 酰基:从含氧的有机酸或无机酸分子中去掉一个或几个 羟基后所剩余的基团
3
4
• 2 应用: • 药物本身有酰基 • 活性化合物的必要官能团 • 结构修饰和前体药物 • 羟基、胺基等基团的保护
RCONR'R'' + HX
SN2 RCOX + R'R''NH
4. 酰氯为酰化剂
(1)反应通式 (2)反应机理
55
(3)影响因素
A 酰氯结构的影响
■ 脂肪族酰氯 > 芳酰氯 ■ 羰基的α位连有吸电子基团时,活性增强 ■ 芳酰氯邻位有取代基时,活性降低
B 催化剂的影响
■ 有机碱:吡啶、三乙胺、N,N-二甲基苯胺、N,N-二甲基吡啶 ■ 无机碱:NaOH、KOH、Na2CO3、K2CO3 ■ 采用吡啶类碱不仅可以中和反应生成的HCl,还有催化作用,增强活性
S
R CH S
n-C4H9Li
S RC Li S
H2O/HgCl22
第二节 氧原子上的酰化反应
• 醇的O-酰化反应 • 酚的O-酰化反应 • 醇、酚羟基的保护
13
一、醇的O-酰化反应
1. 羧酸为酰化剂
(1)反应通式
(2)反应机理
提高收率:
■ 增加反应物浓度
19
(iii) Vesley法 采用强酸型离子交换树脂加硫酸钙 催化能力强、收率高、条件温和
Vesley法
CH3COOH + CH3OH 10min
CH3COOCH3 (94%)
20
(iv) DCC法( dicyclohexylcarbodiimide,二环己基碳二亚胺)
21
DCC类似物:
CH3-N=C=N-C(CH3)3
N
r.t., 12 min
(96%)
H3C
CH3 COOC(CH3)3
金属离子Hg2+、Ag+、Cu+、Cu2+等对反应有催化作用
35
(ii) 羧酸吡啶酯
36
(iii) 羧酸三硝基苯酯( 一锅煮合成法 )
37
(iv) 其他活性酯
羧酸异丙烯酯
羧酸二甲硫基烯醇酯
1-羟基苯并三唑(HOBt)的羧酸酯
多羟基化合物 ,一般采用以硅藻土为载体的Lewis酸或强酸型离子交换树脂。
31
(4)应用特点
反应条件温和,可利用减压蒸馏迅速将生成的醇蒸出,反应温度较低,反应时间较短 A 羧酸甲酯或羧酸乙酯的应用
32
B 活性酯的应用 一些取代的酚酯、芳杂环酯和硫醇酯的活性较强, 可用于活性较差的醇和结构复杂的化合物的酯化
24
例:镇痛药盐酸哌替啶的合成 例:降血脂药氯贝丁酯的合成
25
B 仲醇酯的制备:仲醇羟基活性中等,一般需加催化剂 构型翻转的应 用
26
C 叔醇酯的制备:叔醇羟基活性较差,反应中一般需加入DCC类催化剂
27
D 内酯的制备:一般分子内酰化优于分子间酰化
28
2. 羧酸酯为酰化剂
(1)反应通式 (2)反应机理
■ 减少生成物的浓度
■ 除去反应中生成的水
■ 添加催化剂,增加反应物的活性
14
(3)影响因素
A 羧酸结构的影响
羧酸的酸性越强,其酰化能力越强
空间位阻的影响
15
B 醇结构的影响
醇羟基的亲核能力越强,其反应活性越强 甲醇 > 伯醇 > 仲醇 > 叔醇、烯丙醇、苄醇
16
C 催化剂的影响
a 用来提高羧酸反应活性的催化剂
38
羧酸异丙烯酯:
n-C18H37
A
C4H9-n C COOH + H3C C C7H15-n
Zn2+
CH
175℃
n-C18H37 OH/H+ △ ,6min
C4H9-n n-C18H37 C COO C18H37-n
C7H15-n
92%
n-C18H37
O + H3C C
C4H9-n C COO C7H15-n
羧酸是一个弱酰化剂,与胺高温下脱水生成酰胺(注意: 胺与羧酸成盐后亲核能力下降)。高温下脱水的目的是打 74 破平衡,但对热敏感的化合物则不适用于此法。
(3)应用实例
盐酸罗匹尼罗
卡多曲
舒必利
75
活性磷酸酯为催化剂:活化能力强,反应条件温和,光学化合物不发生消旋化
EtO O P
EtO O N NN
56
C 溶剂的影响
■ 氯仿、乙醚、THF、DMF、DMSO等作为溶剂 ■ 过量的酰氯或醇作为溶剂
D 温度的影响
通常在低温下将酰氯滴加入反应体系中,室温反应,较难酰化醇可升温回流反应
57
(4)应用特点
A 选择性酰化
i. 1,2-二醇的酰化反应 : ii.非1,2-二醇的酰化反应 :
58
B 仲醇的酰化
BDP
H
H
CbzNH C COOH + H2N C COOMe
CH2Ph
CH2OH
BDP TEA/DMF
rt, 20min
H
H
采用羧酸、羧酸酯和酰胺等为酰化剂的酰化反应趋向于双分子历程进行。
9
(3)酰化剂的反应活性
(活性酯和活性酰胺除外) (4)被酰化物的活性
10
2.亲核反应机理
O CO
O
NH4Cl
s-BuLi -110 0C
s-BuC
Li
-110 0C
OH C Bu-s O
HS R CHO +
HS
R`X
RS
C
- LiX R S
29
(3)影响因素
A 羧酸酯结构的影响
■ R基团的影响:α位连有吸电子基团或不饱和烃基或芳基时,活性较强 ■ R1基团的影响:RCOOAr > RCOOCH3 > RCOOC2H5
B 醇结构的影响
醇羟基的亲核能力越强,其反应活性越强 甲醇 > 伯醇 > 仲醇 > 叔醇、烯丙醇、苄醇
30
C 催化剂的影响 含有碱性基团的醇或叔醇进行酯交换反应,一般适宜采用醇钠等碱性催化剂。
(i) 羧酸硫醇酯(气味难闻,有毒性)
33
34
OO
OH
CH3
COOH
HO
CH3
N SH
H3C
CH3
COCl
N S
N 2
(V)
CH3
N S
N 2
(VI)
O (IV) 或(V)Ph3P/HOAc/THF O
OO
OH O CH3
O
O
O (75%)
CH3
CH3
H3C
CS O CH3
(CH3)3COH/CH3CN/CuCl2
(ii)羧酸-磺酸混合酸酐
适用于对酸敏感的醇,多用于大位阻的酯及酰胺的制备!
51
(iii)羧酸-磷酸混合酸酐(一锅煮合成法,条件温和)
52
(iv)羧酸-多取代苯甲酸混合酸酐
53
(iv)其他混合酸酐 羧酸与氯代甲酸酯(ClCOOR)、光气(ClCOCl)、草酰氯(COCl)2、氧氯化磷 (POCl3)等可形成混合酐,从而提高酰化能力,用于结构复杂的酯化反应。
R-N=C=N-R CH3CH2-N=C=N-(CH2)3-NEt2
(CH3)2CH-N=C=N-CH(CH3)2
N C N (CH2)2 N O
22
(v)偶氮二羧酸二乙酯法(DEAD)(Mitsunobu reaction)
23
(4)应用特点
A 伯醇酯的制备:伯醇羟基活性最大,对伯醇进行选择性酰化或保护 伯、仲醇的选 择性
46
C 反应溶剂的影响
■ 采用乙酸酐、丙酸酐等简单酸酐为酰化剂时,通常以酸酐本身作为溶剂 ■ 作为催化剂的吡啶、三乙胺也可作为溶剂 ■ 其他溶剂:水、二氯甲烷、氯仿、石油醚、乙腈、乙酸乙酯、苯、甲苯等
D 反应温度的影响
通常在低温下将酰化剂滴加入反应体系中,然后缓慢升温至室温,或加热回流
47
(4)应用特点
质子酸 Lewis酸 Vesley法
DCC
b 用来提高醇反应活性的催化剂 (偶氮二羧酸二乙酯法)
17
(i) 质子酸催化法 ■无机酸:浓硫酸、磷酸、氯化氢气体、高氯酸、四氟硼酸等 ■有机酸:苯磺酸,萘磺酸、对甲苯磺酸等 ■简单,但对于位阻大的醇及叔醇容易脱水。
18
(ii) Lewis酸催化法 (BF3、AlCl3、FeCl3、CoCl2、SnCl4 等)
H2C C O + t-BuOH
CH3COOBu-t 86-89%
对于某些难以酰化的叔羟基,酚羟基以及位阻较大的羟基采用本法
62
63
二、酚的O-酰化反应
(1)反应通式
(2)反应机理:
酰化剂对酚O原子的亲电反应机理
(3)影响因素
A 酰化剂的影响 B 酚结构的影响
64
(4)应用特点
A 酰氯为酰化剂
44
(ii)碱催化:常用吡啶(Py)、对二甲氨基吡啶(DMAP)、4-吡咯烷基吡啶 (PPY)、三乙胺(TEA)及醋酸钠(CH3COONa)等。 4-吡咯烷基吡啶对酸酐催 化能力强,在有位阻的醇的酰化中均取得较好效果。
45
(iii)三氟甲磺酸盐:Sc(CF3SO3)3 、 Cu(CF3SO3)2 、 Bi(CF3SO3)3
酰化反应
Acylation Reaction
石磊 E-mail: shilei@
1
概述
• 1 定义:在有机分子中的碳,氧,氮,硫等原子上引 入酰基的反应
2
• 酰基:从含氧的有机酸或无机酸分子中去掉一个或几个 羟基后所剩余的基团
3
4
• 2 应用: • 药物本身有酰基 • 活性化合物的必要官能团 • 结构修饰和前体药物 • 羟基、胺基等基团的保护
RCONR'R'' + HX
SN2 RCOX + R'R''NH