2019届高考数学二轮复习压轴大题高分练(三)解析几何C组
2019年中考数学二轮复习几何探究题(压轴题) 综合练习 (含答案)

2019年中考数学二轮复习几何探究题(压轴题)综合练习1. (1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD).把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF.求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.2.如图①,②,③分别以△ABC的AB和AC为边向△ABC外作正三角形(等边三角形)、正四边形(正方形)、正五边形,BE和CD相交于点O.(1)在图①中,求证:△ABE≌△ADC.(2)由(1)证得△ABE≌△ADC,由此可推得在图①中∠BOC=120°,请你探索在图②中∠BOC的度数,并说明理由或写出证明过程.(4)由此推广到一般情形(如图④),分别以△ABC 的AB 和AC 为边向△ABC 外作正n 边形,BE 和CD 仍相交于点O ,猜想∠BOC 的度数为____________________(用含n 的式子表示).图① 图② 图③ 图④3.已知正方形ABCD 的边长为1,点P 为正方形内一动点,若点M 在AB 上,且满足△PBC ∽△PAM ,延长BP 交AD 于点N ,连接CM.(1)如图①,若点M 在线段AB 上,求证:AP ⊥BN ;AM =AN.(2)①如图②,在点P 运动过程中,满足△PBC ∽△PAM 的点M 在AB 的延长线上时,AP ⊥BN 和AM =AN 是否成立(不需说明理由)?②是否存在满足条件的点P ,使得PC =12?请说明理由.4. 如图①,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图②,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC绕点A逆时针旋转45°时,如图③,延长DB交CF于点H.①求证:BD⊥CF;②当AB=2,AD=32时,求线段DH的长.图①图②图③5. 已知矩形ABCD中AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1)如图①,已知折痕与边BC交于点O,连接AP、OP、OA,若△OCP与△PDA的面积比为1∶ 4,求边CD的长;(2)如图②,在(1)的条件下擦去AO、OP,连接BP,动点M在线段AP上(点M不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E,试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明变化规律,若不变,求出线段EF的长度.图①图②6. 如图①,矩形ABCD 中,AB =2,BC =5,BP =1,∠MPN =90°,将∠MPN 绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB(或AD)于点E ,PN 交边AD(或CD)于点F ,当PN 旋转至PC 处时,∠MPN 的旋转随即停止.(1)特殊情形:如图②,发现当PM 过点A 时,PN 也恰好过点D , 此时,△ABP________△PCD(填“≌”或“∽”);(2)类比探究:如图③,在旋转过程中,PEPF 的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE =t ,△EPF 的面积为S ,试确定S 关于t 的函数关系式;当S =4.2时,求所对应的t 值.7. 阅读理解:我们知道,四边形具有不稳定性,容易变形.如图①,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把1sinα的值叫做这个平行四边形的变形度.(1)若矩形发生形变后的平行四边形有一个内角是120°,则这个平行四边形的变形度是________;猜想证明:(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2,1sinα之间的数量关系,并说明理由;拓展探究:(3)如图②,在矩形ABCD中,E是AD边上的一点,且AB2=AE·AD,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD的面积为4m(m>0),平行四边形A1B1C1D1的面积为2m(m>0),试求∠A1E1B1+∠A1D1B1的度数.8. 如图,在Rt△ABC中,∠ACB=90°,AC=5 cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2 cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒 3 cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.9. 已知:如图,在矩形ABCD中,AB=6 cm,BC=8 cm.对角线AC,BD交于点O,点P从点A出发,沿AD方向匀速运动,速度为1 cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1 cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD 于点F.设运动时间为t(s)(0<t<6),解答下列问题:(2)设五边形OECQF 的面积为S(cm 2),试确定S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使S 五边形OECQF ∶S △ACD =9∶16?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使OD 平分∠COP ?若存在,求出t 值;若不存在,请说明理由.10. 如图,已知一个直角三角形纸片ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上的点,连接EF.(1)如图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使MF ∥CA. ①试判断四边形AEMF 的形状,并证明你的结论; ②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AFBF的值.11. 已知AC ,EC 分别为四边形ABCD 和EFCG 的对角线,点E 在△ABC 内,∠CAE +∠CBE =90°. (1)如图①,当四边形ABCD 和EFCG 均为正方形时,连接BF. ①求证:△CAE ∽△CBF ;②若BE =1,AE =2,求CE 的长;(2)如图②,当四边形ABCD 和EFCG 均为矩形,且AB BC =EFFC =k 时,若BE =1,AE =2,CE =3,求k 的值;(3)如图③,当四边形ABCD 和EFCG 均为菱形,且∠DAB =∠GEF =45°时,设BE =m ,AE =n ,CE =p ,试探究m ,n ,p 三者之间满足的等量关系(直接写出结果,不必写出解答过程).12. 如图①,菱形ABCD 中,已知∠BAD =120°,∠EGF =60°,∠EGF 的顶点G 在菱形对角线AC 上运动,角的两边分别交边BC 、CD 于点E 、F.图①(1)如图②,当顶点G 运动到与点A 重合时,求证:EC +CF =BC ; (2)知识探究:①如图③,当顶点G 运动到AC 中点时,探究线段EC 、CF 与BC 的数量关系;②在顶点G 的运动过程中,若ACCG =t ,请直接写出线段EC 、CF 与BC 的数量关系(不需要写出证明过程);(3)问题解决:如图④,已知菱形边长为8,BG =7,CF =65,当t >2时,求EC 的长度.13.某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 右侧作正方形ADEF ,连接CF.(1)观察猜想如图①,当点D 在线段BC 上时,①BC 与CF 的位置关系为:____________. ②BC ,CD ,CF 之间的数量关系为:____________(将结论直接写在横线上).(2)数学思考如图②,当点D 在线段CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明. (3)拓展延伸如图③,当点D 在线段BC 的延长线上时,延长BA 交CF 于点G ,连接GE.若已知AB =22,CD =14BC ,请求出GE 的长.14. 在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接..写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接..写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.备用图15.问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动.如图①,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现(1)将图①中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图②所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是________;(2)创新小组将图①中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图③所示的△AC′D,连接DB、C′C,得到四边形BCC′D,发现它是矩形.请你证明这个结论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图③中BC=13 cm,AC=10 cm,然后提出一个问题:将△AC′D沿着射线DB方向平移a cm,得到△A′C″D′,连接BD′,CC″,使四边形BCC″D′恰好为正方形,求a的值.请你解答此问题;(4)请你参照以上操作,将图①中的△ACD在同一平面内进行一次平移,得到△A′C′D,在图④中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.CB 上,且CD ∶DB =2∶1,OB 交AD 于点E ,平行于x 轴的直线l 从原点O 出发,以每秒1个单位长度的速度沿y 轴向上平移,到C 点时停止;l 与线段OB ,AD 分别相交于M ,N 两点,以MN 为边作等边△MNP(点P 在线段MN 的下方),设直线l 的运动时间为t(秒),△MNP 与△OAB 重叠部分的面积为S(平方单位). (1)直接写出点E 的坐标; (2)求S 与t 的函数关系式;(3)是否存在某一时刻t ,使得S =12S △ABD 成立?若存在,请求出此时t 的值;若不存在,请说明理由.备用图17. 已知点O 是△ABC 内任意一点,连接OA 并延长到E ,使得AE =OA ,以OB ,OC 为邻边作▱OBFC ,连接OF ,与BC 交于点H ,再连接EF.(1)如图①,若△ABC 为等边三角形,求证:①EF ⊥BC ;②EF =3BC ;(2)如图②,若△ABC 为等腰直角三角形(BC 为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果;18. 如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为316时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.参考答案1. (1)解:如图①中,∵AB=10,AC=6,AD是BC边上中线,由旋转性质知,BE=AC=6,AD=DE.∴在△ABE中,10-6<AE<10+6,即4<2AD<16,∴2<AD<8;(2)证明:延长FD至M,使FD =MD ,连接ME ,MB.如图①所示. ∵ED ⊥FM ,FD =DM , ∴ME =EF.∵CD =BD ,∠CDF =∠BDM , ∴△CDF ≌△BDM(SAS ), ∴CF =BM.∵BM +BE>ME ,∴BE +CF>EF;(3)解:BE +DF =EF. 理由:延长EB 至点N ,使BN =DF ,图②连接CN ,如图②所示.∵∠EBC +∠D =180°,∠EBC +∠CBN =180° ∴∠D =∠CBN ,∴在△CDF 和△CBN 中, ⎩⎪⎨⎪⎧DF =BN ∠D =∠CBN DC =BC, ∴△CDF ≌△CBN(SAS ),∴CF =CN.∵∠BCD =140°,∠ECF =70°, ∴∠DCF +∠BCE =70°,∴∠BCN +∠BCE =70°,即∠NCE =70°, ∴在△ECF 和△ECN 中, ⎩⎪⎨⎪⎧CF =CN ∠ECF =∠ECN CE =CE, ∴△ECF ≌△ECN(SAS ), ∴EF =EN.∵EB +BN =EN ,∴BE +DF =EF.2. (1)证明:∵△ABD 、△ACE 是等边三角形, ∴AB =AD ,AC =AE ,∠CAE =∠DAB =60°,∴∠CAE +∠BAC =∠DAB +∠BAC ,即∠BAE =∠DAC , 在△ABE 和△ADC 中, ⎩⎪⎨⎪⎧AB =AD ∠BAE =∠DAC AE =AC,(2)解:∠BOC =90°.理由如下: 由(1)得△ABE ≌△ADC ,∴∠EBA =∠CDA.∵∠FBA +∠FDA =180°,∴∠FBA -∠EBA +∠FDA +∠CDA =180°, 即∠FBO +∠FDO =180°.在四边形FBOD 中,∠F =90°,∴∠DOB =360°-∠F -(∠FBO +∠FDO)=90°, ∴∠BOC =90°. (3)解:72°.【解法提示】∠BOC =180°-108°=72°. (4)解:180°-180°·(n -2)n. 【解法提示】由(3)可知,∠BOC 度数应为180°减去正多边形内角度数. 3. (1)证明:∵△PBC ∽△PAM , ∴∠PBC =∠PAM.∵四边形ABCD 是正方形,∴∠PBC +∠PBA =∠CBA =90°, ∴∠PAM +∠PBA =90°, ∴∠APN =90°,即AP ⊥BN , ∴∠BPA =∠BAN =90°. ∵∠ABP =∠NBA ,∴△ABP ∽△NBA ,PB AB =PAAN , ∴AN AB =PA PB .又∵△PAM ∽△PBC , ∴PA PB =AM BC , 故AN AB =AM BC . 又∵AB =BC ,∴AM =AN ;(2)解:①点M 在AB 的延长线上时,AP ⊥BN 和AM =AN 仍然成立;②不存在,理由如下:选择图②,如图,以AB 为直径,作半圆O ,连接OC ,OP ,∵BC =1,OB =12, ∴OC =52.∵由①知,AP ⊥BN ,∴点P 一定在以点O 为圆心、半径长为12的半圆上(A ,B 两点除外). 如果存在点P ,那么OP +PC ≥OC ,则PC ≥5-12.∵5-12>12,故不存在满足条件的点P ,使得PC =12.4. (1)解:BD =CF 成立.理由如下:∵AC =AB ,∠CAF =∠BAD =θ,AF =AD , ∴△ACF ≌△ABD ,∴CF =BD.(2)①证明:由(1)得,△ACF ≌△ABD , ∴∠HFN =∠ADN , 在△HFN 与△ADN 中,∵∠HFN =∠ADN ,∠HNF =∠AND , ∴∠NHF =∠NAD =90°, ∴HD ⊥HF ,即BD ⊥CF.②解:如图,连接DF ,延长AB ,与DF 交于点M , 在△MAD 中,∵∠MAD =∠MDA =45°, ∴∠BMD =90°.在Rt △BMD 与Rt △FHD 中, ∵∠MDB =∠HDF , ∴△BMD ∽△FHD.∵AB =2,AD =32,四边形ADEF 是正方形, ∴MA =MD =322=3,∴MB =MA -AB =3-2=1,BD =MB 2+MD 2=12+32=10, 又∵MD HD =BD FD ,即3HD =106, ∴DH =9105.5. 解:(1)由矩形性质与折叠可知,∠APO =∠B =∠C =∠D =90°, ∴∠CPO +∠DPA =∠DPA +∠DAP =90°, ∴∠DAP =∠CPO , ∴△OCP ∽△PDA , ∴S △OCP S △PDA=(CP DA )2,即14=(CP8)2, ∴CP =4,∵AP 2-DP 2=AD 2, ∴x 2-(x -4)2=82, 解得x =10, 故CD =10.(2)线段EF 的长度始终不发生变化,为2 5.证明:如图,过点N 作NG ⊥PB ,与PB 的延长线相交于点G , ∵AB =AP ,∴∠APB =∠ABP =∠GBN , 在△PME 和△BNG 中, ⎩⎪⎨⎪⎧∠MEP =∠NGB =90°∠MPE =∠NBG MP =NB, ∴△PME ≌△BNG(AAS ), ∴ME =NG ,PE =BG , 在△FME 和△FNG 中, ⎩⎪⎨⎪⎧∠MEF =∠NGF ∠MFE =∠NFG ME =NG, ∴△FME ≌△FNG(AAS ), ∴EF =GF , ∴EF =12EG ,∵BP =BE +EP =BE +GB =EG , ∴EF =12BP ,∵BP =BC 2+CP 2=82+42=45, ∴EF =12BP =2 5.6. 解:(1)△ABP ∽△PCD.【解法提示】∵∠MPN =90°, ∴∠APB +∠DPC =90°, ∵∠B =90°,∴∠APB +∠BAP =90°, ∴∠DPC =∠BAP , 又∵∠B =∠C =90°, ∴△ABP ∽△PCD.(2)在旋转过程中,PE的值为定值.如图,过点F 作FG ⊥BC ,垂足为G.类比(1)可得:△EBP ∽△PGF , ∴EP PF =PB FG ,∵∠A =∠B =∠FGB =90°, ∴四边形ABGF 是矩形, ∴FG =AB =2, ∵BP =1, ∴PE PF =12,即在旋转过程中,PE PF 的值为定值12. (3)由(2)知△EBP ∽△PGF , ∴EB PG =BP GF =12,又∵AE =t , ∴BE =2-t ,∴PG =2(2-t)=4-2t ,∴AF =BG =BP +PG =1+(4-2t)=5-2t , ∴S =S 矩形ABGF -S △AEF -S △BEP -S △PFG=2(5-2t)-12t(5-2t)-12×1×(2-t)-12×2×(4-2t) =t 2-4t +5,即S =t 2-4t +5(0≤t ≤2), 当S =4.2时,4.2=t 2-4t +5,解得:t 1=2-455,t 2=2+455(不合题意,舍去). ∴t 的值是2-45 5. 7. 解:(1)233.【解法提示】sin 120°=32,故这个平行四边形的变形度是233. (2)1sin α=S 1S 2,理由如下: 如图,设矩形的长和宽分别为a ,b ,其变形后的平行四边形的高为h ,则S 1=ab ,S 2=ah ,sin α=hb ,∴S 1S 2=ab ah =b h ,又∵1sin α=b h ,∴1sin α=S 1S 2. (3)由AB 2=AE·AD ,可得A 1B 21=A 1E 1·A 1D 1,即A 1B 1A 1D 1=A 1E 1A 1B 1. 又∵∠B 1A 1E 1=∠D 1A 1B 1, ∴△B 1A 1E 1∽△D 1A 1B 1, ∴∠A 1B 1E 1=∠A 1D 1B 1, ∵A 1D 1∥B 1C 1,∴∠A 1E 1B 1=∠C 1B 1E 1,∴∠A 1E 1B 1+∠A 1D 1B 1=∠C 1B 1E 1+∠A 1B 1E 1=∠A 1B 1C 1. 由(2)结论1sin α=S 1S 2,可得1sin ∠A 1B 1C 1=4m2m=2,∴sin ∠A 1B 1C 1=12, ∴∠A 1B 1C 1=30°, ∴∠A 1E 1B 1+∠A 1D 1B 1=30°.8. 解:(1)根据题意BM =2t ,BN =BC -3t , 而BC =5×tan 60°=5 3.∴当BM =BN 时,2t =53-3t ,解得t =103-15. (2)分类讨论:①当∠BMN =∠ACB =90°时,如图①, △NBM ∽△ABC ,cos B =cos 30°=BMBN , ∴2t 53-3t=32,解得t =157.②当∠BNM =∠ACB =90°时,如图②, △MBN ∽△ABC ,cos B =cos 30°=BNBM , ∴53-3t 2t =32,解得t =52.因此当运动时间是157秒或52秒时,△MBN 与△ABC 相似.(3)由于△ABC 面积是定值,∴当四边形ACNM 面积最小时,△MBN 面积最大,而△MBN 的面积是S =12BM ×BN ×sin B =12×2t ×(53-3t)×12=-32t 2+532t , 由于a =-32<0,∴当t =-5322×(-32)=52时,△MBN 面积最大,最大值是-32×(52)2+532×52=2538,因此四边形ACNM 面积最小值是12×5×53-2538=7538. 9. (1)分三种情况: ①若AP =AO ,在矩形ABCD 中,∵AB =6,BC =8, ∴AC =10, ∴AO =CO =5, ∴AP =5, ∴t =5,②若AP =PO =t , 在矩形ABCD 中, ∵AD ∥BC ,∴∠PAO =∠OCE ,∠APO =∠OEC , 又∵OA =OC , ∴△APO ≌△CEO ,∴PO =OE =t.作AG ∥PE 交BC 于点G ,则四边形APEG 是平行四边形, ∴AG =PE =2t ,GE =AP =t. 又∵EC =AP =t ,∴BG =8-2t.在Rt △ABG 中,根据勾股定理知62+(8-2t)2=(2t)2, 解得t =258.③若OP =AO =5,则t =0或t =8,不合题意,舍去. 综上可知,当t =5或t =258时,△AOP 是等腰三角形. (2)如解图②,作OM ⊥BC ,垂足是M ,作ON ⊥CD ,垂足是N.图②则OM =12AB =3,ON =12BC =4,∴S △OEC =12·CE·OM =12·t·3=32t , S △OCD =12·CD·ON =12·6·4=12. ∵QF ∥AC ,∴△DFQ ∽△DOC , ∴S △DFQ S △DOC=(DQ DC )2,即S △DFQ 12=(t6)2, ∴S △DFQ =13t 2, ∴S 四边形OFQC =12-13t 2,∴S 五边形OECQF =S 四边形OFQC +S △OEC =12-13t 2+32t , 即S =-13t 2+32t +12(0<t <6).(3)存在.理由如下:要使S 五边形OECQF :S △ACD =9∶16, 即(-13t 2+32t +12)∶(12×6×8)=9∶16,解得t 1=3,t 2=1.5,两个解都符合题意,∴存在两个t 值,使S 五边形OECQF ∶S △ACD =9∶16,此时t 1=3,t 2=1.5; (4)存在.理由如下:如解图③,作DI ⊥OP ,垂足是I ,DJ ⊥OC ,垂足是J ,图③作AG ∥PE 交BC 于点G.∵S △OCD =12·OC·DJ =12·5·DJ ,且由(2)知,S △OCD =12, ∴DJ =245.∵OD 平分∠POC ,DI ⊥OP ,DJ ⊥OC , ∴DI =DJ =245=4.8. ∵AG ∥PE , ∴∠DPI =∠DAG. ∵AD ∥BC ,∴∠DAG =∠AGB , ∴∠DPI =∠AGB ,∴Rt △ABG ∽Rt △DIP .由(1)知,在Rt △ABG 中,BG =8-2t , ∴AB DI =BG IP ,∴64.8=8-2t IP , ∴IP =45(8-2t).在Rt △DPI 中,根据勾股定理得 (245)2+[45(8-2t)]2=(8-t)2, 解得t =11239.(t =0不合题意,舍去)10. 解:(1)∵折叠后点A 落在AB 边上的点D 处, ∴EF ⊥AB ,△AEF ≌△DEF , ∴S △AEF =S △DEF .∵S 四边形ECBF =3S △EDF ,∴S 四边形ECBF =3S △AEF .∵S △ACB =S △AEF +S 四边形ECBF ,∴S △ACB =S △AEF +3S △AEF =4S △AEF , ∴S △AEF S △ACB =14. ∵∠EAF =∠BAC ,∠AFE =∠ACB =90°, ∴△AEF ∽△ABC , ∴S △AEF S △ABC =(AE AB )2, ∴(AE AB )2=14. 在Rt △ACB 中,∵∠ACB =90°,AC =4,BC =3, ∴AB =42+32=5, ∴(AE 5)2=14,∴AE =52.(2)图①①四边形AEMF 是菱形.证明:如解图①,∵折叠后点A 落在BC 边上的点M 处, ∴∠CAB =∠EMF ,AE =ME , 又∵MF ∥CA ,∴∠CEM =∠EMF , ∴∠CAB =∠CEM , ∴EM ∥AF ,∴四边形AEMF 是平行四边形.又∵AE =ME ,∴四边形AEMF 是菱形.②如解图①,连接AM ,AM 与EF 交于点O ,设AE =x ,则ME =AE =x ,EC =4-x. ∵∠CEM =∠CAB ,∠ECM =∠ACB =90°, ∴△ECM ∽△ACB. ∴EC AC =EMAB , ∵AB =5,AC =4, ∴4-x 4=x5, 解得x =209,∴AE =ME =209,EC =169.在Rt △ECM 中,∵∠ECM =90°,∴CM 2=EM 2-EC 2, 即CM =EM 2-EC 2=(209)2-(169)2=43. ∵四边形AEMF 是菱形,∴OE =OF ,OA =OM ,AM ⊥EF , ∴S 菱形AEMF =4S △AOE =2OE·AO. 在Rt △AOE 和Rt △ACM 中, ∵tan ∠EAO =tan ∠MAC , ∴OE AO =CM AC. ∵CM =43,AC =4,∴AO =3OE ,∴S 菱形AEMF =6OE 2. 又∵S 菱形AEMF =AE·CM , ∴6OE 2=209×43,∴OE =2109,∴EF =4109. (3)如图②,图②过点F 作FH ⊥CB 于点H ,在Rt △NCE 和Rt △NHF 中, ∵tan ∠ENC =tan ∠FNH ,∴EC NC =FH NH, ∵NC =1,EC =47,∴FH NH =47, 设FH =x ,则NH =74x ,∴CH =NH -NC =74x -1.∵BC =3,∴BH =BC -CH =3-(74x -1)=4-74x.在Rt △BHF 和Rt △BCA 中,∵tan ∠FBH =tan ∠ABC , ∴HF BH =CA BC , ∴x4-74x =43, 解得x =85,∴HF =85.∵∠B =∠B ,∠BHF =∠BCA =90°, ∴△BHF ∽△BCA , ∴HF CA =BFBA,即HF·BA =CA·BF , ∴85×5=4BF , ∴BF =2,∴AF =AB -BF =3, ∴AF BF =32. 11. (1)①证明:如图①, ∵∠ACE +∠ECB =45°,∠BCF +∠ECB =45°,图①∴∠ACE =∠BCF ,又∵四边形ABCD 和EFCG 是正方形, ∴AC BC =CECF=2, ∴△CAE ∽△CBF.②解:∵AE BF =ACBC =2,AE =2,∴BF =AE2=2,由△CAE ∽△CBF 可得∠CAE =∠CBF , 又∵∠CAE +∠CBE =90°, ∴∠CBF +∠CBE =90°,即∠EBF =90°, 由CE 2=2EF 2=2(BE 2+BF 2)=6,图② 解得CE = 6.(2)解:连接BF ,如图②,同(1)证△CAE ∽△CBF ,可得∠EBF =90°,AC BC =AE BF, 由AB BC =EFFC=k ,可得BC ∶AB ∶AC =1∶k ∶k 2+1, CF ∶EF ∶EC =1∶k ∶k 2+1,∴CE EF =ACAB =k 2+1k ,AE BF =AC BC=k 2+1, ∴EF =kCE k 2+1,EF 2=k 2CE 2k 2+1,BF =AE k 2+1,BF 2=AE 2k 2+1,∴CE 2=k 2+1k 2×EF 2=k 2+1k2(BE 2+BF 2), ∴32=k 2+1k 2(12+22k 2+1), 解得k =104. (3)解:p 2-n 2=(2+2)m 2.【解法提示】如图③,连接BF ,同(1)证△CAE ∽△CBF ,可得∠EBF =90°, 过点C 作CH ⊥AB 交AB 延长线于点H , 类比第(2)问得AB 2∶BC 2∶AC 2=1∶1∶(2+2),图③EF 2∶FC 2∶EC 2=1∶1∶(2+2), ∴p 2=(2+2)EF 2 =(2+2)(BE 2+BF 2)=(2+2)(m 2+n 22+2)=(2+2)m 2+n 2,∴p 2-n 2=(2+2)m 2.12. (1)证明:∵四边形ABCD 是菱形,∠BAD =120°,∴∠BAC =60°,∠B =∠ACF =60°,AB =BC , ∴AB =AC ,∵∠BAE +∠EAC =∠EAC +∠CAF =60°, ∴∠BAE =∠CAF , 在△BAE 和△CAF 中, ⎩⎪⎨⎪⎧∠BAE =∠CAF AB =AC ∠B =∠ACF, ∴△BAE ≌△CAF(ASA ), ∴BE =CF ,∴EC +CF =EC +BE =BC , 即EC +CF =BC ;(2)解:①线段EC ,CF 与BC 的数量关系为:EC +CF =12BC.理由如下:如图①,过点A 作AE′∥EG ,AF ′∥GF ,分别交BC 、CD 于E′、F′.图①类比(1)可得:E′C +CF′=BC , ∵G 为AC 中点,AE ′∥EG , ∴CE CE′=CG AC =12, ∴CE =12CE′,同理可得:CF =12CF′,∴CE +CF =12CE′+12CF′=12(CE′+CF′)=12BC ,即CE +CF =12BC ;②CE +CF =1tBC ;【解法提示】类比(1)可得:E′C +CF′=BC , ∵AE ′∥EG ,ACCG =t ,∴CE CE′=CG AC =1t, ∴CE =1t CE′,同理可得:CF =1tCF′,∴CE +CF =1t CE′+1t CF′=1t (CE′+CF′)=1t BC ,即CE +CF =1tBC.(3)解:如图②,连接BD 与AC 交于点H.图②在Rt △ABH 中,∵AB =8,∠BAC =60°, ∴BH =AB·sin 60°=8×32=43, AH =CH =AB·cos 60°=8×12=4,∴GH =BG 2-BH 2=72-(43)2=1, ∴CG =4-1=3, ∴CG AC =38, ∴t =83(t >2),由(2)②得:CE +CF =1t BC ,∴CE =1t BC -CF =38×8-65=95.∴EC 的长度为95.13. (1)解:①BC ⊥CF ;②BC =CD +CF. 【解法提示】①∵∠BAC =∠DAF =90°, ∴∠BAD =∠CAF ,又∵AB =AC ,AD =AF , ∴△ABD ≌△ACF , ∴∠ACF =∠ABC =45°, ∵∠ACB =45°, ∴∠BCF =90°,即BC ⊥CF ; ②∵△ABD ≌△ACF , ∴BD =CF ,∵BC =CD +BD ,∴BC =CD +CF.(2)解:结论①仍然成立,②不成立. ①证明:∵∠BAC =∠DAF =90°, ∴∠BAD =∠CAF ,又∵AB =AC ,AD =AF , ∴△ABD ≌△ACF ,∴∠ACF =∠ABD =180°-45°=135°, ∵∠ACB =45°, ∴∠BCF =90°,即BC ⊥CF ; ②结论为:BC =CD -CF. 证明:∵△ABD ≌△ACF , ∴BD =CF ,∵BC =CD -BD ,∴BC =CD -CF.(3)解:如图,过点E 作EM ⊥CF 于M ,作EN ⊥BD 于点N ,过点A 作AH ⊥BD 于点H. ∵AB =AC =22,∴BC =4,AH =12BC =2,∵CD =14BC ,∴CD =1,∵∠BAC =∠DAF =90°, ∴∠BAD =∠CAF ,又∵AB =AC ,AD =AF , ∴△ABD ≌△ACF , ∴∠ACF =∠ABC =45°, ∵∠ACB =45°, ∴∠BCF =90°,∴CN =ME ,CM =EN , ∴∠AGC =∠ABC =45°, ∴CG =BC =4, ∵∠ADE =90°,∴∠ADH +∠EDN =∠EDN +∠DEN =90°, ∴∠ADH =∠DEN ,又∵∠AHC =∠DNE =90°,AD =DE , ∴△AHD ≌△DNE ,∴DN =AH =2,EN =DH =3, ∴CM =EN =3,ME =CN =3, 则GM =CG -CM =4-3=1,∴EG =EM 2+GM 2=10.14. (1)①证明:∵△ABC 绕点A 顺时针方向旋转60°得到△ADE , ∴AB =AD ,∠BAD =60°, ∴△ABD 是等边三角形;②证明:由①得△ABD 是等边三角形, ∴AB =BD ,∵△ABC 绕点A 顺时针方向旋转60°得到△ADE , ∴AC =AE ,BC =DE ,∴EA =ED ,∴点B ,E 在AD 的中垂线上, ∴BE 是AD 的中垂线, ∵点F 在BE 的延长线上, ∴BF ⊥AD ,AF =DF ; ③解:BE 的长为33-4;【解法提示】由②知AF =12AD =12AB =3,AE =AC =5,BF ⊥AD ,由勾股定理得EF =AE 2-AF 2=4.在等边△ABD 中,AB =6,BF ⊥AD , ∴BF =32AB =33,∴BE =33-4. (2)解:BE +CE 的值为13;【解法提示】如图, ∵∠DAG =∠ACB ,∴∠DAB =2∠CAB. ∵∠DAE =∠CAB , ∴∠BAE =∠CAB , ∴∠BAE =∠CBA , ∴AE ∥BC ,∵AE =AC =BC ,∴四边形ACBE 是菱形,∴CE 垂直平分AB ,BE =AC =5.设CE 交AB 于M ,则CM ⊥AB ,CM =EM ,AM =BM , ∴在Rt △ACM 中,AC =5,AM =3, 由勾股定理得CM =4, ∴CE =8,∴CE +BE =13. 15. (1)解:菱形.(2)证明:如解图①,作AE ⊥CC′于点E , 由旋转得AC′=AC ,∴∠CAE =∠C′AE =12α=∠BAC ,图①∴BA =BC ,BC =DC′, ∴∠BCA =∠BAC , ∴∠CAE =∠BCA , ∴AE ∥BC , 同理AE ∥DC′, ∴BC ∥DC ′,∴四边形BCC′D 是平行四边形, 又∵AE ∥BC ,∠CEA =90°, ∴∠BCC ′=180°-∠CEA =90°,∴四边形BCC′D 是矩形.(3)解:如解图①,过点B 作BF ⊥AC 于点F , ∵BA =BC ,∴CF =AF =12AC =12×10=5.在Rt △BCF 中,BF =BC 2-CF 2=132-52=12. 在△ACE 和△CBF 中,∵∠CAE =∠BCF ,∠CEA =∠BFC =90°, ∴△ACE ∽△CBF , ∴CE BF =AC BC ,即CE 12=1013, 解得CE =12013.∵AC =AC′,AE ⊥CC ′, ∴CC′=2CE =2×12013=24013.当四边形BCC″D′恰好为正方形时,分两种情况: ①点C″在边CC′上,a =CC′-13=24013-13=7113,②点C″在边C′C 的延长线上,a =CC′+13=24013+13=40913.综上所述,a 的值为7113或40913.图②(4)解:答案不唯一,例:画出正确图形如图②所示.平移及构图方法:将△ACD 沿着射线CA 方向平移,平移距离为12AC 的长度,得到△A′C′D ,连接A′B ,DC.结论:四边形A′BCD 是平行四边形. 16. 解:(1)点E 的坐标是(33,3). 【解法提示】如∵OA ∥BC ,∴△DEB ∽△AEO , ∴OE EB =OA BD =BC BD =BD +CD BD =1+CD BD=1+2=3, ∵∠EHO =∠BAO =90°, ∴EH ∥AB ,∴△OEH ∽△OBA , ∴OE OB =EH AB =OH OA =34, ∵AB =4,OA =43, ∴EH =3,OH =33, ∴点E 的坐标是(33,3).(2)如解图①,在矩形OABC 中,∵CD ∶DB =2∶1,点B 的坐标为(43,4), ∴点A 的坐标为(43,0),点D 的坐标为(833,4),可得直线OB 的解析式为y 1=33x , 直线AD 的解析式为y 2=-3x +12.当y 1=y 2=t 时,可得点M ,N 的横坐标分别为: x M =3t ,x N =43-33t , 则MN =|x N -x M |=|43-433t|(0≤t ≤4).当点P 运动到x 轴上时(如图②),图①∵△MNP 为等边三角形, ∴MN ·sin 60°=t ,即(43-433t)·32=t , 解得t =2.讨论:分三种情况:①当0≤t <2时(如图①), 设PM ,PN 分别交x 轴于点F ,G ,则△PFG 的边长为PF =MP -MF =MN -MF =43-433t -233t =43-23t , ∵MN =x N -x M =43-433t ,图②∴S =S 梯形FGNM =(43-23t +43-433t)t ×12=-533t 2+43t. ②当2≤t ≤3时(如图②),此时等边△MNP 整体落在△OAB 内, ∴S =S △PMN =34(43-433t)2=433t 2-83t +12 3. ③当3<t ≤4时(如图③), 在Rt △OAB 中,tan ∠AOB =AB AO =33, ∴∠AOB =30°,∠NME =30°,图③∴△MNE 和△MPE 关于直线OB 对称. ∵MN =|x N -x M |=433t -43, ∴S =12S △PMN =233t 2-43t +6 3.(3)存在t ,使S =12S △ABD 成立.∵S △ABD =12×4×433=833,若S =12S △ABD 成立,则:①当0≤t <2时,-533t 2+43t =433,解得t 1=2(舍去),t 2=25.②当2≤t ≤3时,433t 2-83t +123=433,解得t 3=2,t 4=4.(舍去)③当3<t ≤4时,233t 2-43t +63=433,得t 5=3+2(舍去),t 6=3-2(舍去). 综上所述,符合条件的t 的值有25或2.17. 证明:(1)①连接AH ,如图①,连接AH.图①∴BH =HC =12BC ,OH =HF ,∵△ABC 是等边三角形, ∴AB =BC ,AH ⊥BC ,在Rt △ABH 中,AH 2=AB 2-BH 2, ∴AH =BC 2-(12BC )2=32BC ,∵OA =AE ,OH =HF ,∴AH 是△OEF 的中位线, ∴AH =12EF ,AH ∥EF ,∴EF ⊥BC. ②由①得AH =32BC , AH =12EF∴32BC =12EF , ∴EF =3BC.(2)EF ⊥AB 仍然成立,EF =BC.图②【解法提示】如解图②,连接AH , ∵四边形OBFC 是平行四边形, ∴BH =HC =12BC ,OH =HF ,∵△ABC 是等腰直角三角形, ∴AH ⊥BC ,在Rt △ABH 中,AH 2=AB 2-BH 2= (2BH)2-BH 2=BH 2, ∴AH =BH =12BC ,∵OA =AE ,OH =HF , ∴AH 是△OEF 的中位线, ∴AH =12EF ,AH ∥EF ,∴EF ⊥BC ,EF =2AH =BC.(3)EF =4k 2-1 BC.【解法提示】如解图③,连接AH , ∵四边形OBFC 是平行四边形, ∴BH =HC =12BC ,OH =HF ,∵△ABC 是等腰三角形,AB =kBC ,∴AH ⊥BC ,在Rt △ABH 中,AH 2=AB 2-BH 2=(kBC)2-(12BC)2=(k 2-14)BC 2,∴AH =124k 2-1 BC ,∵OA =AE ,OH =HF , ∴AH 是△OEF 的中位线, ∴AH =12EF ,AH ∥EF ,∴EF ⊥BC ,124k 2-1 BC =12EF ,∴EF =4k 2-1 BC.18. 解:(1)如图①,在△ABC 中, ∵∠ACB =90°,∠B =30°,AC =1, ∴AB =2,又∵D 是AB 的中点,图①∴AD =1,CD =12AB =1,又∵EF 是△ACD 的中位线,∴EF =DF =12,在△ACD 中,AD =CD ,∠A =60°,∴△ACD 为等边三角形, ∴∠ADC =60°, 在△FGD 中,GF =DF·sin 60°=34, ∴矩形EFGH 的面积S =EF·GF =12×34=38.(2)如图②,设矩形移动的距离为x ,则0<x ≤12,①当矩形与△CBD 重叠部分为三角形时,则0<x ≤14,重叠部分的面积S =12x·3x =316,∴x =24>14(舍去), ②当矩形与△CBD 重叠部分为直角梯形时,则14<x ≤12,重叠部分的面积S =34x -12×14×34=316, ∴x =38,即矩形移动的距离为38时,矩形与△CBD 重叠部分的面积是316.图③(3)如图③,作H 2Q ⊥AB 于Q , 设DQ =m ,则H 2Q =3m , 又DG 1=14,H 2G 1=12,在Rt △H 2QG 1中, (3m)2+(m +14)2=(12)2,解得m 1=-1+1316,m 2=-1-1316<0(舍去),∴cos α=QG 1F 1G 1=-1+1316+1412=3+138.。
高考数学第二轮复习精品资料压轴题

高考数学第二轮复习 压轴题高考坚持“有利于高校选拔人才,有利于中学实施素质教育,有利于高校扩大办学自主权”的命题原则,坚持“考查基础知识的同时,注重考查能力”,这决定了每套高考试卷都有一道或几道把关的题目,我们称之为压轴题.这类题目的分值稳定在14分左右,多以传统的综合题或常用题型,与高等数学有关知识或方法联系比较紧密.如结合函数、不等式、导数研究无理型、分式型、指对数型以及多项式函数等初等函数的图像与性质,或数列兼考查数学归纳法,或以解析几何为主的向量与解析几何交汇,或以上三类题互相交汇形成新的综合问题,这类题目综合性强,解法多,有利于高校选拔.第一讲 函数、不等式与导数型压轴题【调研1】设21()log 1x f x x +=-,1()()2F x f x x=+- (1)试判断函数()y F x =的单调性,并给出证明;(2)若()f x 的反函数为1()f x -,证明 对任意的自然数(3)n n ≥,都有1()1nf n n ->+; (3)若()F x 的反函数1()F x -,证明 方程1()0F x -=有惟一解.分析:第(1)问先具体化函数()y F x =后,再判断单调性,而判断单调性有定义法和导数法两条途径;第(2)问先具体化1()f n -,再逐步逆向分析,寻找不等式的等价条件,最后转化为不等式212nn >+的证明问题;第(3)问应分“存在有解”和“唯一性”两个方面证明. 解析:(1)∵21()log 1x f x x +=-,1()()2F x f x x =+- ∴211()log 12x F x x x+=+-- ∴函数()y F x =的定义域为(1,1)-.解法一:利用定义求解 设任意1x ,2x (1,1)∈-,且12x x <,则21()()F x F x -=212222111111(log )(log )2121x x x x x x +++-+---- =212221211111()(log log )2211x x x x x x ++-+-----=211221212(1)(1)log (2)(2)(1)(1)x x x x x x x x --++--+- ∵210x x ->,120x ->,220x -> ∴1212(1)(1)0(1)(1)x x x x -+>+-∴211221212(1)(1)log 0(2)(2)(1)(1)x x x x x x x x --++>--+- ∴函数()y F x =在(1,1)-上是增函数解法二:利用导数求解∵211()log 12x F x x x+=+--∴()F x '=22121(1)ln 2(1)(2)x x x x -⨯++--=2221ln 2(1)(2)x x +⨯--又∵11x -<< ∴()F x '=22210ln 2(1)(2)x x +>⨯--∴函数()y F x =在(1,1)-上是增函数 (2) 由21()log 1x f x x +=-得121y x x +=-,即2121y y x -=+ ∴121()21x x f x --=+(x R ∈)∴121()21n n f n --=+=2121n -+∵1111n n n =-++∴证明不等式1()1n f n n ->+(3n ≥),即证222122n n <++,也即证212nn >+(3n ≥) 以下有两条求证途径:解法一:利用数学归纳法求证①当3n =时,不等式显然成立. ②设n k =时成立,即212kk >+当1n k =+时,12222(12)k k k +=⨯>+=42222k k k +=++232(1)1k k >+=++ ∴当1n k =+时不等式也成立.由①②可知,对利用大于或等于3的自然数都有212nn >+成立.∴证明不等式1()1nf n n ->+(3n ≥) 解法二:利用放缩法求证∵2(11)112221n n n n n n =+=++++=+>+…∴等式1()1n f n n ->+(3n ≥) 故:1()1n f n n ->+ (3)∵ 211(0)log 122F =+= ∴11()02F -=,即12x =是1()0F x -=的一个根.假设1()0F x -=另外还有一个解0x (012x ≠),则10()0F x -=∴0(0)F x = (012x ≠),这与1(0)2F =相矛盾 故1()0F x -=有惟一解.【方法探究】证明不等式的方法很多,其中分析法和综合法是最基本的方法.分析法由果索因,优点是便于寻找解题思路,而综合法由因索果,优点是便于书写,所以我们在求解过程中,常常两种方法联合作战,从而衍生出“分析综合法”,在本例第(2)问以及下例第(2)问都中有所体现.【技巧点拨】对于压轴题,大多数同学都不能完全解答,如何更好发挥,争取更好的成绩?“分步解答”、“跳步解答”与“解准第一问”是很实用的夺分技巧,其中分析综合题的各小问之间的关系是非常关键.从各小问之间的相互关系来分,数学综合题有以下三类: (1)递进型 递进型解答题是指前问是后问的基础,只有前问正确解答,才能准确求解后问,若第(1)问出错,则可能“全军覆没”,这也是相当多同学不能很好发挥其数学水平的重要原因.对于这类题目,“解准第一问”是至关重要,不容丝毫的马虎.(2)并列式 并列型解答题是指前问与后问关联性不强,前问是否正确,不会影响后问作答,如本例的三个问题.但这类题目也容易丢分,同学们在作答时,常常因为前问不会答而放弃后问的分析与思考,这时“跳步解答”非常关键.(3)混合式 混合型解答题是指解答题有三个及其以上的小问,兼有以上两种类型的特点,答题时注意“分步解答”,如本例万一不会求解第(2)问,具体化1()f n -是没有问题的,争取得到一定的步骤分.【调研2】已知函数22()ln f x x a x x=++(0x >),()f x 的导函数是()f x '对任意两个不相等的正数1x 、2x 求证:(1)当0a ≤时,1212()()()22f x f x x xf ++>;(2)当4a ≤时,1212()()f x f x x x ''->-. 分析:本例以高等数学的函数凸凹性、一致连续性、中值定理等知识为内核,综合考查函数的基本性质、导数求函数极值和均值不等式等知识的应用,考查综合分析、推理论证以及运算能力.第(1)问先根据题设条件具体化12()()2f x f x +、12()2x x f +的表达式,再对二者进行比较,可以逐项比较,也可以作差比较;第(2)问先具体化12()()f x f x ''-,再逐步逆向分析,采用分析法寻找解题思路,至于书写可用分析法,也可以用综合法. 解析:(1)∵()22ln f x x a x x =++∴()()()()1222121212111ln ln 222f x f x a x x x x x x +⎛⎫=+++++ ⎪⎝⎭ ()2212121212x x x x a x x +=+++2121212124ln 222x x x x x x f a x x +++⎛⎫⎛⎫=++ ⎪ ⎪+⎝⎭⎝⎭ 以下有两条求解途径:解法一:逐项比较法122x x +<∴12ln 2x x +< ∵0a ≤∴12ln 2x x a a + ………………………………①∵()()22222212121212112242x x x x x x x x +⎛⎫⎡⎤+>++= ⎪⎣⎦⎝⎭……………………………………② 又∵()()2221212121224x x x x x xx x +=++> ∴1212124x x x x x x +>+ ………………③ 由①、②、③得()22212121212121422x x x x x x a a x x x x ++⎛⎫+++++ ⎪+⎝⎭∴ ()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭解法二:作差比较法()()121222f x f x x x f ++⎛⎫- ⎪⎝⎭=()22212121212121214[[()ln ]222x x x x x x x x a a x x x x ++++++-+++=22212121212121214[()()]()(ln )222x x x x x x x x a a x x x x ++++-+-++=221212121212()1()4()x x x x a x x x x --+++ ∵12x x ≠,且10x >,20x > ∴2121()04x x ->,2121212()0()x x x x x x ->+,1201<<∵0a ≤∴12ln0a ≥∴()()121222f x f x x x f ++⎛⎫-⎪⎝⎭=221212121212()1()04()x x x x a x x x x --++>+ 故()()121222f x f x x x f ++⎛⎫-⎪⎝⎭0>(2)证法一:分析综合法由()22ln f x x a x x =++,得()'222a f x x x x=-+ ∴()()12f x f x ''-=122211222222a a x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭=()121222121222x x ax x x x x x +-⋅+- 欲证()()''1212f x f x x x ->- ,只需证()12221212221x x ax x x x ++->即证()1212122x x a x x x x +<+成立 ∵()121212122x x x x x x x x ++>+设t =,()()240u t t t t =+>,则()242u t t t '=- 令()0u t '=得t =()4u t a ≥=>≥ ∴()1212122x x x x a x x ++> ∴对任意两个不相等的正数12,x x ,恒有()()''1212f x f x x x ->-证法二:综合法1 对于任意两个不相等的正数1x 、2x 有()1212122x x x x x x ++>12x x=12x x +3≥3 4.5a >> ∴ ()12221212221x x a x x x x ++->而()'222a f x x x x =-+ ∴()()12f x f x ''-=122211222222a a x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭=()121222121222x x a x x x x x x +-⋅+-12x x >- 故:()()''1212f x f x x x ->- 证法三:综合法2由()22ln f x x a x x =++,得()'222a f x x x x=-+ ∴()()''12f x f x -=122211222222a a x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭=()121222121222x x a x x x x x x +-⋅+- ∵12,x x 是两个不相等的正数∴()()123221212122422x x aax x x x x x ++->+-()312442x x ≥+-设t =,()()322440u t t t t =+->,则()()'432u t t t =-,列表: ∴38127u => 即 ()12221212221x x ax x x x ++-> ∴()()()12''12121222121222x x af x f x x x x x x x x x +-==-⋅+->- 【方法探究】本例以高等数学中的函数凸凹性与中值定理为知识载体,所以也可以采取高等数学方法求解: (1)当0a ≤时,求证1212()()()22f x f x x xf ++>,联系凹(下凸)函数性质知,只需证明当0a ≤时,只需证明22()ln f x x a x x=++(0x >)为凹函数或下凸函数. 即证明“函数)(x f 的二阶导数恒大于0”其具体证明如下:∵22()ln f x x a x x =++(0x >)∴22()2a f x x x x '=-+,324()2a f x x x''=+-∵0x >,0a < ∴324()20af x x x''=+->在(0,)x ∈+∞时恒成立.∴22()ln f x x a x x =++(0x >)为凹函数 故()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭(2)为证明|||)()(|2121x x x f x f ->'-',可以考虑对函数()f x 的导函数是()f x '在闭区间12[,]x x (或21[,]x x )上应用中值定理,具体证明过程如下:不妨设210x x >>,则由(1)问知22()2a f x x x x '=-+,324()2af x x x''=+-,在闭区间12[,]x x 上,由中值定理有,存在[]21,x x ∈ξ,使得: ))(()()(2121x x f x f x f -''='-'ξ.下证当4a ≤,0ξ>时,有()1f ξ''>成立∵324()2a f x x x ''=+-∴当0a ≤,0x >时,有324()22af x x x ''=+->恒成立 当04a <≤,0x >时,令324()2()a f xg x x x ''=+-=,则34212()a g x x x'=-再令34212()0a g x'=-=,得6x =列表如下:即当04a <≤,0x >时,有33324438()222110810827a a f x x x ''=+-≥->-=>∴1)(04>''>≤ξξf a 时,有,当,有212121)()()(x x x x f x f x f ->-⋅''='-'ξ故()()''1212f x f x x x ->-1.已知32()2f x x bx cx =+++(1)若()y f x =在1x =时有极值-1,求b ,c 的值.(2)当b 为非零实数时,证明()f x 的图像不存在与直线2()10b c x y -++=平行的切线;(3)记函数|()|f x '(11x -≤≤)的最大值为M ,求证32M ≥. 2.已知函数()ln(1)(1)x f x a e a x =+-+,2()(1)(ln )g x x a x f x =---且()g x 在1x =处取得极值. (1)求a 的值和()g x 的极小值; (2)判断()y f x =在其定义域上的单调性, 并予以证明;(3)已知△ ABC 的三个顶点A 、B 、C 都在函数()y f x =的图象上,且横坐标依次成等差数列,求证△ABC 是钝角三角形, 但不可能是等腰三角形.【参考答案】解析:(1)∵32()2f x x bx cx =+++ ∴2()32f x x bx c '=++ 由()f x 在1x =时有极值-1有(1)320(1)121f b c f b c '=++=⎧⎨=+++=-⎩,解之得15b c =⎧⎨=-⎩当1b =,5c =-时,2()325f x x x '=+-当1x >时,()0f x '>,当513x -<<时,()0f x '< 从而符合在1x =时,()y f x =有极值 ∴1b =,5c =-(2)假设()y f x =图象在x t =处的切线与直线2()10b c x y -++=平行,则 ∵2()32f t t bt c '=++,直线2()10b c x y -++=的斜率为2c b -∴2232t bt c c b ++=-,即22320t bt b ++=∵0b ≠ ∴△=2224(3)80b b b -=-<从而方程22320t bt b ++=无解,即不存在t ,使22()32f t t bt c c b '=++=-∴()y f x =的图象不存在与直线2()10b c x y -++=平行的切线.(3)证法一:分类讨论∵|()|f x '=22|3()()|33b b xc ++-∴①若||13b ->,则M 应是|(1)|f '-和|(1)|f '中最大的一个∴2|(1)||(1)|M f f ''≥-+=|32||32|b c b c -++++|4|b ≥12> ∴362M >≥②当30b -≤<时,2|(1)||()|3b M f f ''≥-+-=2|32|||3b b c c -++-2|23|3b b ≥-+=21|(3)|3b -3> ∴32M ≥ ③当03b <≤时,2|(1)||()|3b M f f ''≥+-=2|32|||3b bc c +++-2|23|3b b ≥++=21|(3)|3b +3> ∴32M ≥综上所述,32M ≥成立.证法二:利用二次函数最值求解2()32f t t bt c '=++的顶点坐标是(3b -,332b c -),①若||13b->,则M 应是|(1)|f '-和|(1)|f '中最大的一个 ∴2|(1)||(1)|M f f ''≥-+=|32||32|b c b c -++++|4|b ≥12> ∴362M >≥②若||13b -≤,则M 应是|(1)|f '-、|(1)|f '、|332b c -|中最大的一个(1)当32c ≥-时,2|(1)||(1)|M f f ''≥-+|(1)(1)|f f ''≥-+=|62|3x +≥ ∴32M ≥ (2)当32c <-时, 23||3c b M -≥=2332b c c -≥->综上所述,32M ≥成立. 证法三:利用绝对值不等式的性质∵函数|()|f x '(11x -≤≤)的最大值为M ∴|(1)|M f '≥-,|(1)|M f '≥,|(0)|M f '≥∴4|(1)||(1)|2|(0)|M f f f '''≥-++|(1)(1)2(0)|f f f '''≥-+-=6 ∴32M ≥ 2.解析:(1)∵2()(1)(ln )g x x a x f x =---∴1()2(1)1a a g x x a x x+'=---++(0x >) ∵()g x 在1x =处取得极值 ∴(1)2(1)102ag a a '=---++=,即8a =∴()8ln(1)9xf x e x =+- 2()78ln(1)9ln g x x x x x =--+-89(1)(3)(23)()271(1)x x x g x x x x x x --+'=--+=++(0x >) 令(1)(3)(23)()0(1)x x x g x x x --+'==+得1x =或3x =当13x <<时,()0g x '<,当01x <<时,()0g x '>当3x >时,()0g x '> ∴当3x =时,min ()9ln38ln 412g x =-- (2)∵()8ln(1)9x f x e x =+-∴89()9011xx xe f x e e--'=-=<++恒成立,即函数()f x 在(,)-∞+∞上是单调减函数. (3)设11(,())A x f x ,22(,())B x f x ,33(,())C x f x ,且123x x x <<,则123()()()f x f x f x >>,1322x x x +=∴1212(,()())BA x x f x f x =+-,3232(,()())BC x x f x f x =-- ∴12321232()()[()()][()()]BA BC x x x x f x f x f x f x ⋅=--+-⋅-∵120x x -<,320x x ->,12()()0f x f x ->,32()()0f x f x -< ∴0BA BC ⋅< 故B 为钝角,△ABC 为锐角三角形.另一方面,若ABC ∆为等腰三角形,则只能是BA BC = 即222212123232()[()()]()[()()]x x f x f x x x f x f x -+-=-+- ∵2132x x x x -=-,221232[()()][()()]f x f x f x f x -=- ∴1223()()()()f x f x f x f x -=-,即13)()()f x f x f x =+22(∵()8ln(1)9x f x e x =+- ∴21221316ln(1)188[ln(1)(1)]9()x x xe x e e x x +-=++-+ ∴132122ln(1)ln(1)x x x x xe e e e ++=+++,即22122222x x x x x e e e e e +=++∴3212x x x ee e =+,但与3122x x x e e e +≥==相矛盾,所以ABC ∆不能为等腰三角形.综上所述,△ABC 是钝角三角形, 但不可能是等腰三角形.第二讲 递推数列、数学归纳法型压轴题数列和数学归纳法是初等数学与高等数学的最重要衔接点之一,是中学数学的重要组成部分,涉及知识面广、综合性强、方法灵活、试题新颖、技巧性突出,蕴含函数与方程,等价转化、分类与整合等数学思想以及错位相减法、归纳-猜想-证明、叠加(乘)法、叠代法、裂项法等大量的数学方法,是代数计算与逻辑推理训练的重要题材,因而这类题目多以压轴题的形式出现,成为高考的重头戏之一.【调研1】已知函数)(x f 是定义在R 上的不恒为零的函数, 且对于任意的R b a ∈,, 都满足()()()f a b af b bf a ⋅=+.若1()12f =,(2)n n f a n-=(n N *∈),求①.数列{}n a 的通项公式;②.数列{}n a 的前n 项和为n S ,问是否存在正整数m ,使得对任意的*n N ∈都有43n m S -<成立?若存在,求出m 的最小值;若不存在,则说明理由.分析: 求解本题的关键在于准确求解第(1)小问,所以准确化简(2)n f -成为求解本例的焦点.大致有以下三条途径:①.由已知条件()()()f a b af b bf a ⋅=+探索)(n a f 的规律,最后用数学归纳法证明; ②.将所给函数关系式适当变形, 根据其形式特点构造另一个函数, 设法用此函数求出)(n a f ; ③.设法将(2)n f -转化为熟悉的数列. 解析:(1)解法一:“归纳-猜想-证明”法∵对于任意的R b a ∈,, 都满足()()()f a b af b bf a ⋅=+∴2()f a =()()a f a a f a ⋅+⋅=2()a f a ⋅3()f a =22()()a f a a f a ⋅+⋅=22()()a a f a a f a ⋅⋅+⋅=23()a f a 4()f a =33()()a f a a f a ⋅+⋅=233()()a a f a a f a ⋅⋅+⋅=34()a f a猜想1()()n n f a na f a -=⋅ (n N *∈)现在用数学归纳法证明: ①.显然1n =时,左边=()f a ,右边=111()a f a -⨯⋅=()f a ∴1n =时,命题1()()n n f a na f a -=⋅显然成立. ②.设n k =(*k N ∈)时有1()()kk f a kaf a -=⋅当1n k =+时 ∵()()()f a b af b bf a ⋅=+∴1()k f a +=()k f a a ⨯=()()k k a f a a f a ⋅+⋅=1()()k k a f a a ka f a -⋅+⋅⋅=()()k k a f a ka f a ⋅+⋅=(1)()k k a f a +⋅∴1n k =+时,命题1()()n n f a na f a -=⋅成立.由①②可知,对任意n N *∈都有1()()n n f a na f a -=⋅(n N *∈)成立.又∵1()12f =∴11111[()]()()(2)1222()2n n nn n f n f f a n n n ---⋅====故数列{}n a 的通项公式n a =11()2n -解法二:构造函数法 ∵当0≠⋅b a 时,有()()()f a b af b bf a ⋅=+ ∴bb f a a f ab ab f )()()(+= 令()()f x g x x =,则bb f a a f ab ab f )()()(+=即为: ()()()g ab g a g b =+∴()()ng a n g a =⋅ 即()()n nf a ng a a=⋅ ∴1()()()()nnnn f a f a a n g a a n na f a a-=⋅⋅=⋅⋅=⋅,即1()()n n f a na f a -=⋅余下的过程同解法一. 证法三: 转化为特殊数列求解∵对于任意的R b a ∈,, 都满足()()()f a b af b bf a ⋅=+,1()12f =∴1[()]2n f =111[()]22n f -⨯=111111[()]()()2222n n f f --⨯+⨯=11111[()]()222n n f --⨯+即1[()]2n f =11111[()]()222n n f --⨯+ ∴1111[()][()]222()()22n n n n f f --=+ ∴新数列1[()]21()2n n f ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是公差为2,首项为1()2212f =的等差数列,即1[()]221()2n n f n = ∴11()2(2)12()2n nn n n f a n n --⨯=== 故数列{}n a 的通项公式n a =11()2n -.(2)假设存在正整数m ,使得对任意的*n N ∈都有43n m S -<成立,则由(1)问可知111()2n n S -=-,所以1141()23n m ---<恒成立∴413m -≥,即7m ≥ 故存在正整数m ,使得对任意的*n N ∈都有43n m S -<成立,此时m 的最小值为7.【方法探究】本例是已知抽象函数关系, 利用函数迭代求数列通项问题.在所给的三种方法之中, 解法一利用“归纳-猜想-证明”求解,思路自然, 但较为繁琐;解法二利用构造函数法求解,比较简洁,但技巧性强;解法三转化为特殊数列求解,思维跨度大.这三种证法反应出求解数列与函数综合题的共同规律: 充分应用已知条件变形转化, 根据其形式特点构造新的数列, 然后利用数列的性质求解.【调研2】已知等差数列{}n a 的公差d 大于0,且2a 、5a 是方程027122=+-x x 的两根,数列{}n b 的前n 项和为n T ,且n n b T 211-=(*n N ∈)(1)求数列{}n a 、{}n b 的通项公式;(2)设数列{}n a 的前n 项和为n S ,试比较nb 1与1+n S 的大小. 分析:(1)由方程027122=+-x x 可求2a 、5a ,从而得到等差数列{}n a 的通项;由公式1112n n n S n a S S n -=⎧=⎨-≥⎩求解数列{}n b 的通项.(2)要比较n b 1与1+n S 的大小,应先由(1)问具体化nb 1、1+n S ,再求出前几项,探索大小规律, 最后用数学归纳法证明.解析:(1)∵2a 、5a 是方程027122=+-x x 的两根,公差d 大于0∴2a =3,5a =9,即5223a a d -==,11a = ∴21n a n =-(*n N ∈) ∵数列{}n b 的前n 项和为n T ,且n n b T 211-=(*n N ∈)∴当1n =时,111112T b b ==- ∴321=b当2≥n 时,∵n n b T 211-= ∴111122n n n n n b T T b b --=-=-∴113n n b b -=(2n ≥),即1212()333n n n b -==故21n a n =-,1212()333n n n b -==(2)解法一:归纳-猜想-证明由(1)可知2[1(21)]2n n n S n +-==,132n n b = ∴21(1)n S n +=+ 当1n =时,1132b =,24S = ∴211S b <当2n =时,2192b =,39S = ∴321S b <当3n =时,31272b =,416S = ∴431S b <当4n =时,41812b =,525S = ∴541S b >当5n =时,512432b =,636S = ∴651S b >猜想:4≥n 时,11+>n n S b以下用数学归纳法证明:(1)当4n =时,由上可知成立.(2)设n k =(*,4k N n ∈≥)时,11+>k kS b ,即2)1(23+>k K 当1n k =+时,11k b +=132k +=332k ⋅23(1)k >+2363k k =++=22(44)221k k k k ++++-2(1)1[(1)1]k k S ++>++=∴当1n k =+时,11+>n nS b 成立.由(1)(2)知n N *∈,4n ≥时,11+>n n S b .综上所述,当1n =,2,3时,11+<n n S b ,当4≥n 时,11+>n nS b .解法二:放缩法证明当1n =,2,3时,同以上解法 当n N *∈,4n ≥时1nb =32n =1223311(12)(1222)22n n n n C C C +>+⋅+⋅+⋅=1(1)(1)(2)[1248]226n n n n n n ---++⋅+⋅ ≥18[126(1)]23n n n n +++-=281636n n ++221n n >++1n S += 综上所述,当1n =,2,3时,11+<n n S b ,当4≥n 时,11+>n nS b . 【方法探究】通过对有限个特例进行考察,猜想一般的结论,然后运用数学归纳法证明,即“观察――猜想――证明”,这是中学数学中重要的解题方法,可有效解决探索性问题、存在性问题或某些与自然数有关的命题,在求解时注意“猜想大胆、求证小心”.【技巧点拨】放缩法是证明不等式的常用方法,过程简洁,但有一定难度,犹如花中的玫瑰,美丽但有刺. 成功运用放缩法求证的关键在于把握放缩尺度,在平时训练中注意多积累与整理.常见的放缩技巧有:(1)添项或减项的“添舍放缩”,如本例12233113(1222)22n n n n C C C ⨯>+⋅+⋅+⋅,只取(21)n +的二项展开式的前四项进行放缩;(2)拆项对比的“分项放缩”;(3)运用分数的性质放缩,如①分子增加正数项或分母减少正数项,分数值变大,反之变小;② a, b, m 都是正数并且a b <,有a a mb b m+<+(真分数的性质)等. (4)运用不等式串)1(11)1(12-<<+n n n n n 放缩,如在第3讲例2第(2)问中求证23π<n T 时,运用该技巧放缩后,再裂项相加求解.类似的不等式有2()4a b ab +≤≤ 222a b +,<<等. 1.已知函数()2x f x m t =⋅+的图象经过点A (1,1)、B (2,3)及C (n S n ,),n S 为数列{}n a 的前n 项和,*n N ∈. (1)求n S 及n a ;(2)若数列{}n b 满足22log 1n n b a =+,记11122334111111ni i i n n b b b b b b b b b b =++=++++∑(*n N ∈)求证:1111132n i i i bb =+≤<∑. 2.第七届国际数学教育大会的会徽的主体是由一连串直角三角形演变而成,其中OA =AB =BC =CD=DE =EF =FG =GH =HI =1.若将图2的直角三角形继续作下去,并记OA 、OB 、… 、OI 、…… 的长度所构成的数列为{}n a (1)求数列{}n a 的通项公式 (2)若函数22212111()nf n n a n a n a =+++++…+,求函数()f n 的最小值; (3)设11n n nb a a +=+,数列{n b }的前n 项和为n S .解不等式|2|4n S -≥3.已知一次函数)(x f 的反函数为)(x g ,且(1)0f =,若点1(,)n n na A n a +(n N *∈)在曲线)(x g y =上,11=a ,对于大于或等于2的任意自然数n 均有111=--+n nn n a a a a . (1)求)(x g y =的表达式;(2)求}{n a 的通项公式;O AB C DE F G H I图1图2(3)设)!2(!4!321++++=n a a a S n n ,求lim n n S →∞. 4.已知数列{}n a 与{}n b 满足下列关系:12a a =(0a >),211()2n n na a a a +=+,n n n a ab a a +=-(n N *∈)(1)求数列{}n b 的通项公式,并化简aa aa n n --+1;(2)设n S 是数列{}n a 的前n 项和,当2≥n 时,n S 与a n )34(+是否有确定的大小关系?若有,请并加以证明,若没有,请说明理由.【参考答案】1.解析:(1)∵函数()2x f x m t =⋅+的图象经过点A (1,1)、B (2,3) ∴2143m t m t +=⎧⎨+=⎩ 解之得11m t =⎧⎨=-⎩ ∴()21x f x =-∵函数()2x f x m t =⋅+的图象经过C (n S n ,) ∴21n n S =-(*n N ∈) ∴当1n =时,111S a ==当2≥n 时,111222n n n n n n a S S ---=-=-= ∵当1n =时,满足12n n a -= ∴数列{}n a 的通项为12n n a -= 故:12n n a -=,21n n S =-(*n N ∈)(2)由(1)可知121)1(21log 22-=+-=+=n n a b n n ,则∴11n n b b +=1(21)(21)n n -+=111()22121n n --+∴111ni i i b b -+∑=12233411111n n b b b b b b b b +++++=11111111(1)2335572121n n -+-+-++--+=11(1)221n -+(*n N ∈) ∵11(1)221n -+在*n N ∈上单调递增 ∴当1n =时min 11(1)221n -+=13 ∵1021n >+ ∴111(1)2212n -<+ 综上可得∑=+<≤n i i i b b 11211312.解析:(1)由题意有2211n n a a+=+∴ 21(1)1n a n =+-⨯=n 即n a (2)∵22212111()n f n n a n a n a =+++++…+∴1111()1232f n n n n n =++++++…+ 111111(1)23322122f n n n n n n n +=++++++++…+++ ∴111(1)()21221f n f n n n n +-=-++++=1102122n n >++- ∴(1)()f n f n +> 即函数()y f n =是递增数列∴()y f n =的最小值为11(1)112f ==+ (3)∵11n n n b a a +===+∴1)n S =++…1 ∴|2|4n S -≥即为2|4≥ 解之得48n ≥且n N ∈3.分析:由)(x g 为一次函数)(x f 的反函数得)(x g 也为一次函数,所以可设()g x kx b =+; 由(1)0f =得(0)1g =,从而有1b =;由“点1(,)n n na A n a +(n N *∈)在曲线)(x g y =上,且111=--+n nn n a a a a ”确定斜率k ,一旦直线)(x g y =的解析式确定,剩下的问题水到渠成. 解析:(1)∵)(x f 为一次函数,且)(x g 为其反函数 ∴设b kx x g +=)( 由(1)0f =得(0)1g =,即1)(+=kx x g ∵()1g n kn =+且1(,)n n n a A n a +(n N *∈)均在直线b kx x g +=)(上,且111=--+n n n n a aa a ∴1)1(112=-+-=+++nn a a a a k nn n n ∴1)(+=x x g (2)∵1(,)n n na A n a +(n N *∈)均在直线b kx x g +=)(上 ∴11+=+n a a nn ∴当*N n ∈时,12121(1)(2)n n n n a a an n n a a a ---⋅⋅⋅⋅⋅⋅⋅=⨯-⨯-⨯…21=n!(3)n S =123!4!(2)!n a a a n ++++=1!2!!3!4!(2)!n n ++++…=1112334(1)(2)n n +++⨯⨯++…=111111233412n n -+-++-++=1122n -+ ∴lim n n S →∞=11lim()22n n →∞-+=124.已知数列{}n a 与{}n b 满足下列关系:12a a =(0a >),211()2n n na a a a +=+,n n n a ab a a +=-(n N *∈)(1)求数列{}n b 的通项公式,并化简aa aa n n --+1;(2)设n S 是数列{}n a 的前n 项和,当2≥n 时,n S 与a n )34(+是否有确定的大小关系?若有,请并加以证明,若没有,请说明理由.4.解析:(1)∵n n n a a b a a +=-(n N *∈),211()2n n na a a a +=+∴1n b +=11n n a a a a +++-=331()21()2n n n na a aa a a a a +++-=22()()n n a a a a +-=2n b 0> ∴1lg 2lg n n b b += ∵1113a a b a a +==- ∴1lg (lg3)2n n b -=⋅,即123n n b -= ∴11223131n n n a a --+=-故1n n a a a a +--=2n n a a a-=1n b +=1231n -+(2)当2≥n 时,1n a a +-=1231n n a a --+≤1()10n a a -(当且仅当2n =时取“=”) ∴321()10a a a a -≤-,431()10a a a a -<-,……,)(1011a a a a n n -<-- ∴])2([101)2(1121a n a S a n a a S n n ---<----- ∵12a a =,254a a = ∴651010(2)2(2)2n n n S a n a S a a n a ---<---- ∴11226131[(2)]189(31)n n n S n a --+<-+--251()189n a <+-23()18n a =+4()3n a <+故4()3n S n a <+.第三讲 解析几何型压轴题解析几何综合题是高考命题的一个热点内容,这类试题往往以解析几何知识为载体,综合函数、不等式、向量、数列等知识,涉及知识点多,综合性强,题目多变,解法灵活多样,能较好体现高考的选拔功能,因此这类题目常常以压轴题的形式出现.求解这类题目,注意在掌握通性通法的同时,从宏观上把握,微观上突破,在审题和解题思路上下功夫,不断跨越求解征途中可能会遇到的一道道运算难关,最终达到求解目的.【调研1】若1F ,2F 为双曲线22221b y a b -=的左、右焦点,O 为坐标原点,P 在双曲线左支上,M 在右准线上,且满足1F O PM =,11OF OP OP OM OP OMOF OP⋅⋅=.(1)求此双曲线的离心率;(2)若此双曲线过点N ,求双曲线的方程;(3)设(2)中双曲线的虚轴端点为1B ,2B (1B 在y 轴的正半轴上),过2B 作直线AB 与双曲线交于A ,B两点,求11B A B B =时,直线的方程. 分析:弄清向量表达式11OF OP OP OM OP OMOF OP⋅⋅=是求解本题的关键!由向量的数量积定义可知cos ,OP OM <>=1cos ,OF OP <>,即OP 是1F OM ∠的角平分线,联系1F O PM =可判断四边形1OMPF 是菱形.解析:(1)由1F O PM =知四边形1PFOM 是平行四边形 又由11OF OP OP OM OP OMOF OP⋅⋅=知OP 平分1F OM ∠ ∴四边形1PFOM 是菱形 设焦半距为c ,则有11OF PF PM c === ∴2122PF PF a c a =+=+ 由双曲线第二定义可知21PF e PM =,即2c aec+= ∴2e =(1e =-舍去) (2)∵2ce a== ∴2c a = ∴双曲线方程为222213x y a a -=又∵双曲线过点N ∴224313a a -=,即23a = ∴所求双曲线的方程为22139x y -=(3)由题意知()10,3B ,()20,3B -,则设直线AB 的方程为3y kx =-,()11,A xy ,()22,B x y则由223139y kx x y=-⎧⎪⎨-=⎪⎩有()2236180k x kx -+-= ∵双曲线的渐近线为y = ∴当k =时,AB 与双曲线只有一个交点,即k ≠∵12263k x x k +=-,122183x x k -⋅=- ∴()121221863y y k x x k -+=+-=-,()212121299y y k x x k x x ⋅=-++= 又∵()1113B A x y =-,,()1223B B x y =-,∵11B A B B ⊥∴()121212390xx y y y y +⋅-++=即221818939033k k --+-⋅+=-- ∴k = ∴直线AB 的方程为3y =-【方法探究】平面向量是高中数学新增内容,兼有代数和几何特性,是高中数学应用最广泛的数学工具之一,解析几何是高中数学的传统重点内容,是高考中的重头戏,而平面向量与解析几何交汇命题是近三年来新高考的一个新亮点.这类综合问题大致可分三类:(1)平面向量与圆锥曲线符号层面上的整合问题:这类题目是平面向量和圆锥曲线的简单拼盘,在平面向量刚进入高考时,比较常见,近来比较少;(2)平面向量与圆锥曲线知识层面上的整合问题:用平面向量语言包装解析几何中元素的关系,试题情境新颖,结合点选取恰到好处,命题手法日趋成熟,如本例求解过程中,明确向量式“1F O PM =”与“11OF OP OP OM OP OMOF OP⋅⋅=”含义,还原几何元素“菱形1PFOM ”是求解关键;(3)平面向量与圆锥曲线应用层面的整合问题:以平面向量作为工具,综合处理有关长度、角度、垂直、射影等问题以及圆锥曲线中的轨迹、范围、最值、定值、对称等典型问题,这类问题往往更具有挑战性. 【调研2】在xoy 平面上有一系列点111(,)P x y ,222(,)P x y ,……,(,)n n n P x y ……,对每个自然数n ,点n P 位于函数)0(2≥=x x y 的图象上.以点n P 为圆心的⊙n P 与x 轴都相切,且⊙n P 与⊙1+n P 又彼此外切.若11=x ,且n n x x <+1 )(N n ∈.(1)求证数列}1{nx 是等差数列; (2)设⊙n P 的面积为n S ,n n S S S T +⋅⋅⋅++=21, 求证:23π<n T 分析:本题是数列与圆锥曲线的综合题,求解过程有两个关键点:①.由⊙n P 与⊙1+n P 彼此外切,从而构建关于n x 的递推关系式,突破的办法是具体化已知条件 “⊙n P 与⊙1+n P 彼此外切”为1n n P P +1n n r r ++=1n n y y ++; ②.经过一系列演算后得到222111]35(21)n T n =++++-,如何放缩?放缩度是把握问题的关键.解析:(1) ⊙n P 与⊙1+n P 彼此外切∴11n n n n P P r r ++=+1n n y y +=+ 两边平方并化简得1214)(++=-n n n n y y x x依题意有⊙n P 的半径2n n n x y r ==,22211()4n n n n x x x x ++-=⋅∵10n n x x +>> ∴112++=-n n n n x x x x ,即1112()n nn N x x +-=∈ ∴ 数列}1{n x 是以111x =为首项,以2为公差的等差数列. (2) 由(1)问有111(1)2n n x x =+-⋅,即121n x n =-∴2244(21)n n n n S r y x n ππππ====-, n n S S S T +⋅⋅⋅++=21])12(151311[222-++++=n π ≤])12()32(15313111[-⋅-++⋅+⋅+n n π =)]}121321()5131()311[(211{---++-+-+n n π =)]1211(211[--+n π< 【方法探究】在04年的湖南、上海、浙江卷, 05年的上海、浙江卷,06年的重庆、山东、湖北、浙江等卷都有数列与解析几何的综合问题.这类题综合性强,可以从数与形的两个角度考查理性思维能力以及函数与方程、数形结合、特殊化与一般化等数学思想.这类试题大多以点列的形式出现的,一个点的横,纵坐标分别是某两个不同数列的项,而这两个数列又由点所在的曲线建立联系,从而数列的代数特征与曲线的几何性质熔合.求解这类题目关键在于利用曲线性质建立数列的递推式,转化为代数问题求解.【技巧点拨】数列的判断与证明是数列的常考点,其求解过程常常从数列通项或递推式入手,通常有两种方法:①.定义法 证明数列每项与它的前项之差(比)是同一个常数,即证1n n a a +-=d ,d 为常数(1n na a +=q ,q 为不等于零的常数);②.中项法 证明每一项都是它的前一项和后一项的等差(比)中项,即证122n n n a a a ++=+(221++⋅=n n n a a a ).【调研3】在平面直角坐标系xOy中,有一个以(10,F和(2F的椭圆,设椭圆在第一象限的部分为曲线C ,动点P 在C 上,C 在点P 处的切线与x y 、轴的交点分别为A ,B ,且向量OM OA OB =+.求:(1)点M 的轨迹方程; (2)OM 的最小值.分析:求解本例可以根据以下步骤进行:①求立椭圆的方程,得到曲线C的方程; ②求过点P的切线方程,求出点A、B的坐标;③运用相关点法求点M 的轨迹方程; ④具体化OM ,转化为函数最值问题求解.解析:∵椭圆的焦点为(10,F、(2F,离心率为2∴椭圆方程可写为22221y x a b +=(0a b >>),其中223a b ⎧+==,解之得24a =,21b =∴曲线C的方程为y =,y '=设在曲线C上的动点00(,)P x y (0<x 0<1),则0y =∴过切点P的切线的斜率为0|x x k y ='==04x y -,过点P的切线的方程为 00004()x y x x y y =---+ ∵点,A B 是切线与x y 、轴的交点 ∴A01(,0)x ,B04(0,)y设点M为(,)x y ,则由OM →=OA → +OB →得01x x =,04y y =∵点00(,)P x y在曲线C:0y =∴点M 的轨迹方程为22141x y +=(1x >,2y >) (2)由(1)问可知2y =2411x -=2441x +- ∴2||OM =22x y +=22441x x ++-=224151x x -++-≥5=9 (当且仅当22411x x -=-,即1x =>时取等号)故当x =|OM →|的最小值为3. 【高考前沿】切线是曲线的一个重要几何性质,而导数是求曲线切线的最有力的工具,所以从切线角度与圆锥曲线综合考查,这是高考的一个新趋势,大大丰富了解析几何的研究内容,可能成为以后高考的一个新热点.导数也是求解最值问题的最常用工具,常与解析几何交汇,以最值问题的形式出现,是高考常考常新的热点.1.P 、Q 、M 、N 四点都在中心为坐标原点,离心率22=e ,左焦点)0,1(-F 的椭圆上,已知PF 与FQ 共线,MF 与FN 共线,0PF MF ⋅=,求四边形PMQN 的面积的最大值与最小值.2.设向量(1,0)i =,(0,1)j =,()a x m i y j =++,()b x m i y j =-+,且||||6a b +=,03m <<,0x >,y R ∈. (1)求动点(,)P x y 的轨迹方程;(2)已知点(1,0)A -,设直线1(2)3y x =-与点P 的轨迹交于B 、C 两点,问是否存在实数m ,使得13AB AC ⋅=?若存在,求出m 的值;若不存在,请说明理由. 3.已知曲线C :222(23)1k x k y k +-=+(k R ∈). (1)若曲线C 是双曲线,求k 的取值范围;(2)若曲线C 是焦点在x(3)对于满足条件(2)的双曲线,是否存在过点B (1,1)的直线l ,使直线l 与双曲线交于M ,N 两点且B 是线段MN 的中点?若存在,求出直线l 的方程;若不存在,请说明理由. 【参考答案】1.解析:∵椭圆的中心为坐标原点,离心率22=e ,左焦点)0,1(-F ∴椭圆方程为2212x y += ∵PF 与FQ 共线,MF 与FN 共线,0PF MF ⋅=∴直线PQ 和直线MN 都过椭圆的左焦点)0,1(-F不妨设PQ 的方程为1ky x =+,设11(,)P x y ,11(,)Q x y ,则12y y +22112ky x x y =+⎧⎪⎨+=⎪⎩ ∴22(2)210k y ky +--= ∴12222k y y k -+=-+,12212y y k -⋅=+∴12PQ y y =-=22)2k k +==+ (1)当0k ≠时,MN 的斜率为1k-,同理可得221)12k MN k +=+故四边形面积222214(2)12252k k S PQ MN k k ++==++=222212(5)2252k k k k ++-++=222252k k-++ ∵222529k k ++≥ ∴222202952k k-≤-<++,即1629S ≤<(2) 当0k =时,MN 为椭圆的长轴,MN =PQ =∴122S PQ MN ==综合(1) (2)知,四边形PQMN 面积的最大值为2,最小值为169.2.解析:(1)∵(1,0)i =,(0,1)j =,||||6a b +=6=,即为点(,)P x y 到点(,0)m -与到点(,0)m 距离之和为6记1(,0)F m -,2(,0)F m (03m <<),则12||26F F m =<∴1212||||6||PF PF F F +=> 又∵0x > ∴P 点的轨迹是以1F ,2F 为焦点的椭圆的右半部分.∵26a =,22c m =∴22229b a c m =-=-∴所求轨迹方程为222199x y m +=-(0,03x m ><<) (2)设11(,)B x y =,22(,)C x y = ∴11(1,)AB x y =+,22(1,)AC x y =+∴121212·()1AB AC x x x x y y =++++而12y y ⋅=1211(2)(2)33x x -⋅-=12121[2()4]9x x x x -++∴AB AC ⋅=121212121()1[-2()4]9x x x x x x x x ++++++=12121[107()13]9x x x x +++若存在实数m ,使得1·3AB AC =成立,则1212107()13=0x x x x +++………………………①高考数学第二轮复习 压轴题21 由⎪⎪⎩⎪⎪⎨⎧>=-+=0)(1992),-(31y 222x m y x x 得222(1)4(977)0m x x m --+-=…………………………② ∵0x > ∴22164(1)(977)0m m =--⋅->△,2124010x x m +=>-,21229-77010 m x x m =>- ∴2321940m =< 此时虽满足△>0,但21229-7728893080010 4040m x x m ==-<- ∴不存在符合题意的实数m ,使得1·3AB AC = 3.解析:(1)当1k =-、0k =或32k =时,曲线C 表示直线. 当1k ≠-且0k ≠且32k ≠时,曲线C 可化为22111223x y k k k k +=++-………………(1) 方程(1)表示椭圆的充要条件是110223k k k k ++⋅<- ∴解之得302k << (2)∵ 曲线C 是焦点在x∴212k a k +=,2123k b k +=--,从而有211223312k k k k e k k++--==+ ∴ 1k = 故曲线C 的方程为22112x y -= (3)假设存在直线l ,设11(,)M x y ,22(,)N x y ,则有⎪⎪⎩⎪⎪⎨⎧=-=-12112122222121y x y x ∴0)(2122212221=---y y x x ,即121212122()()()()x x x x y y y y -+=-+ ∵B 是线段MN 的中点 ∴221=+x x ,221=+y y∴ 直线l 的斜率22121=--=x x y y k ,即直线l :21y x =- 又直线l 与双曲线交于MN 两点,由⎪⎩⎪⎨⎧-==-1212122x y y x 得03422=+-x x , 此时0832416<-=⨯⨯-=∆,方程无实数根.即直线l 与双曲线12122=-y x 无交点. 故不存在满足条件的直线l .点评:本题易忽视直线m 与双曲线交于MN 两点的隐含条件0>∆,而得出存在直线l 为12-=x y 的错误结论.。
2019高考数学二轮复习第一部分压轴专题一解析几何第2讲圆锥曲线的综合问题练习文

第2讲 圆锥曲线的综合问题A 组 小题提速练一、选择题1.已知双曲线x 2a 2-y 2b2=1与直线y =2x 有交点,则双曲线离心率的取值范围为( )A .(1,5)B .(1,5]C .(5,+∞)D .[5,+∞)解析:∵双曲线的一条渐近线方程为y =ba x ,则由题意得b a >2,∴e =c a=1+⎝ ⎛⎭⎪⎫b a 2>1+4=5. 答案:C2.(2018·河南八市联考)已知点M (-3,2)是坐标平面内一定点,若抛物线y 2=2x 的焦点为F ,点Q 是该抛物线上的一动点,则|MQ |-|QF |的最小值是( )A.72 B .3 C.52D .2解析:抛物线的准线方程为x =-12,依据抛物线的定义,得|QM |-|QF |≥|x Q +3|-⎪⎪⎪⎪⎪⎪x Q +12=⎪⎪⎪⎪⎪⎪3-12=52,选C. 答案:C3.已知圆C :x 2+y 2+6x +8y +21=0,抛物线y 2=8x 的准线为l ,设抛物线上任意一点P 到直线l 的距离为m ,则m +|PC |的最小值为( ) A .5 B.41 C.41-2D .4解析:由题得,圆C 的圆心坐标为(-3,-4),抛物线的焦点为F (2,0).根据抛物线的定义,得m +|PC |=|PF |+|PC |≥|FC |=41. 答案:B4.若以椭圆上一点和两个焦点为顶点的三角形面积的最大值为1,则椭圆长轴长的最小值为( ) A .1B. 2C .2D .2 2解析:设椭圆C :x 2a 2+y 2b2=1(a >b >0),则使三角形面积最大时,三角形在椭圆上的顶点为椭圆短轴端点,所以S =12×2c ×b =bc =1≤b 2+c 22=a22.所以a 2≥2.所以a ≥ 2. 所以长轴长2a ≥22,故选D. 答案:D5.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( ) A .2 B .4 C .6D .8解析:设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2. ∵|AB |=42,|DE |=25, 抛物线的准线方程为x =-p2,∴不妨设A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5. ∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p24+5,∴p =4(负值舍去). ∴C 的焦点到准线的距离为4. 答案:B6.(2018·赣州模拟)若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF |+|MA |取得最小值的M 的坐标为( ) A .(0,0) B.⎝ ⎛⎭⎪⎫12,1C .(1,2)D .(2,2)解析:过M 点作准线的垂线,垂足是N ,则|MF |+|MA |=|MN |+|MA |,当A ,M ,N 三点共线时,|MF |+|MA |取得最小值,此时M (2,2). 答案:D7.(2018·湖南师大附中月考)设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与抛物线y2=x 的一个交点的横坐标为x 0,若x 0>1,则双曲线C 的离心率e 的取值范围是( ) A.⎝ ⎛⎭⎪⎫1,62 B .(2,+∞)C .(1,2) D.⎝⎛⎭⎪⎫62,+∞ 解析:联立⎩⎪⎨⎪⎧y 2=x ,y =bax ,消去y 得b 2a 2x 2=x ,由x 0>1知b 2a 2<1,即c 2-a 2a2<1,故e 2<2,又e >1,所以1<e <2,故选C. 答案:C8.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A.13 B.12 C.23D.34解析:如图,|OB |为椭圆中心到l 的距离,则|OA |·|OF |=|AF |·|OB |,即bc =a ·b2,所以e =c a =12.故选B.答案:B9.若抛物线y 2=4x 上一点P 到其焦点F 的距离为2,O 为坐标原点,则△OFP 的面积为( ) A.12 B .1 C.32D .2解析:设P (x P ,y P ),由题可得抛物线焦点为F (1,0),准线方程为x =-1,又点P 到焦点F 的距离为2,∴由定义知点P 到准线的距离为2,∴x P +1=2,∴x P =1,代入抛物线方程得|y P |=2,∴△OFP 的面积为S =12·|OF |·|y P |=12×1×2=1.答案:B10.已知圆:C 1(x -4)2+y 2=169,圆C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( ) A.x 264-y 248=1 B.x 248+y 264=1 C.x 248-y 264=1 D.x 264+y 248=1 解析:设圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r )+(3+r )=16,∴M 的轨迹是以C 1,C 2为焦点的椭圆,且2a =16,2c =8,故所求的轨迹方程为x 264+y 248=1.答案:D11.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 解析:因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得(a 24+b 2)x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 2a24+b2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3,选择D.答案:D12.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =52,点A (0,1)与双曲线上的点的最小距离是2305,则该双曲线的方程为( )A.x 22-y 2=1 B.x 23-y 2=1 C.x 24-y 2=1 D.x 24-y 22=1 解析:由c =a 2+b 2,知c a =a 2+b 2a =52,解得a =2b ,所以双曲线的方程为x 24b 2-y 2b2=1,即为x 2-4y 2=4b 2.设B (x ,y )是双曲线上任意一点,故|AB |2=x 2+(y -1)2=4b 2+4y 2+(y -1)2=5⎝ ⎛⎭⎪⎫y -152+4b 2+45,当y =15时,|AB |取得最小值4b 2+45=2305,解得b =1,所以该双曲线的方程为x 24-y 2=1. 答案:C 二、填空题13.若椭圆短轴的一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为1,则椭圆的标准方程为________.解析:由题意可知⎩⎪⎨⎪⎧c a =12,a -c =1,∴⎩⎪⎨⎪⎧c =1,a =2,∴b 2=a 2-c 2=3.椭圆方程为x 24+y 23=1或x 23+y 24=1.答案:x 24+y 23=1或x 23+y 24=1 14.双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a =________.解析:双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±bax ,由已知可得两条渐近线方程互相垂直,由双曲线的对称性可得ba=1.又正方形OABC 的边长为2,所以c =22,所以a 2+b 2=c 2=(22)2,解得a =2. 答案:215.已知直线l :y =kx +t 与圆:x 2+(y +1)2=1相切,且与抛物线C :x 2=4y 交于不同的两点M ,N ,则实数t 的取值范围是________. 解析:因为直线l 与圆相切,所以|t +1|1+k2=1⇒k 2=t 2+2t .再把直线l 的方程代入抛物线方程并整理得x 2-4kx -4t =0,于是由Δ=16k 2+16t =16(t 2+2t )+16t >0,得t >0或t <-3. 答案:t >0或t <-316.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为________. 解析:设直线方程为y =b a(x -c ),由⎩⎪⎨⎪⎧x 2a 2-y 2b 2=1y =bax -c,得x =a 2+c 22c,由a 2+c 22c =2a ,e =c a,解得e =2+3(e =2-3舍去). 答案:2+ 3B 组 大题规范练1.已知动点M 到定点F 1(-2,0)和F 2(2,0)的距离之和为4 2. (1)求动点M 的轨迹C 的方程;(2)设N (0,2),过点P (-1,-2)作直线l ,交曲线C 于不同于N 的两点A ,B ,直线NA ,NB 的斜率分别为k 1,k 2,求k 1+k 2的值.解析:(1)由椭圆的定义,可知点M 的轨迹是以F 1,F 2为焦点,42为长轴长的椭圆. 由c =2,a =22,得b =2.故动点M 的轨迹C 的方程为x 28+y 24=1.(2)当直线l 的斜率存在时,设其方程为y +2=k (x +1),由⎩⎪⎨⎪⎧x 28+y 24=1,y +2=k x +得(1+2k 2)x 2+4k (k -2)x +2k 2-8k =0.Δ=[4k (k -2)]2-4(1+2k 2)(2k 2-8k )>0,则k >0或k <-47.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4k k -1+2k 2,x 1x 2=2k 2-8k1+2k2.从而k 1+k 2=y 1-2x 1+y 2-2x 2=2kx 1x 2+k -x 1+x 2x 1x 2=2k -(k -4)4k k -2k 2-8k =4. 当直线l 的斜率不存在时,得A ⎝ ⎛⎭⎪⎫-1,142,B ⎝ ⎛⎭⎪⎫-1,-142, 所以k 1+k 2=4. 综上,恒有k 1+k 2=4.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,左焦点为F (-1,0),过点D (0,2)且斜率为k 的直线l 交椭圆于A ,B 两点. (1)求椭圆C 的标准方程;(2)在y 轴上,是否存在定点E ,使AE →·BE →恒为定值?若存在,求出E 点的坐标和这个定值;若不存在,说明理由.解析:(1)由已知可得⎩⎪⎨⎪⎧c a =22,a 2=b 2+c 2,c =1,解得a 2=2,b 2=1,所以椭圆C 的标准方程为x 22+y 2=1.(2)设过点D (0,2)且斜率为k 的直线l 的方程为y =kx +2,由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +2,消去y 整理得(1+2k 2)x 2+8kx +6=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k 1+2k 2,x 1x 2=61+2k 2.又y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4=-2k 2-42k 2+1.y 1+y 2=(kx 1+2)+(kx 2+2)=k (x 1+x 2)+4=42k 2+1. 设存在点E (0,m ),则AE →=(-x 1,m -y 1), BE →=(-x 2,m -y 2),所以AE →·BE →=x 1x 2+m 2-m (y 1+y 2)+y 1y 2=62k 2+1+m 2-m ·42k 2+1-2k 2-42k 2+1=m 2-k 2+m 2-4m +102k 2+1. 要使得AE →·BE →=t (t 为常数), 只需m 2-k 2+m 2-4m +102k 2+1=t ,从而(2m 2-2-2t )k 2+m 2-4m +10-t =0, 即⎩⎪⎨⎪⎧2m 2-2-2t =0,m 2-4m +10-t =0,解得m =114,从而t =10516,故存在定点E ⎝⎛⎭⎪⎫0,114,使AE →·BE →恒为定值10516.3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),且点P ⎝ ⎛⎭⎪⎫1,32在椭圆C 上,O 为坐标原点.(1)求椭圆C 的标准方程;(2)设过定点T (0,2)的直线l 与椭圆C 交于不同的两点A ,B ,且∠AOB 为锐角,求直线l 的斜率k 的取值范围. 解析:(1)由题意,得c =1, 所以a 2=b 2+1.因为点P ⎝ ⎛⎭⎪⎫1,32在椭圆C 上,所以1a 2+94b 2=1,所以a 2=4,b 2=3.则椭圆C 的标准方程为x 24+y 23=1.(2)设直线l 的方程为y =kx +2,点A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +2得(4k 2+3)x 2+16kx +4=0.因为Δ=48(4k 2-1)>0,所以k 2>14,由根与系数的关系,得x 1+x 2=-16k 4k 2+3,x 1x 2=44k 2+3.因为∠AOB 为锐角,所以OA →·OB →>0,即x 1x 2+y 1y 2>0. 所以x 1x 2+(kx 1+2)(kx 2+2)>0, 即(1+k 2)x 1x 2+2k (x 1+x 2)+4>0, 所以(1+k 2)·44k 2+3+2k ·-16k 4k 2+3+4>0,即-12k 2+164k 2+3>0, 所以k 2<43.综上可知14<k 2<43,解得-233<k <-12或12<k <233.所以直线l 的斜率k 的取值范围为⎝ ⎛⎭⎪⎫-233,-12∪⎝ ⎛⎭⎪⎫12,233.4.已知圆C 1:x 2+y 2+6x =0关于直线l 1:y =2x +1对称的圆为圆C . (1)求圆C 的方程;(2)过点(-1,0)作直线l 与圆C 交于A ,B 两点,O 是坐标原点,S 是坐标平面内一点.是否存在这样的直线l ,使得在平行四边形OASB 中|OS →|=|OA →-OB →|?若存在,求出所有满足条件的直线 l 的方程;若不存在,请说明理由. 解析:(1)圆C 1的方程可化为(x +3)2+y 2=9.设圆C 1的圆心C 1(-3,0)关于直线l 1:y =2x +1的对称点为C (a ,b ),则kCC 1·2=-1,且线段CC 1的中点⎝⎛⎭⎪⎫a -32,b 2在直线l 1:y =2x +1上,所以有⎩⎪⎨⎪⎧ba +3×2=-1,a --b2+1=0,解得⎩⎪⎨⎪⎧a =1,b =-2.所以圆C 的方程为(x -1)2+(y +2)2=9.(2)因为|OS →|=|OA →-OB →|=|BA →|,所以平行四边形OASB 为矩形,所以OA ⊥OB ,即OA →·OB →=0.①当直线l 的斜率不存在时,可得直线l :x =-1,与圆C :(x -1)2+(y +2)2=9交于两点A (-1,5-2),B (-1,-5-2).因为OA →·OB →=(-1)×(-1)+(5-2)×(-5-2)=0,所以OA ⊥OB ,所以当直线l 的斜率不存在时,直线l :x =-1满足条件. ②当直线l 的斜率存在时, 可设直线l 的方程为y =k (x +1). 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x -2+y +2=9,y =kx +得(1+k 2)x 2+(2k 2+4k -2)x +k 2+4k -4=0.由于点(-1,0)在圆C 内部,所以Δ>0恒成立.x 1,2=-k 2+4k -k 2+4k -2-+k2k 2+4k -+k2,x 1+x 2=-2k 2+4k -21+k 2,x 1·x 2=k 2+4k -41+k2.要使OA ⊥OB ,必须使OA →·OB →=0,即x 1x 2+y 1y 2=0,也就是k 2+4k -41+k2+k 2(x 1+1)(x 2+1)=0. 整理得:(1+k 2)k 2+4k -41+k 2-k 2·2k 2+4k -21+k2+k 2=0. 解得k =1,所以直线l 的方程为y =x +1.故存在直线x =-1和y =x +1,它们与圆C 交于A ,B 两点,使得在平行四边形OASB 中|OS →|=|OA →-OB →|.。
2019届高考数学二轮复习高考大题专项练三立体几何A理

三立体几何(A)1.如图,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D AF E的余弦值.2.(2018·赤峰模拟)如图,多面体ABCDEF中,四边形ABCD为平行四边形,其中∠BAD=,AD=,AB=1,等边△ADE所在平面与平面ABCD垂直, FC⊥平面ABCD,且FC=.(1)点P在棱AE上,且=2,Q为△EBC的重心,求证:PQ∥平面EDC.(2)求平面DEF与平面EAB所成锐二面角的余弦值.3.(2018·延边质检)在三棱柱ABC A 1B1C1中,AB⊥平面BCC1B1,∠BCC1=, AB=BC=2,BB1=4,点D 在棱CC1上,且CD=λCC1(0<λ<1).建立如图所示的空间直角坐标系.(1)当λ=时,求异面直线AB1与A1D的夹角的余弦值;(2)若二面角A B 1D A1的平面角为,求λ的值.4.(2018·赤峰二模)如图,在梯形ABCD中,AB∥CD,∠BCD=,四边形ACFE为矩形,且CF⊥平面ABCD,AD=CD=BC=CF=1.(1)求证:EF⊥平面BCF.(2)点M在线段EF(含端点)上运动,当点M在什么位置时,平面MAB与平面FCB所成锐二面角θ最大,并求此时二面角的余弦值.1.(1)证明:由题意可知DA⊥DC,DA⊥DP,DC⊥DP,故可以D为原点,DP所在直线为x轴,DC所在直线为y轴,DA所在直线为z轴建立空间直角坐标系,设正方形ABCD的边长为a,则C(0,a,0),A(0,0,a),由平面几何知识可求得F(a,a,0),所以=(a,-a,0),=(a,a,0),=(0,0,a),所以·=(a,-a,0)·(a,a,0)=0,·=(a,-a,0)·(0,0,a)=0,故CF⊥DF,CF⊥DA.又DF∩DA=D,所以CF⊥平面ADF.(2)解:可求得E(a,0,0),则=(a,0,-a),又=(a,a,-a),设平面AEF的法向量为n=(x,y,z),则n·=(x,y,z)·(a,0,-a)=ax-az=0,n·=(x,y,z)·(a,a,-a)=ax+ay-az=0,取x=1,得平面AEF的一个法向量n=(1,0,).又由(1)知平面ADF的一个法向量为=(a,-a,0),故cos<n,>==,由图可知二面角D AF E为锐二面角,所以其余弦值为.2.(1)证明:如图,在棱BE上取点M,使得BM=2ME,连接BQ并延长,交CE于点N. 则在△ABE中,又AP=2PE,所以PM∥AB,又四边形ABCD为平行四边形,所以AB∥CD,所以PM∥CD.在△BCE中,Q为重心,所以BQ=2QN,又BM=2ME,所以MQ∥EC.又因为PM∩MQ=M,CD∩EC=C,所以平面MPQ∥平面DEC.又PQ⊂平面MPQ,所以PQ∥平面EDC.(2)解:在△ABD中,∠BAD=,AD=,AB=1,由余弦定理可得,BD2=AB2+AD2-2AB·ADcos∠BAD=12+()2-2×1×cos=1,所以BD=1.取AD的中点O,连接EO,OB,在△EAD中,EA=ED=AD=,所以EO⊥AD,且EO=AD=.又因为平面EAD⊥平面ABCD,平面EAD∩平面ABCD=AD,所以EO⊥平面ABCD,又在△ABD中,AB=BD=1,AD=,所以OB⊥AD,且OB=,如图,以O为坐标原点,分别以OA,OB,OE所在直线为x,y,z轴建立空间直角坐标系.则A(,0,0),D(-,0,0),B(0,,0),E(0,0,),F(-,,). 则=(-,,0),=(-,0,),=(,0,),=(-,,).设平面ABE的法向量为m=(x1,y1,z1),则由可得整理得令z1=1,则x1=,y1=3,所以m=(,3,1)为平面ABE的一个法向量.设平面DEF的法向量为n=(x2,y2,z2),则由可得整理得令z2=-1,则x2=,y2=6.所以n=(,6,-1)为平面DEF的一个法向量.所以cos<m,n>===, 设平面DEF与平面EAB所成锐二面角为θ,则cos θ=cos<m,n>=.3.解:(1)易知A(0,0,2),B1(0,4,0),A1(0,4,2).当λ=时,因为BC=CD=2,∠BCC1=,所以C(,-1,0),D(,1,0).所以=(0,4,-2),=(,-3,-2),所以cos<,>===-.故异面直线AB1与A1D的夹角的余弦值为. (2)由CD=λCC1可知,D(,4λ-1,0),所以=(-,5-4λ,0),由(1)知,=(0,4,-2).设平面AB1D的法向量为m=(x,y,z),则即令y=1,解得x=,z=2,所以平面AB1D的一个法向量为m=(,1,2). 设平面A1B1D的法向量为n=(x′,y′,z′),则即令y′=1,解得x′=,z′=0,所以平面A1B1D的一个法向量为n=(,1,0). 因为二面角A B 1D A1的平面角为,所以|cos<m,n>|=||==,即(5-4λ)2=9,解得λ=或λ=2(舍),故λ的值为.4.(1)证明:在梯形ABCD中,因为AB∥CD,AD=CD=BC=1,又因为∠BCD=,所以AB=2,所以AC2=AB2+BC2-2AB·BC·cos 60°=3.所以AB2=AC2+BC2.所以BC⊥AC.因为CF⊥平面ABCD,AC⊂平面ABCD,所以AC⊥CF,而CF∩BC=C,所以AC⊥平面BCF,因为EF∥AC,所以EF⊥平面BCF.(2)解:由(1)可建立分别以直线CA,CB,CF为x轴,y轴,z轴的空间直角坐标系如图所示, AD=CD=BC=CF=1,令FM=λ(0≤λ≤),则C(0,0,0),A(,0,0),B(0,1,0),M(λ,0,1),所以=(-,1,0),=(λ,-1,1),设n1=(x,y,z)为平面MAB的一个法向量,由得取x=1,则n1=(1,,-λ),因为n2=(1,0,0)是平面FCB的一个法向量,所以cos θ===,因为0≤λ≤,所以当λ=0时,cos θ有最小值,所以点M与点F重合时,平面MAB与平面FCB所成锐二面角最大,此时二面角的余弦值为.。
2019届高考数学二轮复习高考大题专项练三立体几何A理

三 立体几何(A)1.如图,四边形ABCD 为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC 于点F,FE∥CD,交PD 于点E.(1)证明:CF⊥平面ADF;(2)求二面角D AF E 的余弦值.2.(2018·赤峰模拟)如图,多面体ABCDEF 中,四边形ABCD 为平行四边形,其中∠BAD=,AD=,AB=1,等边△ADE 所在平面与平面ABCD 垂直, FC⊥平面ABCD,且FC=.3(1)点P 在棱AE 上,且=2,Q 为△EBC 的重心,求证:PQ∥平面EDC.(2)求平面DEF 与平面EAB 所成锐二面角的余弦值.3.(2018·延边质检)在三棱柱ABC A 1B 1C 1中,AB⊥平面BCC 1B 1,∠BCC 1=, AB=BC=2,BB 1=4,点D 在棱CC 1上,且CD=λCC 1(0<λ<1).建立如图所示的空间直角坐标系.(1)当λ=时,求异面直线AB 1与A 1D 的夹角的余弦值;12(2)若二面角A B 1D A 1的平面角为,求λ的值.4.(2018·赤峰二模)如图,在梯形ABCD 中,AB∥CD,∠BCD=,四边形ACFE 为矩形,且CF⊥2π3平面ABCD,AD=CD=BC=CF=1.(1)求证:EF⊥平面BCF.(2)点M 在线段EF(含端点)上运动,当点M 在什么位置时,平面MAB 与平面FCB 所成锐二面角θ最大,并求此时二面角的余弦值.1.(1)证明:由题意可知DA⊥DC,DA⊥DP,DC⊥DP,故可以D 为原点,DP 所在直线为x 轴,DC 所在直线为y 轴,DA 所在直线为z 轴建立空间直角坐标系,设正方形ABCD 的边长为a,则C(0,a,0),A(0,0,a),由平面几何知识可求得F(a,a,0),34所以=(a,-a,0),14=(a,a,0),34=(0,0,a),所以· =(a,-a,0)·(a,a,0)=0,1434·=(a,-a,0)·(0,0,a)=0,14故CF⊥DF,CF⊥DA.又DF∩DA=D,所以CF⊥平面ADF.(2)解:可求得E(a,0,0),则=(a,0,-a),又=(a,a,-a),34设平面AEF 的法向量为n=(x,y,z),则n·=(x,y,z)·(a,0,-a)=ax-az=0,n·=(x,y,z)·(a,a,-a)=ax+ay-az=0,34取x=1,得平面AEF 的一个法向量n=(1,0,).又由(1)知平面ADF 的一个法向量为=(a,-a,0),14故cos<n,>==,25719由图可知二面角D AF E 为锐二面角,所以其余弦值为.257192.(1)证明:如图,在棱BE 上取点M,使得BM=2ME,连接BQ 并延长,交CE 于点N.则在△ABE 中,又AP=2PE,所以PM∥AB,又四边形ABCD 为平行四边形,所以AB∥CD,所以PM∥CD.在△BCE 中,Q 为重心,所以BQ=2QN,又BM=2ME,所以MQ∥EC.又因为PM∩MQ=M,CD∩EC=C,所以平面MPQ∥平面DEC.又PQ ⊂平面MPQ,所以PQ∥平面EDC.(2)解:在△ABD 中,∠BAD=,AD=,AB=1,3由余弦定理可得,BD 2=AB 2+AD 2-2AB·ADcos∠BAD=12+()2-2×1×cos =1,33所以BD=1.取AD 的中点O,连接EO,OB,在△EAD 中,EA=ED=AD=,3所以EO⊥AD,且EO=AD=.32又因为平面EAD⊥平面ABCD,平面EAD∩平面ABCD=AD,所以EO⊥平面ABCD,又在△ABD 中,AB=BD=1,AD=,3所以OB⊥AD,且OB=,12如图,以O 为坐标原点,分别以OA,OB,OE 所在直线为x,y,z 轴建立空间直角坐标系.则A(,0,0),D(-,0,0),B(0,,0),E(0,0,),F(-,,).123231232则=(-,,0),12=(-,0,),32=(,0,),=(-,,).321232设平面ABE 的法向量为m=(x 1,y 1,z 1),则由{m ⊥→AB ,m ⊥→AE ,可得{m ·→AB =‒32x 1+12y 1=0,m ·→AE =‒32x 1+32z 1=0,整理得令z 1=1,则x 1=,y 1=3,3所以m=(,3,1)为平面ABE 的一个法向量.3设平面DEF 的法向量为n=(x 2,y 2,z 2),则由可得{n ⊥→DE ,n ⊥→DF ,整理得{x 2+3z 2=0,3x 2‒y 2‒3z 2=0.令z 2=-1,则x 2=,y 2=6.3所以n=(,6,-1)为平面DEF 的一个法向量.3所以cos<m,n>=m ·n|m ||n |==,3×3+3×6+1×(‒1)(3)2+32+12×(3)2+62+(‒1)213013设平面DEF 与平面EAB 所成锐二面角为θ,则cos θ=cos<m,n>=.130133.解:(1)易知A(0,0,2),B 1(0,4,0),A 1(0,4,2).当λ=时,因为BC=CD=2,∠BCC 1=,12所以C(,-1,0),D(,1,0).33所以=(0,4,-2),=(,-3,-2),→AB 13所以cos<,>=→AB 1→AB 1·→A 1D|→AB 1||→A 1D |=0×3+4×(‒3)+(‒2)×(‒2)42+(‒2)2·(3)2+(‒3)2+(‒2)2=-.故异面直线AB 1与A 1D 的夹角的余弦值为.(2)由CD=λCC 1可知,D(,4λ-1,0),3所以=(-,5-4λ,0),→DB 13由(1)知,=(0,4,-2).→AB 1设平面AB 1D 的法向量为m=(x,y,z),则即{→AB 1·m =0,→DB 1·m =0,令y=1,解得x=,z=2,5‒4λ3所以平面AB 1D 的一个法向量为m=(,1,2).5‒4λ3设平面A 1B 1D 的法向量为n=(x′,y′,z′),则即{→B 1A 1·n =0,→DB 1·n =0,{2z '=0,(5‒4λ)y '‒3x '=0,令y′=1,解得x′=,z′=0,5‒4λ3所以平面A 1B 1D 的一个法向量为n=(,1,0).5‒4λ3因为二面角A B 1D A 1的平面角为,所以|cos<m,n>|=||m ·n|m ||n |=|5‒4λ3×5‒4λ3+1×1+2×0|(5‒4λ3) 2+12+22·(5‒4λ3) 2+12=,即(5-4λ)2=9,解得λ=或λ=2(舍),故λ的值为.12124.(1)证明:在梯形ABCD 中,因为AB∥CD,AD=CD=BC=1,又因为∠BCD=,所以AB=2,2π3所以AC 2=AB 2+BC 2-2AB·BC·cos 60°=3.所以AB 2=AC 2+BC 2.所以BC⊥AC.因为CF⊥平面ABCD,AC ⊂平面ABCD,所以AC⊥CF,而CF∩BC=C,所以AC⊥平面BCF,因为EF∥AC,所以EF⊥平面BCF.(2)解:由(1)可建立分别以直线CA,CB,CF 为x 轴,y 轴,z 轴的空间直角坐标系如图所示,AD=CD=BC=CF=1,令FM=λ(0≤λ≤),则C(0,0,0),A(,0,0),B(0,1,0),M(λ,0,1),3所以=(-,1,0),=(λ,-1,1),3设n 1=(x,y,z)为平面MAB 的一个法向量,由得取x=1,{n 1·→AB =0,n 1·→BM =0,{‒3x +y =0,λx ‒y +z =0,则n 1=(1,,-λ),33因为n 2=(1,0,0)是平面FCB 的一个法向量,所以cos θ=|n 1·n 2||n 1||n 2|=11+3+(3‒λ)2×1=,1(λ‒3)2+4因为0≤λ≤,3所以当λ=0时,cos θ有最小值,所以点M 与点F 重合时,平面MAB 与平面FCB 所成锐二面角最大,此时二面角的余弦值为.。
2019届高考数学(理)二轮复习提优导学案(江苏专用):第1部分 二轮课时专题5 解析几何 2 圆锥曲线

第2讲圆锥曲线【课前热身】第2讲圆锥曲线(本讲对应学生用书第45~47页)1.(选修2-1 P32练习3改编)已知椭圆的焦点分别为F1(-2,0),F2(2,0),且经过点P53-22⎛⎫⎪⎝⎭,,则椭圆的标准方程为.【答案】210x+26y=1【解析】设椭圆方程为22xa+22yb=1,由题意得2222259144-4a ba b⎧+=⎪⎨⎪=⎩,,解得a2=10,b2=6,所以所求方程为210x+26y=1.2.(选修2-1 P47练习2改编)若双曲线的虚轴长为12,离心率为54,则双曲线的标准方程为.【答案】264x-236y=1或264y-236x=1【解析】由b=6,ca=54,结合a2+b2=c2,解得a=8,c=10,由于对称轴不确定,所以双曲线标准方程为264x-236y=1或264y-236x=1.3.(选修2-1 P47练习3改编)已知双曲线x 2-22y m=1(m>0)的一条渐近线方程为x+0,则实数m= .【答案】3【解析】双曲线x 2-22y m=1(m>0)的渐近线方程为y=±mx ,又因为该双曲线的一条渐近线方程为x+0,所以m=3.4.(选修2-1 P53练习2改编)设抛物线y 2=mx 的准线与直线x=1的距离为3,则抛物线的标准方程为 .【答案】y 2=8x 或y 2=-16x【解析】当m>0时,准线方程为x=-4m=-2,所以m=8,此时抛物线方程为y 2=8x ;当m<0时,准线方程为x=-4m=4,所以m=-16,此时抛物线方程为y 2=-16x. 所以所求抛物线方程为y 2=8x 或y 2=-16x.5.(选修2-1 P37练习6改编)若一个椭圆长轴的长、短轴的长和焦距成等差数列,则该椭圆的离心率是 .【答案】35【解析】由题意知2b=a+c ,又b 2=a 2-c 2, 所以4(a 2-c 2)=a 2+c 2+2ac.所以3a 2-2ac-5c 2=0,所以5c 2+2ac-3a 2=0.所以5e 2+2e-3=0,解得e=35或e=-1(舍去).【课堂导学】求圆锥曲线的标准方程例1(2019·扬州中学)在平面直角坐标系xOy中,已知椭圆C:22xa+22yb=1(a>b>0)的离心率为32,以原点为圆心、椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的标准方程;(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.【分析】(1)利用直线与圆相切求出b的值,然后利用离心率可求出a的值,从而求出椭圆方程.(2)解出两直线的交点,验证满足椭圆方程即可.【解答】(1)由题意知椭圆C的短半轴长为圆心到切线的距离,即22因为离心率e=ca=32,所以ba21-ca⎛⎫⎪⎝⎭12,所以a=2所以椭圆C的标准方程为28x+22y=1.(2)由题意可设M,N两点的坐标分别为(x0,y0),(-x0,y0),则直线PM的方程为y=-1yxx+1,①直线QN的方程为y=-2-yxx+2. ②设点T的坐标为(x,y).联立①②解得x0=2-3xy,y=3-42-3yy.因为28x+22y=1,所以2182-3xy⎛⎫⎪⎝⎭+213-422-3yy⎛⎫⎪⎝⎭=1,整理得28x+2(3-4)2y=(2y-3)2,所以28x+292y-12y+8=4y2-12y+9,即28x+22y=1,所以点T的坐标满足椭圆C的方程,即点T在椭圆C上.【点评】求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a,b的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx2+ny2=1(m>0,n>0,m≠n)的形式.变式已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)已知动点P到定点Q(20)的距离与点P到定直线l:x=2222,求动点P的轨迹C'的方程.【分析】本题主要考查椭圆的定义和椭圆的标准方程等基础知识,以及利用直接法和待定系数法求椭圆方程的基本方法.【解答】(1)依题意,可设椭圆C的方程为22xa+22yb=1(a>b>0),且可知左焦点为F'(-2,0),从而有22'358ca AF AF=⎧⎨=+=+=⎩,,解得24.ca=⎧⎨=⎩,又a2=b2+c2,所以b2=12,故椭圆C的方程为216x+212y=1.(2)设点P(x,y),依题意,得22(-2)|-22|x yx+=22,整理,得24x+22y=1,所以动点P的轨迹C'的方程为24x+22y=1.【点评】本题第一问已知焦点即知道了c,再利用椭圆定义先求得2a的值,再利用椭圆中a,b,c的关系,求得b的值,从而得椭圆方程.本题还可以利用待定系数法设椭圆方程为22xa+22-4ya=1,代入已知点求解,显然没有利用定义来得简单.求离心率的值或范围例2(1)(2019·徐州三校调研)如图(1),在平面直角坐标系xOy中,A1,A2,B1,B2分别为椭圆22xa+22yb=1(a>b>0)的四个顶点,F为其右焦点,直线A1B2与直线B1F相交于点T,线段OT与椭圆的交点M恰为线段OT的中点,则该椭圆的离心率为.(例2(1))(2)(2019·临川一中质检)如图(2),已知点A,F分别是2 2 xa-22yb=1(a>0,b>0)的左顶点与右焦点,过A,F作与x轴垂直的直线分别与两条渐近线交于P,Q,R,S,若S△ROS=2S△POQ,则双曲线的离心率为.(例2(2))(3)(2019·金陵中学)已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1,F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若PF1=10,椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是.【点拨】依题设得出关于a,b,c的等式或不等式,再消去b.【答案】75(2)2(3)13∞⎛⎫+⎪⎝⎭,【解析】(1)由题意知直线A1B2的方程为-xa+yb=1,直线B1F的方程为xc+-yb=1.联立方程组解得T2()--ac b a ca c a c+⎛⎫⎪⎝⎭,.又M()-2(-)ac b a ca c a c⎛⎫+⎪⎝⎭,在椭圆22xa+22yb=1(a>b>0)上,故22(-)ca c+22()4(-)a ca c+=1,即e2+10e-3=0,解得e=275.(2)由题意,得A(-a,0),F(c,0),直线PQ,RS的方程分别为x=-a,x=c,与渐近线y=±ba x 联立,可求得P(-a,b),Q(-a,-b),R-bcca⎛⎫⎪⎝⎭,,Sbcca⎛⎫⎪⎝⎭,,则S△ROS=12·2bca·c=2bca,S△POQ =12a·2b=ab,于是由S△ROS=2S△POQ,得2bca=2ab,即22ca=2,所以e=2.(3)设椭圆的长轴长为2a,双曲线的实轴长为2m,则2c=PF2=2a-10,2m=10-2c,a=c+5,m=5-c,所以e1e2=5cc+·5-cc=2225-cc=2125-1c.又由三角形性质知2c+2c>10,又由已知得2c<10,c<5,所以52<c<5,1<225c<4,0<225c-1<3,所以e1e2=2125-1c>13.变式1(2019·苏北四市期末)已知椭圆22xa+22yb=1(a>b>0),点A,B1,B2,F依次为其左顶点、下顶点、上顶点和右焦点,若直线AB2与直线B1F的交点恰好在椭圆的右准线上,则该椭圆的离心率为.(变式1)【答案】12【解析】如图,A(-a,0),B1(0,-b),B2(0,b),F(c,0),设点M2Mayc⎛⎫⎪⎝⎭,.由2ABk=k AM,得ba=2Myaac+,所以y M=b1ac⎛⎫+⎪⎝⎭.由1FBk=k FM,得bc=2-Myacc,所以y M =2-b a c c c ⎛⎫⎪⎝⎭. 从而b 1a c⎛⎫+ ⎪⎝⎭=2-b a c c c ⎛⎫ ⎪⎝⎭, 整理得2e 2+e-1=0,解得e=12.变式2 (2019·泰州期末)若双曲线22x a -22y b=1的右焦点到渐近线的距离是其到左顶点距离的一半,则双曲线的离心率e= .【答案】53【解析】由双曲线的性质“焦点到渐近线的距离等于b ”,得b=2a c+,所以a 2+22a c +⎛⎫ ⎪⎝⎭=c 2,整理得3c 2-2ac-5a 2=0,所以3e 2-2e-5=0,解得e=53.变式3 (2019·泰州中学)如图,椭圆22x a +22y b=1(a>b>0)的右焦点为F ,其右准线l 与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是 .(变式3)【答案】112⎡⎫⎪⎢⎣⎭, 【解析】方法一:由题意知椭圆上存在点P ,使得线段AP 的垂直平分线过点F ,所以PF=FA ,而FA=2a c -c ,PF ≤a+c ,所以2a c -c ≤a+c ,即a 2≤ac+2c 2.又e=ca,所以2e 2+e ≥1,所以2e 2+e-1≥0,即(2e-1)(e+1)≥0.又0<e<1,所以12≤e<1.方法二:设点P(x,y).由题意,椭圆上存在点P,使得线段AP的垂直平分线过点F,所以PF=FA.由椭圆第二定义,2-PFaxc=e,所以PF=2ac e-ex=a-ex,而FA=2ac-c,所以a-ex=2ac-c,解得x=21-aa ce c⎛⎫+⎪⎝⎭.由于-a≤x≤a,所以-a≤21-aa ce c⎛⎫+⎪⎝⎭≤a.又e=ca,所以2e2+e-1≥0,即(2e-1)(e+1)≥0.又0<e<1,所以12≤e<1.直线与圆锥曲线问题例3(2019·南通一调)如图,在平面直角坐标系xOy中,已知椭圆22xa+22yb=1(a>b>0)过点A(2,1),离心率为3 2.(1)求椭圆的方程;(2)若直线l:y=kx+m(k≠0)与椭圆相交于B,C两点(异于点A),线段BC被y轴平分,且AB⊥AC,求直线l的方程.(例3)【点拨】联立方程化归为一元二次方程的根与系数问题.【解答】(1)由条件知椭圆22x a +22y b=1(a>b>0)的离心率为e=c a =32,所以b 2=a 2-c 2=14a 2.又点A (2,1)在椭圆上,所以24a +21b =1,解得2282.a b ⎧=⎨=⎩,所以所求椭圆的方程为28x +22y =1.(2)将y=kx+m (k ≠0)代入椭圆方程,得(1+4k 2)x 2+8mkx+4m 2-8=0, ①由线段BC 被y 轴平分,得x B +x C =-2814mkk +=0,因为k ≠0,所以m=0.因为当m=0时,B ,C 关于原点对称,设B (x ,kx ),C (-x ,-kx ),由方程①,得x 2=2814k +,又因为AB ⊥AC ,A (2,1),所以AB uuu r ·A C uuu r =(x-2)(-x-2)+(kx-1)(-kx-1)=5-(1+k 2)x 2=5-228(1)14k k ++=0,所以k=±12,由于k=12时,直线y=12x 过点A (2,1),故k=12不符合题设. 所以直线l 的方程为y=-12x.【点评】解析几何包含两个主要问题,即已知曲线求方程和已知方程研究曲线的性质.对解析几何的复习,要在牢固掌握与解析几何有关的基本概念基础上,把上述两个问题作为复习和研究的重点,把握坐标法思想的精髓.变式 (2019·南通、扬州、泰州、淮安三模)如图,在平面直角坐标系xOy 中,已知椭圆22x a +22y b =1(a>b>0)的离心率为22,长轴长为4,过椭圆的左顶点A 作直线l ,分别交椭圆和圆x 2+y 2=a 2于相异两点P ,Q.(1)若直线l的斜率为12,求APAQ的值;(2)若PQu u u r=λAPuuu r,求实数λ的取值范围.(变式)【解答】(1)由条件知2222422acaa b c=⎧⎪⎪=⎨⎪=+⎪⎩,,解得22.ab=⎧⎪⎨⎪⎩,所以椭圆的方程为24x+22y=1,圆的方程为x2+y2=4.由题知直线l的方程为y=12(x+2),即x=2y-2,联立方程组222-224x yx y=⎧⎨+=⎩,,消去x,得3y2-4y=0,所以y P=4 3.由222-24x yx y=⎧⎨+=⎩,,消去x,得5y2-8y=0,所以y Q=85.所以APAQ=PQyy=43×58=56.(2)因为PQu u u r=λAPuuu r,且APuuu r,PQu u u r同向,则λ=PQAP=-AQ APAP=AQAP-1,设直线l:y=k(x+2),联立方程组224(2)x yy k x⎧+=⎨=+⎩,,消去x,得(k2+1)y2-4ky=0,所以y Q =241k k +,同理y P =2421k k +,λ=AQ AP -1=QP y y -1=2241421k k k k ++-1=1-211k +.因为k 2>0,所以0<λ<1.即实数λ的取值范围是(0,1).【课堂评价】1.(2019·泰州期末)在平面直角坐标系xOy 中,双曲线22x -y 2=1的实轴长为 .【答案】22【解析】根据双曲线的方程知a=22a=22.(2019·镇江期末)以抛物线y 2=4x 的焦点为焦点,以直线y=±x 为渐近线的双曲线的标准方程为 .【答案】212x -212y =1【解析】由题意设双曲线的标准方程为22x a -22y b=1,y 2=4x 的焦点为(1,0),即c=1,则双曲线的焦点为(1,0).因为y=±x 为双曲线的渐近线,则b a =1,又a 2+b 2=c 2,所以a 2=12,b 2=12,故双曲线的标准方程为212x-212y=1.3.(2019·南京、盐城一模)在平面直角坐标系xOy中,已知抛物线C的顶点在坐标原点,焦点在x 轴上,若曲线C经过点P(1,3),则其焦点到准线的距离为.【答案】92【解析】由题意可设抛物线C的方程为y2=2px(p>0),因为曲线C过点P(1,3),所以9=2p,解得p=92,从而其焦点到准线的距离为p=92.4.(2019·苏中三校联考)设椭圆C:22xa+22yb=1(a>b>0)的左、右焦点分别为F1,F2,过F2作x轴的垂线与椭圆C相交于A,B两点,F1B与y轴相交于点D,若AD⊥F1B,则椭圆C的离心率为.(第4题)【答案】33【解析】如图,连接AF1,因为OD∥AB,O为F1F2的中点,所以D为BF1的中点.又AD⊥BF1,所以AF1=AB.所以AF1=2AF2.设AF2=n,则AF1=2n,F1F2=3所以e=ca=1212F FAF AF=33nn=33.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第23~24页.【检测与评估】第2讲圆锥曲线一、填空题1.(2019·苏锡常镇调研)若双曲线x2+my2=1过点(2),则该双曲线的虚轴长为.2.(2019·苏州调查)已知双曲线2xm-25y=1的右焦点与抛物线y2=12x的焦点相同,则此双曲线的渐近线方程为.3.(2019·徐州、连云港、宿迁三检)已知点F是抛物线y2=4x的焦点,该抛物线上位于第一象限的点A到其准线的距离为5,则直线AF的斜率为.4.(2019·普陀区调研)离为1,则该椭圆的离心率为.5.(2019·西安模拟)已知椭圆24x+22yb=1(0<b<2)的左、右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若BF2+AF2的最大值为5,则b的值是.6.(2019·盐城中学)设椭圆22xm+..=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为12,则此椭圆的短轴长为 .7.(2019·丹阳中学)设A ,B 分别是椭圆22x a +22y b =1(a>b>0)的左、右顶点,点P 是椭圆C 上异于A ,B 的一点,若直线AP 与BP 的斜率之积为-13,则椭圆C 的离心率为 .8.(2019·淮阴四校调研)已知椭圆C :22x a +22y b =1(a>b>0)的左、右焦点分别为F 1,F 2,若椭圆C 上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是 .二、 解答题9.(2019·扬州期末)如图,已知椭圆22x a +22y b =1(a>b>0)的左、右焦点分别为F 1,F 2,P 是椭圆上一点,M 在PF 1上,且满足1F M u u u u r =λMP u u u r(λ∈R ),PO ⊥F 2M ,O 为坐标原点.(1)若椭圆方程为28x +24y =1,且P (2,2),求点M 的横坐标;(2)若λ=2,求椭圆离心率e 的取值范围.(第9题)10.(2019·赣榆中学)如图,椭圆长轴端点为A ,B ,O 为椭圆中心,F 为椭圆的右焦点,且AF u u u r ·FB u u u r=1,|OF u u u r |=1.(1)求椭圆的标准方程.(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使得点F 恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.(第10题)11.如图,椭圆C:2 2 xa+22yb=1(a>b>0)的一个焦点为F(1,0),且过点622⎛⎫⎪⎪⎭,.(1)求椭圆C的方程;(2)已知A,B为椭圆上的点,且直线AB垂直于x轴,直线l:x=4与x轴交于点N,直线AF与BN交于点M,求证:点M恒在椭圆C上.(第11题)【检测与评估答案】第2讲圆锥曲线一、填空题1. 4【解析】将点(22)代入可得2+4m=1,即m=-14,故双曲线的标准方程为21x-24y=1,即虚轴长为4.2.y=±2x3,所以m=4.而双曲线的渐近线方程为x ,即y=±2x.3. 43 【解析】抛物线y 2=4x 的准线方程为x=-1,焦点F (1,0),设点A (x 0,y 0)(x 0>0,y 0>0),由题意得x 0+1=5,所以x 0=4,所以20y=4x 0=16,y 0=4,从而点A (4,4),直线AF 的斜率k=4-04-1=43.4.2 【解析】不妨设椭圆方程为22x a +22y b =1(a>b>0),则有222-1b a a c c ⎧=⎪⎪⎨⎪=⎪⎩,即2221b a b c ⎧=⎪⎪⎨⎪=⎪⎩, ②则①÷②得e=2.5.【解析】由题意知a=2,所以BF 2+AF 2+AB=4a=8,因为BF 2+AF 2的最大值为5,所以AB 的最小值为3,当且仅当AB ⊥x 轴时,取得最小值,此时A 3-2c ⎛⎫ ⎪⎝⎭,,B3--2c ⎛⎫ ⎪⎝⎭,,代入椭圆方程得24c +294b =1.又c 2=a 2-b 2=4-b 2,所以24-4b +294b =1,即1-24b +294b =1,所以24b =294b ,解得b 2=3,所以6.4【解析】由题意可知抛物线y 2=8x 的焦点为(2,0),所以c=2.因为离心率为12,所以a=4,所以47.【解析】由题意知A (-a ,0),B (a ,0),取P (0,b ),则k AP ·k BP =b a×-b a ⎛⎫ ⎪⎝⎭=-13,故a 2=3b 2,所以e 2=222-a b a =23,即e=3.8. 1132⎛⎫ ⎪⎝⎭,∪112⎛⎫⎪⎝⎭,【解析】6个不同的点有两个为短轴的两个端点,另外4个分别在第一、二、三、四象限,且上下对称、左右对称.不妨设P 在第一象限,PF 1>PF 2,当PF 1=F 1F 2=2c 时,PF 2=2a-PF 1=2a-2c ,即2c>2a-2c ,解得e=c a >12.又因为e<1,所以12<e<1.当PF 2=F 1F 2=2c 时,PF 1=2a-PF 2=2a-2c ,即2a-2c>2c ,且2c>a-c ,解得13<e<12.综上可得13<e<12或12<e<1.二、 解答题9. (1) 因为28x +24y =1,所以F 1(-2,0),F 2(2,0),所以k OP=22F Mk1F M k=4,所以直线F 2M 的方程为x-2),直线F 1M 的方程为y=4(x+2).联立-2)(2)4y x y x ⎧=⎪⎨=+⎪⎩,,解得x=65,所以点M 的横坐标为65.(2) 设P (x 0,y 0),M (x M ,y M ).因为1FM u u u u r=2MPuuu r ,所以1FM u u u u r =23(x 0+c ,y 0)=(x M +c ,y M ),所以M 00212-333x c y ⎛⎫⎪⎝⎭,,2F M u u u u r =00242-333x c y ⎛⎫ ⎪⎝⎭,因为PO ⊥F 2M ,O P uuu r=(x 0,y 0),所以2023x -43cx 0+223y =0,即20x +20y =2cx 0.联立方程2200022002221x y cx x y a b ⎧+=⎪⎨+=⎪⎩,,消去y 0,得c 220x -2a 2cx 0+a 2(a 2-c 2)=0,解得x 0=()a a c c +或x 0=(-)a a c c .因为-a<x 0<a ,所以x 0=(-)a a c c ∈(0,a ), 所以0<a 2-ac<ac ,解得e>12.综上,椭圆离心率e 的取值范围为112⎛⎫ ⎪⎝⎭,.10. (1) 设椭圆方程为22x a +22y b=1(a>b>0),则c=1.因为AF uuu r ·F B uuu r=1,即(a+c )(a-c )=1=a 2-c 2,所以a 2=2,故椭圆方程为22x +y 2=1.(2) 假设存在直线l 交椭圆于P ,Q 两点,且F 恰为△PQM 的垂心,则设P (x 1,y 1),Q (x 2,y 2),因为M (0,1),F (1,0),故k PQ =1,于是可设直线l 的方程为y=x+m.联立2222y x m x y =+⎧⎨+=⎩,,得3x 2+4mx+2m 2-2=0,则x 1+x 2=-43m ,x 1x 2=22-23m .因为MP uuu r·FQ u u u r=0=x 1(x 2-1)+y 2(y 1-1),又y i =x i +m (i=1,2),得x 1(x 2-1)+(x 2+m )(x 1+m-1)=0,即2x 1x 2+(x 1+x 2)(m-1)+m 2-m=0,所以2·22-23m -43m(m-1)+m 2-m=0,解得m=-43或m=1(舍去). 经检验m=-43符合条件, 所以直线l 的方程为y=x-43.11. (1) 由题意得2222212312-c a b a b c =⎧⎪⎪+=⎨⎪=⎪⎩,,,解得a 2=4,b 2=3,故椭圆C 的方程为24x +23y =1.(2) 因为F (1,0),N (4,0).设A (m ,n ),M (x 0,y 0),则B (m ,-n ),n ≠0,则直线AF 的方程为y=-1nm (x-1), 直线BN 的方程为y=4-nm (x-4), 解得点M 的坐标为5-832-52-5m n m m ⎛⎫⎪⎝⎭,. 代入椭圆方程中,得204x +203y =25-82-54m m ⎛⎫ ⎪⎝⎭+232-53n m ⎛⎫⎪⎝⎭=222(5-8)124(2-5)m n m +.由24m+23n=1,得n2=321-4m⎛⎫⎪⎝⎭,代入上式得24x+23y=1.所以点M恒在椭圆C上.。
2019届高考数学二轮复习 专题五 立 体 几 何 (讲义训练):第3讲 立体几何中的计算 课时训练(含答案)
第3讲 立体几何中的计算 课时训练1. 已知正四棱锥底面边长为42,体积为32,则此四棱锥的侧棱长为________.答案:5解析:由正四棱锥底面边长为42,则底面正方形对角线的一半长为4,再由体积公式得四棱锥的高为3,则此四棱锥的侧棱长为5.2. (2017·镇江期末)若圆锥底面半径为2,高为5,则其侧面积为________.答案:6π解析:因为圆锥的母线长为l =22+(5)2=3,所以其侧面积为π×2×3=6π.3. (2017·常州期末)以一个圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,若所得的圆锥底面半径等于圆锥的高,则圆锥的侧面积与圆柱的侧面积之比为________.答案:2∶2解析:如图,由题意可得圆柱的侧面积为S 1=2πrh =2πr 2.圆锥的母线l =h 2+r 2=2r ,故圆锥的侧面积为S 2=12×2πr ×l =2πr 2,所以S 2∶S 1=2∶2.4. (2018·启东调研)高为63的正四面体的表面积为________.答案:3解析:由正四面体的高为63,得正四面体的棱长为1,表面积为4×34=3.5. (2017·南通一调)如图,在正四棱柱ABCD A 1B 1C 1D 1中,AB =3 cm ,AA 1=1 cm ,则三棱锥D 1A 1BD 的体积为________cm 3.答案:32解析:VD 1A 1BD =VBA 1DD 1=13×3×12×3×1=32(cm 3).6. 将半径为5的圆分割成面积之比为1∶2∶3的三个扇形作为三个圆锥的侧面,设这三个圆锥的底面半径依次为r 1,r 2,r 3,则r 1+r 2+r 3=________.答案:5解析:三个圆锥的底面周长分别为53π,103π,5π,则它们的半径r 1,r 2,r 3依次为56,53,52,则r 1+r 2+r 3=5. 7. 已知圆锥的母线长为10 cm ,侧面积为60π cm 2,则此圆锥的体积为________cm 3. 答案:96π解析:设圆锥的底面半径为r ,侧面积=12×母线长×底面圆周长=60π,得r =6 cm ,此圆锥的高为8 cm ,则此圆锥的体积为13×36π×8=96π(cm 3).8. (2018·南通中学练习)如图,在正三棱柱ABC A 1B 1C 1中,若各条棱长均为2,且M 为A 1C 1的中点,则三棱锥M AB 1C 的体积是________.答案:233解析:在正三棱柱中,AA 1⊥平面A 1B 1C 1,则AA 1⊥B 1M .因为B 1M 是正三角形的中线,所以B 1M ⊥A 1C 1.所以B 1M ⊥平面ACC 1A 1,则VMAB 1C =VB 1ACM =13×⎝ ⎛⎭⎪⎫12×AC ×AA 1×B 1M =13×12×2×2×3=233.9. (2018·常熟期中)已知正三棱锥的体积为9 3 cm 3,高为3 cm ,则它的侧面积为________cm 2.答案:183解析:设正三棱锥底面三角形的边长为a ,则V =13×34a 2×3=93,a =6(cm),底面等边三角形的高为32×6=33(cm),底面中心到一边的距离为13×33=3(cm),侧面的斜高为32+(3)2=23(cm), S 侧=3×12×6×23=183(cm 2).10. (2018·南通一调)如图,铜质六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知正六棱柱的底面边长、高都为4 cm ,圆柱的底面积为9 3 cm 2.若将该螺帽熔化后铸成一个高为6 cm 的正三棱柱零件,则该正三棱柱的底面边长为________cm.(不计损耗)答案:210解析:由题意,六角螺帽毛坯体积为正六棱柱的体积减去圆柱的体积,即V 正六棱柱-V圆柱=(S 正六边形-S 圆)h =⎝ ⎛⎭⎪⎪⎫6×34×42-93×4=603(cm 3),因为正三棱柱的体积与六角螺帽毛坯的体积相等,设正三棱柱的底面边长为a ,所以34a 2·6=603,解得a =210(cm).11. 已知等边圆柱(轴截面是正方形的圆柱)的表面积为S ,求其内接正四棱柱的体积. 解:设等边圆柱的底面半径为r ,则高h =2r . 因为S =S 侧+2S 底=2πrh +2πr 2=6πr 2, 所以r =S6π, 所以内接正四棱柱的底面边长a =2r sin45°=2r ,所以V =S 底·h =(2r )2·2r =4r 3=S 6πS9π2.12. 如图,四边形ABCD 为菱形,四边形ACFE 为平行四边形,BD 与AC 相交于点G ,AB =BD =2,AE =3,∠EAD =∠EAB .(1) 求证:平面ACFE ⊥平面ABCD ;(2) 若∠EAG =60°,求三棱锥F BDE 的体积.(1) 证明:连结EG . ∵ 四边形ABCD 为菱形, ∴ AD =AB ,BD ⊥AC ,DG =GB . 在△EAD 和△EAB 中,AD =AB ,AE =AE ,∠EAD =∠EAB ,∴ △EAD ≌△EAB , ∴ ED =EB ,∴ BD ⊥EG . ∵ BD ⊥AC ,AC ∩EG =G , ∴ BD ⊥平面ACFE . ∵ BD ⊂平面ABCD , ∴ 平面ACFE ⊥平面ABCD .(2) 解:连结FG ,∵ BD ⊥平面ACFE ,FG ⊂平面ACFE ,∴ FG ⊥BD . 在△EAG 中,AE =AG =3,且∠EAG =60°, ∴ △EAG 为正三角形, ∴ ∠EGA =60°. 在△FCG 中,CG =FC =3,∠GCF =120°, ∴ ∠FGC =30°,∴ ∠EGF =90°,即FG ⊥EG . 又BD ∩EG =G , ∴ FG ⊥平面BDE ,∴ 点F 到平面BDE 的距离为FG =3. ∵ S △BDE =12×BD ·EG=12×2×3=3,∴ 三棱锥FBDE 的体积为13×3×3=3.13. 在矩形ABCD 中,将△ABC 沿其对角线AC 折起来得到△AB 1C ,且顶点B 1在平面ACD 上的射影O 恰好落在边AD 上,如图所示.(1) 求证:AB 1⊥平面B 1CD ; (2) 若AB =1,BC =3,求三棱锥B 1ABC 的体积.(1) 证明:因为B 1O ⊥平面ABCD ,CD ⊂平面ABCD ,所以B 1O ⊥CD . 又CD ⊥AD ,AD ∩B 1O =O , 所以CD ⊥平面AB 1D .因为AB 1⊂平面AB 1D ,所以AB 1⊥CD . 因为AB 1⊥B 1C ,且B 1C ∩CD =C , 所以AB 1⊥平面B 1CD .(2) 解:因为AB 1⊥平面B 1CD ,B 1D ⊂平面B 1CD , 所以AB 1⊥B 1D . 在Rt △AB 1D 中,B 1D =AD 2-AB 21=2. 由B 1O ·AD =AB 1·B 1D , 得B 1O =AB 1·B 1D AD=63,所以VB 1ABC =13S △ABC ·B 1O =13×12×1×3×63=26.。
江苏省2019届高考数学专题三解析几何3.1小题考法—解析几何中的基本问题讲义
专题三解析几何[江苏卷5年考情分析][题组练透]1.已知点P(3,2)与点Q1,4)关于直线l对称,则直线l的方程为.解析:由题意知直线l与直线PC@直,所以k i=—;=1.又直线l经过PQ的中点(2,3), k PQ所以直线l的方程为y—3=x—2,即x — y+ 1 = 0.答案:x-y+ 1=02.(2018 •南通一模)已知圆C过点(2 , J3),且与直线x —5y+S:。
相切于点(0 ,\/3), 则圆C的方程为.解析:设圆心为(a, b),「子孚—1,则a 3a a-2 2+(b- m)2=a2+ b-V3 2,解得a= 1, b=0, r = 2.即所求圆的方程为(x—1)2+y2=4.答案:(x—1)2+y2 = 43.(2018 ・南通、扬州、淮安、宿迁、泰州、徐州六市二调)在平面直角坐标系xOy中,,xW3,若动圆C上的点都在不等式组x x-^/3y + 3>0 ,表示的平面区域内,则面积最大的圆^x+^/3y + 3>0C的标准方程为 .解析:作出不等式组表示的可行域如图中阴影部分所示,面积最大的圆C即为可行域三角形的内切圆.由对称性可知,圆C的圆心在x轴上,设半径为r,则圆心Q3 —r, 0),且它与直线x —J3y+3=0相切,所以|3^J_3| = r,解得r = 2,所以面积最大的圆C的标准方程为(x—1)2+ V1T3y2= 4.答案:(x—1)2+y2 = 4[方法技巧]1.求直线方程的两种方法直接法选用恰当的直线方程的形式,由题设条件直接求出方程中系数,写出结果待定先由直线满足的一个条件设出直线方程,使方程中含有待定系数,再由题系数法设条件构建方程,求出待定系数2.圆的方程的两种求法几何法通过研究圆的性质、直线和圆、圆与圆的位置关系,从而求得圆的基本量和方程代数法用待定系数法先设出圆的方程,再由条件求得各系数,从而求得圆的方程考点(二)直线与圆、圆与圆的位置关系―主要考查直线与圆、圆与圆的位置关系,以及根据直线与圆的位置关系求相关的最值与范围问题.[典例感悟][典例](1)(2018 •无锡期末)过圆x2+y2= 16内一点P( —2,3)作两条相互垂直的弦AB 和CD 且AB= CD则四边形ACBD勺面积为.(2)(2018 •南通、泰州一调)在平面直角坐标系xOy中,已知点A( —4,0) , B(0,4),从直线AB上一点P向圆x2+y2=4引两条切线PC PD切点分别为C, D.设线段CD的中点为M则线段AM长的最大值为.[解析]⑴设O到AB的距离为d1,0到CD的距离为d2,则由垂径定理可得d2= r2—明2,d2= r2—^2^2,由于AB= CD 故d= d2,且d1= d2= ^2^O由所以^2^ = r2— d2=161319 1、_ 1--=y,得AB= \38,从而四边形ACBD勺面积为S= 2ABX CD= 2x^38X>/38= 19.(2)法一:(几何法)因为直线AB的方程为y = x+4,所以可设Ra, a+4) , q。
2019届高考数学二轮复习压轴大题高分练(七)函数与导数C组
压轴大题高分练7.函数与导数(C组)压轴大题集训练,练就慧眼和规范,筑牢高考高分根基!1.已知函数f(x)=(x-2)e x+a(ln x-x+1).(1)讨论f(x)的导函数f′(x)零点的个数.(2)若函数f(x)的最小值为-e,求a的取值范围.【解析】(1)f′(x)=(x-1)e x+a=(x>0),令g(x)=xe x-a(x>0),g′(x)=(x+1)e x>0,故g(x)在(0,+∞)上单调递增,则g(x)>g(0)=-a.因此当a≤0或a=e时,f′(x)只有一个零点;当0<a<e或a>e时,f′(x)有两个零点.(2)当a≤0时,xe x-a>0,则函数f(x)在x=1处取得最小值f(1)=-e.当a>0时,则函数y=xe x-a在(0,+∞)上单调递增,则必存在正数x0,使得x0-a=0.若a>e,则x0>1,函数f(x)在(0,1)与(x0,+∞)上单调递增,在(1,x0)上单调递减, 又f(1)=-e,故不符合题意.若a=e,则x0=1,f′(x)≥0,函数在(0,+∞)上单调递增,又f(1)=-e,故不符合题意.若0<a<e,则0<x0<1,设正数b=∈(0,1),则(b-2)e b<0,f(b)=(b-2)e b+a(ln b-b+1)<a=a=-e-ab<-e,与函数f(x)的最小值为-e矛盾.综上所述,a≤0.2.已知函数f(x)=aln x++bx+1.(1)若2a+b=4,则当a>2时,讨论f(x)的单调性.(2)若b=1,F(x)=f(x)-,且当a≥-2时,不等式F(x)≥2在区间(0,2]上有解,求实数a的取值范围.【解析】(1)函数f(x)的定义域为(0,+∞),由2a+b=4得f(x)=aln x++ (4-2a)x+1,所以f′(x)=-+4-2a=.令f′(x)=0,得x1=,x2=.当a=4时,f′(x)≤0,f(x)在(0,+∞)内单调递减;当2<a<4时,f′(x)>0⇒<x<;f′(x)<0⇒0<x<或x>,所以f(x)在,上单调递减,在上单调递增;当a>4时,f′(x)>0⇒<x<;f′(x)<0⇒0<x<或x>,所以,f(x)在,上单调递减,在上单调递增.(2)由题意,当a≥-2时,F(x)在区间(0,2]上的最大值F(x)max≥2.当b=1时,F(x)=aln x++x+1-=aln x-+x+1,则F′(x)=(0<x≤2).①当-2≤a≤2时,F′(x)=>0,故F(x)在(0,2]上单调递增,F(x)max=F(2);②当a>2时,设x2+ax+1=0(Δ=a2-4>0)的两根分别为x1,x2, 则x1+x2=-a<0,x1·x2=1,所以x1<0,x2<0,所以在(0,2]上F′(x)=>0,故F(x)在(0,2]上单调递增,F(x)max=F(2).综上,当a≥-2时,F(x)在区间(0,2]上的最大值F(x)max=F(2)=aln 2-+2+1≥2,解得a≥-,所以实数a的取值范围是.。
2019届高考数学二轮复习高考大题专项练三立体几何A理
三 立体几何(A) 1.如图,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.
(1)证明:CF⊥平面ADF; (2)求二面角DAFE的余弦值.
2.(2018·赤峰模拟)如图,多面体ABCDEF中,四边形ABCD为平行四边形,其中∠BAD=,AD=,AB=1,等边△ADE所在平面与平面ABCD垂直, FC⊥平面ABCD,且FC=.
(1)点P在棱AE上,且=2,Q为△EBC的重心,求证:PQ∥平面EDC. (2)求平面DEF与平面EAB所成锐二面角的余弦值.
3.(2018·延边质检)在三棱柱ABCA1B1C1中,AB⊥平面BCC1B1,∠BCC1=, AB=BC=2,BB1=4,点D在棱CC1上,且CD=λCC1(0
(1)当λ=时,求异面直线AB1与A1D的夹角的余弦值; (2)若二面角AB1DA1的平面角为,求λ的值. 4.(2018·赤峰二模)如图,在梯形ABCD中,AB∥CD,∠BCD=,四边形ACFE为矩形,且CF⊥平面ABCD,AD=CD=BC=CF=1.
(1)求证:EF⊥平面BCF. (2)点M在线段EF(含端点)上运动,当点M在什么位置时,平面MAB与平面FCB所成锐二面角θ最大,并求此时二面角的余弦值.
1.(1)证明:由题意可知DA⊥DC,DA⊥DP,DC⊥DP, 故可以D为原点,DP所在直线为x轴,DC所在直线为y轴,DA所在直线为z轴建立空间直角坐标系, 设正方形ABCD的边长为a, 则C(0,a,0),A(0,0,a),
由平面几何知识可求得F(a,a,0), 所以=(a,-a,0), =(a,a,0), =(0,0,a),
所以· =(a,-a,0)·(a,a,0)=0, ·=(a,-a,0)·(0,0,a)=0, 故CF⊥DF,CF⊥DA. 又DF∩DA=D, 所以CF⊥平面ADF.
(2)解:可求得E(a,0,0), 则=(a,0,-a), 又=(a,a,-a), 设平面AEF的法向量为n=(x,y,z),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
压轴大题高分练3.解析几何(C组)
压轴大题集训练,练就慧眼和规范,筑牢高考高分根基!
1.如图,抛物线M:过y=x2上一点A(点A不与原点O重合)作抛物线M的切线AB交y轴于点
B,点C是抛物线M上异于点A的点,设G为△ABC的重心(三条中线的交点),直线CG交y轴
于点D.
(1)设点A(x0,)(x0≠0),求直线AB的方程.
(2)求的值.
【解析】(1)因为y′=2x,
所以直线AB的斜率k=y′=2x0.
所以直线AB的方程y-=2x0(x-x0),
即y=2x0x-.
(2)由题意得,点B的纵坐标yB=- ,
所以AB中点坐标为.
设C(x1,y1),G(x2,y2),
直线CG的方程为x=my+x0.
由
2
联立得m2y2+(mx0-1)y+ =0.
因为G为△ABC的重心,所以y1=3y2.
由根与系数的关系,得
y1+y2=4y2=,y1y2=3=.
所以 =,
解得mx0= -3±2.
所以点D的纵坐标yD= -=,
故==4±6.
2.已知椭圆C:+=1(a>b>0)的右焦点为F(c,0),点P为椭圆C上的动点,若|PF|的最大
值和最小值分别为2+和2-.
(1)求椭圆C的方程.
(2)设不过原点的直线l与椭圆C 交于P,Q两点,若直线OP,PQ,OQ的斜率依次成等比数列,
求△OPQ面积的最大值.
【解析】(1)由已知得解得
椭圆C的方程为+y2=1.
(2)设l:y=kx+b(易知l存在斜率,且b≠0),设P(x1,y1),Q(x2,y2)
由条件知kOP ·kOQ=k2,
3
即k2==
==k2+.
所以=0,所以x1+x2=-. ①
⇒(4k2+1)x2+8kbx+4b2-4=0,
因为Δ=(8kb)2-4(4k2+1)(4b2-4)>0,
所以4k2+1-b2>0,
所以x1+x2=- ②
x1x2=
联立①②得:-=-,所以4k2=1.
|PQ|=
=×=×
=,
4
点O到直线l的距离d==. 所以当⇒⇒直线l为y=±x±1时,
S△OPQ=|PQ|d=××
=|b|
==,
因为4k2=1且4k2+1-b2>0,所以0
△OPQ面积的最大值为1.