2020年高考理科数学《立体几何》题型归纳与训练
2020高考数学解答题核心素养题型《专题07 立体几何综合问题》+答题指导)(解析版)

专题07 立体几何综合问题【题型解读】▶▶题型一 空间点、线、面的位置关系及空间角的计算(1)空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.(2)利用向量求空间角的步骤:第一步:建立空间直角坐标系;第二步:确定点的坐标;第三步:求向量(直线的方向向量、平面的法向量)坐标;第四步:计算向量的夹角(或函数值);第五步:将向量夹角转化为所求的空间角;第六步:反思回顾.查看关键点、易错点和答题规范.【例1】 (2019·河南郑州高三联考)在如图所示的多面体中,四边形ABCD 是平行四边形,四边形BDEF是矩形,ED ⊥平面ABCD ,∠ABD =π6,AB =2AD . (1)求证:平面BDEF ⊥平面ADE ;(2)若ED =BD ,求直线AF 与平面AEC 所成角的正弦值.【答案】见解析【解析】(1)在△ABD 中,∠ABD =π6,AB =2AD ,由余弦定理,得BD =3AD ,从而BD 2+AD 2=AB 2,所以△ABD 为直角三角形且∠ADB =90°,故BD ⊥AD .因为DE ⊥平面ABCD ,BD ⊂平面ABCD ,所以DE ⊥BD .又AD ∩DE =D ,所以BD ⊥平面ADE .因为BD ⊂平面BDEF ,所以平面BDEF ⊥平面ADE .(2)由(1)可得,在Rt △ABD 中,∠BAD =π3,BD =3AD , 又由ED =BD ,设AD =1,则BD =ED = 3.因为DE ⊥平面ABCD ,BD ⊥AD ,所以可以点D 为坐标原点,DA ,DB ,DE 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则A (1,0,0),C (-1,3,0),E (0,0,3),F (0,3,3).所以AE →=(-1,0,3),AC →=(-2,3,0).设平面AEC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·A E →=0,n ·A C →=0,即⎩⎨⎧ -x +3z =0,-2x +3y =0,令z =1,得n =(3,2,1)为平面AEC 的一个法向量.因为A F →=(-1,3,3), 所以cos 〈n ,A F →〉=n ·A F →|n |·|A F →|=4214, 所以直线AF 与平面AEC 所成角的正弦值为4214. 【素养解读】本例问题(1)证明两平面垂直,考查了逻辑推理的核心素养;问题(2)计算线面所成的角时,考查了直观想象和数学运算的核心素养.【突破训练1】 (2018·北京卷)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB =BC = 5 ,AC =AA 1=2.(1)求证:AC ⊥平面BEF ;(2)求二面角B -CD -C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.【答案】见解析【解析】(1)证明:在三棱柱ABC -A 1B 1C 1中,因为CC 1⊥平面ABC ,所以四边形A 1ACC 1为矩形.又E ,F 分别为AC ,A 1C 1的中点,所以AC ⊥EF .因为AB =BC .所以AC ⊥BE ,所以AC ⊥平面BEF .(2)由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1.又CC 1⊥平面ABC ,所以EF ⊥平面ABC .因为BE ⊂平面ABC ,所以EF ⊥BE .如图建立空间直角坐称系Exyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).所以CD →=(2,0,1),C B →=(1,2,0),设平面BCD 的法向量为n =(a ,b ,c ),所以⎩⎪⎨⎪⎧ n ·C D →=0,n ·C B →=0,所以⎩⎪⎨⎪⎧ 2a +c =0,a +2b =0.令a =2,则b =-1,c =-4,所以平面BCD 的法向量n =(2,-1,-4),又因为平面CDC 1的法向量为E B →=(0,2,0),所以cos 〈n ,E B →〉=n ·E B→|n ||EB →|=-2121. 由图可得二面角B -CD -C 1为钝二面角,所以二面角B -CD -C 1的余弦值为-2121. (3)证明:平面BCD 的法向量为n =(2,-1,-4),因为G (0,2,1),F (0,0,2),所以G F →=(0,-2,1),所以n ·G F →=-2,所以n 与G F →不垂直,所以GF 与平面BCD 不平行且不在平面BCD 内,所以GF 与平面BCD 相交. ▶▶题型二 平面图形折叠成空间几何体的问题1.先将平面图形折叠成空间几何体,再以其为载体研究其中的线、面间的位置关系与计算有关的几何量是近几年高考考查立体几何的一类重要考向,它很好地将平面图形拓展成空间图形,同时也为空间立体图形向平面图形转化提供了具体形象的途径,是高考深层次上考查空间想象能力的主要方向.2.(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量.一般情况下,长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(3)解决翻折问题的答题步骤第一步:确定折叠前后的各量之间的关系,搞清折叠前后的变化量和不变量;第二步:在折叠后的图形中确定线和面的位置关系,明确需要用到的线面;第三步:利用判定定理或性质定理进行证明.【例2】 (2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【答案】见解析【解析】(1)证明:由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|B F →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,D P →=⎝ ⎛⎭⎪⎫1,32,32,H P →=⎝ ⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪H P →·D P →|H P →|·|DP →|= 34 3=34. 所以DP 与平面ABFD 所成角的正弦值为34. 【素养解读】本例在证明或计算过程中都要考虑图形翻折前后的变化,因此综合考查了逻辑推理、数学运算、直观想象、数学建模的核心素养.【突破训练2】 如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 所成锐二面角的余弦值.【答案】见解析【解析】(1)证明:在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC ,从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,BE ⊥OA 1,BE ⊥OC .所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2. 如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0, 得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22, CD →=BE →=(-2,0,0).设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧ n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧ -x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1); 由⎩⎪⎨⎪⎧ n 2·CD →=0,n 2·A 1C →=0,得⎩⎪⎨⎪⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1), 从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 所成锐二面角的余弦值为63. ▶▶题型三 线、面位置关系中的探索性问题是否存在某点或某参数,使得某种线、面位置关系成立问题,是近几年高考命题的热点,常以解答题中最后一问的形式出现,解决这类问题的基本思路类似于反证法,即“在假设存在的前提下通过推理论证,如果能找到符合要求的点(或其他的问题),就肯定这个结论,如果在推理论证中出现矛盾,就说明假设不成立,从而否定这个结论”.【例3】 (2018·全国卷Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =2 2 ,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值.【答案】见解析【解析】(1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB ,因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系Oxyz .则O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),A P →=(0,2,23),取平面PAC 的一个法向量O B →=(2,0,0).设M (a,2-a,0)(0<a ≤2),则A M →=(a,4-a,0).设平面PAM 的法向量为n =(x ,y ,z ). 由A P →·n =0,A M →·n =0得⎩⎨⎧ 2y +23z =0,ax +(4-a)y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈O B →,n 〉=23(a -4)23(a -4)2+3a 2+a2.由已知得|cos 〈O B →,n 〉|=32. 所以23|a -4|23(a -4)2+3a 2+a2=32.解得a =-4(舍去),a =43. 所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又P C →=(0,2,-23), 所以cos 〈P C →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. 【素养解读】本例问题(1)中证明线面垂直直接考查了逻辑推理的核心素养;问题(2)中要探求点M 的位置,要求较高,它既考查了直观想象的核心素养,又考查了数学建模的核心素养.【突破训练3】 如图,在直三棱柱ABC -A 1B 1C 1中,平面A 1BC ⊥侧面ABB 1A 1,且AA 1=AB =2. (1)求证:AB ⊥BC ;(2)若直线AC 与平面A 1BC 所成的角为π6,请问在线段A 1C 上是否存在点E ,使得二面角A -BE -C 的大小为2π3,请说明理由.【答案】见解析【解析】(1)证明:连接AB 1交A 1B 于点D ,因为AA 1=AB ,所以AD ⊥A 1B ,又平面A 1BC ⊥侧面ABB 1A 1,平面A 1BC ⊂平面ABB 1A 1=A 1B ,所以AD ⊥平面A 1BC ,BC ⊂平面A 1BC ,所以AD ⊥BC .因为三棱柱ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥底面ABC ,所以AA 1⊥BC ,又AA 1∩AD =A ,所以BC ⊥侧面ABB 1A 1,所以BC ⊥AB . (2)由(1)得AD ⊥平面A 1BC ,所以∠ACD 是直线AC 与平面A 1BC 所成的角,即∠ACD =π6,又AD =2,所以AC =22,假设存在适合条件的点E ,建立如图所示空间直角坐标系Axyz ,设A 1E →=λA 1C →(0≤λ≤1),则B (2,2,0),B 1(2,2,2),由A 1(0,0,2),C (0,22,0),得E (0,22λ,2-2λ),设平面EAB 的一个法向量m =(x ,y ,z ), 由⎩⎪⎨⎪⎧m ·AE →=0,m ·AB →=0,得⎩⎨⎧ 22λy +(2-2λ)z =0,2x +2y =0, 所以可取m =(1-λ,λ-1,2λ), 由(1)知AB 1⊥平面A 1BC ,所以平面CEB 的一个法向量n =(1,1,2), 所以12=⎪⎪⎪⎪⎪⎪cos 2π3=cos 〈m ,n 〉=m·n |m ||n |=2λ22(λ-1)2+2λ2,解得λ=12,故点E 为线段A 1C 中点时,二面角A -BE -C 的大小为2π3.。
2020高考数学题型整理分类《(8)立体几何》解析版(含历年真题)

(八) 大题考法——立体几何1.如图,AC 是圆O 的直径,点B 在圆O 上,∠BAC =30°,BM ⊥AC ,垂足为M .EA ⊥平面ABC ,CF ∥AE ,AE =3,AC =4,CF =1.(1)证明:BF ⊥EM ;(2)求平面BEF 与平面ABC 所成锐二面角的余弦值. 解:(1)证明:∵EA ⊥平面ABC ,∴BM ⊥EA , 又BM ⊥AC ,AC ∩EA =A ,∴BM ⊥平面ACFE , ∴BM ⊥EM .①在Rt △ABC 中,AC =4,∠BAC =30°,∴AB =23,BC =2, 又BM ⊥AC ,则AM =3,BM =3,CM =1.∵FM =MC 2+FC 2=2,EM =AE 2+AM 2=32, EF =42+(3-1)2=25,∴FM 2+EM 2=EF 2,∴EM ⊥FM . ② 又FM ∩BM =M ,③∴由①②③得EM ⊥平面BMF ,∴EM ⊥BF .(2)如图,以A 为坐标原点,过点A 垂直于AC 的直线为x 轴,AC ,AE 所在的直线分别为y 轴,z 轴建立空间直角坐标系.由已知条件得A (0,0,0),E (0,0,3),B (3,3,0),F (0,4,1), ∴BE ―→=(-3,-3,3),BF ―→=(-3,1,1). 设平面BEF 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·BE ―→=0,n ·BF ―→=0,得⎩⎨⎧-3x -3y +3z =0,-3x +y +z =0,令x =3,得y =1,z =2,∴平面BEF 的一个法向量为n =(3,1,2). ∵EA ⊥平面ABC ,∴取平面ABC 的一个法向量为AE ―→=(0,0,3). 设平面BEF 与平面ABC 所成的锐二面角为θ, 则cos θ=|cos 〈n ,AE ―→〉|=622×3=22.故平面BEF 与平面ABC 所成的锐二面角的余弦值为22. 2.如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,PA =2,∠ABC =90°,AB =3,BC =1,AD =23,∠ACD =60°,E 为CD 的中点.(1)求证:BC ∥平面PAE ;(2)求直线PD 与平面PBC 所成角的正弦值. 解:(1)证明:∵AB =3,BC =1,∠ABC =90°, ∴AC =2,∠BCA =60°.在△ACD 中,∵AD =23,AC =2,∠ACD =60°, ∴由余弦定理可得:AD 2=AC 2+CD 2-2AC ·CD ·cos ∠ACD ,∴CD =4, ∴AC 2+AD 2=CD 2,∴△ACD 是直角三角形. 又E 为CD 的中点,∴AE =12CD =CE =2,又∠ACD =60°,∴△ACE 是等边三角形, ∴∠CAE =60°=∠BCA ,∴BC ∥AE . 又AE ⊂平面PAE ,BC ⊄平面PAE , ∴BC ∥平面PAE .(2)由(1)可知∠BAE =90°,以点A 为坐标原点,以AB ,AE ,AP 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则P (0,0,2),B (3,0,0),C (3,1,0),D (-3,3,0),∴PB ―→=(3,0,-2),PC ―→=(3,1,-2),PD ―→=(-3,3,-2).设n =(x ,y ,z )为平面PBC 的法向量, 则⎩⎪⎨⎪⎧n ·PB ―→=0,n ·PC ―→=0,即⎩⎨⎧3x -2z =0,3x +y -2z =0,取x =1,则y =0,z =32,n =⎝⎛⎭⎫1,0,32,∴cos 〈n ,PD ―→〉=n ·PD ―→|n |·|PD ―→|=-2374·16=-217,∴直线PD 与平面PBC 所成角的正弦值为217.3.如图,在四棱锥S -ABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形,AB =BC =2,CD =SD =1.(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成角的正弦值.解:(1)证明:以C 为坐标原点,射线CD 为x 轴正半轴建立如图所示的空间直角坐标系C -xyz ,则D (1,0,0),A (2,2,0),B (0,2,0).设S (x ,y ,z ),显然x >0,y >0,z >0,则AS ―→=(x -2,y -2,z ),BS ―→=(x ,y -2,z ),DS ―→=(x -1,y ,z ).由|AS ―→|=|BS ―→|,得 (x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2,解得x =1.由|DS ―→|=1,得y 2+z 2=1. ① 由|BS ―→|=2,得y 2+z 2-4y +1=0.②由①②,解得y =12,z =32.∴S ⎝⎛⎭⎫1,12,32,AS ―→=⎝⎛⎭⎫-1,-32,32,BS ―→=⎝⎛⎭⎫1,-32,32,DS ―→=⎝⎛⎭⎫0,12,32, ∴DS ―→·AS ―→=0,DS ―→·BS ―→=0,∴DS ⊥AS ,DS ⊥BS , 又AS ∩BS =S ,∴SD ⊥平面SAB .(2)设平面SBC 的法向量为n =(x 1,y 1,z 1), 则n ⊥BS ―→,n ⊥CB ―→,∴n ·BS ―→=0,n ·CB ―→=0. 又BS ―→=⎝⎛⎭⎫1,-32,32,CB ―→=(0,2,0),∴⎩⎪⎨⎪⎧x 1-32y 1+32z 1=0,2y 1=0,取z 1=2,得n =(-3,0,2). ∵AB ―→=(-2,0,0),∴cos 〈AB ―→,n 〉=AB ―→·n | AB ―→||n |=-2×(-3)2×7=217.故AB 与平面SBC 所成角的正弦值为217. 4.(2018·诸暨高三适应性考试)如图,四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,△PAD 是边长为2的等边三角形,底面ABCD 是直角梯形,∠BAD =∠CDA =90°,AB =2DC =22,E 是CD 的中点.(1)求证:AE ⊥PB ;(2)设F 是棱PB 上的点,EF ∥平面PAD ,求EF 与平面PAB 所成角的正弦值. 解:(1)证明:取AD 的中点G ,连接PG ,BG ,∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PG ⊥AD , ∴PG ⊥平面ABCD ,∵AE ⊂平面ABCD ,∴AE ⊥PG . 又∵tan ∠DAE =tan ∠ABG =24, ∴∠ABG +∠EAB =∠DAE +∠EAB =∠DAB =90°, ∴AE ⊥BG .∵BG ∩PG =G ,BG ⊂平面PBG ,PG ⊂平面PBG , ∴AE ⊥平面PBG , ∴AE ⊥PB .(2)法一:作FH ∥AB 交PA 于H ,连接DH ,则HF ∥DC . ∵EF ∥平面PAD ,平面FHDE ∩平面PAD =DH , ∴EF ∥DH ,∴四边形FHDE 为平行四边形, ∴HF =DE .易知DC ∥AB ,DC =12AB ,∴HF =14AB ,即H 为PA 的一个四等分点.取PA 的中点K ,连接DK ,则DK ⊥PA .∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD , ∴AB ⊥平面PAD . ∵DK ⊂平面PAD , ∴AB ⊥DK , ∵PA ∩AB =A , ∴DK ⊥平面PAB .∴∠DHK 为EF 与平面PAB 所成的角, 由已知得DK =3,DH =DK 2+HK 2=132, ∴sin ∠DHK =DK DH =3132=23913,∴EF 与平面PAB 所成角的正弦值为23913.法二:以A 为坐标原点,AB ,AD 所在直线为x 轴,y 轴建立如图所示的空间直角坐标系.则A (0,0,0),B (22,0,0),P (0,1,3),E ⎝⎛⎭⎫22,2,0,PB ―→=(22,-1,-3),EP―→=⎝⎛⎭⎫-22,-1,3. 设PF ―→=λPB ―→,则EF ―→=EP ―→+λPB ―→=⎝⎛⎭⎫22λ-22,-1-λ,3-3λ.由(1)知PG ⊥平面ABCD ,∴PG ⊥AB . ∵AD ⊥AB ,PG ⊥AD =G , ∴AB ⊥平面PAD ,∴AB ―→=(22,0,0)为平面PAD 的一个法向量. ∵EF ∥平面PAD ,∴EF ―→·AB ―→=22×⎝⎛⎭⎫22λ-22=0,解得λ=14. ∴EF ―→=⎝⎛⎭⎫0,-54,334.设平面PAB 的一个法向量为n =(x ,y ,z ), 又AB ―→=(22,0,0),PB ―→=(22,-1,-3), 则⎩⎪⎨⎪⎧n ·AB ―→=0,n ·PB ―→=0,即⎩⎨⎧22x =0,22x -y -3z =0,取y =3,得z =-1,∴n =(0,3,-1). ∴|cos 〈n ,EF ―→〉|=⎪⎪⎪⎪-534-3342×132=23913,∴EF 与平面PAB 所成角的正弦值为23913.5.(2019届高三·镇海中学检测)如图,在三棱柱ABC -A 1B 1C 1中,平面A 1ACC 1⊥平面ABC ,AB =BC =2,∠ACB =30°,∠C 1CB =60°,BC 1⊥A 1C ,E 为AC 的中点,CC 1=2.(1)求证:A 1C ⊥平面C 1EB ;(2)求直线CC 1与平面ABC 所成角的余弦值. 解:(1)证明:因为AB =BC =2,E 为AC 的中点, 所以AC ⊥BE .又因为平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC , 所以BE ⊥平面A 1ACC 1,所以BE ⊥A 1C .又因为BC 1⊥A 1C ,BC 1∩BE =B ,BC 1⊂平面C 1EB ,BE ⊂平面C 1EB , 所以A 1C ⊥平面C 1EB .(2)法一:因为平面A 1ACC 1⊥平面ABC , 所以直线CC 1与平面ABC 所成角为∠C 1CA . 因为∠ACB =30°,AB =BC =2,E 为AC 的中点, 所以EC =3,EB =1.因为CC 1=BC =2,∠C 1CB =60°,所以BC 1=2, 因为BE ⊥平面A 1ACC 1,所以BE ⊥EC 1,所以EC 1= 3. 在△CC 1E 中,根据余弦定理可知,cos ∠C 1CE =33. 所以直线CC 1与平面ABC 所成角的余弦值为33. 法二:以E 为坐标原点,EC 为x 轴,EB 为y 轴建立如图所示的空间直角坐标系.因为∠ACB =30°,AB =BC =2,E 为AC 的中点, 所以EC =3,EB =1.因为CC 1=CB =2,∠C 1CB =60°,所以BC 1=2, 因为BE ⊥平面AA 1CC 1,所以BE ⊥EC 1,所以EC 1= 3. 所以|CC 1―→|=2,|C 1E ―→|=3, 设C 1(x,0,y ),又C (3,0,0),所以⎩⎨⎧(x -3)2+y 2=4,x 2+y 2=3,解得⎩⎨⎧x =33,y =263,所以C 1⎝⎛⎭⎫33,0,263,则CC 1―→=⎝⎛⎭⎫-233,0,263, 易知平面ABC 的一个法向量为n =(0,0,1), 设直线CC 1与平面ABC 所成的角为α, 则sin α=|cos 〈CC 1―→,n 〉|=63,所以cos α=33.即直线CC 1与平面ABC 所成角的余弦值为33.6.如图所示,四棱锥P -ABCD 的底面ABCD 为矩形,PA ⊥平面ABCD ,点E 是PD 的中点,点F 是PC 的中点.(1)证明:PB ∥平面AEC ;(2)若底面ABCD 为正方形,探究在什么条件下,二面角C -AF -D 的大小为60°?解:易知AD ,AB ,AP 两两垂直,建立如图所示的空间直角坐标系A -xyz ,设AB =2a ,AD =2b ,AP =2c ,则A (0,0,0),B (2a,0,0),C (2a,2b,0),D (0,2b,0),P (0,0,2c ).连接BD 交AC 于点O ,连接OE ,则O (a ,b,0),又E 是PD 的中点,所以E (0,b ,c ).(1)证明:因为PB ―→=(2a,0,-2c ),EO ―→=(a,0,-c ), 所以PB ―→=2EO ―→,所以PB ―→∥EO ―→, 即PB ∥EO .因为PB ⊄平面AEC ,EO ⊂平面AEC , 所以PB ∥平面AEC .(2)因为四边形ABCD 为正方形,所以a =b ,则A (0,0,0),B (2a,0,0),C (2a,2a,0),D (0,2a,0),P (0,0,2c ),E (0,a ,c ),F (a ,a ,c ),因为z 轴⊂平面CAF ,所以设平面CAF 的一个法向量为n =(x,1,0),而AC ―→=(2a,2a,0),所以AC ―→·n =2ax +2a =0,得x =-1,所以n =(-1,1,0). 因为y 轴⊂平面DAF ,所以设平面DAF 的一个法向量为m =(1,0,z ), 而AF ―→=(a ,a ,c ),所以AF ―→·m =a +cz =0,得z =-a c ,所以m =⎝⎛⎭⎫1,0,-ac ∥m ′=(c,0,-a ). 所以cos 60°=|n ·m ′||n ||m ′|=c 2(a 2+c 2)=12,得a =c .故当AP 与正方形ABCD 的边长相等时,二面角C -AF -D 的大小为60°.。
(完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

2020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明例1如图,高为1的等腰梯形ABCD 中,AM =CD =AB =1.现将△AMD 沿MD 折起,使平面AMD ⊥13平面MBCD ,连接AB ,AC .试判断:在AB 边上是否存在点P ,使AD ∥平面MPC ?并说明理由【答案】当AP =AB 时,有AD ∥平面MPC .13理由如下:连接BD 交MC 于点N ,连接NP .在梯形MBCD 中,DC ∥MB ,==,DNNB DCMB 12在△ADB 中,=,∴AD ∥PN .APPB 12∵AD ⊄平面MPC ,PN ⊂平面MPC ,∴AD ∥平面MPC .【解析】线面平行,可以线线平行或者面面平行推出。
此类题的难点就是如何构造辅助线。
构造完辅助线,证明过程只须注意规范的符号语言描述即可。
本题用到的是线线平行推出面面平行。
【易错点】不能正确地分析DN 与BN 的比例关系,导致结果错误。
【思维点拨】此类题有两大类方法:1.构造线线平行,然后推出线面平行。
此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。
在此,我们需要借助倒推法进行分析。
首先,此类型题目大部分为证明题,结论必定是正确的,我们以此为前提可以得到线面平行。
再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。
从这个角度上看我们可以看出线线平行推线面平行的本质就是过已知直线做一个平面与已知平面相交即可。
如本题中即是过AD 做了一个平面ADB 与平面MPC 相交于线PN 。
最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。
即先证AD 平行于PN ,最后得到结论。
构造交线的方法我们可总结为如下三个图形。
一一一一一一一一一2.构造面面平行,然后推出线面平行。
此类方法辅助线的构造通常比较简单,但证明过程较繁琐,一般做为备选方案。
2020年理科数学高考大题专项4 高考中的立体几何

高考大题专项四高考中的立体几何1.如图,在三棱锥A-BCD中,E,F分别为BC,CD上的点,且BD∥平面AEF.(1)求证:EF∥平面ABD;(2)若AE⊥平面BCD,BD⊥CD,求证:平面AEF⊥平面ACD.2.在直三棱柱ABC-A1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在线段BB1上,且EB1=1,D,F,G分别为CC1,C1B1,C1A1的中点.求证:(1)B1D⊥平面ABD;(2)平面EGF∥平面ABD.3.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得⏜的中点.到的,G是DF⏜上的一点,且AP⊥BE,求∠CBP的大小;(1)设P是CE(2)当AB=3,AD=2时,求二面角E-AG-C的大小.(2018山西晋中调研,18)如图,已知四棱锥P-ABCD,PA⊥平面ABCD,底面ABCD中,BC∥AD,AB⊥AD,且PA=AD=AB=2BC=2,M为AD的中点.(1)求证:平面PCM⊥平面PAD;(2)问在棱PD上是否存在点Q,使PD⊥平面CMQ,若存在,请求出二面角P-CM-Q的余弦值;若不存在,请说明理由.5.(2018河南郑州外国语学校调研,19)如图,在底面为等边三角形的斜三棱柱ABC-A1B1C1中,AA1=√3AB,四边形B1C1CB为矩形,过A1C作与直线BC1平行的平面A1CD交AB于点D.(1)证明:CD⊥AB;(2)若直线AA1与底面A1B1C1所成的角为60°,求二面角B-A1C-C1的余弦值.6.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=√6,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.(2018河北衡水中学适应性考试,18)如图,在三棱柱ABC-A1B1C1中,四边形A1C1CA为菱形,∠B1A1A=∠C1A1A=60°,AC=4,AB=2,平面ACC1A1⊥平面ABB1A1,Q在线段AC上移动,P为棱AA1的中点. (1)若Q为线段AC的中点,H为BQ中点,延长AH交BC于D,求证:AD∥平面B1PQ;,求点P到平面BQB1的距离.(2)若二面角B1-PQ-C1的平面角的余弦值为√13138.(2018山西大同一模,18)如图,在四棱锥P-ABCD中,AD∥BC,∠ABC=∠PAD=90°,PA=AB=BC=2,AD=1,M是棱PB中点且AM=√2.(1)求证:AM∥平面PCD;(2)设点N是线段CD上一动点,且DN=λDC,当直线MN与平面PAB所成的角最大时,求λ的值.9.(2018山西晋城一模,20)如图,在四棱锥P-ABCD中,PA=PD=AD=2CD=2BC=2,且∠ADC=∠BCD=90°.(1)当PB=2时,证明:平面PAD⊥平面ABCD;,且二面角P-AD-B为钝角时,求直线PA与平面PCD所成角的正弦值.(2)当四棱锥P-ABCD的体积为34高考大题专项四 高考中的立体几何1.证明 (1)∵BD ∥平面AEF ,BD ⊂平面BCD ,平面BCD ∩平面AEF=EF ,∴BD ∥EF.又BD ⊂平面ABD ,EF ⊄平面ABD , ∴EF ∥平面ABD.(2)∵AE ⊥平面BCD ,CD ⊂平面BCD ,∴AE ⊥CD.由(1)可知BD ∥EF ,又BD ⊥CD ,∴EF ⊥CD. 又AE ∩EF=E ,AE ⊂平面AEF ,EF ⊂平面AEF , ∴CD ⊥平面AEF ,又CD ⊂平面ACD , ∴平面AEF ⊥平面ACD.2.证明 (1)以B 为坐标原点,BA ,BC ,BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),C 1(0,2,4),设BA=a ,则A (a ,0,0),所以BA ⃗⃗⃗⃗⃗ =(a ,0,0),BD ⃗⃗⃗⃗⃗⃗ =(0,2,2),B 1D ⃗⃗⃗⃗⃗⃗⃗ =(0,2,-2),B 1D ⃗⃗⃗⃗⃗⃗⃗ ·BA ⃗⃗⃗⃗⃗ =0,B 1D ⃗⃗⃗⃗⃗⃗⃗ ·BD⃗⃗⃗⃗⃗⃗ =0+4-4=0,即B 1D ⊥BA ,B 1D ⊥BD.又BA ∩BD=B ,BA ⊂平面ABD ,BD ⊂平面ABD ,所以B 1D ⊥平面ABD.(2)由(1)知,E (0,0,3),G (a2,1,4),F (0,1,4),则EG ⃗⃗⃗⃗⃗ =(a 2,1,1),EF ⃗⃗⃗⃗⃗ =(0,1,1),B 1D ⃗⃗⃗⃗⃗⃗⃗ ·EG ⃗⃗⃗⃗⃗ =0+2-2=0,B 1D ⃗⃗⃗⃗⃗⃗⃗ ·EF⃗⃗⃗⃗⃗ =0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF. 又EG ∩EF=E ,EG ⊂平面EGF ,EF ⊂平面EGF ,所以B 1D ⊥平面EGF. 结合(1)可知平面EGF ∥平面ABD.3.解 (1)因为AP ⊥BE ,AB ⊥BE ,AB ,AP ⊂平面ABP ,AB ∩AP=A ,所以BE ⊥平面ABP ,又BP ⊂平面ABP ,所以BE ⊥BP ,又∠EBC=120°.因此∠CBP=30°.(2)(方法一)取EC⏜的中点H ,连接EH ,GH ,CH. 因为∠EBC=120°,所以四边形BEHC 为菱形,所以AE=GE=AC=GC=√32+22=√13. 取AG 中点M ,连接EM ,CM ,EC ,则EM ⊥AG ,CM ⊥AG , 所以∠EMC 为所求二面角的平面角.又AM=1,所以EM=CM=√13-1=2√3.在△BEC 中,由于∠EBC=120°,由余弦定理得EC 2=22+22-2×2×2×cos 120°=12,所以EC=2√3,因此△EMC 为等边三角形,故所求的角为60°.(方法二)以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,√3,3),C (-1,√3,0),故AE ⃗⃗⃗⃗⃗ =(2,0,-3),AG⃗⃗⃗⃗⃗ =(1,√3,0),CG ⃗⃗⃗⃗⃗ =(2,0,3),设m =(x 1,y 1,z 1)是平面AEG 的一个法向量.由{m ·AE ⃗⃗⃗⃗⃗ =0,m ·AG⃗⃗⃗⃗⃗ =0,可得{2x 1-3z 1=0,x 1+√3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-√3,2). 设n =(x 2,y 2,z 2)是平面ACG 的一个法向量.由{n ·AG ⃗⃗⃗⃗⃗ =0,n ·CG ⃗⃗⃗⃗⃗ =0,可得{x 2+√3y 2=0,2x 2+3z 2=0.取z 2=-2,可得平面ACG 的一个法向量n =(3,-√3,-2).所以cos <m ,n >=m ·n |m ||n |=12.因此所求的角为60°.4.解 以A 为原点,射线AB ,AD ,AP 分别为x ,y ,z 轴的正半轴,建立空间直角坐标系如图.PA=AD=AB=2BC=2,A (0,0,0),B (2,0,0),C (2,1,0),D (0,2,0),P (0,0,2),AD ⃗⃗⃗⃗⃗ =(0,2,0),AP⃗⃗⃗⃗⃗ =(0,0,2), ∵M 为AD 的中点,∴M (0,1,0),MC⃗⃗⃗⃗⃗⃗ =(2,0,0). (1)∵MC⃗⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =0,MC ⃗⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =0, ∴CM ⊥PA ,CM ⊥AD.PA ⊂平面PAD ,AD ⊂平面PAD ,且PA ∩AD=A ,∴CM ⊥平面PAD. ∵CM ⊂平面PCM ,∴平面PCM ⊥平面PAD.(2)存在点Q 使PD ⊥平面CMQ ,在△PAD 内,过M 作MQ ⊥PD ,垂足为Q , 由(1)知CM ⊥平面PAD ,PD ⊂平面PAD ,∴CM ⊥PD , MQ ∩CM=M ,∴PD ⊥平面CMQ.设平面PCM 的一个法向量为n =(x ,y ,z ),则n ·MC⃗⃗⃗⃗⃗⃗ =2x=0⇒x=0, n ·PM ⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,1,-2)=y-2z=0⇒y=2z , 取n =(0,2,1).∵PD ⊥平面CMQ ,∴PD⃗⃗⃗⃗⃗ =(0,2,-2)是平面CMQ 的一个法向量. 由图形知二面角P-CM-Q 的平面角θ是锐角,故cos θ=n ·PD⃗⃗⃗⃗⃗⃗ |n |·|PD⃗⃗⃗⃗⃗⃗ |=√5·√8=√1010,所以二面角余弦值为√1010.5.(1)证明 如图,连接AC 1交A 1C 于点E ,连接DE.因为BC 1∥平面A 1CD ,BC 1⊂平面ABC 1,平面ABC 1∩平面A 1CD=DE , 所以BC 1∥DE.又四边形ACC 1A 1为平行四边形,所以E 为AC 1的中点,所以ED 为△AC 1B 的中位线,所以D 为AB 的中点. 又△ABC 为等边三角形,所以CD ⊥AB.(2)解 过A 作AO ⊥平面A 1B 1C 1,垂足为O ,连接A 1O ,设AB=2,则AA 1=2√3.因为直线AA 1与底面A 1B 1C 1所成的角为60°,所以∠AA 1O=60°. 在Rt △AA 1O 中,因为AA 1=2√3, 所以A 1O=√3,AO=3.因为AO ⊥平面A 1B 1C 1,B 1C 1⊂平面A 1B 1C 1,所以AO ⊥B 1C 1, 因为四边形B 1C 1CB 为矩形,所以BB 1⊥B 1C 1, 因为BB 1∥AA 1,所以B 1C 1⊥AA 1.因为AA 1∩AO=A ,AA 1⊂平面AA 1O ,AO ⊂平面AA 1O , 所以B 1C 1⊥平面AA 1O.因为A 1O ⊂平面AA 1O ,所以B 1C 1⊥A 1O.△A 1B 1C 1为等边三角形,边B 1C 1上的高为√3,又A 1O=√3,所以O 为B 1C 1的中点.以O 为坐标原点,分别以OA 1⃗⃗⃗⃗⃗⃗⃗⃗ ,OB 1⃗⃗⃗⃗⃗⃗⃗⃗ ,OA ⃗⃗⃗⃗⃗ 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,如图.则A 1(√3,0,0),C 1(0,-1,0),A (0,0,3),B 1(0,1,0).因为AB ⃗⃗⃗⃗⃗ =A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-√3,1,0),所以B (-√3,1,3),D -√32,12,3,因为AC ⃗⃗⃗⃗⃗ =A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-√3,-1,0),所以C (-√3,-1,3),A 1B ⃗⃗⃗⃗⃗⃗⃗ =(-2√3,1,3),BC ⃗⃗⃗⃗⃗ =B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,-2,0),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(-2√3,-1,3).设平面BA 1C 的法向量为n =(x ,y ,z ). 由{A 1B ⃗⃗⃗⃗⃗⃗⃗ ·n =0,BC ⃗⃗⃗⃗⃗ ·n =0,得{-2√3x +y +3z =0,y =0,令x=√3,得z=2,所以平面BA 1C 的一个法向量为n =(√3,0,2). 设平面A 1CC 1的法向量为m =(a ,b ,c ), 由{A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·m =0,A 1C ⃗⃗⃗⃗⃗⃗⃗ ·m =0, 得{√3a +b =0,2√3a +b -3c =0, 令a=√3,得b=-3,c=1,所以平面A 1CC 1的一个法向量为m =(√3,-3,1). 所以|cos <n ,m >|=|n ·m ||n ||m |=5√9191. 因为所求二面角为钝角,所以二面角B-A 1C-C 1的余弦值为-5√9191. 6.(1)证明 设AC ,BD 交点为E ,连接ME.因为PD ∥平面MAC ,平面MAC ∩平面PDB=ME ,所以PD ∥ME. 因为ABCD 是正方形,所以E 为BD 的中点.所以M 为PB 的中点. (2)解 取AD 的中点O ,连接OP ,OE.因为PA=PD ,所以OP ⊥AD.又因为平面PAD ⊥平面ABCD ,且OP ⊂平面PAD ,所以OP ⊥平面ABCD. 因为OE ⊂平面ABCD ,所以OP ⊥OE. 因为ABCD 是正方形,所以OE ⊥AD.如图建立空间直角坐标系O-xyz ,则P (0,0,√2),D (2,0,0),B (-2,4,0),BD⃗⃗⃗⃗⃗⃗ =(4,-4,0),PD ⃗⃗⃗⃗⃗ =(2,0,-√2).设平面BDP 的法向量为n =(x ,y ,z ),则{n ·BD ⃗⃗⃗⃗⃗⃗ =0,n ·PD ⃗⃗⃗⃗⃗ =0,即{4x -4y =0,2x -√2z =0.令x=1,则y=1,z=√2.于是n =(1,1,√2),平面PAD 的法向量为p =(0,1,0). 所以cos <n ,p >=n ·p |n ||p |=12.由题知二面角B-PD-A 为锐角,所以它的大小为π3. (3)解 由题意知M (-1,2,√22),C (2,4,0),MC ⃗⃗⃗⃗⃗⃗ =(3,2,-√22). 设直线MC 与平面BDP 所成角为α,则sin α=|cos <n ,MC ⃗⃗⃗⃗⃗⃗ >|=|n ·MC ⃗⃗⃗⃗⃗⃗⃗||n ||MC ⃗⃗⃗⃗⃗⃗⃗ |=2√69. 所以直线MC 与平面BDP 所成角的正弦值为2√69. 7.(1)证明 如图,取BB 1中点E ,连接AE ,EH.∵H 为BQ 中点,∴EH ∥B 1Q.在平行四边形AA 1B 1B 中,P ,E 分别为AA 1,BB 1的中点,∴AE ∥PB 1. 又EH ∩AE=E ,PB 1∩B 1Q=B 1, ∴平面EHA ∥平面B 1QP.∵AD ⊂平面EHA ,∴AD ∥平面B 1PQ.(2)解 连接PC 1,AC 1,∵四边形A 1C 1CA 为菱形, ∴AA 1=AC=A 1C 1=4. 又∠C 1A 1A=60°,∴△AC 1A 1为正三角形.∵P 为AA 1的中点,∴PC 1⊥AA 1.∵平面ACC 1A 1⊥平面ABB 1A 1,平面ACC 1A 1∩平面ABB 1A 1=AA 1,PC 1⊂平面ACC 1A 1,∴PC 1⊥平面ABB 1A 1,在平面ABB 1A 1内过点P 作PR ⊥AA 1交BB 1于点R.建立如图所示的空间直角坐标系P-xyz ,则P (0,0,0),A 1(0,2,0),A (0,-2,0),C 1(0,0,2√3),C (0,-4,2√3),设AQ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ =λ(0,-2,2√3),λ∈[0,1], ∴Q (0,-2(λ+1),2√3λ), ∴PQ⃗⃗⃗⃗⃗ =(0,-2(λ+1),2√3λ). ∵A 1B 1=AB=2,∠B 1A 1A=60°, ∴B 1(√3,1,0),∴PB 1⃗⃗⃗⃗⃗⃗⃗ =(√3,1,0).设平面PQB 1的法向量为m =(x ,y ,z ),则{m ·PQ ⃗⃗⃗⃗⃗ =0,m ·PB 1⃗⃗⃗⃗⃗⃗⃗ =0,得{-2(λ+1)y +2√3λz =0,√3x +y =0,令x=1,则y=-√3,z=-λ+1λ,∴平面PQB 1的一个法向量为m =1,-√3,-λ+1λ,设平面AA 1C 1C 的法向量为n =(1,0,0),二面角B 1-PQ-C 1的平面角为θ,则cos θ=m ·n|m ||n |=1√1+3+(-λ+1λ) =√1313.∴λ=12或λ=-14(舍),∴AQ⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ ,∴Q (0,-3,√3). 又B (√3,-3,0),∴QB ⃗⃗⃗⃗⃗ =(√3,0,-√3),∴|QB⃗⃗⃗⃗⃗ |=√3+3=√6. 连接BP ,设点P 到平面BQB 1的距离为h ,则13×12×4×√3×√3=13×12×4×√6×h , ∴h=√62,即点P 到平面BQB 1的距离为√62.8.(1)证明 如图,取PC 中点K ,连接MK ,KD ,因为M 为PB 的中点,所以MK ∥BC 且MK=12BC=AD , 所以四边形AMKD 为平行四边形, 所以AM ∥DK ,又DK ⊂平面PDC ,AM ⊄平面PDC , 所以AM ∥平面PCD.(2)解 因为M 为PB 的中点,设PM=MB=x ,在△PAB 中,∠PMA+∠AMB=π,设∠PMA=θ,则∠AMB=π-θ,所以cos ∠PMA+cos ∠AMB=0,由余弦定理得PM 2+AM 2-PA 22PM ·AM +BM 2+AM 2-AB 22BM ·AM =0,即x 2+2-42√2x x 2+2-42√2x=0, 解得x=√2,则PB=2√2,所以PA 2+AB 2=PB 2, 所以PA ⊥AB.又PA ⊥AD ,且AB ∩AD=A ,所以PA ⊥平面ABCD ,且∠BAD=∠ABC=90°.以点A 为坐标原点,建立如图所示的空间直角坐标系A-xyz ,则A (0,0,0),D (1,0,0),B (0,2,0),C (2,2,0),P (0,0,2),M (0,1,1),因为点N 是线段CD 上一点,可设DN⃗⃗⃗⃗⃗⃗ =λDC ⃗⃗⃗⃗⃗ =λ(1,2,0),故AN ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +DN ⃗⃗⃗⃗⃗⃗ =(1,0,0)+λ(1,2,0)=(1+λ,2λ,0), 所以MN ⃗⃗⃗⃗⃗⃗⃗ =AN ⃗⃗⃗⃗⃗⃗ −AM ⃗⃗⃗⃗⃗⃗ =(1+λ,2λ,0)-(0,1,1)=(1+λ,2λ-1,-1).又面PAB 的法向量为(1,0,0),设MN 与平面PAB 所成角为θ,则sin θ=|√(1+λ)+(2λ-1)+1|=|√5λ-2λ+3|=|√5(1+λ)-12(1+λ)+10|=|√5-121+λ+10(11+λ) |=|1√10(11+λ-35) +75|,所以当11+λ=35时,即λ=23时,sin θ取得最大值.9.(1)证明 取AD 的中点O ,连接PO ,BO ,∵△PAD 为正三角形,∴OP ⊥AD , ∵∠ADC=∠BCD=90°,∴BC ∥AD ,∵BC=12AD=1,∴BC=OD ,∴四边形BCDO 为矩形,∴OB=CD=1,在△POB 中,PO=√3,OB=1,PB=2, ∴∠POB=90°,∴PO ⊥OB ,∵AD ∩OB=O ,∴PO ⊥平面ABCD ,∵PO ⊂平面PAD ,∴平面PAD ⊥平面ABCD. (2)解 ∵AD ⊥PO ,AD ⊥OB ,PO ∩BO=O ,PO ,BO ⊂平面POB ,∴AD ⊥平面POB ,∵AD ⊂平面ABCD ,∴平面POB ⊥平面ABCD ,∴过点P 作PE ⊥平面ABCD ,垂足E 一定落在平面POB 与平面ABCD 的交线BO 上.∵四棱锥P-ABCD 的体积为34,∴V P-ABCD =13×PE ×12×(AD+BC )×CD=13×PE ×12×(2+1)×1=12PE=34,∴PE=32, ∵PO=√3,∴OE=√PO 2-PE 2=√3-94=√32.如图,以O 为坐标原点,以OA ,OB 为x 轴,y 轴.在平面POB 内过点O 作垂直于平面AOB 的直线为z 轴,建立空间直角坐标系O-xyz ,由题意可知A (1,0,0),P 0,-√32,32,D (-1,0,0),C (-1,1,0),DP ⃗⃗⃗⃗⃗ =1,-√32,32,DC ⃗⃗⃗⃗⃗ =(0,1,0),设平面PCD 的一个法向量为n =(x ,y ,z ),则{n ·DP ⃗⃗⃗⃗⃗ =0,n ·DC ⃗⃗⃗⃗⃗ =0,得{x -√32y +32z =0,y =0,令x=1,则z=-23,∴n =1,0,-23,PA ⃗⃗⃗⃗⃗ =1,√32,-32,设直线PA 与平面PCD 所成的角为θ, 则sin θ=|cos <PA ⃗⃗⃗⃗⃗ ,n >|=|PA ⃗⃗⃗⃗⃗ ·n ||PA ⃗⃗⃗⃗⃗||n |=2×√133=3√1313. 则直线PA 与平面PCD 所成角的正弦值为3√1313.。
高考年理科数学复习总结立体几何大题解析版

1. 【2020 年高考全国 1 卷理数 18】如图, D 为圆锥的顶点,O 是圆锥底面的圆心, AE 为底面直径, AE AD . AB C 是 6底面的内接正三角形, P 为 DO 上一点, P O (1)证明: PA 平面 PBC ; D O . 6(2)求二面角 BPC E 的余弦值.2 5【答案】(1)证明见解析;(2) .5 【解析】 【分析】 (1)要证明 PA 平面 PBC ,只需证明 PA PB ,PA PC即可;(2)以 O 为坐标原点,OA 为 x 轴,O N 为 y 轴建立如图所示的空间直角坐标系,分别算n m出平面 PCB 的法向量为 n ,平面 PCE 的法向量为 m ,利用公式cos m,n 计 | n || m |算即可得到答案.【详解】(1)由题设,知△D A E 为等边三角形,设 AE 1, 1 1 6 2 3 则 D O,C O BO AE ,所以 PO D O ,2 2 2 6 46 6 PC PO 2 OC 2,PB PO 2 OB 2, 4 4BA 3 又 AB C 为等边三角形,则2OA ,所以 BA, s in 60 23PA 2 PB 2AB 2 ,则 APB 90 ,所以 4PA PB ,同理 PA PC ,又 PC PB P ,所以 PA 平面PBC ;(2)过 O 作O N ∥BC 交 AB 于点 N ,因为 PO平面ABC ,以 O 为坐标原点,O A 为 x 轴,O N 为 y 轴建立如图所示的空间直角坐标系,12 13 1 3 则 E( ,0,0),P(0, 0,),B( , , 0),C( , 4 4 4, 0) , 24 4 PC ( , , ), PB ( , 4 4 ), PE ( ,0, 1 3 2 1 3 2 1 2, ) ,4 4 4 42 4 设平面 PCB 的一个法向量为 n (x , y , z ), 1 1 1n PC 0x 3y 2z 0 11 1 由 n PB 0 ,得 ,令 x2 1 z 1, y 0 ,得 , 1 1x 3y 2z 0 1 1 1所以 n ( 2,0,1),设平面 PCE 的一个法向量为 m (x , y , z )2 2 2m PC 0x 3y 2z 0 22 23 x 1 ,令 ,得 z 2, y 2由,得 , m PE 02x 2z 0 2 232 23 所以 m (1, , 2)3n m 2 2 2 5cos m,n故| n || m |10 35 , 32 5设二面角 B PC E 的大小为 ,则 cos 2. 【2019 年高考全国 1 卷理数 18】. 5如图,直四棱柱 ABC D –A B C D 的底面是菱形,AA =4,AB=2,∠BA D=60° 1 1 1 1 1 E ,M ,N 分别是 BC ,BB ,A D 的中点. 1 1 (1)证明:M N ∥平面 C D E ; 1(2)求二面角 A −M A −N 的正弦值. 1 解:(1)连结B C ,M E . 1因为M ,E 分别为BB ,BC 的中点, 1 1所以M E ∥B C ,且M E= B C . 1 121又因为N 为A D 的中点,所以N D= A D . 1 12D C ,可得B C A D ,故ME N D ,11由题设知A B 1 1 因此四边形M N D E 为平行四边形,M N ∥E D . 又M N 平面E D C ,所以M N ∥平面C DE . 1 1 (2)由已知可得DE ⊥D A . 以D 为坐标原点,DA的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则A(2, 0, 0) N(1, 0, 2),, A (2 , 0 , 4) , M (1, 3, 2) , 1 A A (0, 0,4) , A M (1, 3,2) , A N (1,0,2) , 1 1 1M N (0, 3, 0) .m A M 0m (x , y , z ) 1 设 为平面A M A 的法向量,则, 1 m A A 01 ,x 3y 2z 0 所以可取 m ( 3,1, 0). 4z 0., n MN 0n (p ,q ,r) 设 为平面A M N 的法向量,则1 A N 0n . 1 ,3q 0 n (2, 0,1) . 所以可取 p 2r 0.m n 2 3 15于是 cos m ,n, | m ‖n | 2 5 510 5A MA N 所以二面角的正弦值为 .1 3. 【2018 年高考全国 1 卷理数 18】如图,四边形 AB C D 为正方形,E ,F 分别为 A D ,BC 的中点,以 DF 为折痕把△DF C 折起,使点 C 到达点 P 的位置,且 PF ⊥BF.(1)证明:平面 PEF ⊥平面 ABF D ; (2)求 DP 与平面 ABF D 所成角的正弦值. 【答案】见解析。
2020全国ii卷数学立体几何

2020全国II卷数学立体几何一、概述2020年全国II卷数学考试立体几何部分是考察学生空间想象、几何推理能力的重要部分。
立体几何一直是考试的重点内容,掌握好这部分知识对于取得好成绩至关重要。
下面我们将针对2020年全国II 卷数学立体几何部分的考题进行分析和解答,帮助同学们更好地复习和备考。
二、考点分析2020年全国II卷数学立体几何考察的主要考点有:多面体的表面积和体积、空间平面图形的性质、空间几何体的性质等。
三、题目解析题目一:已知四面体$ABCD$的底面$ABC$是等边三角形,$AD=AB=6$,$CD=3$,以$AD$和$BC$为直径的球相交于点$E$,求四面体$ABCD$的体积。
解析:根据题意可知$AD=AB=6$,$CD=3$,所以四边形$ABCD$的高度为$3$。
因为$ABCD$是等边三角形,所以$AB=BC=AC=6$。
由此可得四面体$ABCD$的底面积为$\frac{\sqrt{3}}{4} \times 6^2=9\sqrt{3}$,所以四面体$ABCD$的体积为$\frac{1}{3} \times 3 \times 9\sqrt{3}=9\sqrt{3}$。
题目二:四棱锥$ABCD-A_1$的底面$ABC$是等边三角形,$AB=3$,$BC=AD=2\sqrt{6}$,$A_1$是$ABC$所在平面的重心,求四棱锥$ABCD-A_1$的体积。
解析:根据题意可知$AB=3$,$BC=AD=2\sqrt{6}$,所以四棱锥$ABCD-A_1$的底面积为$\frac{\sqrt{3}}{4} \times 3^2=\frac{9\sqrt{3}}{4}$,所以四棱锥$ABCD-A_1$的体积为$\frac{1}{3} \times 2\sqrt{6} \times \frac{9\sqrt{3}}{4}=3\sqrt{2}$。
题目三:空间四边形$ABCD$是正方形,$AB=BC=4$,$AE=2\sqrt{3}$,$AF=2$,$E,F$分别在$AB,BC$平分线上,求四边形$EFGH$的面积。
2020年高考数学(理)热点专练08 立体几何(解析版)
热点08 立体几何【命题趋势】立体几何一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,理科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及二面角问题.本专题针对高考高频知识点以及题型进行总结,希望通过本专题的学习,能够掌握高考数学中的立体几何的题型,将高考有关的立体几何所有分数拿到. 【满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求. 内切圆问题:转化成正方体的内切圆去求. 求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.对于二面角问题应采用建立立体坐标系去求.但是坐标系要注意采用左手系务必要标记准确对应点以及法向量对应的坐标. 【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)1.(2019·安徽高考模拟(理))已知,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列命题正确的是( ) A .若//,//m n αα,则//m n B .若,αγβγ⊥⊥,则//αβC .若//,//m n αα,且,m n ββ⊂⊂,则//αβD .若,m n αβ⊥⊥,且αβ⊥,则m n ⊥【答案】D 【解析】 【分析】根据空间中直线和平面的位置关系分别去判断各个选项,,,A B C 均可举出反例;D 可证明得出. 【详解】若//m α,//n α,则//m n 或m 与n 异面或m 与n 相交,故选项A 错误; 若αγ⊥,βγ⊥,则α与β可能相交,故选项B 错误; 若直线,m n 不相交,则平面,αβ不一定平行,故选项C 错误;αβ⊥Q ,m α⊥ //m β∴或m β⊂,又n β⊥ m n ∴⊥,故选项D 正确.本题正确选项:D 【名师点睛】本题考查空间中直线、平面之间位置关系有关命题的判断,考查学生的空间想象能力和对定理的掌握程度.2.(2019·四川射洪中学高三月考(理))已知某几何体的三视图如图所示,则该几何体的最大边长为( )A B C D .【答案】B 【解析】根据三视图作出原几何体(四棱锥P ABCD -)的直观图如下:可计算PB PD BC PC ====.【名师点睛】:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.3.(2019·安徽高考模拟(理))当动点P 在正方体1111ABCD A B C D -的体对角线1A C 上运动时,异面直线BP 与1AD 所成角的取值范围是( ) A .,64ππ⎡⎤⎢⎥⎣⎦B .,63ππ⎡⎤⎢⎥⎣⎦C .,43ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎫⎪⎢⎣⎭【答案】B 【解析】 【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出BP 与AD 1所成角的取值范围. 【详解】以D 为原点,DA u u u v ,DC u u uv ,1DD u u u u v 分别为x ,y ,z 轴正向,建立空间直角坐标系D xyz -,则()11,0,1AD =-u u u u v ,()11,1,1CA =-u u u v ,设1CP CA λ=u u u v u u u v ,则[]0,1λ∈, (),,CP λλλ∴=-u u u v ,()1,,BP u u u vλλλ∴=--,故1cos ,AD BP u u u u v u u u v 11··AD BPAD BP=u u u u v u u u vu u u u v u u u v=对于函数()2321h x λλ=-+ 212333λ⎛⎫=-+ ⎪⎝⎭,[]0,1λ∈有:()min 1233h x h ⎛⎫== ⎪⎝⎭,()()max 12h x h ==,故11cos ,2AD BP ⎡∈⎢⎣⎦u u u u v u u u v ,又[]1,0,AD BP π∈u u u u v u u u v ,故1,,63AD BP u u u u v u u u v ππ⎡⎤∈⎢⎥⎣⎦.故选B .【名师点睛】本题考查异面直线所成角的取值范围的求法,考查异面直线所成角的概念等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.(2019·湖南高三期末(理))设a ,b 是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( ) A .a b ∥,b α⊂,则a P αB .a α⊂,b β⊂,αβ∥,则a b ∥C .a α⊂,b α⊂,a β∥,b β∥,则αβ∥D .αβ∥,a α⊂,则a β∥【答案】D 【解析】分析:在A 中,a ∥α或a ⊂α;在B 中,a 与b 平行或异面;在C 中,α与β相交或平行;在D 中,由面面平行的性质定理得a ∥β.详解:由a ,b 是空间中不同的直线,α,β是不同的平面,知:在A 中,a ∥b ,b ⊂α,则a ∥α或a ⊂ α,故A 错误; 在B 中,a ⊂α,b ⊂ β,α∥β,则a 与b 平行或异面,故B 错误; 在C 中,a ⊂α,b ⊂ α,α∥β,b ∥β,则α与β相交或平行,故C 错误; 在D 中,α∥β,a ⊂α,则由面面平行的性质定理得a ∥β,故D 正确. 故选:D .【名师点睛】:本题考查线面位置关系的判断,考查空间想象能力,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.5.(2019·贵州高考模拟(理))如图在正方体1111ABCD A B C D -中,点O 为线段BD 的中点. 设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是( )A.[,1]3 B.[3C.3D.[,1]3【答案】B 【解析】 【详解】设正方体的棱长为1,则11111A C A C A O OC OC ======所以1111332122cos ,sin 33322AOC AOC +-∠==∠=⨯,11313cos 33AOC AOC +-∠==-∠=. 又直线与平面所成的角小于等于90o ,而1A OC ∠为钝角,所以sin α的范围为,选B. 【考点定位】空间直线与平面所成的角.6.(2019·宁夏吴忠中学高考模拟(理))已知直三棱柱111C C AB -A B 中,C 120∠AB =o ,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )ABCD【答案】C 【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为1111,BC D BC BD C D AB ∠=====Q易得22211C D BD BC =+,因此111cos BC BC D C D ∠===C .平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是(0,]2π,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.7.(2019·广东高考模拟(理))已知三棱锥P ABC -的底面ABC 是边长为2的等边三角形,PA ⊥平面ABC ,且2PA =,则该三棱锥外接球的表面积为( ) A .683πB .20πC .48πD .283π【答案】D【解析】 【分析】由于球中球心与球的小圆圆心的连线垂直于这个小圆,利用PA 也垂直于这个小圆,即可利用球心与小圆圆心建立起直角三角形,1'12d OO PA ===,根据题意可求出r 是底面三角形的外接圆的半径,利用d =R 即可,最后即可求出球的表面积.【详解】 由已知得,作下图PA ABC ⊥平面,连结PO ,延长至圆上交于H , 过O 作'OO PA P 交ABC 平面于'O ,则PAH ∆为Rt ∆,所以,O 为斜边PH 的中点,所以,'OO 为PAH ∆的中位线,'O 为小圆圆心,则'O 为AH 的中点,则''12OO O H PA AH ==,则''O H AO ===,1'12OO PA ==,则球的半径R OH ====球的表面积为22843R ππ= 答案选D.【名师点睛】本题考查计算球的表面积,关键在于利用222d R r =-进行计算R ,难点在于构造三要素相关的直角三角形进行求解,难度属于中等.8.(2019·河南高考模拟(理))如图,点P 在正方体1111ABCD A B C D -的面对角线1BC上运动,则下列四个结论:①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ; 1DP BC ⊥③;④平面1PDB ⊥平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】利用空间中线线、线面、面面间的位置关系求解. 【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C ,故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确; 对于②,连接1A B ,11A C ,111//AC AD 且相等,由于①知:11//AD BC ,所以11//BA C 面1ACD ,从而由线面平行的定义可得,故②正确; 对于③,由于DC ⊥平面11BCB C ,所以1DC BC ⊥, 若1DP BC ⊥,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确. 故选:C .【名师点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.9.(2019·河北高考模拟(理))正方体1111ABCD A B C D -的棱上(除去棱AD)到直线1A B 与1CC 的距离相等的点有3个,记这3个点分别为,,E F G ,则直线1AC 与平面EFG 所成角的正弦值为( )A B C D 【答案】D 【解析】 【分析】正方体ABCD ﹣A 1B 1C 1D 1的棱上到直线A 1B 与CC 1的距离相等的点分别为:D 1,BC 的中点,B 1C 1的四等分点(靠近B 1),假设D 1与G 重合,BC 的中点为E ,B 1C 1的四等分点(靠近B 1)为F ,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出直线AC 1与平面EFG 所成角的正弦值. 【详解】解:正方体ABCD ﹣A 1B 1C 1D 1的棱上到直线A 1B 与CC 1的距离相等的点分别为: D 1,BC 的中点,B 1C 1的四等分点(靠近B 1),假设D 1与G 重合,BC 的中点为E ,B 1C 1的四等分点(靠近B 1)为F ,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系,设AB =2,则E (1,2,0),F (32,2,2),G (0,0,2),A (2,0,0),C 1(0,2,2),∴EF =u u u r (1022,,),GF u u u r =(3202,,),1AC =u u u u r (﹣2,2,2), 设平面EFG 的法向量n =r(x ,y ,z ),则00n EF n GF ⎧⋅=⎪⎨⋅=⎪⎩u u u r r u u u r r ,即12023202x z x y ⎧+=⎪⎪⎨⎪+=⎪⎩,取x =4,得n =r (4,﹣3,﹣1). 设直线AC 1与平面EFG 所成角为θ,则直线AC 1与平面EFG 所成角的正弦值为sinθ=|cos 1n AC u u u u r r <,>|=. 故选:D .【名师点睛】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.10.(2019·湖北高考模拟(理))如图,已知四面体ABCD 为正四面体,2,AB E F =, 分别是,AD BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( ).A .1 BCD .2【答案】A【解析】 【分析】通过补体,在正方体内利用截面为平行四边形MNKL ,有2NK KL +=,进而利用基本不等式可得解. 【详解】补成正方体,如图.,EF α⊥Q∴截面为平行四边形MNKL ,可得2NK KL +=, 又//,//,MN AD KL BC 且,AD BC KN KL ⊥∴⊥ 可得L MNK S NK KL =⋅四边形2()1,2NK KL +≤=当且仅当NK KL =时取等号,选A. 【名师点睛】本题主要考查了线面的位置关系,截面问题,考查了空间想象力及基本不等式的应用,属于难题.二、填空题11.(2019·重庆南开中学高考模拟(理))三棱锥P ABC -的4的球面上,PA ⊥平面ABC ,V ABC A 到平面PBC 的距离为______. 【答案】65【解析】 【分析】由题意,球心在三棱锥各顶点的距离相等,球心到底面的距离等于三棱锥的高PA 的一半,求出PA,,然后利用等体积求点A 到平面PBC 的距离 【详解】△ABC 的正三角形,可得外接圆的半径2r asin60==︒2,即r =1.∵PA ⊥平面ABC ,PA =h ,球心到底面的距离d 等于三棱锥的高PA 的一半即h2,那么球的半径R ==,解得h=2,又PBC S ∆=由P ABC A PBC V V --= 知'113?2=?33 ,得'65d = 故点A 到平面PBC 的距离为65故答案为65. 【名师点睛】本题考查外接球问题,锥的体积,考查计算求解能力,是基础题 12.(2019·广东高考模拟(理))《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开, 得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,15,3,4AA AC AB BC ====,则阳马111C ABB A -的外接球的表面积是_________________【答案】50S π= 【解析】 【分析】根据堑堵定义以及长方体性质可得阳马111C ABB A -的外接球的直径为1A C ,再根据球的表面积公式求结果. 【详解】由于1CB,,BA BB 两两相互垂直,所以阳马111C ABB A -的外接球的直径为1A C ,即2R ==2450R ππ=.【名师点睛】若球面上四点,,,P A B C 构成的三条线段,,PA PB PC 两两互相垂直,且,,PA a PB b PC c ===,一般把有关元素“补形”成为一个球内接长方体,利用22224R a b c =++求解.13.(2019·山东高考模拟(理))如图所示,平面BCC 1B 1⊥平面ABC ,∠ABC =120︒,四边形BCC 1B 1为正方形,且AB =BC =2,则异面直线BC 1与AC 所成角的余弦值为_____.【答案】4【解析】 【分析】将AC 平移到和1BC 相交的位置,解三角形求得线线角的余弦值. 【详解】过B 作//BD AC ,过C 作//CD AB ,画出图像如下图所示,由于四边形ABCD 是平行四边形,故//BD AC ,所以1C BD ∠是所求线线角或其补角.在三角形1BC D 中,11BC C D BD ===1cos C BD ∠==.【名师点睛】本小题主要考查空间两条直线所成角的余弦值的计算,考查数形结合的数学思想方法,属于中档题.14.(2018·栖霞市第一中学高考模拟(理))如图在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中正确的有______.(填上所有正确命题的序号)AC BD ⊥①, AC BD =②, //AC ③截面PQMN ,④异面直线PM 与BD 所成的角为45o .【答案】①③④ 【解析】 【分析】由截面PQMN 是正方形出发,利用线面平行的判定和性质,可以推出////PQ AC MN ,////PN BD MQ ,从而得到//AC 平面PQMN ,异面直线PM 与BD 所成的角和PM 与PN 所成角相等为45o ,AC BD ⊥,M N P Q 、、、不一定是中点从而AC BD ,不一定相等.【详解】解:在四面体ABCD 中,Q 截面PQMN 是正方形,//PQ MN ∴,PQ ⊄平面ACD ,MN ⊂平面ACD ,//PQ ∴平面ACD .Q 平面ACB ⋂平面ACD AC =,//PQ AC ∴,可得//AC 平面PQMN .同理可得//BD 平面PQMN ,//BD PN .PN PQ ⊥Q ,AC BD ∴⊥.由//BD PN ,MPN ∴∠是异面直线PM 与BD 所成的角,且为45o .由上面可知://BD PN ,//PQ AC .PN AN BD AD ∴=,MN DNAC AD=, 而AN DN ≠,PN MN =,BD AC ∴≠.综上可知:①③④都正确. 故答案为:①③④.利用线面平行与垂直的判定定理和性质定理、正方形的性质、异面直线所成的角即可得出. 【名师点睛】本题考查了线面平行与垂直的判定定理和性质定理、正方形的性质、异面直线所成的角,属于基础题.15.(2019·深圳市高级中学高考模拟(理))在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC △是边长为6的等边三角形,PAB △是以AB 为斜边的等腰直角三角形,则该三棱锥外接球的表面积为_______. 【答案】48π 【解析】 【分析】在等边三角形ABC 中,取AB 的中点F ,设其中心为O ,则23AO BO CO CF ====,再利用勾股定理可得OP =O 为棱锥P ABC -的外接球球心,利用球的表面积公式可得结果.【详解】如图,在等边三角形ABC 中,取AB 的中点F , 设其中心为O ,由6AB =,得23AO BO CO CF ====, PAB ∆Q 是以AB 为斜边的等腰角三角形,PF AB ∴⊥,又因为平面PAB ⊥平面ABC ,PF ∴⊥平面 ABC ,PF OF ∴⊥,OP =则O 为棱锥P ABC -的外接球球心,外接球半径R OC ==∴该三棱锥外接球的表面积为(2448ππ⨯=,故答案为48π. 【名师点睛】本题考查主要四面体外接球表面积,考查空间想象能力,是中档题. 要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC ∆外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.三、解答题16.(2019·山东高考模拟(理))如图所示的多面体是由一个直平行六面体被平面AEFG 所截后得到的,其中45BAE GAD ∠=∠=︒,22AB AD ==,60BAD ∠=︒.(1)求证:平面BDG ⊥平面ADG ; (2)求直线GB 与平面AEFG 所成角的正弦值.【答案】(1)见解析(2)7【解析】 【分析】(1)在BAD ∆中,由余弦定理可得BD =AD DB ⊥,在直平行六面体中,GD ⊥平面ABCD ,则可得GD DB ⊥,由此说明BD ⊥平面ADG ,即可证明平面BDG ⊥平面ADG ;(2)以D 为原点建立空间直角坐标系D xyz -,表示出各点的坐标,求出平面AEFG 的法向量,由直线与平面所成角正弦值的公式即可得到直线GB 与平面AEFG 所成角的正弦值. 【详解】(1)证明:在BAD ∆中,因为22AB AD ==,60BAD ∠=︒. 由余弦定理得,2222cos60BD AD AB AB AD =+-⋅︒,解得BD =∴222AB AD DB =+,∴AD DB ⊥, 在直平行六面体中,GD ⊥平面ABCD ,DB ⊂平面ABCD , ∴GD DB ⊥ 又AD GD D ⋂=, ∴BD ⊥平面ADG ,∴平面BDG ⊥平面ADG . (2)解:如图以D 为原点建立空间直角坐标系D xyz -,因为45BAE GAD ∠=∠=︒,22AB AD ==, 所以()1,0,0A,()B,()E ,()0,0,1G ,()AE →=-,()1,0,1AG →=-,()1GB →=-.设平面AEFG 的法向量(),,n x y z →=,200n AE x z n AG x z ⎧⋅=-++=⎪⎨⋅=-+=⎪⎩u u u v r u u uv r , 令1x =,得y =1z =,∴1,n →⎛⎫= ⎪ ⎪⎝⎭.设直线GB 和平面AEFG 的夹角为θ,所以sin cos ,7GB n GB n GB n θ→→→→→→⋅====⋅, 所以直线GB 与平面AEFG 所成角的正弦值为7. 【名师点睛】本题考查面面垂直的证明,以及利用空间向量求线面所成角的正弦值,熟练掌握面面垂直的判定以及线面所成角的公式是解题关键,考查学生基本的算能力,属于中档题. 17.(2019·辽宁高考模拟(理))如图,等腰梯形ABCD 中,//AB CD ,1AD AB BC===,2CD =,E 为CD 中点,以AE 为折痕把ADE ∆折起,使点D 到达点P 的位置(P ∉平面ABCE ).(Ⅰ)证明:AE PB ⊥;(Ⅰ)若直线PB 与平面ABCE 所成的角为4π,求二面角A PE C --的余弦值.【答案】(I )见解析;(II ). 【解析】 【分析】(I )先证明AE POB ⊥平面,再证明AE PB ⊥;(II )在平面POB 内作PQ ⊥OB,垂足为Q ,证明OP ⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,利用向量法求二面角A PE C --的余弦值. 【详解】(I )证明:在等腰梯形ABCD 中,连接BD ,交AE 于点O ,∵AB||CE,AB=CE ,∴四边形ABCE 为平行四边形,∴AE=BC=AD=DE , ∴△ADE 为等边三角形,∴在等腰梯形ABCD 中,3C ADE π∠=∠=,23DAB ABC π∠=∠=, ∴在等腰ADB ∆中,6ADB ABD π∠=∠=∴2362DBC πππ∠=-=,即BD ⊥BC , ∴BD ⊥AE ,翻折后可得:OP ⊥AE,OB ⊥AE ,又,,OP POB OB POB OP OB O ⊂⊂=Q I 平面平面,AE POB ∴⊥平面,,PB POB AE PB ⊂∴⊥Q 平面;(II )解:在平面POB 内作PQ ⊥OB,垂足为Q , 因为AE ⊥平面POB ,∴AE ⊥PQ ,因为OB ⊂平面ABCE, AE ⊂平面ABCE,AE∩OB=O∴PQ ⊥平面ABCE ,∴直线PB 与平面ABCE 夹角为4PBQ π∠=,又因为OP=OB ,∴OP ⊥OB ,∴O 、Q 两点重合,即OP ⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,由题意得,各点坐标为111(,0,0),(,0,(222P E C PE EC ∴==u u u r u u u r , 设平面PCE 的一个法向量为1(,,)n x y z =u r,则111002,,0102x z PE n EC n x y ⎧=⎪⎧⋅=⎪⎪∴⎨⎨⋅=⎪⎩⎪+=⎪⎩u u u v u v u u u v u v设x =y=-1,z=1,∴1n =u r,由题意得平面PAE 的一个法向量2(0,1,0)n =u u r, 设二面角A -EP -C 为α,1212|||cos |=||||n n n n α⋅==u r u u rur u u r . 易知二面角A -EP -C为钝角,所以cos α.【名师点睛】本题主要考查空间几何元素位置关系的证明,考查二面角的求法,意在考查学生对这些知识的理解掌握水平和空间想象转化分析推理能力.18.(2019·江苏高考模拟)直三棱柱111ABC A B C -中,AB AC ⊥,2AB =,4AC =,12AA =,BD DC λ=u u u r u u u r.(1)若1λ=,求直线1DB 与平面11AC D 所成角的正弦值;(2)若二面角111B AC D --的大小为60︒,求实数λ的值.【答案】(1(21 【解析】【详解】试题分析:(1)直接按照求直线与平面所成角的步骤来求即可;直线与平面α所成角θ 可先求出平面α的法向量n 与直线的方向向量,则sin cos a n a n a nθ⋅=〈⋅〉=r r r r r r ;(2)根据求二面角的步骤,列出关于实数λ的方程来求;求出二面角l αβ--的大小,可先求出两个半平面α与β的法向量12n n u r u u r ,,若二面角l αβ--所成的角θ为锐角,则1212cos cos cos n n n n θ〈〉=〈〉u r u u r u r u u r =,,;若二面角l αβ--所成的角θ钝角,则1212cos cos cos n n n n θ〈⋅〉=-〈⋅〉u r u u r u r u u r =-.试题解析:解:分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系.则(0,0,0)A ,(2,0,0)B ,(0,4,0)C ,1(0,0,2)A ,1(2,0,2)B ,1(0,4,2)C(1)当1λ=时,D 为BC 的中点,所以(1,2,0)D ,1(1,2,2)DB =-u u u u r ,11(0,4,0)AC =u u u u r ,1(1,2,2)AD =-u u u u r ,设平面11AC D 的法向量为1(,,)n x y z =u r 则40{20y x z =-=,所以取1(2,0,1)n =u r,又111111cos ,DB n DB n DB n ⋅===u u u u r u r u u u u r u r u u u u r u r 所以直线1DB 与平面11AC D. (2)BD DC λ=u u u r u u u r Q ,24(,,0)11D λλλ∴++,11(0,4,0)AC =u u u u r Q ,124(,,2)11A D λλλ=-++u u u u r , 设平面11AC D 的法向量为1(,,)n x y z =u r ,则40{2201y x z λ=-=+, 所以取1(1,0,1)n λ=+u r .又平面111A B C 的一个法向量为2(0,0,1)n =u u r ,由题意得121cos ,2n n =u r u u r ,12=,解得1λ=-或1λ=-(不合题意,舍去), 所以实数λ1.考点:二面角;直线与平面所成角的方法.19 (2019·山东高考模拟(理))如图,在多面体ABCDEF 中,四边形ABCD 的菱形,60BCD ∠=︒,AC 与BD 交于点O ,平面FBC ⊥平面ABCD ,//EF AB ,FB FC =,3EF =.(1)求证:OE ⊥平面ABCD ;(2)若FBC ∆为等边三角形,点Q 为AE 的中点,求二面角Q BC A --的余弦值.【答案】(1)见证明;(2)13【解析】【分析】 (1)可证FH BC ⊥,再利用平面FBC ⊥平面ABCD 证得FH ⊥平面ABCD ,通过证明//OE FH ,可得要求证的线面垂直.(2)建立空间直角坐标系,求出平面BCQ 的法向量和平面ABC 的一个法向量后可求二面角Q BC A --的余弦值.【详解】(1)证明:取BC 的中点H ,连结OH 、FH 、OE ,因为FB FC =,所以FH BC ⊥,因为平面FBC ⊥平面ABCD ,平面FBC I 平面ABCD BC =,FH⊂平面FBC , 所以FH ⊥平面ABCD ,因为H 、O 分别为BC 、AC 的中点,所以//OH AB 且123OH AB ==.又//EF AB,EF =,所以//EF OH ,所以四边形OEFH 为平行四边形, 所以//OE FH ,所以OE ⊥平面ABCD .(2)解:因为菱形ABCD ,所以2OA OC OE FH ====.所以OA ,OB ,OE 两两垂直,建立空间直角坐标系O xyz -,如图所示,则(2,0,0)A,(0,3B ,(2,0,0)C -,(0,0,2)E , 所以(1,0,1)Q ,所以(2,BC =-u u u r ,(3,0,1)CQ =u u u r , 设平面BCQ 的法向量为(,,)m x y z =u r ,由00BC m CQ m ⎧⋅=⎨⋅=⎩u u u v v u u u v v得2030x y x z ⎧--=⎪⎨⎪+=⎩, 取1x =,可得(1,3)m =-u r ,平面ABC 的一个法向量为(0,0,1)n =r ,设二面角Q BC A --的平面角为θ,则cos 13m n m n θ⋅-===u r r u r r , 因为二面角Q BC A --的平面角为锐角,所以二面角Q BC A -- 【名师点睛】线线垂直的判定可由线面垂直得到,也可以由两条线所成的角为2π得到,而线面垂直又可以由面面垂直得到,解题中注意三种垂直关系的转化. 空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.。
2020年高考数学试题分项版—立体几何(解析版)
2020年高考数学试题分项版——立体几何(解析版)一、选择题1.(2020·全国Ⅰ理,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).2.(2020·全国Ⅰ理,10)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆,若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a .由πr 2=4π,得r =2, 则33a =2,a =23,OO 1=a =2 3. 在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.3.(2020·全国Ⅱ理,7)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H 答案 A解析 由三视图还原几何体,如图所示,由图可知,所求端点在侧视图中对应的点为E .4.(2020·全国Ⅱ理,10)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C 解析如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心.设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.5.(2020·全国Ⅲ理,8)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.6.(2020·新高考全国Ⅰ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90° 答案 B解析 如图所示,⊙O 为赤道平面,⊙O 1为A 点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.7.(2020·新高考全国Ⅱ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°答案 B解析如图所示,⊙O为赤道平面,⊙O1为A点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.8.(2020·北京,4)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+ 3 B.6+2 3 C.12+ 3 D.12+2 3答案 D解析 由三视图还原几何体,该几何体为底面是边长为2的正三角形,高为2的直三棱柱, S 底=2×34×22=2 3. S 侧=3×2×2=12,则三棱柱的表面积为23+12.9.(2020·北京,10)2020年3月14日是全球首个国际圆周率日(π Day).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ) A .3n ⎝⎛⎭⎫sin 30°n +tan 30°n B .6n ⎝⎛⎭⎫sin 30°n +tan 30°n C .3n ⎝⎛⎭⎫sin 60°n +tan 60°n D .6n ⎝⎛⎭⎫sin 60°n+tan 60°n 答案 A解析 设内接正6n 边形的周长为C 1,外切正6n 边形的周长为C 2,如图(1)所示,sin 360°12n =BC 1, ∴BC =sin 30°n,∴AB =2sin 30°n ,C 1=12n sin 30°n.如图(2)所示,tan 360°12n =B ′C ′1,∴B ′C ′=tan 30°n,∴A ′B ′=2tan 30°n ,C 2=12n tan 30°n .∴2π=C 1+C 22=6n ⎝⎛⎭⎫sin 30°n +tan 30°n , ∴π=3n ⎝⎛⎭⎫sin 30°n+tan 30°n . 10.(2020·天津,5)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( )A .12πB .24πC .36πD .144π 答案 C解析 由题意知,正方体的体对角线就是球的直径 ∴2R =(23)2+(23)2+(23)2=6, ∴R =3,∴S 球=4πR 2=36π.11.(2020·浙江,5)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm 3)是( )A.73B.143 C .3 D .6 答案 A解析 如图,三棱柱的体积V 1=12×2×1×2=2,三棱锥的体积V 2=13×12×2×1×1=13,因此,该几何体的体积V =V 1+V 2=2+13=73.12.(2020·浙江,6)已知空间中不过同一点的三条直线l ,m ,n ,“l ,m ,n 共面”是“l ,m ,n 两两相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 如图,直线l ,m ,n 不过同一点,且l ,m ,n 共面有三种情况:①同一平面内三线平行;②两平行线与另一线相交;③三线两两相交.因此,“l ,m ,n 两两相交”是“l ,m ,n 共面”的一种情况,即“l ,m ,n 共面”是“l ,m ,n 两两相交”的必要不充分条件.13.(2020·全国Ⅰ文,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).14.(2020·全国Ⅰ文,12)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a . 由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.15.(2020·全国Ⅱ文,11)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C解析 如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心. 设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.16.(2020·全国Ⅲ文,9)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.二、填空题1.(2020·全国Ⅱ理,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.2.(2020·全国Ⅲ理,15)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.3.(2020·新高考全国Ⅰ,16)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________. 答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q , 连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3= 2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.4.(2020·新高考全国Ⅱ,13)棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱BB 1,AB 的中点,则三棱锥A 1-D 1MN 的体积为________. 答案 1解析 如图,由正方体棱长为2,得S △A 1MN =2×2-2×12×2×1-12×1×1=32,又易知D 1A 1为三棱锥D 1-A 1MN 的高,且D 1A 1=2, ∴1111A D MN D A MN V V --==13·1A MN S △·D 1A 1=13×32×2=1. 5.(2020·江苏,9)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,则此六角螺帽毛坯的体积是________cm 3.答案 ⎝⎛⎭⎫123-π2 解析 螺帽的底面正六边形的面积 S =6×12×22×sin 60°=63(cm 2),正六棱柱的体积V 1=63×2=123(cm 3), 圆柱的体积V 2=π×0.52×2=π2(cm 3),所以此六角螺帽毛坯的体积 V =V 1-V 2=⎝⎛⎭⎫123-π2cm 3. 6.(2020·浙江,14)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, ∴r =12l .又圆锥侧面展开图为半圆, ∴12πl 2=2π, ∴l =2,∴r =1.7.(2020·全国Ⅱ文,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.8.(2020·全国Ⅲ文,16)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.三、解答题1.(2020·全国Ⅰ理,18)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE =AD .△ABC 是底面的内接正三角形,P 为DO 上一点,PO =66DO .(1)证明:P A ⊥平面PBC ; (2)求二面角B -PC -E 的余弦值.(1)证明 由题设,知△DAE 为等边三角形,设AE =1, 则DO =32,CO =BO =12AE =12, 所以PO =66DO =24, PC =PO 2+OC 2=64,PB =PO 2+OB 2=64, 又△ABC 为等边三角形,则BAsin 60°=2OA , 所以BA =32, P A =PO 2+OA 2=64, P A 2+PB 2=34=AB 2,则∠APB =90°,所以P A ⊥PB ,同理P A ⊥PC , 又PC ∩PB =P ,所以P A ⊥平面PBC . (2)解 过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 所在直线为x 轴,ON 所在直线为y 轴,OD 所在直线为z 轴,建立如图所示的空间直角坐标系,则E ⎝⎛⎭⎫-12,0,0,P ⎝⎛⎭⎫0,0,24, B ⎝⎛⎭⎫-14,34,0,C ⎝⎛⎭⎫-14,-34,0,PC →=⎝⎛⎭⎫-14,-34,-24,PB →=⎝⎛⎭⎫-14,34,-24,PE →=⎝⎛⎭⎫-12,0,-24,设平面PCB 的一个法向量为n =(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PB →=0,得⎩⎨⎧-x 1-3y 1-2z 1=0,-x 1+3y 1-2z 1=0,令x 1=2,得z 1=-1,y 1=0, 所以n =(2,0,-1),设平面PCE 的一个法向量为m =(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧m ·PC →=0,m ·PE →=0,得⎩⎨⎧-x 2-3y 2-2z 2=0,-2x 2-2z 2=0,令x 2=1,得z 2=-2,y 2=33, 所以m =⎝⎛⎭⎫1,33,-2,故cos 〈m ,n 〉=m ·n|m |·|n |=223×103=255, 所以二面角B -PC -E 的余弦值为255.2.(2020·全国Ⅱ理,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 由已知得AM ⊥BC .以M 为坐标原点,MA →的方向为x 轴正方向,|MB →|为单位长度,建立如图所示的空间直角坐标系,则AB =2,AM = 3.连接NP ,则四边形AONP 为平行四边形, 故PM =233,E ⎝⎛⎭⎫233,13,0.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设Q (a,0,0), 则NQ =4-⎝⎛⎭⎫233-a 2,B 1⎝⎛⎭⎪⎫a ,1,4-⎝⎛⎭⎫233-a 2, 故B 1E →=⎝ ⎛⎭⎪⎫233-a ,-23,-4-⎝⎛⎭⎫233-a 2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量,故sin ⎝⎛⎭⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉 =n ·B 1E →|n ||B 1E →|=1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 3.(2020·全国Ⅲ理,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.(1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求二面角A -EF -A 1的正弦值.(1)证明 设AB =a ,AD =b ,AA 1=c ,如图,以C 1为坐标原点,C 1D 1—→,C 1B 1—→,C 1C —→的方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系C 1-xyz .连接C 1F ,则C 1(0,0,0),A (a ,b ,c ), E ⎝⎛⎭⎫a ,0,23c ,F ⎝⎛⎭⎫0,b ,13c , EA →=⎝⎛⎭⎫0,b ,13c ,C 1F →=⎝⎛⎭⎫0,b ,13c , 所以EA →=C 1F →,所以EA ∥C 1F , 即A ,E ,F ,C 1四点共面, 所以点C 1在平面AEF 内.(2)解 由已知得A (2,1,3),E (2,0,2),F (0,1,1),A 1(2,1,0), 则AE →=(0,-1,-1),AF →=(-2,0,-2), A 1E →=(0,-1,2),A 1F →=(-2,0,1). 设n 1=(x 1,y 1,z 1)为平面AEF 的法向量, 则⎩⎪⎨⎪⎧n 1·AE →=0,n 1·AF →=0,即⎩⎪⎨⎪⎧-y 1-z 1=0,-2x 1-2z 1=0,可取n 1=(-1,-1,1).设n 2=(x 2,y 2,z 2)为平面A 1EF 的法向量, 则⎩⎪⎨⎪⎧n 2·A 1E →=0,n 2·A 1F →=0,即⎩⎪⎨⎪⎧-y 2+2z 2=0,-2x 2+z 2=0,同理可取n 2=⎝⎛⎭⎫12,2,1. 因为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-77,所以二面角A -EF -A 1的正弦值为427. 4.(2020·新高考全国Ⅰ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,如图建立空间直角坐标系D -xyz ,因为PD =AD =1,则有D (0,0,0),C (0,1,0),A (1,0,0),P (0,0,1),B (1,1,0), 设Q (m,0,1),则有DC →=(0,1,0),DQ →=(m,0,1),PB →=(1,1,-1), 设平面QCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎪⎨⎪⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ), 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB 与平面QCD 所成角的正弦值等于 |cos 〈n ,PB →〉|=|1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2m m 2+1≤33·1+2|m |m 2+1≤33·1+1=63,当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63. 5.(2020·新高考全国Ⅱ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB =2,求PB 与平面QCD 所成角的正弦值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形,所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),C (0,1,0), B (1,1,0),P (0,0,1),DC →=(0,1,0),PB →=(1,1,-1).由(1)设Q (a,0,1),则BQ →=(a -1,-1,1). 由题意知(a -1)2+2=2, ∴a =1,∴DQ →=(1,0,1).设n =(x ,y ,z )是平面QCD 的一个法向量, 则⎩⎪⎨⎪⎧n ·DQ →=0,n ·DC →=0,即⎩⎪⎨⎪⎧x +z =0,y =0,可取n =(1,0,-1),∴cos 〈n ,PB →〉=n ·PB →|n |·|PB →|=63,故PB 与平面QCD 所成角的正弦值为63. 6.(2020·北京,16)如图,在正方体ABCD -A 1B 1C 1D 1中,E 为BB 1的中点.(1)求证:BC 1∥平面AD 1E ;(2)求直线AA 1与平面AD 1E 所成角的正弦值. (1)证明 在正方体ABCD -A 1B 1C 1D 1中, AB ∥A 1B 1且AB =A 1B 1,A 1B 1∥C 1D 1且A 1B 1=C 1D 1, ∴AB ∥C 1D 1且AB =C 1D 1,∴四边形ABC 1D 1为平行四边形,则BC 1∥AD 1, ∵BC 1⊄平面AD 1E ,AD 1⊂平面AD 1E , ∴BC 1∥平面AD 1E .(2)解 以点A 为坐标原点,AD ,AB ,AA 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系A -xyz ,设正方体ABCD -A 1B 1C 1D 1的棱长为2, 则A (0,0,0),A 1(0,0,2),D 1(2,0,2),E (0,2,1), AD 1→=(2,0,2),AE →=(0,2,1),AA 1→=(0,0,2), 设平面AD 1E 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AD 1→=0,n ·AE →=0,得⎩⎪⎨⎪⎧2x +2z =0,2y +z =0,令z =-2,得x =2,y =1,则n =(2,1,-2). cos 〈n ,AA 1→〉=n ·AA 1→|n |·|AA 1→|=-43×2=-23.因此,直线AA 1与平面AD 1E 所成角的正弦值为23.7.(2020·天津,17)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC ⊥BC ,AC =BC =2,CC 1=3,点D ,E 分别在棱AA 1和棱CC 1上,且AD =1,CE =2,M 为棱A 1B 1的中点.(1)求证:C 1M ⊥B 1D ;(2)求二面角B -B 1E -D 的正弦值;(3)求直线AB 与平面DB 1E 所成角的正弦值.(1)证明 依题意,以C 为坐标原点,分别以CA →,CB →,CC 1→的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得C (0,0,0),A (2,0,0),B (0,2,0),C 1(0,0,3),A 1(2,0,3),B 1(0,2,3),D (2,0,1),E (0,0,2),M (1,1,3).则C 1M →=(1,1,0),B 1D →=(2,-2,-2), ∵C 1M →·B 1D →=2-2+0=0,∴C 1M ⊥B 1D .(2)解 依题意,CA →=(2,0,0)是平面BB 1E 的一个法向量,EB 1→=(0,2,1),ED →=(2,0,-1). 设n =(x ,y ,z )为平面DB 1E 的法向量, 则⎩⎪⎨⎪⎧n ·EB 1→=0,n ·ED →=0,即⎩⎪⎨⎪⎧2y +z =0,2x -z =0.不妨设x =1,可得n =(1,-1,2).∴cos 〈CA →,n 〉=CA →·n |CA →||n |=66,∴sin 〈CA →,n 〉=1-16=306. ∴二面角B -B 1E -D 的正弦值为306. (3)解 依题意,AB →=(-2,2,0),由(2)知,n =(1,-1,2)为平面DB 1E 的一个法向量, ∴cos 〈AB →,n 〉=AB →·n |AB →||n |=-33,∴直线AB 与平面DB 1E 所成角的正弦值为33. 8.(2020·江苏,15)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.证明 (1)因为E ,F 分别是AC ,B 1C 的中点, 所以EF ∥AB 1.又EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF ∥平面AB 1C 1.(2)因为B 1C ⊥平面ABC ,AB ⊂平面ABC , 所以B 1C ⊥AB .又AB ⊥AC ,B 1C ⊂平面AB 1C ,AC ⊂平面AB 1C , B 1C ∩AC =C , 所以AB ⊥平面AB 1C . 又因为AB ⊂平面ABB 1, 所以平面AB 1C ⊥平面ABB 1.9.(2020·江苏,22)在三棱锥A -BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F -DE -C 的大小为θ,求sin θ的值.解 (1)如图,连接OC ,因为CB =CD ,O 为BD 的中点,所以CO ⊥BD .又AO ⊥平面BCD ,所以AO ⊥OB ,AO ⊥OC .以{OB →,OC →,OA →}为基底,建立空间直角坐标系O -xyz . 因为BD =2,CB =CD =5,AO =2, 所以B (1,0,0),D (-1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1). 所以AB →=(1,0,-2),DE →=(1,1,1),所以|cos 〈AB →,DE →〉|=|AB →·DE →||AB →|·|DE →|=|1+0-2|5×3=1515.因此,直线AB 与DE 所成角的余弦值为1515. (2)因为点F 在BC 上,BF =14BC ,BC →=(-1,2,0).所以BF →=14BC →=⎝⎛⎭⎫-14,12,0. 又DB →=(2,0,0),故DF →=DB →+BF →=⎝⎛⎭⎫74,12,0.设n 1=(x 1,y 1,z 1)为平面DEF 的一个法向量, 则⎩⎪⎨⎪⎧ DE →·n 1=0,DF →·n 1=0,即⎩⎪⎨⎪⎧x 1+y 1+z 1=0,74x 1+12y 1=0,令x 1=2,得y 1=-7,z 1=5,所以n 1=(2,-7,5). 设n 2=(x 2,y 2,z 2)为平面DEC 的一个法向量, 又DC →=(1,2,0),则⎩⎪⎨⎪⎧DE →·n 2=0,DC →·n 2=0,即⎩⎪⎨⎪⎧x 2+y 2+z 2=0,x 2+2y 2=0,令x 2=2,得y 2=-1,z 2=-1, 所以n 2=(2,-1,-1). 故|cos θ|=|n 1·n 2||n 1|·|n 2|=|4+7-5|78×6=1313. 所以sin θ=1-cos 2θ=23913. 10.(2020·浙江,19)如图,在三棱台ABC -DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(1)证明:EF ⊥DB ;(2)求直线DF 与平面DBC 所成角的正弦值.(1)证明 如图(1),过点D 作DO ⊥AC ,交直线AC 于点O ,连接OB .由∠ACD =45°,DO ⊥AC ,得CD =2CO . 由平面ACFD ⊥平面ABC ,得DO ⊥平面ABC , 所以DO ⊥BC .由∠ACB =45°,BC =12CD =22CO ,得BO ⊥BC .所以BC ⊥平面BDO ,故BC ⊥DB . 由ABC -DEF 为三棱台, 得BC ∥EF ,所以EF ⊥DB .(2)解 方法一 如图(2),过点O 作OH ⊥BD ,交直线BD 于点H ,连接CH .由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角. 由BC ⊥平面BDO ,得OH ⊥BC , 故OH ⊥平面DBC ,所以∠OCH 为直线CO 与平面DBC 所成角. 设CD =22,则DO =OC =2,BO =BC =2, 得BD =6,OH =233,所以sin ∠OCH =OH OC =33.因此,直线DF 与平面DBC 所成角的正弦值为33. 方法二 由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图(3),以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O-xyz .设CD =22,由题意知各点坐标如下:O (0,0,0),B (1,1,0),C (0,2,0),D (0,0,2).因此OC →=(0,2,0),BC →=(-1,1,0),CD →=(0,-2,2). 设平面DBC 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·BC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧-x +y =0,-2y +2z =0,可取n =(1,1,1),所以sin θ=|cos 〈OC →,n 〉|=|OC →·n ||OC →|·|n |=33.因此,直线DF 与平面DBC 所成角的正弦值为33. 11.(2020·全国Ⅰ文,19)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面P AB ⊥平面P AC ;(2)设DO =2,圆锥的侧面积为3π,求三棱锥P -ABC 的体积. (1)证明 ∵D 为圆锥顶点,O 为底面圆心, ∴OD ⊥平面ABC ,∵P 在DO 上,OA =OB =OC , ∴P A =PB =PC ,∵△ABC 是圆内接正三角形, ∴AC =BC ,△P AC ≌△PBC ,∴∠APC =∠BPC =90°,即PB ⊥PC ,P A ⊥PC , P A ∩PB =P ,∴PC ⊥平面P AB ,PC ⊂平面P AC ,∴平面P AB ⊥平面P AC .(2)解 设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为πrl =3π,rl =3,OD 2=l 2-r 2=2,解得r =1,l =3,AC =2r sin 60°=3, 在等腰直角三角形APC 中, AP =22AC =62, 在Rt △P AO 中,PO =AP 2-OA 2=64-1=22, ∴三棱锥P -ABC 的体积为V P -ABC =13PO ·S △ABC =13×22×34×3=68.12.(2020·全国Ⅱ文,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO =AB =6,AO ∥平面EB 1C 1F ,且∠MPN =π3,求四棱锥B-EB 1C 1F 的体积.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 因为AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN , 平面A 1AMN ∩平面EB 1C 1F =PN , 所以AO ∥PN ,又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP =ON =13AM =3,PM =23AM =23,EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B -EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离. 如图,作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F , 故MT =PM sin ∠MPN =3. 底面EB 1C 1F 的面积为12(B 1C 1+EF )·PN =12×(6+2)×6=24. 所以四棱锥B -EB 1C 1F 的体积为13×24×3=24.13.(2020·全国Ⅲ文,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.证明:(1)当AB =BC 时,EF ⊥AC ; (2)点C 1在平面AEF 内. 证明 (1)如图,连接BD ,B 1D 1. 因为AB =BC ,所以四边形ABCD 为正方形,故AC ⊥BD .又因为BB 1⊥平面ABCD ,AC ⊂平面ABCD , 于是AC ⊥BB 1.又BD ∩BB 1=B ,BD ,BB 1⊂平面BB 1D 1D , 所以AC ⊥平面BB 1D 1D .又因为EF ⊂平面BB 1D 1D ,所以EF ⊥AC .(2)如图,在棱AA 1上取点G ,使得AG =2GA 1,连接GD 1,FC 1,FG , 因为ED 1=23DD 1,AG =23AA 1,DD 1∥AA 1且DD 1=AA 1,所以ED 1∥AG 且ED 1=AG , 所以四边形ED 1GA 为平行四边形, 故AE ∥GD 1.因为B 1F =13BB 1,GA 1=13AA 1,BB 1∥AA 1且BB 1=AA 1,所以B 1F ∥GA 1,且B 1F =GA 1, 所以四边形B 1FGA 1是平行四边形, 所以FG ∥A 1B 1且FG =A 1B 1, 所以FG ∥C 1D 1且FG =C 1D 1, 所以四边形FGD 1C 1为平行四边形, 故GD 1∥FC 1. 所以AE ∥FC 1.所以A ,E ,F ,C 1四点共面,即点C 1在平面AEF 内.。
专题04 2020版立体几何(解析版)
专题04 立体几何2020真题汇编1.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .14B .12C .14D .12【答案】C【解析】如图,设,CD a PE b ==,则PO ==由题意得212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得14b a =(负值舍去). 故选C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题. 2.【2020年高考全国Ⅱ卷理数】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为A.E B.F C.G D.H【答案】A【解析】根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选A.【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.3.【2020年高考全国II 卷理数】已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为AB .32C .1D 【答案】C【解析】设球O 的半径为R ,则2416R π=π,解得:2R =. 设ABC △外接圆半径为r ,边长为a ,ABC △21224a ∴⨯=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ===.故选:C .【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面. 4.【2020年高考全国Ⅲ卷理数】如图为某几何体的三视图,则该几何体的表面积是A.B .C.D .【答案】C【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为根据三角形面积公式可得:211sin 6022ADB S AB AD =⋅⋅︒==△∴该几何体的表面积是:632=⨯++故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.5.【2020年高考全国Ⅰ卷理数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为 A .64π B .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r π=π=∴,ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====, ∴球O 的表面积2464S R ππ==.故选:A.【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.6.【2020年高考天津】若棱长为 A .12π B .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C .【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心. 7.【2020年高考北京】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为A .6B .6+C .12+D .12+【答案】D【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭故选:D .【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.8.【2020年高考浙江】某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是A.73B.143C.3D.6【答案】A【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为11117 2112122 32233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+=⎪ ⎪⎝⎭⎝⎭.故选:A 的【点睛】本小题主要考查根据三视图计算几何体的体积,属于基础题.9.【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选:B【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.10.【2020年新高考全国Ⅰ卷】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°【答案】B【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥.. 由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故选:B【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.11.【2020年高考全国Ⅱ卷理数】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ①14p p ∧ ②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内, 同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个, 命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面, 命题3p 为假命题;对于命题4p ,若直线m ⊥平面α, 则m 垂直于平面α内所有直线, 直线l ⊂平面α,∴直线m ⊥直线l , 命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.12.【2020年高考全国Ⅲ卷理数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于AM ==122S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:22r,其体积:3433V r =π=π.. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.13.【2020年高考浙江】已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______. 【答案】1【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==. 故答案为:1【点睛】本小题主要考查圆锥侧面展开图有关计算,属于基础题.14.【2020年高考江苏】如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是 ▲ cm.【答案】2π【解析】正六棱柱体积为262⨯, 圆柱体积为21()222ππ⋅=,所求几何体体积为2π.故答案为:2π【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.15.【2020年新高考全国Ⅰ卷】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为半径的球面与侧面BCC 1B 1的交线长为________.【答案】2. 【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E=111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥, 因为1111BB B C B =,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥,1D E =,所以||EP ===所以侧面11B C CB 与球面的交线上的点到E ,因为||||EF EG ==11B C CB 与球面的交线是扇形EFG 的弧FG ,因为114B EFC EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得22FG π==.故答案为:2. 【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.16.【2020年高考全国Ⅰ卷理数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,PO =.(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值.【解析】(1)设DO a =,由题设可得,,PO AO a AB a ===,PA PB PC ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥.所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得1(0,1,0),(0,1,0),(,0),(0,0,22E A C P -.所以31(,,0),(0,2EC EP =--=-. 设(,,)x y z =m 是平面PCE 的法向量,则00EP EC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即02102y z x y⎧-+=⎪⎪⎨⎪-=⎪⎩,可取(3=-m . 由(1)知(0,1,2AP =是平面PCB 的一个法向量,记AP =n ,则cos ,|||5⋅==n m n m n m |.所以二面角B PC E --的余弦值为5. 【点晴】本题主要考查线面垂直的证明以及利用向量求二面角的大小,考查学生空间想象能力,数学运算能力,是一道容易题.17.【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【解析】(1)因为M ,N 分别为BC ,B 1C 1的中点,所以1MN CC ∥.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面11EB C F .(2)由已知得AM ⊥BC .以M 为坐标原点,MA 的方向为x 轴正方向, MB 为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM连接NP ,则四边形AONP 为平行四边形,故1,0)3PM E =.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC .设(,0,0)Q a,则1(NQ B a =, 故21123223210(,,4()),||33B E a a B E =-----=. 又(0,1,0)=-n 是平面A 1AMN 的法向量,故1111π10sin(,)cos ,2||B E B E B E B E⋅-===⋅n n n |n |所以直线B 1E 与平面A 1AMN .18.【2020年高考全国Ⅱ卷理数】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BFFB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【解析】设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n .因为121212cos ,||||⋅〈〉==⋅n n n n n n ,所以二面角1A EF A --.19.【2020年高考江苏】在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【解析】因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥.又/EF ⊂平面11AB C ,1AB ⊂平面11AB C ,所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC ,所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B CAC C =所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题.20.【2020年高考浙江】如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC . (Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.【解析】(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得CD =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥.由45ACB ∠=︒,12BC CD ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥.(Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角. 由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角.设CD =.由2,DO OC BO BC ===,得BD OH =所以sin OH OCH OC ∠==,因此,直线DF 与平面DBC . 方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-. 设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|sin |cos ,||||OC OC OC θ⋅===⋅n |n n |.因此,直线DF 与平面DBC . 【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题.21.【2020年高考天津】如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11CM B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.【解析】依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n .因此有|||cos ,6|A CA C CA⋅〈〉==n n n ,于是sin ,6CA 〈〉=n .所以,二面角1B B E D --的正弦值为6. (Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是cos,||||AB AB AB ⋅==n n n .所以,直线AB 与平面1DB E 所成角的正弦值为3.2020模拟汇编1.【2020·广东省高三一模(理)】已知直三棱柱111ABC A B C -的体积为V ,若P Q ,分别在11AA CC ,上,且111133AP AA CQ CC ==,,则四棱锥B APQC -的体积是 A .16VB .29VC .13VD .79V【答案】B【解析】在棱1BB 上取一点H ,使113BH BB =,连接PH 、QH , 由题意PHQ ABC S S =△△,BH ⊥平面PHQ ,所以111113339B PHQ PHQ ABC V S BH S BB V -=⋅=⋅=△△,11133ABC PHQ ABC ABC V S BH S BB V -=⋅=⋅=△△, 所以112399B APQC ABC PHQ B PHQ V V V V V V ---=-=-=.故选:B .【点睛】本题考查了直三棱柱的特征及几何体体积的求解,考查了空间思维能力,属于基础题. 2.【2020·全国高三(理)】在正方体1111ABCD A B C D -中,点E 是棱11B C 的中点,点F 是线段1CD 上的一个动点.有以下三个命题:①异面直线1AC 与1B F 所成的角是定值;②三棱锥1B A EF -的体积是定值;③直线1A F 与平面11B CD 所成的角是定值. 其中真命题的个数是 A .3 B .2C .1D .0【答案】B【解析】以A 点为坐标原点,AB,AD,1AA 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,设正方体棱长为1,可得B (1,0,0),C (1,1,O ),D (0,1,0),1A (0,0,1),1B (1,0,1),1C (1,1,1),1D (0,1,1),设F (t ,1,1-t ),(0≤t ≤1), 可得1AC =(1,1,1),1B F =(t -1,1,-t ),可得11AC B F =0,故异面直线1AC 与1B F 所的角是定值,故①正确;三棱锥1B A EF -的底面1A BE 面积为定值,且1CD ∥1BA ,点F 是线段1CD 上的一个动点,可得F 点到底面1A BE 的距离为定值,故三棱锥1B A EF -的体积是定值,故②正确;可得1A F =(t ,1,-t ),1B C =(0,1,-1),11B D =(-1,1,0),可得平面11B CD 的一个法向量为n =(1,1,1),可得1cos ,A F n 不为定值,故③错误;故选B .【点睛】本题主要考查空间角的求解及几何体体积的求解,建立直角坐标系,是解题的关键. 3.【2020·六盘山高级中学高三其他(理)】已知点 M N P Q ,,,在同一个球面上,34,5MN NP MP ===, ,若四面体MNPQ 体积的最大值为 10,则这个球的表面积是A .254πB .62516πC .22516πD .1254π【答案】B【解析】由34,5MN NP MP ===,,可知90PNM ∠=, 则球心O 在过PM 中点'O 与面MNP 垂直的直线上, 因为MNP 面积为定值,所以高最大时体积最大, 根据球的几何性质可得,当'O Q 过球心时体积最大, 因为四面体Q MNP -的最大体积为10,所以111'34'10332MNP S O Q O Q ⨯⨯=⨯⨯⨯⨯=△, 可得'5O Q =,在'OO P ∆中,222''OP OO O P =+,()222554R R ∴=-+,得258R =, ∴球的表面积为2256254816ππ⎛⎫⨯=⎪⎝⎭,故选B .【点睛】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②可以转化为长方体的外接球; ③特殊几何体可以直接找出球心和半径;④设球心(在过底面多边形外接圆圆心与底面垂直的直线上),利用待定系数法求半径.4.【2020·六盘山高级中学高三其他(理)】对于直线m ,n 和平面α,β,αβ⊥的一个充分条件是A .m n ⊥,//m α,//n βB .m n ⊥,m αβ=,n ⊂αC .//m n ,n β⊥,m α⊂D .//m n ,m α⊥,n β⊥【答案】C【解析】A 选项中,根据m n ⊥,//m α,βn//,得到αβ⊥或αβ∥,所以A 错误;B 选项中,m n ⊥,m αβ=,n β⊂,不一定得到αβ⊥,所以B 错误;C 选项中,因为//m n ,n β⊥,所以m β⊥, 又m α⊂,从而得到αβ⊥,所以C 正确;D 选项中,根据//m n ,m α⊥,所以n α⊥,而n β⊥,所以得到αβ∥,所以D 错误. 故选:C .【点睛】本题考查空间中线面关系有关命题的判断,面面关系有关命题的判断,属于简单题.5.【2020·河南省南阳中学高三月考(理)】某简单几何体的三视图(俯视图为等边三角形)如图所示(单位:cm ),则该几何体的体积(单位:cm 3)为A .18B .C .D .【答案】C【解析】由题意可知几何体是底面为正三角形的三棱柱,底面边长为2,高为3, 所以几何体的体积为2234⨯⨯=C .【点睛】本题考查三视图求解几何体的体积,考查转化思想以及空间想象能力.6.【2020·福建省福州第一中学高三其他(理)】已知某几何体的三视图如图所示,则该几何体的体积为A .83πB .103πC .6πD .3π【答案】D【解析】该几何体是一个底面半径为1、高为4的圆柱被一个平面分割成两部分中的一个部分,故其体积为221141232V πππ=⨯⨯-⨯⨯⨯= . 本题选择D 选项.7.【2020·广西壮族自治区高三其他(理)】三个几何体组合的正视图和侧视图均为如下图所示,则下列图中能作为俯视图的个数为A .1B .2C .3D .4【答案】D【解析】对于①,由三个圆柱组合而成,其正视图和侧视图相同,符合要求;对于②,最底层是圆柱,中间是底面为正方形的直棱柱,最上面是小的圆柱,其正视图和侧视图相同,符合要求;对于③,最底层是圆柱,中间是底面为正方形的直棱柱,最上面是底面为正方形的小的直棱柱,其正视图和侧视图相同,符合要求;对于④,最底层是圆柱,中间是圆柱,最上面是底面为正方形的直棱柱,其正视图和侧视图相同,符合要求;所以四个图都可能作为俯视图. 故选:D .【点睛】考查由正视图和侧视图判断几何体的俯视图;基础题.8.【2020·辽宁省高三二模(理)】已知一个圆柱的侧面积等于表面积的一半,且其轴截面的周长是18,则该圆柱的体积是______. 【答案】27π【解析】设圆柱的底面圆的半径为r ,高为h .由题意可得()22π12π2π22218rhr rh r h ⎧=⎪+⎨⎪+=⎩,解得3r h ==,则该圆柱的体积是2π27πr h =. 故答案为:27π.【点睛】本题考查了圆柱体积的求解,考查了圆柱的侧面积.本题的关键是求出圆柱底面圆的半径和高.本题的难点在于轴截面的周长这一条件的理解.9.【2020·重庆南开中学高三期中(理)】正三棱柱111ABC A B C -中,2AB =,1AA =D 为棱11A B 的中点,则异面直线AD 与1CB 成角的大小为_______.【答案】6π 【解析】如图,1111111122AD AA A D AA A B AA AB =+=+=+,111CB CA AB BB AA AC AB =++=-+,且12,AB AC BC AA ====,侧棱和底面垂直, ∴1111()2AD CB AA AB AA AC AB ⎛⎫⋅=+⋅-+ ⎪⎝⎭2211122AA AB AC AB =-⋅+11182249222=-⨯⨯⨯+⨯=,13,AD CB ===∴1cos ,AD CB <>==[]1,0,AD CB π<>∈, ∴1,6AD CB π<>=,∴异面直线AD 与1CB 成角的大小为6π. 故答案为:6π.【点睛】解答本题时还可以建立空间直角坐标系,用坐标形式下的向量运算求解.10.【2020·四川省高三三模(理)】如图,平行六面体1111ABCD A B C D -中,5AB =,3AD =,17AA =,3BAD π∠=,114BAA DAA π∠=∠=,则1AC 的长为_____.【解析】平行六面体1111ABCD A B C D -中,5AB =,3AD =,17AA =,3BAD π∠=,114BAA DAA π∠=∠=,11AC AB BC CC =++,则()211221AC AC AB BC CC ==++2221112cos2cos2cos344AB BC CC AB BC BC CC AB CC πππ=+++⋅+⋅⋅+⋅12594925323725798222=+++⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=+1198AC AC ∴==..【点睛】本题考查利用空间向量法求线段长,解答的关键就是选择合适的基底表示向量,考查计算能力,属于中等题.11.【2020·六盘山高级中学高三其他(理)】如图,在四棱锥中P ABCD -,PA ⊥平面ABCD ,AD BC ∥,AD CD ⊥,且AD CD ==BC =2PA =(1)求证:AB PC ⊥;(2)在线段PD 上,是否存在一点M ,使得二面角M AC D --的大小为45,如果存在,求BM 与平面MAC 所成的角的正弦值,如果不存在,请说明理由.【答案】(1)证明见解析;(2)存在,9. 【解析】(1)如图,由已知得四边形ABCD 是直角梯形,由已知AD CD ==,BC =可得ABC 是等腰直角三角形,即AB AC ⊥, 又PA ⊥平面ABCD ,则PA AB ⊥, 所以AB ⊥平面P AC , 所以AB PC ⊥.(2)假设存在符合条件的点M ,过点M 作MN AD ⊥于N ,则//MN PA ,MN ∴⊥平面ABCD ,MN AC ∴⊥.过点M 作MG AC ⊥于G ,连接NG ,则AC ⊥平面MNG , AC NG ∴⊥,即MGN ∠是二面角M AC D --的平面角.若45MGN ∠=︒,则NG MN =,又AN ==,1MN ∴=,即M 是线段PD 的中点.∴存在点M 使得二面角M AC D --的大小为45︒.在三棱锥M ABC -中,11184413323M ABC ABCV SMN -==⨯⨯⨯⨯=,设点B 到平面MAC 的距离是h ,则13B MAC MAC V S h -∆=,2MG =11422MACSAC MG ∴==⨯,∴1833h ⨯=,解得h =在ABN 中,4AB =,AN =135BAN ∠=︒,BN ∴=,BM ∴=BM ∴与平面MAC 所成角的正弦值为h BM =【点睛】本题考查了项目垂直的判定与性质,空间角与空间距离的计算,属于中档题.12.【2020·辽河油田第二高级中学高三月考(理)】如图,AB 是半圆O 的直径,C 是半圆O 上除A ,B 外的一个动点,DC 垂直于半圆O 所在的平面,DC ∥EB ,DC =EB =1,AB =4.(1)证明:平面ADE⊥平面ACD;(2)当C点为半圆的中点时,求二面角D﹣AE﹣B的余弦值.-【答案】(1)证明见解析(2)6【解析】(1)证明:∵AB是圆O的直径,∴AC⊥BC,∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC,又DC∩AC=C,∴BC⊥平面ACD,∵DC∥EB,DC=EB,∴四边形DCBE是平行四边形,∴DE∥BC,∴DE⊥平面ACD,又DE⊂平面ADE,∴平面ACD⊥平面ADE.(2)当C点为半圆的中点时,AC=BC=,以C为原点,以CA,CB,CD为坐标轴建立空间坐标系如图所示:则D(0,0,1),E(0,,1),A(,0,0),B(0,,0),∴AB=(﹣,0),BE=(0,0,1),DE=(0,,0),DA=(,0,﹣1),设平面DAE的法向量为m=(x1,y1,z1),平面ABE的法向量为n=(x2,y2,z2),则00m DA m DE ⎧⋅=⎨⋅=⎩,00n AB n BE ⎧⋅=⎨⋅=⎩,即11100z ⎧-=⎪⎨=⎪⎩,22200z ⎧-+=⎪⎨=⎪⎩,令x 1=1得m =(1,0,22),令x 2=1得n =(1,1,0).∴cos 632m n m n m n ⋅===⨯<,>.∵二面角D ﹣AE ﹣B 是钝二面角,∴二面角D ﹣AE ﹣B 的余弦值为6-.【点睛】本题考查了面面垂直的判定,空间向量与二面角的计算,属于中档题.13.【2020·湖北省高三其他(理)】如图所示,多面体是由底面为ABCD 的直四棱柱被截面AEFG 所截而得到的,该直四棱柱的底面为菱形,其中2AB =,5CF=,1BE =,60BAD ∠=.(1)求BG 的长;(2)求平面AEFG 与底面ABCD 所成锐二面角的余弦值.【答案】(1) (2)4【解析】因为多面体是由底面为ABCD 的直四棱柱被截面AEFG 所截而得到的, 所以平面ADG //平面BCFE ,又平面ADG平面AEFG AG =,平面BCFE ⋂平面AEFG EF =,所以//AG EF ,同理//AE GF ,所以四边形AEFG 是平行四边形,连结AC ,BD 交于O ,以O 为原点,,OB OC 所在直线分别为x 轴,y 轴建立如图所示的空间直角坐标系O xyz -,则(0,A ,(1,0,0)B ,(1,0,1)E ,F ,所以(4)AG EF ==-,(1,AB =,所以(2,0,4)BG AG AB =-=-,所以||(BG =-=所以BG 的长为(2)根据题意可取平面ABCD 的一个法向量为(0,0,1)m =,由(1)知(4)AG =-,(1,AE =,设平面AEFG 的法向量为(,,)n x y z =,则由00n AE n AG ⎧⋅=⎨⋅=⎩,得040x z x z ⎧++=⎪⎨-+=⎪⎩,即32y z x z ⎧=⎪⎪⎨⎪=⎪⎩,令23z =,则x =,5y =-,所以(33,5,n =-,所以cos ,4||||1m n m n mn ⋅〈〉===⋅⨯,所以平面AEFG 与底面ABCD 所成锐二面角的余弦值为4. 【点睛】本题主要考查面面平行的性质定理,线段长的求法及二面角的余弦值的求法,考查运算求解能力,属于中档题.14.【2020·广东省高三其他(理)】已知几何体ABCDEF 中,//AB CD ,//FC EA ,AD AB ⊥,AE ⊥面ABCD ,2AB AD EA ===,4CD CF ==.(1)求证:平面⊥BDF 平面BCF ;(2)求二面角E -BD-F 的余弦值.【答案】(1)证明见解析;(2)13. 【解析】(1)证明:在直角梯形ABCD 中由已知可得BD BC ==222,BD BC CD BD BC ∴+=∴⊥//FC EA ,且AE ⊥面ABCD , FC ∴⊥平面ABCD ,BC ⊂面ABCD ,BD FC ∴⊥, FCBC C =,BC ⊂面BCF ,FC ⊂面BCF∴BD ⊥面BCF且BD ⊂面BDF ,故面⊥BDF面BCF ;(2)分别以DA 、DC 所在直线为x 轴、y 轴,以D 为垂足作面DAC 的垂线DZ 为z 轴,建系如图(0,0,0),(2,2,0),(2,0,2)(0,4,4)D B E F , 则(2,2,0),(2,0,2),(0,4,4)DB DEDF ===,设面DEB 的法向量为(,,)m x y z =,则22002200x y m DB x z m DE ⎧+=⎧⋅=⇒⎨⎨+=⋅=⎩⎩,取1x =,则1y z ==-,故(1,1,1)m =--设面DBF 的法向量为(,,)n x y z =,则22004400x y n DB y z n DF ⎧+=⎧⋅=⇒⎨⎨+=⋅=⎩⎩,取1x =,则1,1y z =-=,故(1,1,1)n =-则1cos ,3||||3m n m n m n ⋅<>===⋅⨯,由图可得二面角E -BD -F 的余弦值为13. 【点睛】本题考查面面垂直的证明,考查用空间向量法求二面角,解题关键是建立空间直角坐标系,把求二面角问题化为纯粹的计算.15.【2020·福建省福州第一中学高三其他(理)】如图,组合体由半个圆锥S O -和一个三棱锥S ACD -构成,其中O 是圆锥S O -底面圆心,B 是圆弧AC 上一点,满足BOC ∠是锐角,2===AC CD DA .(1)在平面SAB 内过点B 作//BP 平面SCD 交SA 于点P ,并写出作图步骤,但不要求证明;(2)在(1)中,若P 是SA 中点,且SO =BP 与平面SAD 所成角的正弦值.【答案】(1)答案见解析;(2.【解析】(1)①延长AB 交DC 的延长线于点Q ;②连接SQ ;③过点B 作//BP QS 交SA 于点P .(2)若P 是SA 中点,则B 是AQ 中点,又因为CB AQ ⊥,所以CA CQ =,所以90QAD ∠=,从而30BAC ∠=.依题意,,,OS OC OD 两两垂直,分别以OC ,OD ,OS 为x ,y ,z 轴建立空间直角坐标系,则()()(111,0,0,,,,,22A D S P B ⎛⎛⎫-- ⎪⎝⎭⎝⎭, 从而()()1,3,0,1,0,3,AD AS BP ⎛===- ⎝⎭,设平面SAD 的法向量为(),,n x y z =,则0,0,AS n AD n ⎧⋅=⎨⋅=⎩即0,0,x x ⎧+=⎪⎨+=⎪⎩取x =)1,1=--n .则cos ,1n BP n BP n BP⋅====+, 所以直线BP 与平面SAD .16.【2020·广西壮族自治区高三其他(理)】如图,直三棱柱111ABC A B C -中,底面ABC 为等腰直角三角形,90ACB ∠=,12AA AC =,P 是侧棱1CC 上的点.。
2020高考—立体几何(解答+答案)
2020年高考——立体几何1.(20全国Ⅰ文19)(12分)如图,D为圆锥的顶点,O是圆锥底面的圆心,ABC△是底面的内接正三角形,P为DO 上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=2,圆锥的侧面积为3π,求三棱锥P−ABC的体积.2.(20全国Ⅰ理18)(12分)如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE AD=.ABC△是底面的内接正三角形,P为DO上一点,66PO DO=.(1)证明:PA⊥平面PBC;(2)求二面角B PC E--的余弦值.3.(20全国Ⅱ文20)(12分)如图,已知三棱柱ABC–A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=π3,求四棱锥B–EB1C1F的体积.4.(20全国Ⅱ理20)(12分)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.5.(20全国Ⅲ文 19)(12分)如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内.6.(20全国Ⅲ理19)(12分)如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.7.(20新高考Ⅰ20)(12分)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.8.(20天津17)(本小题满分15分)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.9.(20浙江19)(本题满分15分)如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC . (Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.10.(20江苏15)(本小题满分14分)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.11.(20江苏22)(本小题满分10分)在三棱锥A —BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值; (2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.12.(20北京16)(本小题13分)如图,在正方体1111ABCD A B C D 中,E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.参考答案:1.解:(1)由题设可知,PA =PB = PC .由于△ABC 是正三角形,故可得△PAC ≌△PAB . △PAC ≌△PBC .又∠APC =90°,故∠APB =90°,∠BPC =90°.从而PB ⊥PA ,PB ⊥PC ,故PB ⊥平面PAC ,所以平面PAB ⊥平面PAC . (2)设圆锥的底面半径为r ,母线长为l . 由题设可得rl =3,222l r -=. 解得r =1,l =3,从而3AB =.由(1)可得222PA PB AB +=,故62PA PB PC ===. 所以三棱锥P -ABC 的体积为3111166()323228PA PB PC ⨯⨯⨯⨯=⨯⨯=.2.解:(1)设DO a =,由题设可得63,,63PO a AO a AB a ===,22PA PB PC a ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得312(0,1,0),(0,1,0),(,0),(0,0,)222E A C P --. 所以312(,,0),(0,1,)222EC EP =--=-. 设(,,)x y z =m 是平面PCE 的法向量,则00EP EC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即20231022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,可取3(2)=m . 由(1)知2(0,1,2AP =是平面PCB 的一个法向量,记AP =n , 则25cos ,|||5⋅==n m n m n m |.所以二面角B PC E --的余弦值为255.3.解:(1)因为M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN ,平面A 1AMN ⋂平面EB 1C 1F = PN , 故AO ∥PN ,又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP = ON =13AM =3,PM =23AM =23,EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B -EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离.作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F ,故MT =PM sin ∠MPN =3.底面EB 1C 1F 的面积为1111()(62)624.22B C EF PN ⨯+⨯=+⨯=所以四棱锥B -EB 1C 1F 的体积为1243243⨯⨯=.4.解:(1)因为M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC .又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1CF .(2)由己知得AM ⊥BC .以M 为坐标原点,MA 的方向为x 轴正方向, MB 为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM =3. 连接NP ,则四边形AONP 为平行四边形,故23231,(,,0)333PM E =.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设(,0,0)Q a ,则22123234(),(,1,4())33NQ a B a a =----, 故21123223210(,,4()),||3333B E a a B E =-----=. 又(0,1,0)=-n 是平面A 1AM 的法向量,故1111,π10sin(,)cos ,210||B E B E B E B E -===⋅n n n |n |.所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010.5.解:(1)如图,连结BD ,11B D .因为AB BC =,所以四边形ABCD 为正方形,故AC BD ⊥.又因为1BB ⊥平面ABCD ,于是1AC BB ⊥.所以AC ⊥平面11BB D D . 由于EF ⊂平面11BB D D ,所以EF AC ⊥.(2)如图,在棱1AA 上取点G ,使得12AG GA =,连结1GD ,1FC ,FG ,因为1123D E DD =,123AG AA =,11DD AA =∥,所以1ED AG =∥,于是四边形1ED GA 为平行四边形,故1AE GD ∥.因为1113B F BB =,1113AG AA =,11BB AA =∥,所以11FG A B =∥,11FG C D =∥,四边形11FGD C 为平行四边形,故11GD FC ∥.于是1AE FC ∥.所以1,,,A E F C 四点共面,即点1C 在平面AEF 内.6.解:设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则 110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则 22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n .因为1212127cos ,||||7⋅〈〉==-⋅n n n n n n ,所以二面角1A EF A --的正弦值为427.7.解:(1)因为PD ⊥底面ABCD ,所以PD AD ⊥.又底面ABCD 为正方形,所以AD DC ⊥,因此AD ⊥底面PDC . 因为AD BC ∥,AD ⊄平面PBC ,所以AD ∥平面PBC . 由已知得l AD ∥.因此l ⊥平面PDC . (2)以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz -.则(0,0,0),(0,1,0),(1,1,0),(0,0,1)D C B P ,(0,1,0)DC =,(1,1,1)PB =-. 由(1)可设(,0,1)Q a ,则(,0,1)DQ a =.设(,,)x y z =n 是平面QCD 的法向量,则0,0,DQ DC ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0.ax z y +=⎧⎨=⎩ 可取(1,0,)a =-n . 所以2cos ,||||31PB PB PB a⋅-〈〉==⋅+n n n . 设PB 与平面QCD 所成角为θ,则22332sin 1311aa a θ==+++ 2326131a a ++当且仅当1a =时等号成立,所以PB 与平面QCD 所成角的正6.8.依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n . 因此有|||6cos ,|A CA C CA ⋅〈〉==n n n 30sin ,6CA 〈〉=n . 所以,二面角1B B E D --30(Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是3cos ,||||AB AB AB ⋅==n n n . 所以,直线AB 与平面1DB E 39.(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得2CD CO =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥. 由45ACB ∠=︒,122BC CD ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥. (Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角. 设22CD =.由2,2DO OC BO BC ====,得26,33BD OH = 所以3sin OH OCH OC ∠==, 因此,直线DF 与平面DBC 3. 方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设22CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-. 设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|3sin |cos ,|3|||OC OC OC θ⋅===⋅n |n n |.因此,直线DF 与平面DBC 所成角的正弦值为33.10.证明:因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥.又/EF ⊂平面11AB C ,1AB ⊂平面11AB C , 所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC ,所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C =所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .11.解:(1)连结OC ,因为CB =CD ,O 为BD 中点,所以CO ⊥B D .又AO ⊥平面BCD ,所以AO ⊥OB ,AO ⊥O C .以{}OB OC OA ,,为基底,建立空间直角坐标系O –xyz . 因为BD =2,CB CD ==,AO =2,所以B (1,0,0),D (–1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1). 则AB =(1,0,–2),DE =(1,1,1),所以|||1||||||5cos AB DE AB DE AB DE +=⋅⋅==<>,.因此,直线AB 与DE . (2)因为点F 在BC 上,14BF BC =,BC =(–1,2,0). 所以111(,,0)442BF BC ==-. 又20,0DB =(,), 故71(,,0)42DF DB BF =+=.设1111()x y z =,,n 为平面DEF 的一个法向量, 则1100,DE DF ⎧⎪⎨⎪⎩⋅=⋅=,n n 即111110710,42x y z x y +⎧+=⎪+=⎪⎨⎩, 取12x =,得1–7y =,15z =,所以1(275)n =-,,. 设2222()x y z =,,n 为平面DEC 的一个法向量,又DC =(1,2,0),则2200,DE DC ⎧⎪⎨⎪⎩⋅=⋅=,n n 即22222020,x y z x y ++=+=⎧⎨⎩,取22x =,得2–1y =,2–1z =,所以2(211)n =--,,. 故2112|||475|13|||||co |13786s θ+-⋅===⋅⨯n n n n .所以22391cos s n 13i θθ=-=.12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明例1如图,高为1的等腰梯形ABCD 中,AM =CD =13AB =1.现将△AMD 沿MD 折起,使平面AMD ⊥平面MBCD ,连接AB ,AC .试判断:在AB 边上是否存在点P ,使AD ∥平面MPC ?并说明理由 【答案】当AP =13AB 时,有AD ∥平面MPC .理由如下:连接BD 交MC 于点N ,连接NP . 在梯形MBCD 中,DC ∥MB ,DN NB =DC MB =12,在△ADB 中,AP PB =12,∴AD ∥PN .∵AD ⊄平面MPC ,PN ⊂平面MPC , ∴AD ∥平面MPC .【解析】线面平行,可以线线平行或者面面平行推出。
此类题的难点就是如何构造辅助线。
构造完辅助线,证明过程只须注意规范的符号语言描述即可。
本题用到的是线线平行推出面面平行。
【易错点】不能正确地分析DN 与BN 的比例关系,导致结果错误。
【思维点拨】此类题有两大类方法: 1. 构造线线平行,然后推出线面平行。
此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。
在此,我们需要借助倒推法进行分析。
首先,此类型题目大部分为证明题,结论必定是正确的,我们以此为前提可以得到线面平行。
再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。
从这个角度上看我们可以看出线线平行推线面平行的本质就是过已知直线做一个平面与已知平面相交即可。
如本题中即是过AD 做了一个平面ADB 与平面MPC 相交于线PN 。
最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。
即先证AD 平行于PN ,最后得到结论。
构造交线的方法我们可总结为如下三个图形。
2. 构造面面平行,然后推出线面平行。
此类方法辅助线的构造通常比较简单,但证明过程较繁琐,一般做为备选方案。
辅助线的构造理论同上。
我们只须过已知直线上任意一点做一条与已知平面平行的直线即可。
可总结为下图例2如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB ⊥平面BEC ,BE ⊥EC ,AB =BE =EC =2,G ,F分别是线段BE ,DC 的中点.求证:GF ∥平面ADE ;【答案】解法一:(1)证明:如图,取AE 的中点H ,连接HG ,HD ,又G 是BE 的中点,方法三方法二方法一ααPA BABDEA BCDDE方法一αBA所以GH ∥AB ,且GH =12AB.又F 是CD 的中点, 所以DF =12CD.由四边形ABCD 是矩形得, AB ∥CD ,AB =CD , 所以GH ∥DF ,且GH =DF ,从而四边形HGFD 是平行四边形,所以GF ∥DH. 又DH ⊂平面ADE ,GF ⊄平面ADE , 所以GF ∥平面ADE.解法2:(1)证明:如下图,取AB 中点M ,连接MG ,MF.又G 是BE 的中点,可知GM ∥AE. 又AE ⊂平面ADE ,GM ⊄平面ADE , 所以GM ∥平面ADE.在矩形ABCD 中,由M ,F 分别是AB ,CD 的中点得MF ∥AD. 又AD ⊂平面ADE ,MF ⊄平面ADE , 所以MF ∥平面ADE.又因为GM∩MF=M ,GM ⊂平面GMF ,MF ⊂平面GMF , 所以平面GMF ∥平面ADE.因为GF ⊂平面GMF ,所以GF ∥平面ADE.【解析】解法一为构造线线平行,解法二为构造面面平行。
【易错点】线段比例关系 【思维点拨】同例一题型二 线线垂直、面面垂直的证明例1如图,在三棱锥P ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB=BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC【答案】(1)证明:因为PA ⊥AB ,PA ⊥BC ,AB ∩BC =B , 所以PA ⊥平面ABC .又因为BD⊂平面ABC,所以PA⊥BD.(2)证明:因为AB=BC,D为AC的中点,所以BD⊥AC.由(1)知,PA⊥BD,又AC∩PA=A,所以BD⊥平面PAC.因为BD⊂平面BDE,所以平面BDE⊥平面PAC.【解析】(一)找突破口第(1)问:欲证线线垂直,应转化到证线面垂直,再得线线垂直;第(2)问:欲证面面垂直,应转化到证线面垂直,进而转化到先证线线垂直,借助(1)的结论和已知条件可证;(二)寻关键点【易错点】规范的符号语言描述,正确的逻辑推理过程。
【思维点拨】(1)正确并熟练掌握空间中平行与垂直的判定定理与性质定理,是进行判断和证明的基础;在证明线面关系时,应注意几何体的结构特征的应用,尤其是一些线面平行与垂直关系,这些都可以作为条件直接应用.(2)证明面面平行依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证明面面平行转化为证明线面平行,再转化为证明线线平行.(3)证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中线、高线或添加辅助线解决.(4)证明的核心是转化,空间向平面的转化,面面⇔线面⇔线线. 题型三 空间向量例1如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,ABD CBD ∠=∠,AB=BD . (1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D AE C 的余弦值.【答案】(1)证明:由题设可得,△ABD ≌△CBD ,从而AD =DC .又△ACD 是直角三角形,所以∠ADC =90°. 取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO . 又因为△ABC 是正三角形,所以BO ⊥AC . 所以∠DOB 为二面角D AC B 的平面角. 在Rt △AOB 中,BO 2+AO 2=AB 2. 又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2, 故∠DOB =90°. 所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA ,OB ,OD 两两垂直.以O 为坐标原点,OA ―→的方向为x 轴正方向,|OA ―→|为单位长度,建立如图所示的空间直角坐标系O xyz ,则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E ⎝ ⎛⎭⎪⎫0,32,12.故AD ―→=(-1,0,1),AC ―→=(-2,0,0),AE ―→=⎝⎛⎭⎪⎫-1,32,12.设n =(x 1,y 1,z 1)是平面DAE 的法向量, 则⎩⎪⎨⎪⎧ n ·AD ―→=0,n ·AE ―→=0,即⎩⎪⎨⎪⎧-x 1+z 1=0,-x 1+32y 1+12z 1=0.可取n =⎝ ⎛⎭⎪⎫1,33,1. 设m =(x 2,y 2,z 2)是平面AEC 的法向量, 则⎩⎪⎨⎪⎧m ·AC ―→=0,m ·AE ―→=0,即⎩⎪⎨⎪⎧-2x 2=0,-x 2+32y 2+12z 2=0,可取m =(0,-1,3).则cos 〈n ,m 〉=n ·m|n ||m |=-33+3213×2=77. 由图知二面角D AE C 为锐角, 所以二面角D AE C 的余弦值为77. 【解析】(一)找突破口第(1)问:欲证面面垂直,应转化去证线面垂直或证其二面角为直角,即找出二面角的平面角,并求其大小为90°;第(2)问:欲求二面角的余弦值,应转化去求两平面所对应法向量的夹角的余弦值,即通过建系,求所对应法向量来解决问题.(二)寻关键点【易错点】正确建立空间直角坐标系,确定点的坐标,平面法向量的计算。
【思维点拨】1.利用空间向量求空间角的一般步骤 (1)建立恰当的空间直角坐标系;(2)求出相关点的坐标,写出相关向量的坐标; (3)结合公式进行论证、计算; (4)转化为几何结论. 2.求空间角应注意的3个问题(1)两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|.(2)直线与平面所成的角的正弦值等于平面的法向量与直线的方向向量夹角的余弦值的绝对值,注意函数名称的变化.(3)两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.【巩固训练】题型一线面平行的证明1.如图,在正方体ABCD -A 1B 1C 1D 1中,S 是B 1D 1的中点,E 、F 、G 分别是BC 、DC 、SC 的中点,求证:(1)直线EG ∥平面BDD 1B 1; (2)平面EFG ∥平面BDD 1B 1.【答案】详见解析【解析】(1)如图,连接SB ,∵E 、G 分别是BC 、SC 的中点, ∴EG ∥SB.又∵SB ⊂平面BDD 1B 1,EG ⊄平面BDD 1B 1,∴直线EG ∥平面BDD 1B 1.(2)连接SD,∵F、G分别是DC、SC的中点,∴FG∥SD.又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴FG∥平面BDD1B1,又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.2.如图,四棱锥P-ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是侧棱PA上的中点.求证:PC∥平面BDE;【答案】详见解析【解析】证明:连接AC交BD于点O,连接OE,如图:∵四边形ABCD是正方形,∴O是AC的中点.又E是PA的中点,∴PC∥OE.∵PC⊄平面BDE,OE⊂平面BDE,∴PC∥平面BDE.3.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.求证:C1M∥平面A1ADD1;【答案】详见解析【解析】证明:因为四边形ABCD是等腰梯形,且AB=2CD,所以AB∥DC.又由M是AB的中点,因此CD∥MA且CD=MA.连接AD1,在四棱柱ABCD-A1B1C1D1中,因为CD∥C1D1,CD=C1D1,可得C1D1∥MA,C1D1=MA,所以四边形AMC1D1为平行四边形.因此C1M∥D1A,又C1M⊄平面A1ADD1,D1A⊂平面A1ADD1,所以C1M∥平面A1ADD1.题型二线线垂直、面面垂直的证明1.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E 是PC的中点.(1)证明:CD⊥AE;(2)证明:PD⊥平面ABE;【答案】详见解析【解析】(1)在四棱锥P-ABCD中,因为PA⊥底面ABCD,CD⊂平面ABCD,故PA⊥CD,∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC,而AE⊂平面PAC,∴CD⊥AE,(2)由PA=AB=BC,∠ABC=60°,可得AC=PA,∵E是PC的中点,∴AE⊥PC,由(1)知,AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD,而PD⊂平面PCD,∴AE⊥PD,∵PA⊥底面ABCD,PD在底面ABCD内的射影是AD,AB⊥AD,∴AB⊥PD,又∵AB∩AE=A,综上可得PD⊥平面ABE.2.如图,在三棱锥P-ABC中,PA=PB=PC=AC=4,AB=BC=2 2.求证:平面ABC⊥平面APC;【答案】详见解析【解析】(1)证明:如图所示,取AC中点O,连接OP,OB.∵PA=PC=AC=4,∴OP⊥AC,且PO=4sin60°=2 3.∵BA=BC=22,∴BA2+BC2=16=AC2,且BO⊥AC,∴BO=AB2-AO2=2.∵PB=4,∴OP2+OB2=12+4=16=PB2,∴OP⊥OB.∵AC∩OB=O,∴OP⊥平面ABC.∵OP⊂平面PAC,∴平面ABC⊥平面APC.3.如图所示,四棱锥P-ABCD中,底面ABCD为平行四边形,AB=2AD=2,BD=3,PD⊥底面ABCD.证明:平面PBC⊥平面PBD;【答案】详见解析【解析】(1)证明:===QCB CD BD1,2,3∴CD2=BC2+BD2,∴BC⊥BD.又∵PD⊥底面ABCD,∴PD⊥BC.又∵PD∩BD=D,∴BC⊥平面PBD.而BC⊂平面PBC,∴平面PBC ⊥平面PBD .题型三空间向量1.已知直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AC =BC =2,AA 1=4,D是棱AA 1的中点.如图所示.(1)求证:DC 1⊥平面BCD ;(2)求二面角A -BD -C 的大小.【答案】详见解析【解析】(1)证明:按如图所示建立空间直角坐标系.由题意,可得点C (0,0,0),A (2,0,0),B (0,2,0),D (2,0,2),A 1(2,0,4),C 1(0,0,4). 于是,1DC u u u u r =(-2,0,2),DC u u u r =(-2,0,-2),DB u u u r =(-2,2,-2). 可算得1DC DC ⋅u u u u r u u u r =0,1DC DB ⋅u u u u r u u u r =0.因此,DC 1⊥DC ,DC 1⊥DB .又DC ∩DB =D ,所以DC 1⊥平面BDC .(2)设n =(x ,y ,z )是平面ABD 的法向量, 又AB u u u r =(-2,2,0),AD u u u r =(0,0,2),所以⎩⎪⎨⎪⎧ -2x +2y =0,2z =0.取y =1,可得⎩⎪⎨⎪⎧ x =1,y =1,z =0,即平面ABD 的一个法向量是n =(1,1,0). 由(1)知,1DC u u u u r 是平面DBC 的一个法向量,记n 与1DC u u u u r 的夹角为θ,则cos θ=-12,θ=2π3. 结合三棱柱可知,二面角A -BD -C 是锐角,故所求二面角A -BD -C 的大小是π3. 2.如图1,在Rt △ABC 中,∠ACB =30°,∠ABC =90°,D 为AC 中点,AE ⊥BD 于点E ,延长AE 交BC 于点F ,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示.(1)求证:AE ⊥平面BCD ;(2)求二面角A -DC -B 的余弦值;(3)在线段AF 上是否存在点M 使得EM ∥平面ADC ?若存在,请指明点M 的位置;若不存在,请说明理由.【答案】详见解析【解析】(1)证明:因为平面ABD ⊥平面BCD ,交线为BD ,又在△ABD 中,AE ⊥BD 于点E ,AE ⊂平面ABD ,所以AE ⊥平面BCD.(2)由(1)中AE ⊥平面BCD 可得AE ⊥EF .由题意可知EF ⊥BD ,又AE ⊥BD ,如图,以E 为坐标原点,分别以EF ,ED ,EA 所在直线为x轴、y 轴、z 轴,建立空间直角坐标系E -xyz ,不妨设AB =BD=DC =AD =2,则BE =ED =1.由图1条件计算得AE =3,BC =23,BF =23,则E (0,0,0),D (0,1,0),B (0,-1,0),A (0,0,3),F ⎝ ⎛⎭⎪⎫33,0,0,C (3,2,0),DC u u u r =(3,1,0),AD u u u r =(0,1,-3).由AE ⊥平面BCD 可知平面DCB 的法向量为EA u u u r ,EA u u u r =(0,0,3), 设平面ADC 的法向量为n =(x ,y ,z ),则⎩⎨⎧ 3x +y =0,y -3z =0.令z =1,则y =3,x =-1,所以n =(-1,3,1). 因为平面DCB 的法向量为EA u u u r ,所以cos 〈n ,EA u u u r 〉==55. 所以二面角A -DC -B 的余弦值为55. (3)设AM u u u u r =λAF u u u r ,其中λ∈[0,1].由于AF u u u r =⎝ ⎛⎭⎪⎫33,0,-3,所以AMu u u u r=λAFu u u r=λ⎝⎛⎭⎪⎫33,0,-3,其中λ∈[0,1].所以EM EA AM=+u u u u r u u u r u u u u r=3,0,(1)3λλ⎛⎫-⎪⎪⎝.由EMu u u u r·n=0,即-33λ+(1-λ)3=0,解得λ=34∈[0,1].所以在线段AF上存在点M使EM∥平面ADC,且AMAF=34.3.在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,AB=1,AA1=2,D为AA1的中点,BD与AB1交于点O,CO⊥侧面ABB1A1.(1)证明:BC⊥AB1;(2)若OC=OA,求直线C1D与平面ABC所成角的正弦值.【答案】详见解析【解析】(1)证明:由题意tan∠ABD=ADAB=22,tan∠AB1B=ABBB1=22,注意到0<∠ABD,∠AB1B<π2,所以∠ABD=∠AB1B.所以∠ABD+∠BAB1=∠AB1B+∠BAB1=π2.所以AB1⊥BD.又CO⊥侧面ABB1A1,所以AB1⊥CO.又BD与CO交于点O,所以AB1⊥面CBD.又因为BC⊂面CBD,所以BC⊥AB1.(2)如图,分别以OD,OB1,OC所在的直线为x轴、y轴、z轴,以O为原点,建立空间直角坐标系O-xyz,则A⎝⎛⎭⎪⎫0,-33,0,B⎝⎛⎭⎪⎫-63,0,0,C⎝⎛⎭⎪⎫0,0,33,B1⎝⎛⎭⎪⎫0,233,0,D⎝⎛⎭⎪⎫66,0,0.又因为CC1→=2AD→,所以C1⎝⎛⎭⎪⎫63,233,33.所以ABu u u r=⎝⎛⎭⎪⎫-63,33,0,ACu u u r=⎝⎛⎭⎪⎫0,33,33,1DCu u u u r=⎝⎛⎭⎪⎫66,233,33.设平面ABC 的法向量为n =(x ,y ,z ), 则根据AB u u u r ·n =0,AC u u u r ·n =0可得n =(1,2,-2)是平面ABC 的一个法向量,设直线C 1D 与平面ABC 所成角为α.则sin α=35555.。