电磁场中的荷质比测量

合集下载

磁聚焦和电子荷质比的测量资料

磁聚焦和电子荷质比的测量资料

磁聚焦和电子荷质比的测量【实验目的】1、学习测量电子荷质比的一种方法。

【实验原理】1、示波管的简单介绍:示波管结构如图1所示示波管包括有:(1)一个电子枪,它发射电子,把电子加速到一定速度,并聚焦成电子束;(2)一个由两对金属板组成的偏转系统;(3)一个在管子末端的荧光屏,用来显示电子束的轰击点。

所有部件全都密封在一个抽成真空的玻璃外壳里,目的是为了避免电子与气体分子碰撞而引起电子束散射。

接通电源后,灯丝发热,阴极发射电子。

栅极加上相对于阴极的负电压,它有两个作用:①一方面调节栅极电压的大小控制阴极发射电子的强度,所以栅极也叫控制极;②另一方面栅极电压和第一阳极电压构成一定的空间电位分布,使得由阴极发射的电子束在栅极附近形成一个交叉点。

第一阳极和第二阳极的作用一方面构成聚焦电场,使得经过第一交叉点又发散了的电子在聚焦场作用下又会聚起来;另一方面使电子加速,电子以高速打在荧光屏上,屏上的荧光物质在高速电子轰击下发出荧光,荧光屏上的发光亮度取决于到达荧光屏的电子数目和速度,改变栅压及加速电压的大小都可控制光点的亮度。

水平偏转板和垂直偏转板是互相垂直的平行板,偏转板上加以不同的电压,用来控制荧光屏上亮点的位置。

2、电子的加速和电偏转:为了描述电子的运动,我们选用了一个直角坐标系,其z轴沿示波管管轴,x轴是示波管正面所在平面上的水平线,y轴是示波管正面所在平面上的竖直线。

从阴极发射出来通过电子枪各个小孔的一个电子,它在从阳极2A 射出时在z 方向上具有速度Z v ;Z v 的值取决于K 和2A 之间的电位差C B 2V V V +=(图2)。

电子从K 移动到2A ,位能降低了2V e ∙;因此,如果电子逸出阴极时的初始动能可以忽略不计,那么它从2A 射出时的动能2z v m 21∙ 就由下式确定: 22z V e v m 21∙=∙ (1) 此后,电子再通过偏转板之间的空间。

如果偏转板之间没有电位差,那么电子将笔直地通过。

电子荷质比的测量

电子荷质比的测量

第4章基础实验实验电子荷质比的测量19世纪80年代英国物理学家汤姆孙()于1987年通过测量荷质地发现电子。

电子荷质比e/m是一个重要的物理常数,其测定在物理学发展史上占有很重要的地位。

电子荷质比的测量方法有很多,如磁聚焦法、磁控管法、伏安特性法、汤姆孙法等。

【实验目的及要求】1.掌握各种电子荷质比的测量原理及方法。

2.测定电子的荷质比。

【参考资料】1.孟祥省,李冬梅,姜琳.大学普通物理实验.济南:山东大学出版社,2004.2.江影,安文玉.普通物理实验.哈尔滨:哈尔滨工业大学出版社,2003.【提供的主要器材】根据设计方法的不同自行选择仪器(EB-III型电子束实验仪、W-Ⅲ型电子逸出功测定仪等)。

大学物理实验【实验预备知识】1.磁聚焦法参考本教材的实验电子束的磁偏转。

2.磁控管法将理想二极管的阴极通以电流加热,并在阳极外加以正电压,在连接这两个电极的外电路中将有电流通过。

将理想二极管置于磁场中,二极管中径向运动的电子将受到洛仑兹力的作用而作曲线运动。

当磁场强度达到一定值时,做曲线运动的径向电子流将不再能到达阳极而“断流”。

只要实验中测出使阳极电流截止时螺线管的临界磁场B C ,就可以求出电子的荷质比e /m 。

这种测定电子荷质比的方法称为磁控管法。

通过理论计算:a a 2222221c 2c 88()U U e m r r B r B =≈- 式中的r 2和r 1分别为阳极和阴极的半径,B C 为理想二极管阳极电流“断流”时螺线管的临界磁感应强度C B ,可按以下公式计算:C C 0B nI μ= 注:公认值1111.7610C kg e m-=⨯ 3.正交电磁场法(汤姆孙法)测定电子荷质比正交电磁场法测定电子荷质比,即英国物理学家.汤姆孙(,1856-1940)于1897年在英国卡文迪许实验室测定电子荷质比的实验方法(因为此项工作,汤姆孙于1906年获诺贝尔物理学奖)。

原理提示:在电偏转实验的基础上,在与电场正交的方向加上磁场,如图4-15所示。

电子比荷的测定实验报告

电子比荷的测定实验报告

一、实验目的1. 了解电子在电场和磁场中的运动规律。

2. 学习使用磁聚焦法测量电子的荷质比(e/m)。

3. 通过实验加深对电磁学基本概念的理解。

二、实验原理电子荷质比(e/m)是指电子的电荷量(e)与其质量(m)的比值。

在真空中,电子在电场和磁场中会受到电场力和洛伦兹力的作用,从而导致其运动轨迹发生改变。

通过测量电子在电场和磁场中的运动轨迹,可以计算出电子的荷质比。

三、实验器材1. 磁聚焦法测定仪2. 示波管3. 直流电源4. 螺线管直流电源5. 秒表6. 直尺7. 计算器四、实验步骤1. 准备实验器材:将磁聚焦法测定仪、示波管、直流电源和螺线管直流电源连接好,确保所有器材正常工作。

2. 调节示波管:调整示波管的亮度、聚焦和偏转,使电子束在荧光屏上形成清晰的亮点。

3. 测量电子在电场中的运动轨迹:a. 在示波管上施加一定的电压,使电子束在荧光屏上形成一条直线。

b. 记录下电子束在荧光屏上的位置和长度。

c. 重复上述步骤多次,取平均值。

4. 测量电子在磁场中的运动轨迹:a. 在示波管上施加一定的电压,使电子束在荧光屏上形成一条曲线。

b. 记录下电子束在荧光屏上的位置、长度和曲线的形状。

c. 重复上述步骤多次,取平均值。

5. 计算电子的荷质比:a. 根据电子在电场中的运动轨迹,计算出电子在电场中的加速度。

b. 根据电子在磁场中的运动轨迹,计算出电子在磁场中的加速度。

c. 利用电子在电场和磁场中的加速度,结合电子的电荷量和质量,计算出电子的荷质比。

五、实验数据及结果1. 电子在电场中的运动轨迹长度:L1 = 5.0 cm2. 电子在磁场中的运动轨迹长度:L2 = 10.0 cm3. 电子在电场中的加速度:a1 = 1.2 × 10^4 m/s^24. 电子在磁场中的加速度:a2 = 3.0 × 10^4 m/s^25. 电子的电荷量:e = 1.6 × 10^-19 C6. 电子的质量:m = 9.1 × 10^-31 kg7. 电子的荷质比:e/m = 1.77 × 10^11 C/kg六、实验分析1. 实验结果表明,电子的荷质比与理论值基本一致,说明实验方法可靠。

电子的荷质比测定实验

电子的荷质比测定实验

电子的荷质比测定实验一、引言电子荷质比测定是物理学实验中的一项重要实验,用于测量电子的电荷与质量之比。

本实验基于汤姆孙的光阴极射线实验装置,利用电场和磁场对电子进行精确的操控和测量,从而得到电子的荷质比。

该实验是量子力学的奠基实验之一,对于研究微观粒子的性质和结构起到了重要作用。

二、实验原理在实验中,我们通过以下原理来测定电子的荷质比:1. 汤姆孙实验:利用汤姆孙的光阴极射线实验装置,通过向金属光阴极照射光线来释放出光电子,然后通过电场对光电子进行加速。

2. 高速电子受力:当加速的光电子进入磁场区域时,会受到洛伦兹力的作用,其受力方向垂直于速度方向和磁场方向。

3. 荷质比计算:通过调整电场和磁场的强度,测量光电子在磁场中偏转的半径和电场下沉降的距离,可以计算出它们的电荷和质量之比。

三、实验步骤1. 准备实验装置:搭建汤姆孙实验装置,包括光源、光阴极、电场装置、磁场装置和测量仪器等。

2. 光电效应测定:通过调节光源的强度和频率,测量不同条件下光电流的变化,并记录下光电流达到饱和时的光强和光电流值。

3. 电场测定:使用电场装置对光电子进行加速,并测量在不同电场强度下,光电子通过一定距离所用的时间。

4. 磁场测定:使用磁场装置对加速后的光电子进行偏转,并测量光电子在磁场中偏转的半径。

5. 数据处理:根据实验数据计算得到电子的荷质比,并进行误差分析。

四、实验注意事项1. 实验操作需小心谨慎,避免引起意外事故。

2. 实验中涉及到高压电源和磁场装置,需要注意安全操作。

3. 在实验过程中,需要精确测量各项数据,尽量减小误差。

4. 实验装置的搭建和调试需要一定的时间和经验,要保持耐心和细致。

5. 实验完成后,注意整理和清理实验装置,确保实验室环境的整洁和安全。

五、实验结果与讨论根据实验所得的数据和计算结果,我们可以得到电子的荷质比的近似值。

通常情况下,测定结果与理论值相比会存在一定的差异,这可能是由于实验误差、仪器误差或实验条件的影响所导致的。

电子荷质比的测定

电子荷质比的测定

实验 磁聚焦法测定电子荷质比19世纪80年代英国物理学家J.J 汤姆逊在剑桥卡文迪许实验室做了一个著名的实验:将阴极射线受强磁场的作用发生偏转,显示射线运行轨迹的曲率半径;并采用静电偏转力与磁场偏转力平衡的方法求得粒子的速度,结果发现了“电子”,并测定出电子的电荷量与质量之比为: 1.7×1011C/Kg 对人类科学做出了重大的贡献。

1911年密立根又测定了电子的电量,这样就可以间接地计算出电子的质量,这进一步对电子的存在提供了实验证据,从而宣告原子是可以分割的。

所以电子荷质比的测定实验,在近代物理学的发展史中占有极其重要的地位。

当然测量电子荷质比的方法有磁聚焦法、磁控管法、汤姆逊法等,经现代科学技术的测定电子荷质比的标准值是:Kg C /10759.111 。

本实验采用磁聚焦法。

【实验目的】1.学习测定电子荷质比的一种方法。

2.了解电子束发生电偏转、磁偏转、电聚焦、磁聚焦的原理。

3.了解示波管的构造和各电极的作用。

【实验原理】1.示波管的简单介绍本实验所用的8SJ31J 型示波管的构造如图1所示。

灯丝F 通电以后发热,用于加热阴极K 。

阴极是个表面涂有氧化物的金属圆筒,经灯丝加热后温度上升,一部分电子脱离金属表面,成为自由电子发射,自由电子在外电场作用下形成电子流。

栅极G 为顶端开有小孔的圆筒,套装于阴极之外,其点位比阴极为低。

这样,阴极发射出来的具有一定初速度的电子,通过栅极和阴极间形成的电场时电子减速。

初速度大的电子可以穿过栅极顶端小孔射向荧光屏,初速度小的电子则被电场排斥返回阴极。

如果栅极所加电压足够低,可使全部电子返回阴极,而不能穿过栅极的小孔。

这样,调节栅极电位就能控制射向荧光屏的电子流密度。

打在荧光屏上的电子流密度大,电子轰击荧光屏的总能量大,荧光屏上激发的荧光就亮一些,反之,荧光屏就不发光。

所以调节栅极和阴极之间的电位差,可以控制荧光屏上光点的亮度,这就是亮度调节或称为辉度调节。

用磁聚焦法测电子荷质比

用磁聚焦法测电子荷质比

11物类一班 梁世勇 2011301020084用磁聚焦法测电子荷质比【实验目的】1.了解电子在电场和磁场中的运动规律。

2.学习用磁聚焦法测量电子的荷质比。

【实验仪器】DHB -2电子荷质比测定仪(主要由直流稳压电源、一台荷质比测定仪、一个长直螺线管和放置在螺线管内的一个示波管组成)、双刀开关。

【实验原理】纵向磁场(即B ∥电子枪的轴线)对从电子枪射出电子的洛仑兹力为零(因为此时电子速度为υZ ,没有垂直B 的速度分量)。

但是通过加有偏转电压的X 偏转板后,电子获得了垂直于B 的横向速度分量v x ,将受洛仑兹力B x f ev B =的作用,在垂直于B 的平面内做匀速率圆周运动。

电子做圆周运动的同时,还在加速电压V 2影响下沿Z 轴方向做匀速(速度为υZ )直线运动,两运动合成的结果是电子沿B 的方向作螺旋线运动,如图3-18所示。

则电子做螺旋线运动的回旋半径R 和周期T 分别为x mvR eB =(3-37) 2π2πx R m T v eB == (3-38) 由此可知,电子的回旋半径R 与v x 成正比,与B 成反比;周期T 与B 成反比而与v x 无关。

它表明v x 大的电子绕半径大的轨道运动,v x 小的电子绕半径小的轨道运动,但它们运动一周的时间都相等。

电子做螺旋线运动的螺距为2πzz mv h v T eB== (3-39)虽然它们的初始轴向速度也是不一样的,但它们的螺距是相等的,也就是经过一个周期后,同时从电子枪发射出来但运动方向不同的电子,又交汇在同一点(见图3-18),这就是磁聚焦作用。

而且每经过一个周期(一个螺距),有一个聚焦点。

图3-18 电子束的磁聚焦调整磁场的B 来改变螺距h ,可使电子枪出口到荧光屏的距离L 为h 的整数倍,这样我们就可以观察到多次磁聚焦现象。

利用磁聚集现象可以测定电子的荷质比。

第1次聚焦时,则有:2πz mvL h eB==(3-40)而z v =22228π V e m L B= (3-41)有限长螺线管中点的磁感应强度为B = 因此222222228π8π V V e m L BL ==⎛⎫ (3-42)其中,N 为螺线管线圈总匝数,L 为电子束交叉点到荧光屏的距离,V 2为加速电压,I 为励磁电流强度,l 为螺线管的长度(单位为m ),D 为螺线管的直径(单位为m )。

201 电子荷质比的测定

201 电子荷质比的测定

e / m 8 2U 2 / h2 B2
(10)
长直螺线管的磁感应强度B,可以由下式计算。
B 0 NI L2 D 2 0
(11)
将(11)代入(10),可得电子荷质比为:
e / m 8 2U2 (L2 D02 ) /(0NIh)2 μ0为真空中的磁导率μ0=4π×10-7 亨利/米
(12)
线管内便产生磁场,其磁场感应强度用B表示。众所周知,运动电子在磁场中要受到
罗仑兹力F=eV⊥B 的作用,显然V//受力为零,电子继续向前作直线运动,而V⊥受力最 大为F=eV⊥B,这个力使电子在垂直于磁场(也垂直于螺线管轴线)的平面内作圆周 运动,设其圆周运动的半径为R,则有:
eV B
mV2 R
,
R mV2 eV B
聚焦阳极和第二阳极是由同轴的金属圆筒组成。由于各电极上的电位不同,在它 们之间形成了弯曲的等位面、电力线。这样就使电子束的路径发生弯曲,类似光线通 过透镜那样产生了会聚和发散,这种电子组合称为电子透镜。改变电极间的电位分布, 可以改变等位面的弯曲程度,从而达到了电子透镜的聚焦。
2.实验步骤 依照图三完成以下步骤: ①开启电源开关,将“电子束-荷质比”选择开关打向电子束位置,辉度适当调 节,并调节聚焦,使屏上光点聚成一细点,应注意:光点不能太亮,以免烧坏荧光屏。 ②光点调零,通过调节“X调节”和“Y调节”旋钮,使光点位于Y轴的中心原 点。 ③调节阳极电压 U2分别为 600-1000V,对应的调节聚焦旋钮(改变聚焦电压)使 光点达到最佳的聚焦效果,测量出各对应的聚焦电压 U1。 ④求出 U2/U1。
图六 ③电流换向开关打向正向,调节输出调节旋钮,逐渐加大电流使荧光屏上的直线 一边旋转一边缩短,直到出现第一个小光点,读取此时对应的电流值 I 正,然后将电流 调为零。再将电流换向开关打向反向(改变螺线管中磁场方向),重新从零开始增加 电流使屏上的直线反方向旋转并缩短,直到再得到一个小光点,读取此时电流值 I 反。 ④改变阳极电压为 800V,重复步骤③,直到阳极电压调到 1000V 为止。 ⑤数据记录和处理。

电子荷质比的测定

电子荷质比的测定

实验6—2 电子荷质比的测定电子电荷e 和电子质量m 之比e m 称为电子荷质比,它是描述电子性质的重要物理量。

历史上就是首先测出了电子的荷质比,又测定了电子的电荷量,从而得出了电子的质量,证明原子是可以分割的。

测定电子荷质比有多种不同的方法,如磁聚焦法、磁控管法、汤姆逊法及双电容法等,该实验是利用纵向磁场聚焦法测定电子荷质比。

【实验目的】1. 研究带电粒子在磁场中聚焦的规律。

2. 掌握测量电子荷质比的一种方法。

【实验原理】1. 电子射线的磁聚焦原理将示波管(其结构如图6-2-1所示)的第一阳极A 1、第二阳极A 2及水平和垂直偏转板全连在一起,相对于阴极板加一电压2U ,由于该电压和栅极电压构成一定的空间电位分布,使得由阴极发射的电子束在栅极附近形成一交叉点,随后电子束又散射开来。

这样电子一进入A 1后,就在零电场中作匀速运动,发散的电子束将不再会聚,而在荧光屏上形成一个面积很大的光斑。

若在示波管外套一个通电螺线管,在电子射线前进的方向产生一个磁感应强度为B的均匀磁场,在均匀磁场B 中以速度v运动的电子,受到的洛仑兹力m F 为m F ev B =-⨯(6-2-1)图6-2-1 示波管结构示意图大学物理实验204 当v和B平行时,洛仑兹力等于零,电子的运动不受磁场的影响。

当v和B垂直时,mF 垂直于速度v和磁感应强度B ,电子在垂直于B 的平面内作匀速圆周运动,如图6-2-2(a)所示。

根据牛顿定律2m v F evB m R== (6-2-2)电子运动的轨道半径为mvR eB= (6-2-3) 电子绕圆一周所需时间(周期)T 为:22R mT v eBππ==(6-2-4) 可见,周期T 和电子速度v 无关,即在均匀磁场中不同速度的电子绕圆一周所需的时间是相同的,但速度大的电子轨道半径R 也大。

因此,已经聚焦的电子射线,绕圆一周后又将会聚到一点。

在一般情况下,电子的速度v 与磁感应强度B 之间成一角度θ,这时可将v分解成与B 平行的轴向速度//(cos )v v θ=和与B垂直的径向速度v ⊥)sin (θv =两部分,如图6-2-2(b)所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场中的荷质比测量
电磁场是物理学中一个重要的概念,它描述了电荷和磁场的相互作用。

在研究电磁场的过程中,荷质比的测量也是一项关键内容。

本文将介绍电磁场中荷质比的测量原理和方法。

一、荷质比的概念和意义
荷质比是指电荷与物体质量之间的比值,通常用符号e/m表示。

荷质比的测量对于物理学研究具有重要的意义,它可以帮助我们了解物质的基本特性和相互作用规律。

在电磁场中,荷质比的测量也可以为我们提供电荷和磁场之间的关联性。

二、经典荷质比测量方法
经典荷质比测量方法主要基于带电粒子在磁场中受力的现象。

当带电粒子进入磁场时,它会受到洛伦兹力的作用,该力的方向垂直于磁场和带电粒子的速度方向。

通过测量粒子受力和速度,可以计算出荷质比。

经典方法中最常用的测量装置是汤姆孙环。

汤姆孙环是由一个磁场产生装置和一个电场产生装置组成。

带电粒子进入汤姆孙环后,在磁场和电场的作用下会形成一个稳定的轨道。

通过调节磁场和电场的大小,可以使带电粒子的轨道稳定,并对其进行测量。

三、现代荷质比测量方法
现代荷质比测量方法主要基于粒子加速器和探测器的技术。

通过粒
子加速器将带电粒子加速到高能量状态,然后将其引导到探测器中进
行测量。

这种方法的优势在于能够测量更小质量的粒子,并且具有更
高的精确度。

目前,常见的现代荷质比测量方法包括德布罗意干涉法和康普顿散
射法。

德布罗意干涉法利用粒子的波动性进行测量,通过测量粒子的
干涉图案来计算荷质比。

康普顿散射法则通过探测入射粒子与靶粒子
发生散射的角度和能量来计算荷质比。

四、荷质比测量的应用
荷质比测量的应用非常广泛,它在物理学研究和工程应用中都有着
重要的地位。

在粒子物理学中,荷质比的测量可以帮助研究元素和粒
子的性质,揭示宇宙的组成和演化。

在核医学和辐射治疗中,荷质比
的测量可以用于诊断和治疗。

此外,荷质比的测量也为加速器和探测器的设计与优化提供了关键
参数。

通过精确测量荷质比,可以更好地设计和改进加速器和探测器,提高其性能和精度。

总结:电磁场中荷质比的测量是物理学研究中的重要内容,它可以
帮助我们了解物质的基本特性和相互作用规律。

经典方法和现代方法
是常用的测量手段,它们分别基于带电粒子在磁场中受力和粒子加速
器的原理。

荷质比的测量在物理学研究和工程应用中具有广泛的应用
价值。

通过精确测量荷质比,我们可以更好地理解和利用电磁场的特性。

相关文档
最新文档