行程问题(题答案)

合集下载

一般行程问题(相遇与追击问题)-含答案

一般行程问题(相遇与追击问题)-含答案

一.一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间 时间=路程÷速度 速度=路程÷时间2.行程问题基本类型(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。

解:等量关系 步行时间-乘公交车的时间=3.6小时 列出方程是:6.3408=-x x 2、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟 提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。

方法一:设预定时间为x 小/时,则列出方程是:15(x -0.25)=9(x +0.25)方法二:设从家里到学校有x 千米,则列出方程是:60159601515-=+x x 3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。

等量关系:快车行的路程+慢车行的路程=两列火车的车长之和设客车的速度为3x 米/秒,货车的速度为2x 米/秒,则 16×3x +16×2x =200+2804、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

行人的速度是每小时3.6km ,骑自行车的人的速度是每小时10.8km 。

如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。

六年级行程问题综合(含答案)

六年级行程问题综合(含答案)

六年级行程问题综合1.A、B两地相距720千米,大、小两辆汽车相向而行。

如果大车先行1.5小时,小车再出发,两车就在中点相遇;若两车同时相向而行,5小时后,两车还相距180千米。

大、小两辆汽车每小时各行()多少千米。

2.两辆汽车从A地同时出发开往B地,快车比慢车每小时多行6千米。

快车比慢车早30分钟通过中途的C地,当慢车到达C地时,快车已经又行了30千米并刚好到达B地。

A、C两地的距离是()。

3.甲、乙两车同时从A、B两地相向而行,两车第一次在距A地32千米处相遇,相遇后两车继续行驶各自到达B、A两地后,立即沿原路返回,第二次在距A地64千米处相遇。

则A、B两地间的距离是()千米。

4.有一项工程,甲队单独做20天可以完成,乙队单独做30天可以完成。

现在由甲乙两队合作来做完成这项工程,合作中甲队休息了4天,乙队休息了若干天,前后共15天完工。

则乙队休息了()天。

5.甲、乙两车都是从A地出发经过B地驶往C地,A、B两地的距离等于B、C 两地的距离,乙车的速度是甲车速度的80%。

已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地,最后乙车比甲车晚4分钟到达C地。

那么,乙车出发()分钟时,甲车就超过了乙车。

6. 某晚突然停电,房间里同时点燃了两支粗、细不同,但长短相同的蜡烛。

当来电时,同时吹灭两支蜡烛,发现其中较粗的那支蜡烛的剩余的长度是较细的蜡烛剩余长度的3倍。

已知较粗的蜡烛从点燃到燃尽可维持5小时,较细的那支可维持3小时。

这次停电持续了()小时。

7. 喜羊羊、美羊羊、懒羊羊它们分别从甲地驾船顺水航行地到乙地,喜羊羊用了6小时,喜羊羊、美羊羊、懒羊羊在顺水中划行的速度之比是5:4:3,那么懒羊羊从甲到乙顺水划行用了多少小时?8. 有一长方形跑道ABCD ,甲从顶点A 出发,乙从C 点出发,两人都按顺时针方向奔跑。

甲每秒跑5米,乙每秒跑4.5米,当甲第一次追上乙时,甲跑了( )圈。

应用题专项训练之行程问题(含答案)

应用题专项训练之行程问题(含答案)

应用题专项训练三知识回顾1.行程问题速度×时间=路程时间相同时,路程比等于速度比路程相同时时间比等于速度比的反比2.相遇问题速度和×相遇时间=相遇路程3.追及问题速度差×追及时间=相差路程4.火车过桥桥长+车长=路程速度×过桥时间=路程5.流水行船船速:在静水中的速度水速:河流中水流动的速度顺水船速:船在顺水航行时的速度逆水速度:船在逆水航行时的速度顺水船速=船速+水速=逆水船速+水速×2行程问题常用的解题方法有⑴公式法⑵图示法⑶比例法⑷分段法⑸方程法典型应用题例1、甲、乙两辆汽车从两地相向而行,甲车每小时行85千米,乙车每小时行76千米,甲车开出2小时,乙车才开出,又过了4小时两车相遇,两地间的距离是多少千米?例2、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇。

东西两地相距多少千米?甲乙所行的路程比=甲乙的速度比=56:48=7:6 东西两地相距多少千米?(32+32)÷(7-6)×(7+6)=832千米解:设东西两地相距X千米。

(X÷2+32)÷56=(X÷2-32)÷48 (+32)÷56=()÷48 56=48+32) 7=6+32) =3X+192 =192+224 =416 X=832 答:东西两地相距832千米。

例3、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?设全程X千米。

1/2X-8=X-4×32 1/2X-8=X-128 1/2X=X-128+8 1/2X=X-120 120=1/2 X x=240240-32×4=112(千米)112÷56=2(小时)2+4=6(小时)例4、小狗和小猴参加的100米预赛.结果,当小狗跑到终点时,小猴才跑到90米处,决赛时,自作聪明的小猴突然提出:小狗天生跑得快,我们站在同一起跑线上不公平,我提议把小狗的起跑线往后挪10米.小狗同意了,小猴乐滋滋的想:“这样我和小狗就同时到达终点了!”亲爱的小朋友,你说小猴会如愿以偿吗?【解析】小猴不会如愿以偿.第一次,小狗跑了100米,小猴跑了90米,所以它们的速度比为100:9010:9=;那么把小狗的起跑线往后挪10米后,小狗要跑110米,当小狗跑到终点时,小猴跑了91109910⨯=米,离终点还差1米,所以它还是比小狗晚到达终点.例5、甲、乙二人分别从A、B 两地同时出发,相向而行,甲、乙的速度之比是4 : 3,二人相遇后继续行进,甲到达B 地和乙到达A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点30千米,则A、B 两地相距多少千米?【解析】两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为4 : 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了3个全程,三个全程中甲走了453177⨯=个全程,与第一次相遇地点的距离为542(1)777--=个全程.所以A、B两地相距2301057÷=(千米).例6、甲、乙两人同时从A地出发到B地,经过3小时,甲先到B地,乙还需要1小时到达B地,此时甲、乙共行了35千米.求A,B两地间的距离.【分析】甲用3小时行完全程,而乙需要4小时,说明两人的速度之比为4:3,那么在3小时内的路程之比也是4:3;又两人路程之和为35千米,所以甲所走的路程为4352034⨯=+千米,即A,B两地间的距离为20千米.例7、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

小升初:行程问题历年经典试题及答案

小升初:行程问题历年经典试题及答案

1、一列快车和一列慢车,同时从甲、乙两站出发,相向而行,经过 6 小时相遇,相遇后快车继续行驶 3 小时后到达乙站。

已知慢车每小时行 45 千米,甲、乙两站相距多少千米?2、甲、乙二人分别以每小时 3 千米和 5 千米的速度从 A、 B 两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达 B 地共行 4 小时,那么 A、B 两地相距多少千米?3 .一列快车从甲城开往乙城,每小时行 65 千米,一列客车同时从乙城开往甲城,每小时行 60 千米,两列火车在距中点 20 千米处相遇,相遇时两车各行了多少千米?4、兄弟两人同时从家里出发到学校,路程是 1400 米。

哥哥骑自行车每分钟行200 米,弟弟步行每分钟行 80 米,在行进中弟弟与刚到学校就立即返回来的哥哥相遇。

从出发到相遇,弟弟走了多少米?相遇处距学校有多少米?5、有两只蜗牛同时从一个等腰三角形的顶点 A 出发(如图),分别沿着两腰爬行。

一只蜗牛每分钟行 2.5 米,另一只蜗牛每分钟行 2 米, 8 分钟后在离 C 点 6 米处的 P 点相遇, BP 的长度是多少米?6、甲、乙两人同时从 A、 B 两地相向而行,相遇时距 A 地 120 米,相遇后,他们继续前进,到达目的地后立即返回,在距 A 地 150 米处再次相遇,AB 两地的距离是多少米?7、A、 B 两地相距 38 千米,甲、乙两人分别从两地同时出发,相向而行,甲每小时行 8 千米,乙每小时行 11 千米,甲到达 B 地后立即返回 A 地,乙到达 A 地后立即返回 B 地,几小时后两人在途中相遇?相遇时距 A 地多远?8、如图, A、 B 是圆的直径的两端,小张在 A 点,小王在 B 点同时出发,相向行走,他们在距 A 点 80 米处的 C 点第一次相遇,接着又在距 B 点 60 米处的 D 点第二次相遇。

求这个圆的周长。

1、9.如图,两只小爬虫从 A 点出发,沿长方形 ABCD 的边,按箭头方向爬行,在距 C 点 32 厘米的 E 点它们第一次相遇,在距 D 点 16 厘米的 F 点第二次相遇,在距 A 点 16 厘米的 G 点第三次相遇,求长方形的边 AB 的长。

小学数学奥数题-----行程问题-有答案

小学数学奥数题-----行程问题-有答案

顺流 B
逆流
8
A
10
图36——1
分析:因为水流速度是每小时3千米,所以顺流比 逆流每小时快6千米。如果怒六时也行8小时, 则只能到A地。那么A、B的距离就是顺流比逆 流8小时多行的航程,即6×8=48千米。而这 段航程又正好是逆流2小时所行的。由此得出 逆流时的速度。列算式为:
(3+3)×8÷(10—8)×10=240(千米)
1
3
1

甲 图35——4
分析:如图所示,汽车到达甲班学生下车的地方 又返回到与乙班学生相遇的地点,汽车所行路 程应为乙班不行的7倍,即比乙班学生多走6倍, 因此汽车单程比乙班步行多(6÷2)=3 (倍)。
汽车返回与乙班相遇时,乙班步行的路程与甲班 学生步行到机场的路程相等。由此得出汽车送 甲班学生下车地点到几长的距离为学校到机场 的距离的1/5。列算式为 24÷(1+3+1)=4.8(千米)
小张50分钟走的路程:6÷60×50=5(千米)
小张2小时10分后共行的路程:10+5÷(50÷10)=11 (千米)
两人行2小时10分后相距的路程:24—(8+11)=5(千米)
两人共同行5千米所需时间:5÷(4+6)=0.5(小时)
相遇时间:2小时10分+0.5小时=2小时40分
行程问题(三)
(20+x)×6=(20—x)×6×1.5
x=4
答:水流速度为每小时4千米。
例题2:有一船行驶于120千米长的河中,逆行 需10小时,顺行要6小时,求船速和水速。
分析:这题条件中有行驶的路程和行驶的时间,这样可 分别算出船在逆流时的行驶速度和顺流时的行驶速度, 再根据和差问题就可以算出船速和水速。列式为

小学数学四年级《行程问题(一)》练习题(含答案)

小学数学四年级《行程问题(一)》练习题(含答案)

小学数学四年级《行程问题(一)》练习题(含答案)【例1】小明以3千米/小时的速度走了45分钟,然后以一定的速度跑30 分钟,一共前进了6千米。

求小明跑步的速度。

分析:先算出步行的路程,再算出跑步的路程。

答案:小明走路走了3×45÷60=2.25千米,因此跑了6-2.25=3.75千米。

跑步的速度为3.75÷30×60=7.5千米/小时。

【例2】小彬和小明每天早晨坚持跑步,小明每秒跑6米,小彬每秒跑4米。

(1)如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?(2)如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬?分析:(1)利用路程=速度和×相遇时间。

(2)利用路程=速度差×追及时间。

答案:(1)100÷(6+4)=10秒。

(2)10÷(6-4)=5秒。

【例3】甲、乙两人从相距为180千米的A,B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.已知甲的速度为15千米/时,乙的速度为45千米/时.经过多少时间两人相遇?相遇后经过多少时间乙到达A地?分析:利用路程=速度和×相遇时间。

答案:经过180÷(15+45)=3小时两人相遇。

因为乙从B到A需要180÷45=4小时,所以相遇后经过1小时乙到达A地。

【例4】甲乙两人同时从相距27千米的两地相向而行,3小时相遇。

已知甲每小时行5千米,乙每小时行多少千米?分析:先求出速度和。

答案:速度和为27÷3=9千米/小时。

所以乙每小时行9-5=4千米。

【例5】甲乙两人同时从相距3.5千米的两地背向而行,甲向东每小时行5千米,乙向西每小时行4.8千米。

3.5小时后两人相距多少千米?分析:利用路程=速度和×时间,注意一开始两人已有距离。

答案:相距3.5+(5+4.8)×3.5=37.8千米。

完整版)六年级奥数题及答案:行程问题

完整版)六年级奥数题及答案:行程问题

完整版)六年级奥数题及答案:行程问题六年级奥数题及答案:行程问题一、填空题(共10小题,每小题3分,满分30分)1.两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距216千米。

2.XXX从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回共用5小时。

XXX来回共走了45公里。

3.一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的1.5倍。

4.一位少年短跑选手,顺风跑90米用了10秒钟,在同样的风速下,逆风跑70米,也用了10秒钟。

在无风的时候,他跑100米要用11.67秒。

5.A、B两城相距56千米。

有甲、乙、丙三人。

甲、乙从A城,丙从B城同时出发,相向而行。

甲、乙、丙分别以每小时6千米、5千米、4千米的速度行进。

求出发后经2小时,乙在甲丙之间的中点为20千米。

6.主人追他的狗,狗跑三步的时间主人跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑出了24步。

7.兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需走2.5米才能回到出发点。

8.骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟。

那么需要18分钟,电车追上骑车人。

9.一个自行车选手在相距950公里的甲、乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天后再沿原路返回,每100公里休息一次。

他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有540公里。

10.如图,是一个边长为90米的正方形,甲从A出发,乙同时从B出发,甲每分钟行进65米,乙每分钟行进72米,当乙第一次追上甲时,乙在BC边上。

六年级数学行程问题应用题及参考答案

六年级数学行程问题应用题及参考答案

六年级数学行程问题应用题及参考答案1、甲乙两车同时从AB 两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。

求AB 两地相距多少千米?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

求乙绕城一周所需要的时间?4、甲乙两人同时从A 地步行走向B 地,当甲走了全程的41时,乙离B 地还有640米,当甲走余下的65时,乙走完全程的107,求AB 两地距离是多少米?5、甲,乙两辆汽车同时从A ,B 两地相对开出,相向而行。

甲车每小时行75千米,乙车行完全程需7小时。

两车开出3小时后相距15千米,A,B 两地相距多少千米?6、甲,已两人要走完这条路,甲要走30 分,已要走20 分,走3 分后,甲发现有东西没拿,拿东西耽误 3 分,甲再走几分钟跟乙相遇?7、甲,乙两辆汽车从A 地出发,同向而行,甲每小时走36 千米,乙每小时走48 千米,若甲车比乙车早出发 2 小时,则乙车经过多少时间才追上甲车?8、甲乙两人分别从相距36 千米的ab 两地同时出发,相向而行,甲从a 地出发至1 千米时,发现有物品遗忘在a 地,便立即返回,取了物品又立即从a 地向b 地行进,这样甲、乙两人恰好在a,b 两地的中点处相遇,又知甲每小时比乙多走0.5 千米,求甲、乙两人的速度?9、两列火车同时从相距400 千米两地相向而行,客车每小时行60 千米,货车小时行40千米,两列火车行驶几小时后,相距有100 千米?10、甲每小时行驶9 千米,乙每小时行驶7 千米。

两者在相距 6 千米的两地同时向背而行,几小时后相距150 千米?11、甲乙两车从相距600 千米的两地同时相向而行,已知甲车每小时行42 千米,乙车每小时行58 千米,两车相遇时乙车行了多少千米?12、一辆客车和一辆货车相向而行,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距多少千米?13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的三分之二,求二车的速度?14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相距4千米,再经过多长时间相遇?15、甲、乙两车分别从a b两地开出,甲车每小时行50千米,乙车每小时行40千米,甲车比乙车早1小时到,两地相距多少?16、两辆车从甲乙两地同时相对开出,4时相遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 相遇与追及1、路程和路程差公式【例 1】 如下图,某城市东西路与南北路交会于路口A .甲在路口A 南边560米的B 点,乙在路口A .甲向北,乙向东同时匀速行走.4分钟后二人距A 的距离相等.再继续行走24分钟后,二人距A 的距离恰又相等.问:甲、乙二人的速度各是多少?【考点】行程问题 【难度】3星 【题型】解答【关键词】2003年,明心奥数挑战赛【解析】 本题总共有两次距离A 相等,第一次:甲到A 的距离正好就是乙从A 出发走的路程.那么甲、乙两人共走了560米,走了4分钟,两人的速度和为:5604140÷=(米/分)。

第二次:两人距A 的距离又相等,只能是甲、乙走过了A 点,且在A 点以北走的路程=乙走的总路程.那么,从第二次甲比乙共多走了560米,共走了42428+=(分钟),两人的速度差:5602820÷=(米/分),甲速+乙速140=,显然甲速要比乙速要快;甲速-乙速20=,解这个和差问题,甲速14020280=+÷=()(米/分),乙速1408060=-=(米/分).【答案】甲速80米/分,乙速60米/分2、多人相遇【例 2】 有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?【考点】行程问题 【难度】2星 【题型】解答【解析】 甲、丙6分钟相遇的路程:()1007561050+⨯=(米);甲、乙相遇的时间为:()10508075210÷-=(分钟);东、西两村之间的距离为:()1008021037800+⨯=(米).【答案】37800米3、多次相遇【例 3】 甲、乙两车分别同时从A 、B 两地相对开出,第一次在离A 地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B 地25千米处相遇.求A 、B 两地间的距离是多少千米?【考点】行程问题 【难度】2星 【题型】解答【解析】 画线段示意图(实线表示甲车行进的路线,虚线表示乙车行进的路线):可以发现第一次相遇意味着两车行了一个A 、B 两地间距离,第二次相遇意味着两车共行了三个A 、B 两地间的距离.当甲、乙两车共行了一个A 、B 两地间的距离时,甲车行了95千米,当它们共行三个A 、B 两地间的距离时,甲车就行了3个95千米,即95×3=285(千米),而这285千米比一个A 、B 两地间的距离多25千米,可得:95×3-25=285-25=260(千米).【答案】260千米二、典型行程专题1、火车过桥【例4】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?【考点】行程问题之火车问题【难度】3星【题型】解答a)根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(25O-210)÷(25-23)=40÷2=20(米/秒)某列车的车长为:20×25-250=500-250=250(米),两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒)。

【答案】10秒2、流水行船【例5】甲、乙两艘游艇,静水中甲艇每小时行3.3千米,乙艇每小时行2.1千米.现在甲、乙两游艇于同一时刻相向出发,甲艇从下游上行,乙艇从相距27千米的上游下行,两艇于途中相遇后,又经过4小时,甲艇到达乙艇的出发地.水流速度是每小时千米.【考点】行程问题之流水行船【难度】2星【题型】填空【关键词】2009年,学而思杯,六年级【解析】两游艇相向而行时,速度和等于它们在静水中的速度和,所以它们从出发到相遇所用的时间为27(3.3 2.1)5÷+=小时.相遇后又经过4小时,甲艇到达乙艇的出发地,说明甲艇逆水行驶27千米需要549+=小时,那么甲艇的逆水速度为2793÷=(千米/小时),则水流速度为3.330.3-=(千米/小时).【答案】0.3千米/小时3、猎狗追兔【例6】猎人带猎狗去捕猎,发现兔子刚跑出40米,猎狗去追兔子。

已知猎狗跑2步的时间兔子跑3步,猎狗跑4步的距离与兔子跑7步的距离相等,求兔子再跑多远,猎狗可以追上它?【考点】行程问题之猎狗追兔【难度】3星【题型】解答【解析】设狗跑2步的时间为1(分钟),兔跑3步的时间也为1(分钟);再设狗的步长为7(米),则兔的步长为4(米),推出狗的速度是2×7=14,兔的速度是3×4=12。

用40÷(14-12)=20,20为追击时间。

再用兔的速度乘上追击时间可得兔跑的路程,即12×20=240(米)。

【答案】240米4、环形跑道【例7】甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇。

求此圆形场地的周长?【考点】行程问题之环形跑道【难度】2星【题型】解答【解析】注意观察图形,当甲、乙第一次相遇时,甲乙共走完12圈的路程,当甲、乙第二次相遇时,甲乙共走完1+12=32圈的路程.所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米.有甲、乙第二次相遇时,共行走(1圈-60)+300,为32圈,所以此圆形场地的周长为480米.【答案】480米5、走停问题【例 8】 小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的速度是上山速度的2倍,如果上山用了3时50分,那么下山用了多少时间?【考点】行程问题之走停问题 【难度】3星 【题型】填空【解析】 上山用了3时50分,即60×3+50=230(分),由230÷(30+10)=5……30,得到上山休息了5次,走了230-10×5=180(分).因为下山的速度是上山的2倍,所以下山走了180÷2=90(分).由90÷30=3知,下山途中休息了2次,所以下山共用90+5×2=100(分)=1时40分.【答案】1时40分6、 变速问题【例 9】 (时间相同模型)甲、乙两车分别从A 、B 两地同时出发,相向而行.出发时,甲,乙的速度之比是5:4,相遇后甲的速度减少20%,乙的速度增加20%.这样当甲到达B 地时,乙离A 地还有10千米.那么A 、B 两地相距多少千米?【考点】行程问题之变速问题 【难度】3星 【题型】解答【解析】 出发时,两车的速度之比为5:4,所以相遇以后两辆车的速度之比为()()5120%:4120%5:6⨯-⨯+=,而相遇前甲、乙两车的行程路程之比为5:4,所以相遇后两辆车还需要行驶的路程之比为4:5,所以甲还需要行驶全部路程的49,当甲行驶这段路程的同时,乙行驶了全程的4856915÷⨯=,距离A 地还有481191545-+=,所以A 、B 两地相距11045045÷=千米. 【答案】450千米【例 10】 (路程相同模型)一列火车出发 1 小时后因故停车 0.5 小时,然后以原速的3/4前进,最终到达目的地晚1.5 小时.若出发 1 小时后又前进 90 公里再因故停车 0.5 小时,然后同样以原速的3/4前进,则到达目的地仅晚1 小时,那么整个路程为多少公里?【考点】行程问题之变速问题 【难度】3星 【题型】解答【解析】 出发 1 小时后因故停车 0.5 小时,然后以原速的34前进,最终到达目的地晚1.5 小时,所以后面以原速的34前进的时间比原定时间多用1.50.51-=小时,而速度为原来的34,所用时间为原来的43,所以后面的一段路程原定时间为41(1)33÷-=小时,原定全程为 4 小时;出发 1 小时后又前进 90 公里再因故停车 0.5 小时,然后同样以原速的34前进,则到达目的地仅晚1 小时,类似分析可知又前进 90 公里后的那段路程原定时间为4(10.5)(1) 1.53-÷-=小时.所以原速度行驶 90 公里需要1.5 小时,而原定全程为 4 小时,所以整个路程为 90 1.54240÷⨯=公里.【答案】240公里7、 自动扶梯【例 11】 小志与小刚两个孩在电梯上的行走速度分别为每秒2个台阶和每秒3个台阶,电梯运行后,他俩沿电梯运行方向的相同方向从一楼走上二楼,分别用时28秒和20秒,那么如果小志攀登静止的电梯需要用时多少秒?【考点】行程问题之扶梯问题 【难度】4星 【题型】解答a) 小志和小刚顺向攀登运行的电梯分别都攀登了28256⨯=级和20360⨯=级,小刚比小志多走了60564-=级,这4级台阶实际上是小志多走的8秒钟内,电梯“缩”进去的,因此电梯的运行速度为每秒半个台阶,那么在小刚登梯的20秒内,电梯也“缩”了10级,所以电梯所能见到的部分是60+10=70级,所以,小志攀登静止的电梯分别需要用时70÷2=35秒.【答案】35秒8、发车间隔【例 12】 某人沿着电车道旁的便道以每小时4.5千米的速度步行,每7.2分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少?电车之间的时间间隔是多少?【考点】行程问题之发车间隔 【难度】3星 【题型】解答【解析】 设电车的速度为每分钟x 米.人的速度为每小时4.5千米,相当于每分钟75米.根据题意可列方程如下:()()757.27512x x +⨯=-⨯,解得300x =,即电车的速度为每分钟300米,相当于每小时18千米.相同方向的两辆电车之间的距离为:()30075122700-⨯=(米),所以电车之间的时间间隔为:27003009÷=(分钟).【答案】9分钟9、接送问题【例 13】 甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.【考点】行程问题之接送问题 【难度】3星 【题型】解答【解析】 如图所示:FE D C B A丙乙甲虚线为学生步行部分,实线为大巴车行驶路段,由于大巴车的速度是学生的11倍,所以大巴车第一次折返点到出发点的距离是乙班学生搭车前步行距离的6倍,如果将乙班学生搭车前步行距离看作是一份的话,大巴车第一次折返点到出发点的距离为6份,大巴车第一次折返到接到乙班学生又行驶了5分距离,……如此大巴车一共行驶了6+5+6+5+6=28份距离,而A 到F 的总距离为8份,所以大巴车共行驶了28千米,所花的总时间为28/55小时.【答案】28/55小时10、钟表问题【例 14】 小红在9点与10点之间开始解一道数学题,当时时针和分针正好成一条直线,当小红解完这道题时,时针和分针刚好第一次重合,小红解这道题用了多少时间?【考点】行程问题之时钟问题 【难度】2星 【题型】解答【解析】 9点和10点之间分针和时针在一条直线上的时刻为:14151161211⎛⎫÷-= ⎪⎝⎭(分),时针与分针第一次重合的时刻为: 11451491211⎛⎫÷-= ⎪⎝⎭(分),所以这道题目所用的时间为:148491632111111-=(分) 【答案】83211分 三、 综合行程(主要运用比例法)【例 15】 A 、 B 两地相距 7200 米,甲、乙分别从 A , B 两地同时出发,结果在距 B地 2400 米处相遇.如果乙的速度提高到原来的 3倍,那么两人可提前10分钟相遇,则甲的速度是每分钟行多少米?【考点】行程问题之比例解行程 【难度】2星 【题型】解答a) 第一种情况中相遇时乙走了 2400 米,根据时间一定,速度比等于路程之比,最初甲、乙的速度比为 (7200 -2400) : 2400 =2 :1,所以第一情况中相遇时甲走了全程的2/3.乙的速度提高 3倍后,两人速度比为 2 : 3,根据时间一定,路程比等于速度之比,所以第二种情况中相遇时甲走了全程的22325=+.两种情况相比,甲的速度没有变化,只是第二种情况比第一种情况少走 10 分钟,所以甲的速度为227200()1019235⨯-÷= (米/分). 【答案】192米/分【例 16】 甲、乙两人同时同地同向出发,沿环形跑道匀速跑步.如果出发时乙的速度是甲的2.5倍,当乙第一次追上甲时,甲的速度立即提高25%,而乙的速度立即减少20%,并且乙第一次追上甲的地点与第二次追上甲的地点相距100米,那么这条环形跑道的周长是 米.【考点】环形跑道与变速问题 【难度】2星 【题型】解答【关键词】2003年,迎春杯【解析】 如图,设跑道周长为1,出发时甲速为2,则乙速为5.假设甲、乙从A 点同时出发,按逆时针方向跑.由于出发时两者的速度比为2:5,乙追上甲要比甲多跑1圈,所以此时甲跑了21(52)23÷-⨯=,乙跑了53;此时双方速度发生变化,甲的速度变为2(125%) 2.5⨯+=,乙的速度变为5(120%)4⨯-=,此时两者的速度比为2.5:45:8=;乙要再追上甲一次,又要比甲多跑1圈,则此次甲跑了51(85)53÷-⨯=,这个53就是甲从第一次相遇点跑到第二次相遇点的路程.从环形跑道上来看,第一次相遇点跑到第二次相遇点之间的距离,既可能是52133-=个周长,又可能是51233-=个周长. 那么,这条环形跑道的周长可能为21001503÷=米或11003003÷=米. 【答案】300米或150米【例 17】 A 、B 两地位于同一条河上,B 地在A 地下游100千米处.甲船从A 地、乙船从B 地同时出发,相向而行,甲船到达B 地、乙船到达A 地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是米/秒.【考点】行程问题与几何综合 【难度】4星 【题型】填空【关键词】2009年,迎春杯,复赛,高年级组【解析】 本题采用折线图来分析较为简便.如图,箭头表示水流方向,A C E →→表示甲船的路线,B D F →→表示乙船的路线,两个交点M 、N 就是两次相遇的地点.由于两船在静水中的速度相同,所以两船的顺水速度和逆水速度都分别相同,那么两船顺水行船和逆水行船所用的时间都分别相同,表现在图中,就是BC 和DE 的长度相同,AD 和CF 的长度相同.那么根据对称性可以知道,M 点距BC 的距离与N 点距DE 的距离相等,也就是说两次相遇地点与A 、B 两地的距离是相等的.而这两次相遇的地点相距20千米,所以第一次相遇时,两船分别走了()10020240-÷=千米和1004060-=千米,可得两船的顺水速度和逆水速度之比为60:403:2=.而顺水速度与逆水速度的差为水速的2倍,即为4米/秒,可得顺水速度为()432312÷-⨯=米/秒,那么两船在静水中的速度为12210-=米/秒.【答案】10米/秒。

相关文档
最新文档