与一元二次方程有关的竞赛题

合集下载

一元二次方程的应用大题专练

一元二次方程的应用大题专练

一元二次方程的应用大题专练题型一、传播问题1.有一个人患了流感,经过两轮传染后共有121个人患了流感.(1)每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少人患流感?2.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是31,则这种植物每个支干长出多少个小分支?3.某教育局组织教职工男子篮球比赛.(1)本次比赛采用单循环赛制(参赛的每两支队之间要比赛一场),共安排了28场比赛,问:有多少支队参加比赛(2)在比赛场地边,东南西北四个角落分别划分一个大小一样的正方形观众席,已知观众席的总面积是400平方米,求每个正方形的边长.题型二、增长率问题1.用手机抢红包是大家春节期间进行交流联系、增强感情的一部分.下面是宁宁和她的妹妹在春节期间的对话:请问:(1)2022年到2024年宁宁和她妹妹除夕时用手机抢到红包的平均年增长率是多少?(2)2024年除夕,宁宁和她妹妹用手机各抢到了多少元的红包?2.随着阿里巴巴、淘宝网、京东、小米等互联网巨头的崛起,催生了快递行业的高速发展.据调查,杭州市某家小型快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递快递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问至少需要增加几名业务员?3.“阳光玫瑰”是一种优质的葡萄品种.某葡萄种植基地2021年年底已经种植“阳光玫瑰”300亩,到2023年年底“阳光玫瑰”的种植面积达到432亩.(1)求该基地“阳光玫瑰”种植面积的年平均增长率.(2)市场调查发现,当“阳光玫瑰”的售价为20元/kg时,每天能售出300kg;销售单价每降低1元,每天可多售出50kg.为了减少库存,该基地决定降价促销.已知该基地“阳光玫瑰”的平均成本为10元/kg,若要使销售“阳光玫瑰”每天获利3150元,并且使消费者尽可能获得实惠,则销售单价应定位多少元?题型三、销售问题1.《2024年政府工作报告》明确提出优化消费环境的目标,开展了“消费促进年”活动和实施“放心消费行动”等多项举措,旨在引导消费市场正向发展.某文具店为回馈顾客一直以来的信赖与支持,特地推出了商品促销活动.顾客每购买一本笔记本便赠送两支铅笔,若顾客一次性购买n支钢笔(n为正整数),则每支钢笔的价格在售价的基础上降低2n元.已知一本笔记本比一支铅笔贵8元,钢笔的售价为36元/支.(1)小华到此文具店购买了10本笔记本,30支铅笔,共消费120元,求此文具店所售卖笔记本和铅笔的单价.(2)小明计划到此文具店买16支铅笔和笔记本若干,但身上只带了70元,问小明最多可以买多少本笔记本?(3)已知此文具店所售卖钢笔的进价为24元/支,当顾客一次性购买多少只钢笔时,文具店此次交易的利润达到最大值?2.每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?3.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若每件衬衫降价5元,则商场平均每天可售出衬衫______件,每天获得的利润为______元.(2)若商场每天要获得利润1200元,请计算出每件衬衫应降价多少元?(3)商场每天要获得利润有可能达到1400元吗?若能,请求出此时每件衬衫的利润;若不能,请说明理由.4.某超市销售一种商品,成本价为30元/千克,经市场调查,每天销售量y(千克)与销售单价x(元/千y x,规定每千克售价不能低于30元,且不高于80元.克)之间满足一次函数关系180(1)如果该超市销售这种商品每天获得3600元的利润,那么该商品的销售单价为多少元?(2)设每天的总利润为w元,当销售单价定为多少元时,该超市每天的利润最大?最大利润是多少元?题型四、面积问题1.为了加强劳动教育,我校在校园开辟了一块劳动教育基地:一面利用学校的墙(墙的最大可用长度为28米),用长为39米的篱笆,围成中间隔有一道篱笆的矩形菜地,在菜地的前端及中间篱笆上设计了三个宽1米的小门,便于同学们进入.(1)若围成的菜地面积为120平方米,求此时边AB的长;(2)若每平方米可收获2千克的菜,问该片菜地最多可收获多少千克的菜?2.某校九年级学生在数学社团课上进行纸盒设计,利用一个边长为30cm 的正方形硬纸板,在正方形纸板的四角各剪掉一个同样大小的小正方形,将剩余部分折成一个无盖纸盒.(1)若无盖纸盒的底面积为2484cm ,则剪掉的小正方形的边长为多少?(2)折成的无盖纸盒的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的小正方形的边长;如果没有,说明理由.3.科技创新活动一直在路上.现将某品牌平面展示屏设计与生产过程中收集的精准数据统计如下: 信息数据一:屏占比,指的是屏幕面积与整个外观面积的比,计算公式为:屏占比100%屏幕面积外观面积信息数据二:某厂商设计了该款1.0版平面展示屏(如图),正面外观呈矩形,长400mm ,宽300mm ,正中央是长宽之比为4:3的矩形屏幕,若要使屏占比达到81%,且左右边框等宽,均为xmm ,上下边框等宽,均为mm y ,应如何设计屏四周边框的宽度?信息数据三:在上述1.0版平面展示屏的升级版2.0版中,外观保持不变,对屏的长宽进行调整,调整之后使得左右边框的宽度各减少了0.9a ,上下边框的宽度各减少了a ,从而使屏占比进一步提升至91.35%.(1)求x ,y 的值;(2)求a 的值.题型五、几何动态问题1.如图,A B C D 、、、为矩形的四个顶点,4AB cm ,2AD cm ,动点P 、Q 分别从点A 、C 同时出发,都以1cm/s 的速度运动,其中点P 由A 运动到B 停止,点Q 由点C 运动到点D 停止.(1)求四边形PBCQ 的面积;(2)P 、Q 两点从出发开始到几秒时,P 、Q 、D 组成的三角形是等腰三角形?2.如图,在四边形ABCD 中,AB DC ,4AD ,12CD ,BD AD ,60A ,动点P 、Q 分别从A 、B 同时出发,点P 以每秒2个单位的速度沿着折线A D C 先由A 向D 运动,再由D 向C 运动,点Q 以每秒1个单位的速度由B 向A 运动,当其中一动点到达终点时,另一动点随之停止运动,设运动时间为t 秒.(1)两平行线DC 与AB 之间的距离是__________.(2)当点P 、Q 与BCD △的某两个顶点围成一个平行四边形时,求t 的值.(3)AP ,以AP ,AQ 为一组邻边构造平行四边形APMQ ,若APMQ 的面积为3t 的值.3.如图,在四边形ABCD 中,DC AB ∥,90B ,8cm AB ,4cm AD ,6cm CD ,点P 从点A 出发沿边AB 以2cm/s 的速度向点B 移动;同时,点Q 从点C 出发沿边CD 以1cm/s 的速度向点D 移动,当一点到达终点时,另一点也随之停止运动,设运动时间为s x .(1)PB cm ,CQ cm (用含x 的代数式表示);(2)当P 、Q 37cm 时,求x 的值;(3)填空:①当x 时,四边形APQD 是菱形;②当x 时,四边形PBCQ 是矩形.题型六、数字问题1.第十四届国际数学教育大会14ICME 会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有07~共8个基本数字,八进制数3745换算成十进制数是3210387848582021,表示14ICME 的举办年份.(1)请把八进制数3747换算成十进制数;(2)小华设计了一个n 进制数265,换算成十进制数是145,求n 的值(n 为正整数).2.两个相邻偶数的平方和的平均数为Q ,则Q 一定是偶数.如:2268100,100250,50为偶数.(1)偶数12和14是否满足上述结论,请说明理由;(2)设两个相邻偶数为2n 和22n ,请论证上述结论;(3)若122Q .求符合要求的偶数.3.阅读材料:200多年前,数学王子高斯用他独特的方法快速计算出123100的值.我们从这个算法中受到启发,用下面方法计算数列1,2,3,…,n ,…的前n 项和: 由1211211111n n nn n n n n 可知(1)1232n n n . 应用以上材料解决下面问题:(1)有一个三角点阵(如图),从上向下数有无数多行,其中第一行有1个点,第二行有2个点,…,第n 行有n 个点,.若该三角点阵前n 行的点数和为325,求n 的值.(2)在第一问的三角点阵图形中,前n 行的点数和能是900吗?如果能,求出n ;如果不能,说明理由.(3)如果把上图中的三角点阵中各行的点数依次换为3,6,9,…,3n ,…,前n 行的点数和能是900吗?如果能,求出n ;如果不能,说明理由.题型七、行程问题1.小明设计了点做圆周运动的一个动画游戏,如图所示,甲、乙两点分别从直径的两端点A 、B 以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程☎✆l cm 与时间☎✆s t 满足关系:213022lt t t ,乙以4cm/s的速度匀速运动,半圆的长度为21cm .(1)甲运动4s 后的路程是多少?(2)甲、乙从开始运动到第三次相遇时,它们运动了多少时间?2.随着人们对健康生活的追求,全民健身意识日益增强,徒步走成为人们锻炼的日常,中老年人尤为喜爱.(1)张大伯徒步走的速度是李大伯徒步走的1.2倍,张大伯走5分钟,李大伯走10分钟,共走800米,求张大伯和李大伯每分钟各走多少米?(2)天气好,天色早,张大伯和李大伯锻炼兴致很浓,又继续走,与(1)中相比,张大伯的速度不变,李大伯的速度每分钟提高了2a 米,时间都各自多走了10a 分钟,结果两人又共走了6900米,求a 的值.3滑行时间/t s 0 1 2 3 4滑行速度/m/s y 60 57 54 51 48已知该飞机在跑道起点处着陆后的滑行速度y (单位:m/s )与滑行时间t (单位:s )之间满足一次函数关系.而滑行距离 平均速度v 时间t ,02t v v v ,其中0v 是初始速度,t v 是t 秒时的速度.(1)直接写出y 关于t 的函数解析式和自变量的取值范围;(2)求飞机滑行的最远距离;(3)当飞机在跑道起点处着陆后滑行了450m ,求此时飞机的滑行速度;(4)若飞机在跑道起点处开始滑行时,发现前方300m 有一辆通勤车正以54km/h 的速度匀速同向行驶,试问飞机滑行过程中是否有碰撞通勤车的危险?题型八、工程问题1.由于疫情反弹,某地区开展了连续全员核酸检测,9月7日,医院派出13名医护人员到一个大型小区设置了A 、B 两个采样点进行核酸采样,当天共采样9220份,已知A 点平均每人采样720份,B 点平均每人采样700份.(1)求A 、B 两点各有多少名医护人员?(2)9月8日,医院继续派出这13名医护人员前往这个小区进行核酸采样,这天,社区组织者将附近数个商户也纳入这个小区采样范围,同时重新规划,决定从B 点抽调部分医护人员到A 点经调查发现,B 点每减少1名医护人员,人均采样量增加10份,A 点人均采样量不变,最后当天共采样9360份,求从B 点抽调了多少名医护人员到A 点?2.某工程队采用A 、B 两种设备同时对长度为4800米的公路进行施工改造.原计划A 型设备每小时铺设路面比B 型设备的2倍多30米,则32小时恰好完成改造任务.(1)求A 型设备每小时铺设的路面长度;(2)通过勘察,此工程的实际施工里程比最初的4800米多了1000米.在实际施工中,B 型设备在铺路效率不变的情况下,时间比原计划增加了25m 小时,同时,A 型设备的铺路速度比原计划每小时下降了3m 米,而使用时间增加了m 小时,求m 的值.3.城开高速公路即重庆市城口县至开州区的高速公路,是国家高速G69银百高速公路(银川至百色)的一段,线路全长129.3公里,甲、乙两工程队共同承建该高速公路某隧道工程,隧道总长2100米,甲、乙分别从隧道两端向中间施工,计划每天各施工6米.因地质结构不同,两支队伍每合格完成1米隧道施工所需成本不一样.甲每合格完成1米隧道施工成本为8万元;乙每合格完成1米隧道施工成本为9万元.(1)若工程结算时乙总施工成本不低于甲总施工成本的32,求甲最多施工多少米? (2)实际施工开始后地质情况比预估更复杂,甲乙两队每日完成量和成本都发生变化.甲每合格完成1米隧道施工成本增加m 万元时,则每天可多挖2m 米,乙在施工成本不变的情况下,比计划每天少挖3m 米,若最终每天实际总成本比计划多92m 万元,求m 的值.题型九、图表信息问题1.近年来,随着城市居民入住率的增加,污水处理问题成为城市的难题.某城市环境保护局协同自来水公司为鼓励居民节约用水,减少污水排放,规定:居民用水量每月不超过a吨时,只需交纳10元水费,如果超过a吨,除按10元收费外,超过部分,另按每吨5a元收取水费(水费+污水处理费).(1)某市区居民2018年3月份用水量为8吨,超过规定水量,用a的代数式表示该用户应交水费多少元;(2)下表是这户居民4月份和5月份的用水量和缴费情况;月份用水量(吨)交水费总金额(元)4 7 705 5 40根据上表数据,求规定用水量的值.2.在日历上,我们可以发现其中某些数满足一定的规律,如图是2019年1月份的日历.我们任意选择其中所示的菱形框部分将每个菱形框部分中去掉中间位置的数之后,相对的两对数分别相乘,再相减,例如:91131748,131572148.不难发现,结果都是48.(1)请证明发现的规律;(2)若用一个如图所示菱形框,再框出5个数字,其中最小数与最大数的积为435,求出这5个数的最大数;(3)小明说:他用一个如图所示菱形框,框出5个数字,其中最小数与最大数的积是120.直接判断他的说法是否正确.(不必叙述理由)3.【观察思考】【规律发现】(1)第5个图案中“”的个数为______;(2)第n(n为正整数)个图案中“○”的个数为_____“”的个数为_____(用含n的式子表示)【规律应用】(3)结合上面图案中“○”和“”的排列方式及规律,求正整数n,使得“○”比“”的个数多28.题型十、项目设计方案问题探索果园土地规划和销售利润问题素材1 某农户承包了一块长方形果园ABCD,图1是果园的平面图,其中200AB 米,300BC 米.准备在它的四周铺设道路,上下两条横向道路的宽度都为2x米,左右两条纵向道路的宽度都为x米,中间部分种植水果.出于货车通行等因素的考虑,道路宽度x不超过12米,且不小于5米.素材2 该农户发现某一种草莓销售前景比较不错,经市场调查,草莓培育一年可产果,若每平方米的草莓销售平均利润为100元,每月可销售5000平方米的草莓;受天气原因,农户为了快速将草莓出手,决定降价,若每平方米草莓平均利润下调5元,每月可多销售500平方米草莓.果园每月的承包费为2万元.问题解决任务1 解决果园中路面宽度的设计对种植面积的影响.(1)请直接写出纵向道路宽度x的取值范围.(2)若中间种植的面积是244800m,则路面设置的宽度是否符合要求.任务2 解决果园种植的预期利润问题.(总利润销售利润承包费)(3)若农户预期一个月的总利润为52万元,则从购买草莓客户的角度应该降价多少元?2清明果销售价格的探究素材1 清明节来临之际,某超市以每袋30元的价格购进了500袋真空包装的清明果,第一周以每袋50元的价格销售了150袋.素材2 第二周如果价格不变,预计仍可售出150袋,该超市经理为了增加销售,决定降价,据调查发现:每袋清明果每降价1元,超市平均可多售出10袋,但最低每袋要盈利15元,第二周结束后,该超市将对剩余的清明果一次性赔钱甩卖,此时价格为每袋25元.解决问题任务1 若设第二周单价为每袋降低x元,则第二周的单价每袋元,销量是袋.任务2①经两周后还剩余清明果袋.(用x的代数式表示)②若该超市想通过销售这批清明果获利5160元,那么第二周的单价每袋应是多少元?3如何设计实体店背景下的网上销售价格方案?素材1 某公司在网上和实体店同时销售一种自主研发的小商品,成本价为40元/件.素材2 该商品的网上销售价定为60元/件,平均每天销售量是200件,在实体店的销售价定为80元/件,平均每天销售量是100件.按公司规定,实体店的销售价保持不变,网上销售价可按实际情况进行适当调整,需确保网上销售价始终高于成本价.素材3 据调查,网上销售价每降低1元,网上销售每天平均多售出20件,实体店的销售受网上影响,平均每天销售量减少2件.问题解决任务1 计算所获利润当该商品网上销售价为50元/件时,求公司在网上销售该商品每天的毛利润与实体店销售该商品每天的毛利润各是多少元?任务2 平衡市场方案该商品的网上销售价每件_________元时,该公司网上销售该商品每天的毛利润与实体店销售该商品每天的毛利润相等任务3 拟定价格方案公司要求每天的总毛利润(总毛利润=网上毛利润+实体店毛利润)达到8160元,求每件商品的网上销售价是多少元?。

一元二次方程竞赛解题方法

一元二次方程竞赛解题方法

一元二次方程竞赛解题方法一元二次方程是初中教材的重点内容,也是竞赛题的特点。

除了掌握常规解法外,注意一些特殊或灵活的解法,往往能事半功倍。

以下是一些解题方法:一、换元法例如,考虑方程$x^2-2x-5|x-1|+7=0$的所有根的和。

我们可以令$y=|x-1|$,则原方程变为$y^2-2y-5y+7=0$,化简后得到$y=1$或$y=-5$,即$|x-1|=1$或$|x-1|=5$。

进一步解得$x=-1.0.2.6$,因此所有根的和为$7$,选项C。

二、降次法例如,考虑已知$\alpha。

\beta$是方程$x^2-x-1=0$的两个实数根,求$a^4+3\beta$的值。

我们可以利用方程$x^2-x-1=0$的性质,即$x^2=x+1$,将$a^4+3\beta$表示为$a^2(a^2+3\beta)$,再用$\alpha^2=\alpha+1$和$\beta^2=\beta+1$代入,得到$a^2(a^2+3\beta)=a^2(\alpha+1)(\alpha^2+3\beta^2)=a^2(\alpha+ 1)(4\alpha+3)$,因此$a^4+3\beta=4a^3+4a^2+a^2(\alpha+1)(4\alpha+3)=4a^3+4a^2+3 a^2+4a^3+3a^2=8a^3+6a^2$,选项B。

三、整体代入法例如,考虑二次方程$ax^2+bx+c=0$的两根为$x_1.x_2$,记$S_1=x_1+1993x_2.S_2=x_1^2+1993x_2^2.\dots。

S_n=x_1^n+1993x_2^n$,求证$aS_{1993}+bS_{1992}+cS_{1991}=0$。

我们可以将$x_1.x_2$表示为$x_1=\frac{-b+\sqrt{b^2-4ac}}{2a}$和$x_2=\frac{-b-\sqrt{b^2-4ac}}{2a}$,然后利用数列求和公式,得到$S_1=-\frac{b}{a}+1993\frac{-b-\sqrt{b^2-4ac}}{2a}$,$S_2=\frac{b^2-2ac}{a^2}+1993\frac{b^2-2ac+2b\sqrt{b^2-4ac}}{4a^2}$,$S_3=-\frac{b^3-3abc+2a\sqrt{b^2-4ac}(b^2-ac)}{a^3}+\dots$。

数学 一元二次方程的专项 培优练习题含答案

数学 一元二次方程的专项 培优练习题含答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根. ()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】 【分析】 ()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得. ()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍.【详解】解:()1关于x 的一元二次方程()222130x k x k --+-=有两个实数根, 0∴≥,即()()22[21]4134130k k k ---⨯⨯-=-+≥,解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+,221223x x +=, 224723k k ∴-+=,解得4k =,或2k =-,134k ≤, 4k ∴=舍去,2k ∴=-.【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.2.已知:关于的方程有两个不相等实数根.(1) 用含的式子表示方程的两实数根;(2)设方程的两实数根分别是,(其中),且,求的值.【答案】(I)kx2+(2k-3)x+k-3 = 0是关于x的一元二次方程.∴由求根公式,得.∴或(II),∴.而,∴,.由题意,有∴即(﹡)解之,得经检验是方程(﹡)的根,但,∴【解析】(1)计算△=(2k-3)2-4k(k-3)=9>0,再利用求根公式即可求出方程的两根即可;(2)有(1)可知方程的两根,再有条件x1>x2,可知道x1和x2的数值,代入计算即可.一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系.请你解答下列问题:3. y与x的函数关系式为:y=1.7x(x≤m);或( x≥m) ;4.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2,解得k=2,∴当k=2时,S的值为2∴S的值能为2,此时k的值为2.考点:一元二次方程根的判别式;根与系数的关系.5.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y (只)与销售单价x(元)之间的关系式为y=﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w元,根据题意得:w=(x﹣30)y=(x﹣30)(﹣10x+700)=﹣10x2+1000x﹣21000=﹣10(x ﹣50)2+4000.∵a=﹣10<0,∴当x=50时,w取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.6.某水果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该水果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x元(40≤x≤60),每星期的销售量为y箱.(1)求y与x之间的函数关系式;(2)当每箱售价为多少元时,每星期的销售利润达到3570元?(3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元?【答案】(1)y=-10x+780;(2) 57;(3)当售价为59元时,利润最大,为3610元【解析】【分析】(1)根据售价每降价1元,每星期可多卖10箱,设售价x元,则多销售的数量为60-x,(2)解一元二次方程即可求解,(3)表示出最大利润将函数变成顶点式即可求解.【详解】解:(1)∵售价每降价1元,每星期可多卖10箱,设该苹果每箱售价x元(40≤x≤60),则y=180+10(60-x)=-10x+780,(40≤x≤60),(2)依题意得:(x-40)(-10x+780)=3570,解得:x=57,∴当每箱售价为57元时,每星期的销售利润达到3570元.(3)设每星期的利润为w,W=(x-40)(-10x+780)=-10(x-59)2+3610,∵-10 0,二次函数向下,函数有最大值,当x=59时, 利润最大,为3610元.【点睛】本题考查了二次函数的实际应用,中等难度,熟悉二次函数的实际应用是解题关键.7.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x ,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x ,根据题意得:400(1﹣x )2=361,解得:x 1=0.05=5%,x 2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.8.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式。

一元二次方程压轴题

一元二次方程压轴题

一元二次方程压轴题学校:___________姓名:___________班级:___________考号:___________一、单选题1.新定义,若关于x 的一元二次方程:21()0a x m n -+=与22()0a x m n -+=,称为“同族二次方程”.如22(3)40x -+=与23(3)40x -+=是“同族二次方程”.现有关于x 的一元二次方程:22(1)10x -+=与2(2)(4)80a x b x ++-+=是“同族二次方程”.那么代数式22018ax bx ++能取的最小值是( )A .2011B .2013C .2018D .20232.下列说法正确的是( ). ①若122b ac =+ ,则一元二次方程20ax bx c ++= 必有一根为 -2.②已知关于x 的方程 ()2210k x -+=有两实根,则k 的取值范围是 13k -≤≤﹒③一个多边形对角线的条数等于它的边数的 4倍,则这个多边形的内角和为1620度 .④一个多边形剪去一个角后,内角和为1800度 ,则原多边形的边数是 11或 12.A .①③B .①②③C .②④D .②③④二、填空题3.在矩形ABCD 中,AB =8cm ,BC =3cm ,点P 从点A 出发沿AB 以2cm/s 的速度向终点B 移动,同时,点Q 从点C 出发沿CD 以3cm/s 的速度向终点D 移动,其中一个点到达终点,另一个点也停止运动. 经过_________秒P 、Q 两点之间的距离是5cm .4.对于3个数:,,a b c ,用{,,}M a b c 表示这三个数的中位数,用{,,}max a b c 表示这三个数的最大数.例如:{}{}{},12,1,01,max 2,1,00,max 2,1,1,1a a M a a ≥-⎧--=---=--=⎨-<-⎩.如果{}{}229,,32max 9,,32M x x x x -=-,则x =______________.5.设α,β是方程x 2﹣x ﹣2019=0的两个实数根,则α2+β的值为_____.6.设x 1.x 2是一元二次方程x 2+5x.3=0的两根,且2x 1.x 22+6x 2.3.+a=4,则a=______.三、解答题7.近期,广州、东莞、佛山等地新冠病毒疫情再次小范围爆发,目前仍然要高度重视各项防疫措施.某药店用1200元购进KN95口罩及普通医用口罩各1000个,每个KN95口罩比普通医用口罩的进价多0.4元,在销售过程中发现,KN95口罩每天的销量y1(单位:个)与其销售单价x(单位:元)有如下关系:y1=﹣10x+40,普通医用口罩每天的销量y2(单位:个)与其销售单价z(单位:元)有如下关系:y2=﹣10z+66.药店按照单个普通医用口罩与单个KN95口罩利润相同的标准确定销售单价,并且销售单价均高于进价(利润率=(销售单价-进价)÷进价).(1)求两种口罩的进价;(2)市场监督管理局为了调控口罩市场价格,避免炒高口罩价格的现象出现,规定KN95口罩的利润率不得超过100%,同时KN95口罩的利润率在不低于50%时才能保证药店的合理收益,药店应该如何确定KN95口罩的销售单价范围呢?(3)在(2)的条件下求这两种口罩每天销售总利润和的最大值.8.新型冠状病毒爆发时期,医疗防护物资严重匮乏,民众急需护目镜和N95口罩.重庆某药店3月初购进了一批护目镜和N95口罩,购进的N95口罩数量是护目镜数量的3倍.已知每个护目镜的售价比每个N95口罩的售价多40元,3月底护目镜和N95口罩全部销售完,据统计,护目镜的销售额为10000元,N95口罩的销售额为6000元.(1)该药店3月初购进了多少个护目镜?(2)4月份疫情得以缓和,该药店又购进以上两种医疗物资.该药店根据上月民众的需求和销售情况适当调整了进货计划,购进的护目镜购进的数量与3月份相同,但在运输过程中损耗了2%,导致受损的护目镜无法销售,而N95口罩数量比3月份增加了5%2a.由于政府对医疗物资价格的调整,护目镜的售价比3月份降低了a%,N95口罩的售价比3月份降低了2%3a,4月底售完这两种医疗物资后该药店的销售额达到了15800元,求a的值.9.某房地产商决定将一片小型公寓作为精装房出售,每套公寓面积均为32平方米,现计划为100套公寓地面铺地砖,根据用途的不同选用了A、B两种地砖,其中50套公寓全用A种地砖铺满,另外50套公寓全用B种地砖铺满,A种地砖是每块面积为0.64平方米的正方形,B种地砖是每块而积为0.16平方米的正方形,且A种地砖每块的进价比B种地砖每块的进价高40元,购进A、B两种地砖共花费350000元.(注:每套公寓地面看成正方形,均铺满地砖且地砖无剩余)(1)求A、B两种地砖每块的进价分别是多少元?(2)实际施工时,房地产商增加了精装的公寓套数,结果实际铺满A种地砖的公寓套数增加了%a,铺满B种地砖的公寓套数增加了3%a,由于地砖的购进量增加.B种地砖每块进价在(1)问的基础上降低了%a,但A种地砖每块进价保持不变,最后购进A、B两种地砖的总花费比原计划增加了5%7a,求a的值.10.作为巴渝文化的发源地,重庆在许多领域都首屈一指,而其中最具代表性的,当然还是它的美食.在无数美食中,最具地域特色的,非重庆火锅莫属.近年来,随着重庆市成为网红城市,许多游客到重庆来打卡麻辣鲜香的火锅,同时还会购买火锅底料作为伴手礼.11月,洪崖洞附近一特产店购进A、B两种品牌火锅底料共450袋,其中A品牌底料每袋售价20元,B品牌底料每袋售价30元.11月全部售完这批火锅底料,所得总销售额不低于11500元.(1)A品牌火锅底料最多购进多少袋?(2)为了促进销量,12月,该店开展了优惠活动,A 品牌底料的售价比11月的价格优惠%a ,B 品牌底料的售价比11月的价格优惠2%5a ,结果12月售出的A 品牌底料数量比11月总销售额最低时售出的A 品牌底料数量增加了1%2a ,售出的B 品牌底料数量比11月总销售额最低时售出的B 品牌底料数量增加了%a ,结果12月的总销售额比11月最低销售额增加了1%23a ,求a 的值. 11.接种疫苗是阻断病毒传播的有效途经,为了保障人民群众的身体健康,我国目前正在开展新冠疫苗大规模接种工作.现有A 、B 两个社区疫苗接种点,已知A 社区疫苗接种点每天接种的人数是B 社区疫苗接种点每天接种人数的1.2倍,A 社区疫苗接种点种完6000支疫苗的时间比B 社区疫苗接种点种完6000支疫苗的时间少1天. (1)求A 、B 两个社区疫苗接种点每天各接种多少人?(2)一段时间后,A 社区接种点每天前来接种的人数比(1)中的人数减少了10m 人,而B 社区疫苗接种点由于加大了宣传力度,每天前来接种的人数增加到了(1)中A 社区疫苗接种点每天接种的人数,这样A 社区接种点3m 天与B 社区接种点()20m +天一共种完了69000支疫苗,求m 的值.12.定义一种新运算“*a b ”:当a b ≥时,*3a b a b =+;当a b <时,*3a b a b =-.例如:()()()3*431296*1263642-=+-=-=--=-,.(1)填空:(43)*-=_ ;若*6()8x x +=-,则x =_ ;(2)已知()()37*326x x -->-,求x 的取值范围;(3)小明发现,无论x 取何值,计算()()2223*25x x x x -+-+-时,得出结果总是负数,你认为小明的结论正确吗?请说明理由.13.阅读理解:已知22228160m mn n n -+-+=,求m 、n 的值.解:∵ 22m 2mn 2n 8n 160-+-+=∴()()22228160m mn n n n -++-+=∴22()(4)0m n n +--=∴22(m n)0,(n 4)0-=-=∴4,4n m ==.方法应用:(1)已知22104290a b a b +-++=,求a 、b 的值;(2)已知 44x y +=.①用含 y 的式子表示 x : ;②若2610xy z z --=,求 x z y +的值.14.阅读下面的解题过程,求21030y y -+的最小值.解:∵21030y y -+=()()222102551025555y y y y y -++=-++=-+,而()250y -≥,即()25y -最小值是0;∴21030y y -+的最小值是5依照上面解答过程,(1)求222020m m ++的最小值;(2)求242x x -+的最大值.15.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”. ()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; ()2请写出第n 个方程和它的根.参考答案1.B【分析】根据同族二次方程的定义,可得出a 和b 的值,从而解得代数式的最小值.【详解】解:22(1)10x -+=与2(2)(4)80a x b x ++-+=为同族二次方程.22(2)(4)8(2)(1)1a x b x a x ∴++-+=+-+,22(2)(4)8(2)2(2)3a x b x a x a x a ∴++-+=+-+++,∴42(2)83b a a -=-+⎧⎨=+⎩, 解得:510a b =⎧⎨=-⎩. 222201*********(1)2013ax bx x x x ∴++=-+=-+,∴当1x =时,22018ax bx ++取最小值为2013.故选:B.【点睛】此题主要考查了配方法的应用,解二元一次方程组的方法,理解同族二次方程的定义是解答本题的关键.2.A【分析】 ①由122b ac =+可得4a -2b+c=0,当x=-2时,4a -2b+c=0成立,即可判定;.运用一元二次方程根的判别式求出k 的范围进行比较即可判定;③设这个多边形的边数为n ,根据多边形内角和定理求得n 即可判定;④分剪刀所剪的直线过多边形一个顶点、两个顶点和不过顶点三种剪法进行判定即可.【详解】解:.b=2a+12c ,则4a -2b+c=0,一元二次方程20ax bx c ++=必有一个根为-2.故.说法正确;.:()2210k x -+=有两实数根,:原方程是一元二次方程.20,2k k ∴-≠≠,故.说法错误;.设这个多边形的边数为n ,则()342n n n -= 解得n=11或0(舍去):这个多边形是11边形.:这个多边形的内角和为:(11-2)×180°=9×180°=1620°.故.说法正确;一个多边形剪去一个角的剪法有过多边形一个顶点、两个顶点和不过顶点三种剪法,会有三个结果,故.错.故选:A .【点睛】本题考查了一元二次方程的解和根的判别式以及多边形内角和定理,灵活应用所学知识是正确解答本题的关键.3.125或45 【分析】设经过x 秒P 、Q 两点之间的距离是5cm ,如图,过P 点作PM CD ⊥,垂足为M 点,得到DQ 的长,并根据四边形ABCD 为矩形推出PM 和QM 的长,利用勾股定理列式解答即可.【详解】解:设经过x 秒P 、Q 两点之间的距离是5cm ,如图,过P 点作PM CD ⊥,垂足为M 点,3,CQ xcm ∴= 2AP xcm =,()83DQ CD CQ x cm ∴=-=-,四边形ABCD 为矩形,3,PM BC cm ∴==()()2,28358,DM AP xcm QM DM DQ x x x cm ∴==∴=-=--=-∴在直角三角形PQM 中,()()()222222212,5835,2580480,512540,124,,55QM PM PQ x x x x x x x +=∴-+=-+=--=∴== ∴经过125或45秒P 、Q 两点之间的距离是5cm . 故答案为:125或45.【点睛】本题主要考查矩形的动点问题,涉及勾股定理和解一元二次方程,有一定难度,根据题意做出合适的辅助线,利用勾股定理解答是关键.4.3x =或3-【分析】由题意结合函数图像数形结合列出方程,解之可得.【详解】解:由题意知:{}{}229,,32max 9,,32M x x x x -=-∵∴设2123y 9y =x y =3x-2=,, ,做出图像如图:结合图像可知:在图像中的交点A ,B 两点处满足条件{}{}22B 9,,32max 9,,32y y A M x x x x -=-== ,此时2x 9=,解得:3x =或3-,故答案为:3x =或3-.【点睛】此题考查了函数图像与方程的相关知识,解题的关键是读懂题意,根据题意结合图像去求解,考查综合应用能力.5.2020【分析】根据根于系数的关系,确定α+β和αβ的值,然后将α代入x 2﹣x ﹣2019=0可得,α2=α+2019,最后再代入α2+β,即可.【详解】解:由题意可知:α+β=1,且α2=α+2019,∴α2+β=α+β+2019=1+2019=2020,故答案为:2020.【点睛】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型. 6.10【详解】试题分析:根据一元二次方程的解.由x2是一元二次方程x2+5x.3=0的根,代入可得x22+5x2.3=0.即x22+5x2=3.然后根据题意2x1.x22+6x2.3.+a=4.可得2x1•x2+a=4.再根据一元二次方程根与系数的关系x1+x2=-ba.x1•x2=ca.由x1.x2是一元二次方程x2+5x.3=0的两根,求得x1x2=.3.即2×..3.+a=4.解方程得a=10.7.(1)KN95口罩的进价为0.8元,普通医用口罩的进价为0.4元;(2)1.2≤x≤1.6;(3)62.4元【分析】(1)设KN95口罩的进价为a元,普通医用口罩的进价为(a﹣0.4)元,根据“用1200元购进KN95口罩及普通医用口罩各1000个,每个KN95口罩比普通医用口罩的进价多0.4元”列方程解答即可;(2)根据KN95口罩的利润率不得超过100%,同时KN95口罩的利润率在不低于50%列出不等式组求解即可;(3)根据单个普通医用口罩与单个KN95口罩利润相同的标准确定销售单价,求出z=x﹣0.4,再根据口罩每天销售总利润和为w元,根据题意得出w与x的函数关系式,再根据二次函数的最值解答即可.【详解】解:(1)设KN95口罩的进价为a元,普通医用口罩的进价为(a﹣0.4)元,由题意得:1000a+1000(a﹣0.4)=1200,解得:a=0.8,则a﹣0.4=0.4(元),答:KN95口罩的进价为0.8元,普通医用口罩的进价为0.4元;(2)由题意得:0.5≤0.80.8x≤1,解得:1.2≤x≤1.6,答:药店KN95口罩的销售单价范围为1.2≤x≤1.6;(3)∵单个普通医用口罩与单个KN95口罩利润相同,∴z﹣0.4=x﹣0.8解得:z =x ﹣0.4,设两种口罩每天销售总利润和为w 元,根据题意,得:w =(−10x +40)(x −0.8)+(−10z +66)(z −0.4)=(−10x +40)(x −0.8)+[﹣10(x ﹣0.4)+66](x ﹣0.4﹣0.4)=(−10x +40)(x −0.8)+(﹣10x +70)(x ﹣0.8)=−20x 2+126x −88,对称轴x =126220⨯=3.15,w 的图像关于x =3.15对称, 又∵﹣20<0,w 的开口方向向下,∴当1.2≤x ≤1.6,w 随x 的增大而增大,∴当x =1.6时,w 最大=﹣20×28()5+126×85﹣88=62.4(元). 答:两种口罩每天销售总利润和的最大值为62.4元.【点睛】本题考查了二次函数的应用,解题的关键是找准等量关系,正确列出函数解析式. 8.(1)200个;(2)12.【分析】(1)设该药店3月初购进了x 个护目镜,等量关系为:每个护目镜的销售价-每个N 95口罩的销售价=40,根据此等量关系列出分式方程,解方程即可;(2)等量关系为:4月份护目镜的销售总额-4月份N 95口罩的销售总额=15800,根据此等量关系列出关于a 的方程,解方程即可求得a 的值.【详解】(1)设该药店3月初购进了x 个护目镜 由题意,得:100006000403x x -= 解得:x =200经检验x =200是原方程的解,且符合题意故该药店3月初购进了200个护目镜.(2)由(1)知,该药店3月初购进了200个护目镜,600个N 95口罩,护目镜每个的售价为10000÷200=50(元),N 95口罩每个的售价为50-40=10(元),由题意,得:()()5220012%501%6001%101%1580023a a a ⎛⎫⎛⎫⨯-⨯-++⨯-= ⎪ ⎪⎝⎭⎝⎭化简,得:2120a a -=解得:a =12或a =0(舍去)∴a =12.【点睛】本题是一个与销售有关的实际问题,考查了分式方程和一元二次方程的解法,关键是读懂题意,找到等量关系,解分式方程时一定要检验.9.(1)A 、B 两种地砖每块的进价分别是60,20元;(2)50a =【分析】(1)利用每套公寓需要地砖的数量=公寓的面积÷每块地砖的面积,可分别求出每套公寓需要A 种地砖的数量及每套公寓需要B 种地砖的数量,设B 种地砖每块的进价为x 元,则A 种地砖每块的进价为(x +40)元,根据等量关系:购进A 种地砖的钱数+购进B 种地砖的钱数=350000,即可列出方程,解方程即可;(2)根据等量关系: 购进A 种地砖的钱数+购进B 种地砖的钱数=总钱数,列出方程,即可得到关于a 的方程,解方程即可求出a 的值,当然取正值即可.【详解】(1)一套公寓用A 种地砖需要:320.6450÷=块一套公寓用B 种地砖需要:320.16200÷=块设B 种地砖每块的进价为x 元由题可得:()50504050200350000x x ⨯⨯++⨯⨯=解得:20x204060+=元故A 、B 两种地砖每块的进价分别是60,20元.(2)由题可得:()()()5501%50605013%200201%3500001%7a a a a ⎛⎫+⨯⨯++⨯⨯-=+ ⎪⎝⎭整理得:2500a a -=解得然:120,50a a ==..0a >,.50a =【点睛】本题考查了一元一次方程的应用和一元二次方程的应用,关键是找出等量关系,正确列出方程,同时(2)问是的方程比较复杂,要善于化简.10.(1)200袋;(2)40【分析】(1)设A品牌火锅底料购进x袋,则B品牌火锅底料购进(450-x)袋,根据总销售额=销售单价×销售数量,结合总销售额不低于11500元,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;(2)根据总销售额=销售单价×销售数量,结合12月的总销售额比11月最低销售额增加了1%23a,即可得出关于a的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)设A品牌火锅底料购进x袋,则B品牌火锅底料购进(450-x)袋,依题意得:20x+30(450-x)≥11500,解得:x≤200.答:A品牌火锅底料最多购进200袋.(2)依题意得:20(1-a%)×200(1+12a%)+30(1-25a%)×(450-200)(1+a%)=11500(1+123a%),整理得:0.5a2-20a=0,解得:a1=40,a2=0(不合题意,舍去).答:a的值为40.【点睛】本题考查了一元一次不等式的应用以及一元二次方程的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元二次方程.11.(1)A社区疫苗接种点每天各接种1200人,B社区疫苗接种点每天各接种1000人;(2)m的值是10【分析】(1)设B社区疫苗接种点每天各接种x人,则A社区疫苗接种点每天各接种1.2x人,根据“A社区疫苗接种点种完6000支疫苗的时间比B社区疫苗接种点种完6000支疫苗的时间少1天”列出方程解答即可;(2)根据“A社区接种点3m天与B社区接种点(m+20)天一共种完了69000支疫苗”列出方程解答即可.【详解】解:(1)设B 社区疫苗接种点每天各接种x 人,则A 社区疫苗接种点每天各接种1.2x 人, 根据题意,得:6000600011.2+=x x解得x =1000.经检验x =1000是原方程的解,且符合题意.所以1.2x =1200.答:A 社区疫苗接种点每天各接种1200人,B 社区疫苗接种点每天各接种1000人; (2)根据题意,得(1200-10m )•3m +1200(m +20)=69000,整理,得m 2-160m +1500=0.解得m 1=150(舍去),m 2=10,答:m 的值是10.【点睛】本题主要考查了分式方程的应用和一元二次方程的应用,解题的关键是读懂题意,找到等量关系,列出方程并解答.12.(1)-13,-5;(2)823x ≤<或1029x <<;(3)小明结论正确,理由见解析 【分析】(1)根据计算公式即可求解;(2)根据公式化简,不等式组即可求解;(3)先利用配方法证明x 2﹣2x +3﹣(﹣x 2+2x ﹣5)>0,再公式化简,利用配方法即可求解.【详解】(1)(43)*-=-3-3×3=﹣13;∵*6()8x x +=-∴x -3(x+6)=-8解得x=-5故答案为:-13;﹣5; (2)由题意知3732373(32)6x x x x -≥-⎧⎨-+->-⎩或3732373(32)6x x x x -<-⎧⎨--->-⎩解得283x x ≥⎧⎪⎨<⎪⎩或2109x x <⎧⎪⎨>⎪⎩∴823x≤<或1029x<<;(3).x2﹣2x+3﹣(﹣x2+2x﹣5)=2x2﹣4x+8=2(x﹣1)2+6>0.x2﹣2x+3>﹣x2+2x﹣5,原式=x2﹣2x+3+3(﹣x2+2x﹣5)=x2﹣2x+3﹣3x2+6x﹣15=﹣2x2+4x﹣12;=﹣2(x﹣1)2﹣10<0.小明结论正确.【点睛】此题主要考查配方法的应用,解题的关键是根据题意的公式分情况进行运算.13.(1)a=5,b=-2;(2)①x=4-4y;②2.【分析】(1)根据题意,由完全平方公式进行配方,结合非负数的性质进行计算,即可得到答案;(2)①通过移项即可得到答案;②把x换成4-4y,配方,利用非负数的性质求解即可.【详解】解:(1)∵a2+b2-10a+4b+29=0,∴(a2-10a+25)+(b2+4b+4)=0,∴(a-5)2+(b+2)2=0,∴(a-5)2=0,(b+2)2=0,∴a=5,b=-2;(2)①∵x+4y=4,∴x=4-4y;故答案为:x=4-4y;②∵xy-z2-6z=10,∴y(4-4y)-z2-6z=10,∴4y-4y2-z2-6z=10,∴4y 2-4y+z 2+6z+10=0,∴(2y -1)2+(z+3)2=0,∴y =12,z=-3,∴x=2,∴y x+z 的值=(12)2−3=2.【点睛】本题主要考查了配方法的应用及偶次方的非负性,熟练掌握配方法是解题的关键. 14.(1)2019;(2)5.【分析】(1)利用完全平方公式把原式变形,根据偶次方的非负性解答即可;(2)利用完全平方公式把原式变形,利用非负数的性质解答即可;【详解】(1)2222020212019m m m m ++=+++()212019m =++ ∵()210m +≥,∴()2120192019m ++≥,∴222020m m ++的最小值为2019;(2)()2242215x x x x -+=--++()215x =--+, ∵()210x -≥,∴()210x --≤,∴()2155x --+≤,∴242x x -+的最大值是5.【点睛】本题考查的是配方法的应用,掌握完全平方公式和偶次方的非负性是解题的关键. 15.(1)k =-15,x 1=7,x 2=8.(2)x 1=n -1,x 2=n .【分析】(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k值即可解题,.2.找到规律,十字相乘的方法即可求解.【详解】解:(1)由题意可得k..15,则原方程为x2.15x.56.0,则(x.7)·(x.8).0,解得x1.7.x2.8.(2)第n个方程为x2.(2n.1)x.n(n.1).0.(x.n)(x.n.1).0,解得x1.n.1.x2.n.【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.。

初中数学竞赛:一元二次方程求参数高难度题(三种方法)

初中数学竞赛:一元二次方程求参数高难度题(三种方法)

初中数学竞赛:一元二次方程求参数高难度题(三种方法)设p为质数,且关于x的方程x²+px-1170p=0的一个根为正整数,求p 的值;题目如上,很简洁,那么相对的,难度也会很不简单。

首先根据十字相乘法,将-1170p拆分因数,可得-、3、3、10、13、p,那么要求组合而成的两个因数之和还必须=p,那么我们可以看到除了10和p之外,其他三个数的个位都是3,首先可以排除1170×p这种形式,那么就可以确定不含p的一个因数的个位必定为3、9或7,同时p肯定要比1170小,所以我们可以分情况来讨论,先将负号放在一边,那么:①若其中一个因数为3×3=9,那么另一个则为130p,明显不行;②若其中一个因数为3×13=39,那么另一个则为30p,由于p至少得是2,所以无论p取哪个质数,39和30p的差值都不会是p,也不行;③若其中一个因数为3×10=30,那么另一个则为39p,同②也不行;④若其中一个因数为3×3×10=90,那么另一个则为13p,则需要p乘以13后个位数与p相同,那么p的个位数只能是5,而个位是5的质数只有5,当p=5时,也不行;⑤若其中一个因数为3×3×13=117时,那么另一个为10p,这个更没有合适的p;⑥若其中一个因数位10×13=130时,那么另一个为9p,当p=13时,9p=117,130与117的差值刚好为13=p,所以这个合适;所以最终就能得到p=13;这是一个一个情况罗列出来求解,那么能不能不这么麻烦呢?我们重新看一下1170拆分出来的3、3、10、13、p这五个因数,想要组成的两个因数差值等于p,那么也就是说不含p的那个因数里面含有p-1或者p+1这个因数,而其他部分的因数组成完全相同,那么这样一来,我们就可以将这四个已知的因数先分一下组,有两个因数3,那么假设这两个3分别在两个因数中,那么剩余的10、13、p这三个因数怎么也不可能凑出来差值等于p,为什么呢?因为有三个因数,怎么分呢?所以,剩余三个因数肯定是没法分的,那么也就是说两个3要在同一组当中,那么我们可以将两个3看做一个因数9,现在就变成了四个因数9、10、13、p,需要其中有两个因数相同,那么p肯定是9、10、13中的其中一个,那么别忘了,不相同的两个因数差值必须是1,才能凑出p这个差值,那么我们就可以先选出差值是1的两个因数9和10,也就是说,p就只能和剩下的那个13相等了,将p=13放进去,验证一个因数为130,另一个因数为117,130-117=13=p成立,所以p=13符合;老师用的方法和答案上提供的不同,题后答案如下:x²=p(1170-p),因为p是质数,所以x中肯定含有p这个因数,所以设x=np,那么(np)²=p(1170-p),所以n²p=1170-p,变形为n(n+1)p=9×10×13那么p=13;。

一元二次方程应用题传播、握手、增长率类讲练

一元二次方程应用题传播、握手、增长率类讲练

4(1-x)2=2.56
开启
智慧
增长率与方程
17.某电冰箱厂每个月的产量都比上个月增长的百分数相同。已知 该厂今年4月份的电冰箱产量为5万台,6月份比5月份多生产了 12000台,求该厂今年产量的月平均增长率为多少?
解 : 设 该 厂 今 年 产 量 的 月 平 均 增 长 率 为 x, 根 据 题 意 , 得
2、奇数个连续偶数(或奇数,自然数),一般可设中间
一个为x.如三个连续偶数,可设中间一个偶数为x,则其 余两个偶数分别为(x2)和(x+2)又如三个连续自然数,可 设中间一个自然数为 x ,则其余两个自然数分别为 (x1) 和(x 1).
增长问题的数量关系是: 一次增长:新数 = 基数×(1+增长率) 二次增长:新数 = 基数×(1+增长率)2
增长、降低率问题
设基数为a,平均增长率为x,
则一次增长后的值为 二次增长后的值为
a (1 x)
a (1 x)
2 n
依次类推n次增长后的值为
a (1 x)
设基数为a,平均降低率为x,
回顾练习: ① x2+2x+1=0 ② 3t(t+2)=2(t+2)
③ (1-2t)2-t2=2
④ (x+1)2-4(x+1)+4=0
一元二次方程应用(1)
传播类、比赛与握手问题
探究1
有一人患了流感 , 经过两轮传染后 共有121人患了流感,每轮传染中平均一 个人传染了几个人?
分 第二轮传染后 第一轮传染 1+x 1+x+x(1+x) 后 析 1 解:设每轮传染中平均一个人传染了x个人.
x x 1 10 2

一元二次方程的整数解问题是初中数学竞赛中的一个重要知识点

一元二次方程的整数解问题是初中数学竞赛中的一个重要知识点,也是近几个全国初中数学竞赛考试的一个热点。

对于一元二次方程ax2+bx+c=0(a≠0)的实根情况,可以用判别式Δ=b2-4ac来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解。

实际上,经常要用到根的判别式、完全平方数的特征和数整除性的性质,以及这几种方法的结合来解题。

下面举几个常见的例子:例1,当 m是什么整数时,方程(m2-1)x2-6(3m-1)x+72=0有两个不相等的正整数根。

解法1:首先,m2-1≠0,m≠±1。

Δ=36(m-3)2>0,所以m≠3。

用求根公式可得由于x1,x2是正整数,所以m-1=1,2,3,6;m+1=1,2,3,4,6,12,解得m=2。

这时x1=6,x2=4。

解法2 :首先,m2-1≠0,m≠±1。

设两个不相等的正整数根为x1,x2,则由根与系数的关系知所以m2-1=2,3,4,6,8,9,12,18,24,36,72,即m2=3,4,5,7,9,10,13,19,25,37,73,只有m2=4,9,25才有可能,即m=±2,±3,±5。

经检验,只有m=2时方程才有两个不同的正整数根。

归纳:解法1先把方程的根求出来,然后利用整数的性质以及整除性理论,就比较容易求解问题;解法2利用韦达定理,得到两个整数,再利用整数的整除性质求解。

例2,已知关于x的方程a2x2-(3a2-8a)x+2a2-13a+15=0 (其中a是非负整数)至少有一个整数根,求a的值。

分析:“至少有一个整数根”应分两种情况:一是两个都是整数根,另一种是一个是整数根,一个不是整数根。

我们也可以像上题一样,把它的两个根解出来。

解:因为a≠0,所以所以所以只要a是3或5的约数即可,即a=1,3,5。

例3,设m是不为零的整数,关于x的二次方程mx2-(m-1)x+1=0有有理根,求m的值。

《实际问题与一元二次方程》 省赛获奖-完整版课件


知识点二 增长(降低)率问题 【示范题2】(2013·广东中考)雅安地震牵动着全国人民的心, 某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天 收到捐款10000元,第三天收到捐款12100元. (1)如果第二天、第三天收到捐款的增长率相同,求捐款增长 率. (2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少 捐款?
【教你解题】
【想一想】 增长率和降低率在取值方面有什么特点? 提示:增长率大于0,降低率大于0且小于1.
【备选例题】(1)(2012·娄底中考)为解决群众看病贵的问题,
有关部门决定降低药价,对某种原价为289元的药品进行连续两
次降价后为256元,设平均每次降低的百分率为x,则下面所列方
程正确的是( )
【方法一点通】 增长率(或降低率)问题的规律
1.增长率问题:设基数为a,平均增长率为x,则一次增长后的值 为a(1+x),两次增长后的值为a(1+x)2,依次类推,n次增长后的 值为a(1+x)n. 2.降低率问题:设基数为a,平均降低率为x,则一次降低后的值 为a(1-x),两次降低后的值为a(1-x)2,依次类推,n次降低后的 值为a(1-x)n.
【微点拨】 1.在面积问题中,有时候可直接利用面积公式作为相等关系, 有时需要利用面积的和或者差作为相等关系. 2.复杂图形,可通过平移的办法,使图形转化为规则图形.
【方法一点通】 求解面积问题的方法
1.规则图形,套用面积公式列方程. 2.不规则图形,采用割补的办法,使其成为规则图形,根据面积 间的和、差关系求解.
【微点拨】 1.传播类问题包括细胞分裂、信息传播、疾病传染等问题. 2.解出方程后,考虑所解的根是否符合实际情况.
【方法一点通】 列一元二次方程解应用题的“六个步骤”

九年级数学尖子生培优竞赛专题辅导第二讲 一元二次方程根的判别式(含答案)

第二讲 一元二次方程根的判别式趣通引路】话说小精灵拜数学高手为师,苦练了十八般数学技艺.一日师傅韦达对小精灵道:“师傅给你一件随身法宝——“Δ”,出去闯荡一下吧!”“小精灵拜别师傅韦达,来到“方程堡”,守门将喝道:“来者何人?”小精灵拱手答道:“晚辈小精灵奉师傅之命前来方程经见识见识.”守门将道:“先要破我一方程方能进堡!“说时迟,那时快,只见守门将挥手将许多数字、字母和符号排成2x 2+2xy +7y 2-10x -18y +19=0,并且问道:“你能说出实数x 、y 的值吗?”小精灵取出法宝灵机一动,将上式中的y 看成已知数,把它整理成关于x 的一元二次方程2x 2+(2y -10)x +(7y 2-18y +19)=0.好哇!因为x 是实数,上面的方程必有实数根,所以Δ≥0,即(2y -10)2-4×2(7y 2-18y +19)≥0,可得(y -1)2≤0,一下子便得到了y =1,再将y =1代人原方程就可得x =2. 小精灵这里用的法宝“Δ”是什么呢?它就是一元二次方程根的判别式.一元二次方程ax 2+bx +c =0(a ≠0),当Δ>0时,有两个不相等的实数根;当Δ=0时,有两个相等的实数根;当Δ<0时,没有实数根,反过来也成立.知识延伸】例1 已知关于x 的二次方程x ²+p 1x +q 1=0与x 2+p 2x +q 2=0,求证:当p 1p 2=2(q 1+q 2)时,这两个方程中至少有一个方程有实根.证明 设这两个方程的判别式为Δ1,Δ2,则Δ1+Δ2=2212p p +-4(q 1+q 2).∵p 1p 2=2(q 1+q 2),∴Δ1+Δ2=2212p p +-2p 1p 2=(p 1-p 2)2≥0.∴Δ1≥0与Δ2≥0中至少有一个成立,即两个方程中必有一个方程有实根.点评:两个方程中至少有一个方程有实根,可转化为证明Δ1+Δ2≥0;本题还可用反证法来证明,即假设Δ1<0且Δ2<0,则Δ1+Δ2<0,但Δ1+Δ2=(p 1-p 2)2≥0,两者矛盾,从而导出原题结论成立.例2 求函数y =(4-x )+解析 设u =x ,则u >0且y =4+u . ∴(u +x )2=4(x 2+9),即3x 2-2ux +36-u 2=0. ∵x ∈R ,故以上方程有解.∴Δ=(2u )2-4×3×(36-u 2)≥0,即u ≥27. 又u >0,∴u4y x =-+ 的最小值为4+x .好题妙解】佳题新题品味例 已知实数1234,,,a a a a 满足22222124213423()2()0a a a a a a a a a +-+++= ,求证:2213=a a a ⋅ 解析 把已知等式看成关于a 4的方程。

一元二次方程提高题

一元二次方程提高题一.选择题(共10小题)1.一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=32.若关于x的方程x2+2x﹣3=0与=有一个解相同,则a的值为()A.1 B.1或﹣3 C.﹣1 D.﹣1或33.若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣14.关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或05.已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣26.对于方程x2﹣2|x|+2=m,如果方程实根的个数为3个,则m的值等于()A.1 B.C.2 D.2.57.方程x2﹣|2x﹣1|﹣4=0,求满足该方程的所有根之和为()A.0 B.2 C.D.2﹣8.已知关于x的方程(m﹣1)+2x﹣3=0是一元二次方程,则m的值为()A.1 B.﹣1 C.±1 D.不能确定9.m是方程x2+x﹣1=0的根,则式子2m2+2m+2015的值为()A.2013 B.2016 C.2017 D.201810.三角形两边长分别为5和8,第三边是方程x2﹣6x+8=0的解,则此三角形的周长是()A.15 B.17 C.15或17 D.不能确定二.填空题(共5小题)11.关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是.12.已知实数m满足m2﹣3m+1=0,则代数式m2+的值等于.13.已知m是方程x2﹣2017x+1=0的一个根,则代数式m2﹣2018m++3的值是.14.关于x的方程x2﹣2mx+3m=0的两个根是等腰△ABC的两条边长,已知一个根是2,则△ABC的周长为.15.若实数a、b满足(a+b)(a+b﹣6)+9=0,则a+b的值为.三.解答题(共11小题)16.解方程:(x﹣3)(x﹣1)=3.17.解一元二次方程:x2﹣3x=1.18.解方程:(2x+1)2=2x+1.19.4x2﹣3=12x(用公式法解)20.解方程:2x2﹣4x=1(用配方法)21.已知M=5x2+3,N=4x2+4x.(1)求当M=N时x的值;(2)当1<x<时,试比较M,N的大小.22.已知关于x的一元二次方程x2+(2m+1)x+m2﹣4=0(1)当m为何值时,方程有两个不相等的实数根?(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.23.关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得|x1|﹣|x2|=?若存在,求出这样的k值;若不存在,说明理由.24.学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如图所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格单价40元不超过30件超过30件每多买1件,购买的所有衬衫单价降低0.5元,但单价不得低于30元25.随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B 型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?26.关于x的方程x2+2x+2,其中p是实数.(1)若方程没有实数根,求P的范围;(2)若p>0,问p为何值时,方程有两个相等的实数根?并求出这两个根.参考答案与试题解析一.选择题(共10小题)1.(2017•泰安)一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=3【分析】方程移项配方后,利用平方根定义开方即可求出解.【解答】解:方程整理得:x2﹣6x=6,配方得:x2﹣6x+9=15,即(x﹣3)2=15,故选A【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.2.(2017•凉山州)若关于x的方程x2+2x﹣3=0与=有一个解相同,则a 的值为()A.1 B.1或﹣3 C.﹣1 D.﹣1或3【分析】两个方程有一个解相同,可以先求得第一个方程的解,然后将其代入第二个方程来求a的值即可.注意:分式的分母不等于零.【解答】解:解方程x2+2x﹣3=0,得x1=1,x2=﹣3,∵x=﹣3是方程的增根,∴当x=1时,代入方程,得,解得a=﹣1.故选:C.【点评】本题考查了解一元二次方程﹣因式分解法,分式方程的解.此题属于易错题,解题时要注意分式的分母不能等于零.3.(2017•齐齐哈尔)若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣1【分析】讨论:当k=0时,方程化为﹣3x﹣=0,方程有一个实数解;当k≠0时,△=(﹣3)2﹣4k•(﹣)≥0,然后求出两个中情况下的k的公共部分即可.【解答】解:当k=0时,方程化为﹣3x﹣=0,解得x=;当k≠0时,△=(﹣3)2﹣4k•(﹣)≥0,解得k≥﹣1,所以k的范围为k≥﹣1.故选C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.(2017•呼和浩特)关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或0【分析】设方程的两根为x1,x2,根据根与系数的关系得a2﹣2a=0,解得a=0或a=2,然后利用判别式的意义确定a的取值.【解答】解:设方程的两根为x1,x2,根据题意得x1+x2=0,所以a2﹣2a=0,解得a=0或a=2,当a=2时,方程化为x2+1=0,△=﹣4<0,故a=2舍去,所以a的值为0.故选B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.5.(2017•黔东南州)已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣2【分析】根据根与系数的关系得到x1+x2=2,x1x2=﹣1,利用通分得到+=,然后利用整体代入的方法计算【解答】解:根据题意得x1+x2=2,x1x2=﹣1,所以+===﹣2.故选D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.6.(2017•江阴市自主招生)对于方程x2﹣2|x|+2=m,如果方程实根的个数为3个,则m的值等于()A.1 B.C.2 D.2.5【分析】先把已知方程转化为关于|x|的一元二次方程的一般形式,再根据方程有三个实数根判断出方程根的情况,进而可得出结论.【解答】解:原方程可化为x2﹣2|x|+2﹣m=0,解得|x|=1±,∵若1﹣>0,则方程有四个实数根,∴方程必有一个根等于0,∵1+>0,∴1﹣=0,解得m=2.故选C.【点评】本题考查的是根的判别式及用公式法解一元二次方程,先根据题意得出|x|的值,判断出方程必有一根为0是解答此题的关键.7.(2017•雨城区校级自主招生)方程x2﹣|2x﹣1|﹣4=0,求满足该方程的所有根之和为()A.0 B.2 C.D.2﹣【分析】因为题目中带有绝对值符号,所以必须分两种情况进行讨论,去掉绝对值符号,得到两个一元二次方程,求出方程的根,不在讨论范围内的根要舍去.【解答】解:①当2x﹣1≥0时,即x≥,原方程化为:x2﹣2x﹣3=0,(x﹣3)(x+1)=0,x1=3,x2=﹣1,∵﹣1<,∴x2=﹣1(舍去)∴x=3;②当2x﹣1<0,即x<时,原方程化为:x2+2x﹣5=0,(x+1)2=6,x+1=±,x1=﹣1+,x2=﹣1﹣∵﹣1+>,∴x1=﹣1+(舍去)∴x=﹣1﹣.则3+(﹣1﹣)=2﹣.故选:D.【点评】本题考查的是解一元二次方程,由于带有绝对值符号,必须对题目进行讨论,对不在讨论范围内的根要舍去.8.(2017•凉山州一模)已知关于x的方程(m﹣1)+2x﹣3=0是一元二次方程,则m的值为()A.1 B.﹣1 C.±1 D.不能确定【分析】根据一元二次方程的定义得出m﹣1≠0,m2+1=2,求出即可.【解答】解:∵关于x的方程(m﹣1)+2x﹣3=0是一元二次方程,∴m﹣1≠0且m2+1=2,即m≠1且m=±1,解得:m=﹣1.故选B.【点评】本题考查了对一元二次方程的定义的理解和运用,注意:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2.9.(2017•潮阳区模拟)m是方程x2+x﹣1=0的根,则式子2m2+2m+2015的值为()A.2013 B.2016 C.2017 D.2018【分析】根据一元二次方程的解的定义得到m2+m﹣1=0,即m2+m=1,然后利用整体代入的方法计算2m2+2m+2015的值.【解答】解:∵m是方程x2+x﹣1=0的根,∴m2+m﹣1=0,即m2+m=1,∴2m2+2m+2015=2(m2+m)+2015=2+2015=2017.故选C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.(2017•市中区三模)三角形两边长分别为5和8,第三边是方程x2﹣6x+8=0的解,则此三角形的周长是()A.15 B.17 C.15或17 D.不能确定【分析】求出已知方程的解确定出第三边,即可求出三角形周长.【解答】解:方程x2﹣6x+8=0,分解因式得:(x﹣2)(x﹣4)=0,解得:x=2或x=4,当x=2时,三角形三边长为2,5,8,不能构成三角形,舍去;当x=4时,三角形三边长为4,5,8,周长为4+5+8=17,故选B【点评】此题考查了解一元二次方程﹣因式分解法,以及三角形三边关系,熟练掌握因式分解的方法是解本题的关键.二.填空题(共5小题)11.(2017•菏泽)关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是0.【分析】由于方程的一个根是0,把x=0代入方程,求出k的值.因为方程是关于x的二次方程,所以未知数的二次项系数不能是0.【解答】解:由于关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,把x=0代入方程,得k2﹣k=0,解得,k1=1,k2=0当k=1时,由于二次项系数k﹣1=0,方程(k﹣1)x2+6x+k2﹣k=0不是关于x的二次方程,故k≠1.所以k的值是0.故答案为:0【点评】本题考查了一元二次方程的解法、一元二次方程的定义.解决本题的关键是解一元二次方程确定k的值,过程中容易忽略一元二次方程的二次项系数不等于0这个条件.12.(2017•镇江)已知实数m满足m2﹣3m+1=0,则代数式m2+的值等于9.【分析】先表示出m2=3m﹣1代入代数式,通分,化简即可得出结论.【解答】解:∵m2﹣3m+1=0,∴m2=3m﹣1,∴m2+=3m﹣1+=3m﹣1+=====9,故答案为:9.【点评】此题主要考查了代数式的化简求值,分式的通分,约分,解本题的关键是得出m2=3m﹣1.13.(2017•北仑区模拟)已知m是方程x2﹣2017x+1=0的一个根,则代数式m2﹣2018m++3的值是2.【分析】根据一元二次方程根的定义得到m2=2017m﹣1,再利用整体代入的方法得到原式=2017m﹣1﹣2018m++3,然后合并即可.【解答】解:∵m是方程x2﹣2017x+1=0的一个根,∴m2﹣2017m+1=0,∴m2=2017m﹣1,∴原式=2017m﹣1﹣2018m++3=﹣1﹣m+m+3=2.故答案为2.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.(2017•威海一模)关于x的方程x2﹣2mx+3m=0的两个根是等腰△ABC的两条边长,已知一个根是2,则△ABC的周长为14.【分析】利用一元二次方程解的定义,把x=2代入x2﹣2mx+3m=0得m=4,则方程化为x2﹣8x+12=0,利用因式分解法解得x1=2,x2=6,然后利用三角形三边的关系确定三角形三边,再计算它的周长.【解答】解:把x=2代入x2﹣2mx+3m=0得4﹣4m+3m=0,解得m=4,所以方程化为x2﹣8x+12=0,解得x1=2,x2=6,所以三角形三边为6、6、2,所以△ABC的周长为14.故答案为14.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.(2017•曹县模拟)若实数a、b满足(a+b)(a+b﹣6)+9=0,则a+b的值为3.【分析】设t=a+b,则原方程转化为关于t的方程t(t﹣6)+9=0,由此求得t的值即可.【解答】解:设t=a+b,则由原方程得到:t(t﹣6)+9=0,整理,得(t﹣3)2=0,解得t=3.即a+b=3.故答案是:3.【点评】本题考查了换元法解一元二次方程.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.三.解答题(共11小题)16.(2017•丽水)解方程:(x﹣3)(x﹣1)=3.【分析】先把方程化为一般式,然后利用因式分解法解方程.【解答】解:方程化为x2﹣4x=0,x(x﹣4)=0,所以x1=0,x2=4.【点评】本题考查了解一元二次方程﹣因式分解法:就是因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.17.(2017•埇桥区模拟)解一元二次方程:x2﹣3x=1.【分析】配方,开方,即可得出两个方程,求出方程的解即可.【解答】解:x2﹣3x=1,x2﹣3x+()2=1+()2,(x﹣)2=,开方得:x﹣=±,x1=,x2=.【点评】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.18.(2017•广元模拟)解方程:(2x+1)2=2x+1.【分析】因式分解法求解可得.【解答】解:∵(2x+1)2﹣(2x+1)=0,∴(2x+1)(2x+1﹣1)=0,即2x(2x+1)=0,则x=0或2x+1=0,解得:x=0或x=﹣.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.19.(2017•江汉区校级模拟)4x2﹣3=12x(用公式法解)【分析】利用公式法求解可得.【解答】解:原方程整理为:4x2﹣12x﹣3=0,∵a=4,b=﹣12,c=﹣3,∴△=144﹣4×4×(﹣3)=192>0,则x==.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.(2017•江汉区校级模拟)解方程:2x2﹣4x=1(用配方法)【分析】方程两边都除以2,配方,开方,即可得出两个方程,求出方程的解即可.【解答】解:方程整理得:x2﹣2x=,配方得:x2﹣2x+1=,即(x﹣1)2=,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.【点评】本题考查了解一元二次方程,能正确配方是解此题的关键.21.(2017•萧山区模拟)已知M=5x2+3,N=4x2+4x.(1)求当M=N时x的值;(2)当1<x<时,试比较M,N的大小.【分析】(1)利用题意列方程5x2+3=4x2+4x,然后利用因式分解法解方程即可;(2)利用求差法得到M﹣N=(x﹣1)(x﹣3),然后根据x的取值范围确定积的符合,从而得到M与N的关系关系.【解答】解:(1)根据题意得5x2+3=4x2+4x,整理得x2﹣4x+3=0,(x﹣1)(x﹣3)=0,x﹣1=0或x﹣3=0,所以x1=1,x2=3;(2)M﹣N=5x2+3﹣(x2+4x)=x2﹣4x+3=(x﹣1)(x﹣3),∵1<x<,∴x﹣1>0,x﹣3<0,∴M﹣N=(x﹣1)(x﹣3)<0,∴M<N.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.注意因式分解的应用.22.(2017•绥化)已知关于x的一元二次方程x2+(2m+1)x+m2﹣4=0(1)当m为何值时,方程有两个不相等的实数根?(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=4m+17>0,解之即可得出结论;(2)设方程的两根分别为a、b,根据根与系数的关系结合菱形的性质,即可得出关于m的一元二次方程,解之即可得出m的值,再根据a+b=﹣2m﹣1>0,即可确定m的值.【解答】解:(1)∵方程x2+(2m+1)x+m2﹣4=0有两个不相等的实数根,∴△=(2m+1)2﹣4(m2﹣4)=4m+17>0,解得:m>﹣.∴当m>﹣时,方程有两个不相等的实数根.(2)设方程的两根分别为a、b,根据题意得:a+b=﹣2m﹣1,ab=m2﹣4.∵2a、2b为边长为5的菱形的两条对角线的长,∴a2+b2=(a+b)2﹣2ab=(﹣2m﹣1)2﹣2(m2﹣4)=2m2+4m+9=52=25,解得:m=﹣4或m=2.∵a>0,b>0,∴a+b=﹣2m﹣1>0,∴m=﹣4.若边长为5的菱形的两条对角线的长分别为方程两根的2倍,则m的值为﹣4.【点评】本题考查了根的判别式、根与系数的关系、菱形的性质以及解一元二次方程,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=4m+17>0;(2)根据根与系数的关系结合菱形的性质,找出关于m的一元二次方程.23.(2017•鄂州)关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得|x1|﹣|x2|=?若存在,求出这样的k值;若不存在,说明理由.【分析】(1)由方程有两个不相等的实数根知△>0,列出关于k的不等式求解可得;(2)由韦达定理知x1+x2=2k﹣1,x1x2=k2﹣2k+3=(k﹣1)2+2>0,将原式两边平方后把x1+x2、x1x2代入得到关于k的方程,求解可得.【解答】解:(1)∵方程有两个不相等的实数根,∴△=[﹣(2k﹣1)]2﹣4(k2﹣2k+3)=4k﹣11>0,解得:k>;(2)存在,∵x1+x2=2k﹣1,x1x2=k2﹣2k+3=(k﹣1)2+2>0,∴将|x1|﹣|x2|=两边平方可得x12﹣2x1x2+x22=5,即(x1+x2)2﹣4x1x2=5,代入得:(2k﹣1)2﹣4(k2﹣2k+3)=5,解得:4k﹣11=5,解得:k=4.【点评】本题主要考查根与系数的关系及根的判别式,熟练掌握判别式的值与方程的根之间的关系及韦达定理是解题的关键.24.(2017•皇姑区一模)学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如图所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格不超过30单价40元件超过30件每多买1件,购买的所有衬衫单价降低0.5元,但单价不得低于30元【分析】根据题意首先表示出每件商品的价格,进而得出购买商品的总钱数,进而得出等式求出答案.【解答】解:∵30×40=1200<1400,∴奖品数超过了30件,设总数为x件,则每件商品的价格为:[40﹣(x﹣30)×0.5]元,根据题意可得:x[40﹣(x﹣30)×0.5]=1400,解得:x1=40,x2=70,∵x=70时,40﹣(70﹣30)×0.5=20<30,∴x=70不合题意舍去,答:王老师购买该奖品的件数为40件.【点评】此题主要考查了一元二次方程的应用,根据题意正确表示出每件商品的价格是解题关键.25.(2017•三门峡一模)随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B 型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?【分析】(1)设每台B种空气净化器为x元,A种净化器为(x+300)元,根据用6000元购进B种空气净化器的数量与用7500元购进A种空气净化器的数量相同,列方程求解;(2)根据总利润=单件利润×销量列出一元二次方程求解即可.【解答】解:(1)设每台B型空气净化器为x元,A型净化器为(x+300)元,由题意得,=,解得:x=1200,经检验x=1200是原方程的根,则x+300=1500,答:每B型空气净化器、每台A型空气净化器的进价分别为1200元,1500元;(2)设B型空气净化器的售价为x元,根据题意得;(x﹣1200)(4+)=3200,解得:x=1600,答:如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为1600元.【点评】本题考查了一元二次方程及分式方程的应用,解题的关键是根据题意找到等量关系,注意分式方程应该检验,难度不大.26.(1999•重庆)关于x的方程x2+2x+2,其中p是实数.(1)若方程没有实数根,求P的范围;(2)若p>0,问p为何值时,方程有两个相等的实数根?并求出这两个根.【分析】(1)换元,令=y,把中根号下的数看成整体,再求p的范围;(2)方程有两个相等的实数根,判别式=0,求出p,再求得两实根.【解答】解:(1)令=y,①则原方程变为y2+2y﹣(p2+2p)=0.(3分)∵△=4+4(p2+2p)=4(p2+2p+1)=4(p+1)2≥0,即y1=p,y2=﹣2﹣p.(6分)若原方程没有实数根,只须解这个不等式组,得﹣2<p<0.(9分)(2)∵p>0,把y1=p代入①,得=p②而y2=﹣2﹣p<0,舍去.(11分)将②式平方,整理得x2+2x﹣(p2﹣2p)=0.③(12分)令△=4+4(p2﹣2p)=4(p2﹣2p+1)=4(p﹣1)2=0,解得p=1.(15分)当p=1时,原方程有两个相等的实数根.把p=1代入③,得x2+2x+1=0,∴x1=x2=﹣1.(17分)经检验,当p=1时,x1=x2=﹣1是原方程的根.(18分)【点评】本题是换元法解无理方程,注意这个方程无解条件的讨论是解决本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与一元二次方程有关的竞赛题
一、降次
(一)直接用方程降次

1.当219941x时,多项式20013)199419974(xx的值为 。
分析与解:
2.若,132xx则200572129234xxxx的值等于 。
分析与解:
3.设0772xx,则42749xx= 。
分析与解:
(二)用根的关系式降次

4.已知,是方程012xx的两个根,则34的值为 。
分析与解:
5.设21,xx是二次方程032xx的两个根,求1942231xx的值。
分析与解:
二、用根的判别式解题

6.已知cba,,是整数,且,01,422cabba求cba的值。
分析与解:
7.已知cba,,均为实数,且4ba,,103422cabc求ab的值。
分析与解:
8.已知ba,为整数,且032baxx有两个不相等的实数根;

07)6(2bxax有两个相等的实数根;0)5()4(2bxax
没有实数根,则

ba
= 。
分析与解:

9.m为整数时,关于x的方程0)223()1(422kmmxmx的根是有理数,
求k的值。
分析与解:

10.证明:已知关于x的一元二次方程022cBxAx① 022ACxBx②

022BAxcx
③中,至少有一个方程有实数根。

分析与解:
11.设p1、p2、q1、q2为实数,且),(22121qqpp证明方程0112qxpx和
0222qxpx
中至少有一个实数根。
分析与解:
12.求方程012222yxyxyx的整数解。
分析与解:
三、用韦达定理解题

13.若1ab,且有09200352aa及,05200392bb则ba的值是 。
分析与解:
14.已知21,xx是0132xx的两根,不解方程。

求(1))1(3221xx的值;
(2)22131669xxx的值。
分析与解:
四、构造一元二次方程解题

15.已知实数ba,满足,122baba且22baabt,那么t的取值范围是 。

16.若cba,,均为实数,且,0cba,2abc那么||||||cba的最小值可达到

17.已知p、q是有理数,215x满足,03qpxx则qp的值是 。
18.若1ab,且有09200152aa及05200192bb,则ba的值是 。
19.已知实数cba,,满足.4,2abccba
(1)求cba,,中的最大者的最小值;(2)求||||||cba的最小值。
分析与解:
20.已知))(()(412acbacb且0a,则acb 。
分析与解:
21.已知实数a、b、c满足ba,且,0)()(1999)(1999accbba求
2
)())((baacbc



的值。
分析与解:

22.已知实数x、y、z满足5yx及92yxyz,则zyx32= 。
23.当x变化时,分式12156322xxxx的最小值是 。
24.已知,31xx则173163234xxxx的值等于 。
25.E、F分别在矩形ABCD的边BC和CD上,若CEF、ABE、ADF的面积分别是3,
4,5,求AEF的面积S。
分析与解:

26.已知实数ba,且满足22)1(3)1(3),1(33)1(bbaa,求baaabb的
值。
分析与解:
五、一元二次方程的整数根的探究

27.已知方程015132)83(2222aaxaaxa(其中a是非负整数)至少有一个整
数根,那么,a= 。
28.设关于x的二次方程4)462()86(2222kxkkxkk的两根都是整数。求满
足条件的所有实数k的值。
分析与解:

29.设m为整数且404m,方程08144)32(222mmxmx有两个整数根,
求m的值及方程的根。
分析与解:

30.已知方程0)3(22kxkx的根都是整数,求整数k的值及方程的根。
分析与解:
31.一直角三角形的两直角边长为整数,且满足方程,04)2(2mxmx试求m的值
及此直角三角形三边的长。
分析与解:

32.求使关于x的方程062)1()1(322axaxa有整数根时所有整数a。
分析与解:

相关文档
最新文档