《一元一次方程》竞赛试题(可编辑修改word版)

合集下载

一元一次方程综合试卷及答案.doc

一元一次方程综合试卷及答案.doc

一元一次方程综合测试卷班级: 姓名:注意事项:1、本试卷共4页,总分100分,测试时间40分钟。

2、请考生直接在试卷上做答。

一、填空题(每题4分,共20分)1、解方程328=+-x x .合并同类项,得 ;系数化为1,得,x = .2、方程331=-x 的解是_________________. 如果1=x 是关于x 的方程11=-ax 的解,则_________=a .3、已知102-x 与x 3互为相反数,则_________=x .4、轮船在A 、B 两城间航行,静水速度是40千米/时,水流的速度是a 千米/时,那么轮船逆水航行2小时所走的路程是 ________千米.5、某商店某一时间以80元卖出一件衣服,盈利25﹪,设这件衣服的进货价是x 元,则可列方程得___________________________.二、选择题(每题4分,共20分)6、在下列方程中,一元一次方程的是( ).(A)1+x (B)012=-x (C) 1=+y x (D) 12=x7、下列变形不正确的是( ) .(A)从513=-x ,得到153+=x (B) 从27=-x ,得到27-=x (C)从2121-=-x ,得到1=x (D)从03=x ,得到0=x 8、某村种植油菜,今年产油量18吨,比去年增加了20﹪,则此村去年产油量为( ).(A)16吨 (B)14.4吨 (C)15吨 (D)20吨9、一项工作,一个人完成需要12天时间(每个人的工作效率相同),那么3个人工作a 天完成的工作量是( ). (A)12a (B)4a (C)36a (D)3a 10、一个两位数个位上的数是2,十位上的数字是x .把2和x 对调,新两位数比原两位数小18.依题意列方程得( ).(A)21018)20(+=++x x (B)18)210(20++=+x x(C)21018)20(+=-+x x (D)2101820+=+x x三、解答题(共60分)11、解下列方程(第(1)、(2)各6分,第(3)占8分,共20分)(1)95237+=-x x (2))3(23)1(52+-=--x x x(3)512411223---=-+x x x12、(10分)当x 取什么数时,31--x x 的值与435+-x 的值相等?13、(10分)足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分.一支足球队在某个赛季中已比赛12场,只输了2场,共得分22分.请问:这支球队共胜了几场?14、(10分)包装厂有工人48人,平均每人每天可以生产圆形铁片100片,或长方形铁片70片.两张圆形铁片与一张长方形铁片可配套成一个密封圆桶,如何安排工人生产圆形和长方形铁片才能使每天生产的铁片刚好配套?15、(10分)一家海洋馆每年6~8月出售夏日优惠卡,每张优惠卡200元,每卡只能使用一次,凭卡购入场卷每张5元,不凭卡购入场卷每张10元.试讨论并回答:(1)多少人进场时,购优惠卡与不购优惠卡付一样的钱?(2)多少人进场时,购优惠卡比不购优惠卡合算?(3)多少人进场时,不购优惠卡比购优惠卡合算?一元一次方程测试卷 参考答案一、填空题1、36=-x ,21-=x ;2、9-=x ,1;3、2;4、)280(a -;5、.8025.0=+x x 二、选择题:6、D ;7、B ;8、C ;9、B ;10、A.三、解答题:11、(1)4=x ;(2)8=x ;(3)331-=x . 12、x 取1147时. 13、这支球队共胜了6场.14、设安排x 名工人生产圆形铁片,依题意得:)48(702100x x -⨯=,解得28=x .答:安排28名工人生产圆形铁片,安排30名工人生产长方形铁片,能使每天生产的铁片刚好配套.15、(1)设x 人进场时,购优惠卡与不购优惠卡付一样的钱,依题意得:x x 102005=+ 解得:40=x答:40人进场时,购优惠卡与不购优惠卡付一样的钱。

一元一次方程竞赛题精选

一元一次方程竞赛题精选

一元一次方程竞赛题精选
1. 题目,某商店举行促销活动,原价为x元的商品打7折后售
价为84元,求原价x是多少?
解答,根据题意,可以列出方程0.7x=84,解方程得到
x=120,所以原价为120元。

2. 题目,甲、乙两人合作种菜,甲一个人干5天能种完,乙一
个人干8天能种完,他们两人一起干需要几天?
解答,设甲、乙两人一起干x天能种完,根据工作量和时间
的关系,可以列出方程5/x+8/x=1,解方程得到x=3.33,所以他们
两人一起干需要4天。

3. 题目,一条绳子长12米,剪成两段,一段比另一段长3米,求这两段各是多长?
解答,设较长的一段为x米,则较短的一段为(x-3)米,根
据题意可以列出方程x+(x-3)=12,解方程得到x=7.5,所以两段分
别为7.5米和4.5米。

以上是一些常见的一元一次方程竞赛题精选,希望能帮助到你。

如果有其他问题,欢迎继续提问。

(完整word)4一元一次方程培优训练(有答案)

(完整word)4一元一次方程培优训练(有答案)

一元一次方程培优训练基础篇一、选择题1。

把方程103.02.017.07.0=--x x 中的分母化为整数,正确的是( ) A 。

132177=--x x B.13217710=--x x C 。

1032017710=--x x D.132017710=--x x2。

与方程x+2=3—2x 同解的方程是( )A.2x+3=11B.-3x+2=1C.132=-x D 。

231132-=+x x 3。

甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6。

5m,甲让乙先跑5m,设x秒后甲可追上乙,则下列四个方程中不正确的是( )A 。

7x=6。

5x+5 B.7x+5=6.5x C 。

(7-6.5)x=5 D 。

6。

5x=7x-5 4。

适合81272=-++a a 的整数a 的值的个数是( )A 。

5B 。

4C 。

3D 。

25。

电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( ) A 。

0。

81a 元 B 。

1.21a 元 C 。

21.1a 元 D 。

81.0a 元6。

一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某学生做了全部试题共得70分,他做对了( )道题。

A.17 B 。

18 C.19 D.207.在高速公路上,一辆长4米,速度为110千米/时的轿车准备超越一辆长12米,速度为100千米/时的卡车,则轿车从开始追击到超越卡车,需要花费的时间约是( ) A。

1.6秒B.4.32秒C.5.76秒D。

345.6秒8.一项工程,甲单独做需x 天完成,乙单独做需y 天完成,两人合作这项工程需天数为( ) A.y x +1 B 。

y x 11+ C 。

xy1 D. yx 111+9、若2x =-是关于x 的方程233x x a +=-的解,则代数式21a a-的值是( ) A 、0 B 、283- C 、29- D 、2910、一个六位数左端的数字是1,如果把左端的数字移到右端,那么所得的六位数等于原数的3倍,则原数为( )A 、142857B 、157428C 、124875D 、175248 二、填空题11.当=a 时,关于x 的方程01214=+-a x 是一元一次方程。

初中竞赛数学8.一元一次方程(含答案)

初中竞赛数学8.一元一次方程(含答案)

8.一元一次方程知识纵横早在300多年前法国数学家笛卡尔有一个伟大的设想:首先把宇宙万物的所有问题都转化为数学问题;其次,把所有的数学问题转化为代数问题;最后,把所有的代数问题转化为解方程.••虽然笛卡尔“伟大设想”没有实现,但是充分说明了方程(equation)的重要性. 一元一次方程(linear equation with one unknown)是代数方程中最基础的部分,是后续学习的基础,其基本内容包括:解方程、方程的解及其讨论.解一元一次方程有一般程序化的步骤,我们在解一元一次方程时,既要学会按部就班(严格按步骤)地解方程,又要能随机应变(灵活打乱步骤)解方程.当方程中的系数是用字母表示时,这样的方程叫含字母系数的方程,含字母系数的一元一次方程总可以化为ax=b 的形式,继续求解时,一般要对字母系数a 、b 进行讨论:1.当a ≠0时,方程有惟一解x=b a2.当a=0且b ≠0时,方程无解;3.当a=0且b=0时,方程有无数个解.例题求解【例1】(1)已知关于x 的方程3[x-2(x-3a )]=4x 和312x a +-158x -=1•有相同的解,•那么这个解是___________. (北京市“迎春杯”竞赛题)(2)如果12+16+112+…+1(1)n n +=20032004,那么n=________.(第18届江苏省竞赛题) 思路点拨 (1)设法建立关于a 的等式,再解关于a 的方程求出a 的值;(2)•恰当地解关于n 的一元一次方程.解:(1) 2728 提示:两方程的解分别为27a 、27221a - ;(2)n=2003 【例2】 当b=1时,关于x 的方程a(3x-2)+b(2x-3)=8x-7有无数多个解,则a 等于(• ). A.2 B.-2 C.-23 D.不存在 (“希望杯”邀请赛试题) 思路点拨 将b=1代入原方程,整理所得方程,就方程解的个数情况建立a 的等式. 解:选A. 提示:原方程化为(3a-6)x=2a-4,则3a-6=0且2a-4=0.【例3】 是否存在整数k,使关于x 的方程(k-5)x+6=1-5x 在整数范围内有解?并求出各个解.思路点拨 把方程的解x 用k 的代数式表示,利用整除的知识求出k.解: 存在整数k,k=±1或k=±5,原方程解分别为x=5 或x=1.【例4】解下列关于x 的方程.(1)4x+b=ax-8;(a≠4)(2)mx-1=nx;(3)13m(x-n)=14(x+2m).思路点拨首先将方程化为ax=b的形式,•然后注意每个方程中字母系数可能取值的情况进行讨论.解:(1)x=84 ba+-;(2)当m≠n时,方程有惟一解x=1m n -;当m=n时,原方程无解;(3)原方程化为(4m-3)x=4mn+6m,当m≠34时,原方程有惟一解x=4643mn mm+-;当m=34,n=-32(由4mn+6m=0,即n=-64mm=-32得到)时,原方程有无数个解;当m=34,n≠-32时,原方程无解.【例5】已知p、q都是质数,并且以x为未知数的一元一次方程px+5q=97•的解是1,求代数式40p+101q+4的值. (第14届“希望杯”邀请赛试题) 思路点拨用代解法可得到p、q的关系式,进而综合运用整数相关知识分析.解:提示:把x=1代入方程px+5q=97,得p+5q=97,故p与5q中必有一个数是偶数.(1)若p=2,则5q=95,q=19,40p+101q+4=40×2+101×19+4=2003.(2)5q为偶数,则q=2,p=87,而87不是质数,与题设矛盾,舍去,因此原式值为2003.学力训练一、基础夯实1.已知x=-1是关于x的方程7x3-3x2+kx+5=0的解,则k3+2k2-11k-85=______.2.计算器上有一个倒数键1/x,能求出输入的不为零的数的倒数(注:有时需先按shift 或2nd键,再按1/x键,才能实现此功能,下面不再说明).例如,输入2,按下键1/x,则得0.5,现在计算器上输入某数,再依下列顺序按键:1/x-1=1/x-1= ,在显示屏上的结果为-0.75,则原来输入的某数是_______. (第17届江苏省竞赛题)3.方程16(20x+50)+23(5+2x)-12(4x+10)=0的解为______;解方程12{12[12(12x-3)-3]-3}-3=0,得x=_______. 4.已知关于x 的方程2a(x-1)=(5-a)x+3b 有无数多个解,那么a=_____,b=_____.(“希望杯”邀请赛试题)5.和方程x-3=3x+4不同解的方程是( ). A.7x-4=5x-11 B.13x +2=0 C.(a 2+1)(x-3)=(3x+4)(a 2+1) D.(7x-4)(x-1)=(5x-11)(x-1)6.已知a 是任意有理数,在下面各题中(1)方程ax=0的解是x=1 (2)方程ax=a 的解是x=1(3)方程ax=1的解是x=1a(4)方程│a │x=a 的解是x=±1 结论正确的个数是( ).A.0B.1C.2D.3 (江苏省竞赛题)7.方程x-16[36-12(35x+1)]=13x-2的解是( ). A. 1514 B.-1514 C. 4514 D.- 4514 8.已知关于x 的一次方程(3a+8b)x+7=0无解,则ab 是( ).A.正数B.非正数C.负数D.非负数9.解下列关于x 的方程:(1)ax-1=bx; (2)4x+b=ax-8; (3)k(kx-1)=3(kx-1).10.a 为何值时,方程3x +a=2x -16(x-12)有无数多个解?无解?二、能力拓展11.已知方程2(x+1)=3(x-1)的解为a+2,那么方程2[2(x+3)-3(x-a)]=3a•的解为_______.12.•已知关于x•的方程9x-•3=•kx+•14•有整数解,•那么满足条件的所有整数k=_______. (“五羊杯”竞赛题)13.已知14+4(11999+1x )=134,那么代数式1872+48·(19991999x x +)的值为_________. 14.若(3a+2b)x 2+ax+b=0是关于x 的一元一次方程,且有惟一解,则x=_____.15.有4个关于x 的方程:(1)x-2=-1 (2)(x-2)+(x-1)=-1+(x-1) (3)x=0 (4)x-2+11x -=-1+11x - 其中同解的两个方程是( ).A.(1)与(2)B.(1)与(3)C.(1)与(4)D.(2)与(4)16.方程12x ⨯+23x ⨯+…+19951996x ⨯=1995的解是( ). A.1995 B.1996 C.1997 D.199817.已知a+2=b-2=2c =2001,且a+b+c=2001k,那么k 的值为( ). A.14 B.4 C.-14 D.-4 (第15届江苏省竞赛题) 18.若k 为整数,则使得方程(k-1999)x=2001-2000x 的解也是整数的k 值有( ).A.4个B.8个C.12个D.16个 (第12•届“希望杯”邀请赛试题)19.若干本书分给小朋友,每人m 本,则余14本;每人9本,则最后一人只得6本,•问小朋友共几个?有多少本书?20.下边横排有12个方格,每个方格都有一个数字,•已知任何相邻三个数字的和都是20,求x 的值. (上海市竞赛题)X 10E H G F E D C B A 5三、综合创新21.如果a、b为定值,关于x的方程23kx a+=2+6x bk-,无论k为何值,它的根总是1,求a、b的值. (山东省竞赛题)22.将连续的自然数1~1001按如图的方式排列成一个长方形阵列,•用一个正方形框出16个数,要使这个正方形框出的16个数之和分别等于:(1)1988;(2)1991;(•3)2000;(4)2080.这是否可能?若不可能,试说明理由;若可能,请写出该方框16个数中的最小数与最大数.(2002年河北省竞赛题)1 2 3 4 5 6 78 9 10 11 12 13 1415 16 17 18 19 20 2122 23 24 25 26 27 28…………995 996 997 998 999 1000 1001答案:1.-105.2.设原来输入的数为x,则111x--1=-0.75,解得x=0.23.-52;904. 53、-1095.•D •6.A7.A8.B9.(1)当a≠b时,方程有惟一解x=1a b-;当a=b时,方程无解;(2)当a≠4时,•方程有惟一解x=84 ba+-;当a=4且b=-8时,方程有无数个解; 当a=4且b≠-8时,方程无解;(3)当k≠0且k≠3时,x=1k;当k=0且k≠3时,方程无解;当k=3时,方程有无数个解.10.提示:原方程化为0x=6a-12.(1)当a=2时,方程有无数个解;当a≠2时,方程无解.11.10.5 12.10、26、8、-8 提示:x=179k-,9-k│17,则9-k=±1或9-k=±17.13.2000 提示:把(11999+1x)看作一个整体. 14.1.5 15.A 16.B 17.B18.D 提示:x=20011k+为整数,又2001=1×3×23×29,k+1可取±1、±3、±23、•±29、±(3×23)、±(3×29)、±(23×29)、±2001共16个值,其对应的k值也有16个.19.有小朋友17人,书150本. 20.x=521.提示:将x=1代入原方程并整理得(b+4)k=13-2a,此式对任意的k值均成立,即关于k的方程有无数个解.故b+4=0且13-2a=0,解得a=132,b=-4.22.提示:设框中左上角数字为x,则框中其它各数可表示为:x+1,x+2,x+3,x+•7,x+8,x+9,x+10,x+14,x+15,x+16,x+17,x+21,x+22,x+23,x+24, 由题意得:x+(x+1)+(x+2)+(x+3)+…x+24=1998或1999或2000或2001,即16x+192=•2000•或2080解得x=113或118时,16x+192=2000或2080又113÷7=16 (1)即113是第17排1个数,该框内的最大数为113+24=137;118÷7=16 (6)即118是第17排第6个数,故方框不可框得各数之和为2080.。

七年级数学竞赛题选一元一次方程

七年级数学竞赛题选一元一次方程

七年级数学竞赛题选 一元一次方程姓名一.选择题1.(江苏省第17届初中数学竞赛)若3a 的倒数与293a -互为相反数,则a 等于( ) A.32 B. 32- C.3 D.9 2. (希望杯竞赛题)已知关于x 的一次方程(3a+8b)x+7=0无解,则ab 是( ) A.正数 B.非正数 C.负数 D.非负数3. (希望杯竞赛题)若k 为整数,则使方程(k-1999)x=2001-2002x 的解也是整数的k 值有( ) A.4个 B.8个 C.12个 D.16个4.(1998年希望杯竞赛题)当b=1时,关于x 的方程a(3x-2)+b(2x-3)=8x-7有无数多个解,则a 的值为( )A.2B.-2C.32-D.不存在 5.(第14届希望杯竞赛题)方程131361212653x x x ⎡⎤⎛⎫--+=- ⎪⎢⎥⎝⎭⎣⎦的解是( ) A.1514 B. 1514- C. 4514D. 4514- 6. (江苏省竞赛题)已知a 为整数,关于x 的方程a 2x-20=0的解是质数,且满足条件27ax a -,则a等于( )A.2B.2或5C.±2D.-2 二.填空题1.(1996年希望杯竞赛题)已知关于x 的方程323+=-xxa 的解是4, 则()a a 22--=2.(第18届江苏省初中数学竞赛题)如果()20042003111216121=+++++n n , 那么n=3.(1996年希望杯竞赛题)关于x 的方程(2-3a)x=1的根为负数,则a 的取值范围是4.(1998年希望杯竞赛题)(3a+2b)x 2+ax+b=0关于x 的一元一次方程,且x 有唯一解, 则x=5.(广西省竞赛题)方程31333447167x x x x ⎡⎤⎛⎫⎛⎫---=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的解是 6. (五羊杯竞赛题)已知关于x 的方程9x-3=kx+14有整数解,那么满足条件的所有整数k= 三.解答题1.(第14届希望杯竞赛题)解方程:x x x 432132342=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--2.(第12届北京市“迎春杯”竞赛)解方程:34.08.013.03.002.05.08.03.0-=-+-+x x x 3.(第10届北京市“迎春杯”竞赛)已知关于x 的方程343a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦和方程3151128x a x +--=有相同的解,求这个相同的解。

一元一次方程测试题(含答案)

一元一次方程测试题(含答案)

一元一次方程测试题(含答案)一、选择题1.对等式x 2=y 3进行变形,则下列等式成立的是( ) A .2x =3y B .3x =2y C .x 3=y 2 D .x =32y 2.如果方程x 2n−5−2=0是关于x 的一元一次方程,则n 的值为( )A .2B .3C .4D .53.下列方程的变形正确的是( )A .x 5+1=x 2,去分母,得2x +1=5xB .5−2(x −1)=x +3,去括号,得5−2x −1=x +3C .5x +3=8,移项,得5x =8+3D .3x =−7,系数化为1,得x =−734.如图①,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即12+3=15.如图①,当y =505时,b 的值为( )A .205B .305C .255D .3155.学校组织植树活动,已知在甲处植树的有48人,在乙处植树的有42人,由于甲处植树任务较重,需调配部分乙处的人员去甲处支援,使在甲处植树的人数是乙处植树人数的2倍,设从乙处调配x 人去甲处,则( )A .48=2(42﹣x )B .48+x =2×42C .48﹣x =2(42+x )D .48+x =2(42﹣x )6.方程|x|+|x −2022|=|x −1011|+|x −3033|的整数解共有( )A .1010B .1011C .1012D .20227.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;①一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;①一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90 元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.288B.296C.312D.3208.如图,现有3×3的方格,每个小方格内均有数字,要求方格内每一行每一列以及每一条对角线上的三个数字之和均相等,记三个数字之和为P,则P的值为()A.21B.24C.27D.36二、填空题9.写出一个以x=−2为解的一元一次方程:(任写一个即可).10.定义运算:a⊗b=a2−2ab,例如3⊗1=32−2×3×1=3,则关于x的方程(−3)⊗x=2的解是.11.已知非负实数a、b、c满足条件:3a+2b+c=4,2a+b+3c=5,设S=5a+4b+7c的最大值为m,最小值为n,则n−m等于.12.学校为“中国共产党建党100周年合唱比赛”印制宣传册,某复印店的收费标准如下:①印制册数不超过100册时,每册2元;①印制册数超过100册但不超过300册时,每册按原价打八折;①印制册数超过300册时,前300册每册按原价打八折,超过300册的部分每册按原价打六折;学校在复印店印制了两次宣传册,分别花费192元和576元,如果学校把两次复印的宣传册合并为一次复印,则可节省..元.三、计算题13.解方程:x+13−x−32=1.14.在数学实践课上,小明在解方程2x−15+1=x+a2时,因为粗心,去分母时方程左边的1没有乘10,从而求得方程的解为x=4,试求a的值及原方程正确的解.四、解答题15.五一前夕,某商场从厂家购进了甲、乙两种商品,甲种商品的每件进价比乙种商品的每件进价少20元.若购进甲种商品7件,乙种商品2件,需要760元.求甲、乙两种商品的每件进价分别是多少元?16.某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?17.若|x+3|=6,|y−4|=2,且|x|−|y|≥0,求|x−y|的值.五、综合题18.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3−1|可以理解为数轴上表示3 和 1 的两点之间的距离;|3+1|可以理解为数轴上表示3 与﹣1 的两点之间的距离.从“数”的角度看:数轴上表示 4 和﹣3 的两点之间的距离可用代数式表示为:4-(-3).根据以上阅读材料探索下列问题:(1)数轴上表示3 和9 的两点之间的距离是;数轴上表示 2 和﹣5 的两点之间的距离是;(直接写出最终结果)(2)①若数轴上表示的数x 和﹣2 的两点之间的距离是4,则x 的值为;①若x 为数轴上某动点表示的数,则式子|x+1|+|x−3|的最小值为.答案解析部分1.【答案】B2.【答案】B3.【答案】D4.【答案】A5.【答案】D6.【答案】C7.【答案】C8.【答案】C9.【答案】2x=−4(答案不唯一)10.【答案】−7611.【答案】-212.【答案】76.8或4813.【答案】解:2(x+1)−3(x−3)=62x+2−3x+9=62x−3x=6−2−9−x=−5x=5 14.【答案】解:把x=4代入2(2x−1)+1=5(x+a),可得2×(2×4−1)+1=5(4+a)20+5a=15a=−1把a=−1代入原方程,可得2x−15+1=x−1 22(2x−1)+10=5(x−1) 4x−2+10=5x−54x−5x=−5+2−10−x=−13x=13∴a=−1,x=1315.【答案】解:设乙种商品每件进价为x元.由题意可得,7(x−20)+2x=760解得x=100100−20=80元答:甲商品的每件进价是80元,乙商品的每件进价100元.16.【答案】解:设初一(1)班有x人,则初一(2)班有(x-5)人,初一(3)班有[101-x-(x-5])人.①初一(1)班有20多人,不足30人,①(1)班最多29人,(2)班最多24人,则(3)班最少48人;(1)班最少21人,(2)班最少16人,则(3)班最多64人.根据题意,①当初一(3)班的人数不超过60人时,有15x+15(x −5)+12[101 −x −(x −5)]=1365;解得:x=28.①x −5=23,101 −x −x+5= 50;①当初一(3)班的人数超过60人时,有15x+15(x −5)+10[101 −x −(x −5)]=1365解得:x= −38.①人数不能为负,①这种情况不存在;答:初一(1)班有28人.初一(2)班有23人.初一(3)班有50人.17.【答案】解:由|x+3|=6可知若x+3>0,则有x+3=6,解得x=3,|x|=3若x+3<0,则有-3-x=6,解得x=-9,|x|=9由|y−4|=2可知若y-4>0,则有y-4=2,解得y=6,|y|=6若y-4<0,则有4-y=2,解得y=2,|y|=2①|x|−|y|≥0①当|x|=3时,|y|=2满足条件则|x−y|=|3−2|=1当|x|=9时,|y|=6满足条件则|x−y|=|−9−6|=|−15|=15当|x|=9时,|y|=2满足条件则|x−y|=|−9−2|=|−11|=11综上所述|x−y|的值为1,11,15 18.【答案】(1)6;7(2)-6或2;4。

(完整版)一元一次方程经典题型(可编辑修改word版)

(完整版)一元一次方程经典题型(可编辑修改word版)

4 一元一次方程经典题型1.以y 为未知数的方程2ay = 5c (a ≠ 0, b≠ 0)的解是()bA.y =10bca B.y =2bc5c C.y =5bc2aD.y =10bcc2.要使5m +1与⎛+1 ⎫互为相反数,那么m 的值是()5 m ⎪4 ⎝⎭A.0B.320C.120D.-3203.已知4x 2n-3+ 5 = 0 是关于x 的一元一次方程,则n =. 4.若9a x b7与- 7a3x-4b 2y-1是同类项,则x =, y =.5.若- 2 是关于x 的方程3x + 4 =x-a 的解,则a100-21=.a1006、若关于x 的方程mx m-2-m + 3 = 0 是一元一次方程,则这个方程的解是.6、已知:1-(3m-5)2有最大值,则方程5m - 4 = 3x + 2 的解是.7、方程4x - 5 y= 6, 用含x 的代数式表示y 得,用含y 的代数式表示x 得。

2x 0.25 -0.1x3、解方程+= 0.1时,把分母化为整数,得。

0.03 0.022、方程2 -3(x +1) = 0 的解与关于x 的方程7.0.5x - 0.1+ 2x = 2.0.2k +x2-3k - 2 = 2x 的解互为倒数,求k 的值。

6.3.1从实际问题到方程一、本课重点,请你理一理列方程解应用题的一般步骤是:(1)“找”:看清题意,分析题中及其关系,找出用来列方程的;(2)“设”:用字母(例如x)表示问题的;(3)“列”:用字母的代数式表示相关的量,根据列出方程;(4)“解”:解方程;(5)“验”:检查求得的值是否正确和符合实际情形,并写出答案;(6)“答”:答出题目中所问的问题。

二、基础题,请你做一做1.已知矩形的周长为20 厘米,设长为x 厘米,则宽为().A. 20-xB. 10-xC. 10-2xD. 20-2x2.学生a 人,以每10 人为一组,其中有两组各少1 人,则学生共有()组.A. 10a-2B. 10-2aC. 10-(2-a)D.(10+2)/a三、综合题,请你试一试1.在课外活动中,张老师发现同学们的年龄大多是13 岁.就问同学:“我今年45 岁,几年以后你们的年龄是我年龄的三分之一?”2.小明的爸爸三年前为小明存了一份3000 元的教育储蓄.今年到期时取出,得到的本息和为3243 元,请你帮小明算一算这种储蓄的年利率.3.小赵去商店买练习本,回来后问同学:“店主告诉我,如果多买一些就给我八折优惠.我就买了20 本,结果便宜了1.60 元.”你能列出方程吗?四、易错题,请你想一想1.建筑工人浇水泥柱时,要把钢筋折弯成正方形.若每个正方形的面积为400 平方厘米,应选择下列表中的哪种型号的钢筋?思路点拨:解出方程有两个值,必须进行检查求得的值是否Array正确和符合实际情形,因为钢筋的长为正数,所以取x=80,故应选折C 型钢筋.2.你在作业中有错误吗?请记录下来,并分析错误原因.6.3.2行程问题一、本课重点,请你理一理1.基本关系式:;2.基本类型:相遇问题; 相距问题; ;3.基本分析方法:画示意图分析题意,分清速度及时间,找等量关系(路程分成几部分).4.航行问题的数量关系:(1)顺流(风)航行的路程=逆流(风)航行的路程(2)顺水(风)速度=逆水(风)速度=二、基础题,请你做一做1、甲的速度是每小时行4 千米,则他x 小时行()千米.2、乙3 小时走了x 千米,则他的速度是().3、甲每小时行4 千米,乙每小时行5 千米,则甲、乙一小时共行()千米,y 小时共行()千米.4、某一段路程x 千米,如果火车以49 千米/时的速度行驶,那么火车行完全程需要()小时.三、综合题,请你试一试1.甲、乙两地路程为 180 千米,一人骑自行车从甲地出发每时走 15 千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的 3 倍,若两人同时出发,相向而行,问经过多少时间两人相遇?2.甲、乙两地路程为180 千米,一人骑自行车从甲地出发每时走15 千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3 倍,若两人同向而行,骑自行车在先且先出发2 小时,问摩托车经过多少时间追上自行车?3.一架直升机在A,B两个城市之间飞行,顺风飞行需要4 小时,逆风飞行需要5 小时.如果已知风速为30km/h,求A,B 两个城市之间的距离.四、易错题,请你想一想1.甲、乙两人都以不变速度在400 米的环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为100 米/分乙的速度是甲速度的3/2 倍,问(1)经过多少时间后两人首次遇(2)第二次相遇呢?思路点拨:此题是关于行程问题中的同向而行类型。

《一元一次方程》竞赛试题

《一元一次方程》竞赛试题

《一元一次方程》竞赛试题1.已知x=一1是关于x 的方程7x 3一3x 2+kx+5=0的解,则k 3+2k 2-11k-85= . (“信利杯”竞赛题)2.方程0)104(21)25(32)5020(61=+-+++x x x 的解为 ;解方程0333)321(212121=-⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡--x ,得x= . 3.已知关于x 的方程2a(x 一1)=(5一a)x+3b 有无数多个解,那么a = . (“希望杯”邀请赛试题)4.和方程x 一3=3x+4不同解的方程是( ).A .79—4=59—11B .0231=++xC .(a 2+1)(x 一3)=(3x+4)(a 2+1)D .(7x 一4)(x —1)=(5x 一11)(x 一1) 5.已知a 是任意有理数,在下面各题中 (1)方程ax=0的解是x=1 (2)方程ax =a 的解是x =1 (3)方程ax=1的解是x =a1(4)方程a x a =的解是x =±1 结论正确的个数是( ).A .0B .1C . 2D .3 (江苏省竞赛题)6.方程231)153(123661-=⎥⎦⎤⎢⎣⎡+--x x x 的解是( )A .1415 B .1415- C .1445 D .1445- 7.已知关于x 的一次方程(3a+8b )x+7=0无解,则ab=( ) .A .正数B .非正数C .负数D .非负数 8.解关于x 的方程: (1)ax-1=bx (2)4x+b=ax-8 (3)k(kx-1)=3(kx-1) 9.A 为何值时,方程)12(6123--=+x x a x 有无数个解?无解? 10.已知方程2(x+1)=3(x-1)的解 为a+2,那么方程2[2(x+3)-3(x-a)]=3a 的解为 . 11.已知关于x 的方程9x-3=kx+14有整数解,那么满足条件的所有整数k = . 12.已知431)119991(441=++x ,那么代数式)19991999(481872xx+⋅+的值为 . 13.若(3a+2b)x 2+ax+b=0是关于x 的一元一次方程,且有唯一解,则x = . 14.有4个关于x 方程(1)x-2=-1 (2)(x-2)+(x-1)=-1+(x-1) (3)x=0 (4)111112-+-=-+-x x x 其中同解的两个方程是( )A .(1)与(2)B .(1)与(3)C .(1)与(4)D .(2)与(4) 15.方程1995199619953221=⨯++⨯+⨯xx x 的解是( ) A .1995 B .(1996 C .1997 D . 1998 16.已知2001222==-=+cb a ,且kc b a 2001=++,那么k 的值为( ). A .41B .4C .41- D .-417.若k 为整数,则使得方程(k-1999)x=2001-2000x 的解也是整数的k 值有A .4个B .8个C .12个D .16个 (“希望杯”邀请赛试题)18.若干本书分给小朋友,每人m 本,则余14本,每人9本,则最后一人只得6本,问小朋友共几个?有多少本书?19.下边横排有12个方格,每个方格都有一个数字,已知任何相邻三个数字的和都是20,求x 的值.(上海市竞赛题) 5ABCDEFXGHE 1020.如果a 、b 为定值,关于x 的方程6232bkx a kx -+=+,无论k 为何值,它的根总是1,求a 、b 的值.(山东省竞赛题)21.将连续的自然数1~1001按如图的方式排列成一个长方形阵列,用一个正方形框出16个数,要使这个正方形框出的16个数之和分别等于:(1)1988;(2)1991;(3)2000;(4)2080.这是否可能?若不可能,试说明理由;若可能,请写出该方框16个数中的最小数与最大数.(河北省竞赛题)22.(第12届“希望杯”竞赛试题)若k 为整数,则使得方程(k —1999)x=2001—2000x 的解也是整数的k 值为( D )A .4个B .8个C . 12个D .16个模拟试题一、选择题:1. 几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是( ) A 、28 B 、33 C 、45 D 、572. 已知y=1是方程2-yy m 2)(31=-的解,则关于x 的方程m (x+4)=m (2x+4)的解是( )A 、x=1 B 、x=-1 C 、x=0 D 、方程无解3 某种商品的进价为1200元,标价为1750元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5﹪,则至多可打( )A 、6折B 、7折C 、8折D 、9折 4. 下列说法中,正确的是( )A 、代数式是方程B 、方程是代数式C 、等式是方程D 、方程是等式5. 一个数的31与2的差等于这个数的一半.这个数是( )A 、12B 、–12C 、18D 、–186. 母亲26岁结婚,第二年生了儿子,若干年后,母亲的年龄是儿子的3倍. 此时母亲的年龄为( )A 、39岁B 、42岁C 、45岁D 、48岁7. A 、B 两地相距240千米,火车按原来的速度行驶需要4小时到达目的地,火车提速后,速度比原来加快30%,那么提速后只需要( )即可到达目的地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 81 1 ⎡ 1 1 ⎤ 《一元一次方程》竞赛试题1.已知 x =一 1 是关于 x 的方程 7x 3 一 3x 2+kx+5=0 的解,则 k 3+2k 2-11k-85=.(“信利杯”竞赛题)2. 方 程 1 (20x + 50) + 2 (5 + 2x ) - 1(4x + 10) = 0 的 解 为; 解 方 程6 3 2⎧ ⎫ ⎨ ⎢ ( x - 3) - 3⎥ - 3⎬ - 3 = 0 ,得 x= . A .正数 B .非正数 C .负数 D .非负数8.解关于 x 的方程:(1)ax-1=bx (2)4x+b=ax-8 (3)k(kx-1)=3(kx-1)9.A 为何值时,方程 x + a = x - 1(x - 12) 有无数个解?无解?2 ⎩ 2 ⎣ 2 2 ⎦ ⎭32 63. 已知关于 x 的方程 2a(x 一 1)=(5 一 a)x+3b 有无数多个解,那么 a =.(“希望杯”邀请赛试题)4. 和方程 x 一 3=3x+4 不同解的方程是().10. 已知方程 2(x+1)=3(x-1)的解 为 a+2, 那么方程 2[2(x+3)-3(x-a)]=3a 的解为.11.已知关于 x 的方程 9x-3=kx+14 有整数解,那么满足条件的所有整数 k =.112.已知 1 + 4( 1 + 1 ) = 1 3,那么代数式1872 + 48 ⋅ ( 1999x ) 的值为.A .79—4=59—11B . + 2 = 0x + 34 1999 x 4 1999 + xC .(a 2+1)(x 一 3)=(3x+4)(a 2+1)D .(7x 一 4)(x —1)=(5x 一 11)(x 一 1) 5.已知 a 是任意有理数,在下面各题中(1)方程 ax=0 的解是 x=113. 若(3a+2b)x 2+ax+b=0 是关于 x 的一元一次方程,且有唯一解,则 x = .14. 有 4 个关于 x 方程(1)x-2=-1 (2)(x-2)+(x-1)=-1+(x-1)(3)x=0 (4) x - 2 + 1 = -1 + 1(2) 方程 ax =a 的解是 x =1 其中同解的两个方程是()x - 1 x - 1(3) 方程 ax=1 的解是 x = 1 A .(1)与(2) B .(1)与(3) C .(1)与(4) D .(2)与(4)ax x x(4) 方程 a x = a 的解是 x =±1结论正确的个数是( ).A.0B .1C . 2D .3 (江苏省竞赛题)15.方程1⨯ 2 + 2 ⨯ 3 + + 1995 ⨯1996 = 1995 的解是( )A .1995B .(1996C .1997D . 199816.已知a + 2 = b - 2 = c= 2001 ,且a + b + c = 2001k ,那么k 的值为( ).21 ⎡ 3 ⎤ 1A . 1B .4C . - 1D .-46.方程 x - 6 ⎢36 - 12(5 x + 1)⎥ = 3 x - 2 的解是()4 4A .1514⎣ B . - 1514⎦ C .45 14D . - 451417.若 k 为整数,则使得方程(k-1999)x=2001-2000x 的解也是整数的 k 值有A .4 个B .8 个C .12 个D .16 个7.已知关于x 的一次方程(3a+8b)x+7=0 无解,则ab=( ) .(“希望杯”邀请赛试题)2 / 818.若干本书分给小朋友,每人m 本,则余 14 本,每人 9 本,则最后一人只得 6 本,问小朋友共几个?有多少本书?19.下边横排有 12 个方格,每个方格都有一个数字,已知任何相邻三个数字的和都是20,求x 的值.20.如果 a、b 为定值,关于 x 的方程= 2 +,无论 k 为何值,它的根总是 1,3 6求 a、b 的值.数与最大数.(河北省竞赛题)22.(第 12 届“希望杯”竞赛试题)若 k 为整数,则使得方程(k—1999)x=2001—2000x 的解也是整数的 k 值为( D )A.4 个B.8 个C.12 个D.16 个模拟试题一、选择题:1.几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是()A、28B、33C、45D、571(m -y) = 2 y2.已知y=1 是方程 2-3 的解,则关于x的方程m(x+4)=m(2x+4)的解(ft东省竞赛题)21.将连续的自然数 1~1001 按如图的方式排列成一个长方形阵列,用一个正方形框出16 个数,要使这个正方形框出的 16 个数之和分别等于:(1)1988;(2)1991;(3)2000;(4)2080.这是否可能?若不可能,试说明理由;若可能,请写出该方框 16 个数中的最小是()A、x=1 B、x=-1 C、x=0 D、方程无解3 某种商品的进价为1200 元,标价为1750 元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5 ﹪,则至多可打()A、6 折B、7 折C、8 折D、9 折4.下列说法中,正确的是()A、代数式是方程B、方程是代数式C、等式是方程D、方程是等式15.一个数的3 与 2 的差等于这个数的一半.这个数是()A、12B、–12C、18D、–183 / 86.母亲 26 岁结婚,第二年生了儿子,若干年后,母亲的年龄是儿子的 3 倍. 此时母亲的年龄为()A、39 岁B、42 岁C、45 岁D、48 岁7.A、B 两地相距240 千米,火车按原来的速度行驶需要4小时到达目的地,火车提速后,速度比原来加快 30%,那么提速后只需要()即可到达目的地。

12.一家商店将某型号彩电先按原售价提高40﹪,然后在广告中写上“大酬宾,八折优惠”. 经顾客投诉后,执法部门按已得非法收入的 10 倍处以每台 2700 元的罚款. 求3 3314341 每台彩电的原价格.A 、10 小时B 、13 小时C 、10 小时D、13 小时二、填空题8.已知甲数比乙数的 2 倍大 1,如果设甲数为 x,那么乙数可表示为;如果设乙数为 y,那么甲数可表示为.9.欢欢的生日在 8 月份.在今年的 8 月份日历上,欢欢生日那天的上、下、左、右 4 个日期的和为 76,那么欢欢的生日是该月的号.10.从甲地到乙地,公共汽车原需行驶 7 小时,开通高速公路后,车速平均每小时增加了 20 千米,只需 5 小时即可到达。

甲乙两地的路程是;三、解答题11.解下列方程(1)5(x+8)=6(2x-7)+5x + 2-2x - 3= 1(2) 4 613.小明的爸爸三年前为小明存了一份 3000 元的教育储蓄. 今年到期时取出,得本利和为 3243 元. 请你帮小明算一算这种储蓄的年利率.14.在社会实践活动中,某校甲、乙、丙三位同学一起调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时 10 000 辆”.乙同学说:“四环路比三环路车流量每小时多 2000 辆”.丙同学说:“三环路车流量的 3 倍与四环路车流量的差是二环路车流量的 2 倍”.请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?4 / 8A.7 B.136C.911D.9136.在一张日历表中,任意圈出一个竖列上相邻的三个数,它们的和不可能是()一、选择题《一元一次方程》习题精选A.60 B.39 C.40 D.577.代数式x-x -1 的值等于1 时,x 的值是()31.下列等式中是一元一次方程的是()A.S=ab B.x-y=0A.3 B.1 C.-3 D.-18.四位同学解方程1 -x - 3 =1,下面是他们解方程中去分母的一步,其中正确的是2 3C.x=0 D.3-2=1()2.已知方程(m+1)x︱m︱+3=0 是关于x 的一元一次方程,则m 的值是()A.1 B.1 C.-1 D.0 或13.下列各式中,是一元一次方程的是()A.1-(x-3)=1 B.3-2(x-3)=6C.2-3(x-3)=6 D.3-2(x-3)=19.已知2 是关于x 的方程3x-2a=0 的一个解,则2a-1 的值是()2A.2x+y=3 B.2x-1 A.32 B.2 C.52D.3C.x2+1=5 D.3-2x=44.解方程3x+4=4x-5 时,移项正确的是()A.3x-4x=-5-4B.3x+4x=4-5C.3x+4x=4+5D.3x-4x=-5+4 10.某人用原价的八折价钱买一件上衣节省了20 元,那么这件上衣的原价为()A.80 元B.100 元C.140 元D.160 元11.与方程x-1=2x 的解相同的方程是()A.3x=2x+1 B.x-2=1+2xC.x=2x-1 D.x=x -125.如果5(x-2)与x-3 互为相反数,那么x 的值是()二、填空题12.为了节约用水,某市规定:每户居民每月用水不超过20 立方米,按每立方米2 元收5 / 8费;超过20 立方米,则超过部分按每立方米4 元收费。

如果某户居民五月份缴纳水费72元,则该户居民五月份实际用水为()A.8 立方米B.18 立方米C.28 立方米D.36 立方米(3)y -y -1 =1-5 2y + 2.513.若a=b+2,则a-b=。

14.已知x=1 是方程ax-6=5 的一个解,则a=。

24.去年小张到银行购买了一笔年利率为2.25%的债券,今年存满一年后,扣除20%的利息所得税后的本息正好够买一台随身听,已知随身听每台509 元,问一年前小张购买了15.当x=,代数式2x +1 的值比5x -1 的值大1。

多少元债券?3 616.若-3ab2x+3与-3ab4x+1是同类项,则x=。

2 217.连续三个奇数的和是27,则中间的一个数是。

18.若︱x-y︱+(y+1)2=0,则x2+y2=。

19.一个长方形的周长为28cm,长比宽多2cm,那么该长方形的长是cm。

20.某工厂引进了一批设备,使单位成品的成本降低了20%。

已知今年单位成品的成本为8 元,则去年单位成品的成本为元。

21.某商品的进价为200 元,标价为300 元,折价销售时的利润为5%,那么此商品是按折销售的。

22.甲、乙两人长跑,甲的速度是6 米/秒,乙的速度是4 米/秒,乙在甲前面100 米,两人同时起跑,那么经过秒,甲可以追上乙。

三、解答题23.解下列方程:(1)7x+6=16-3x;(2)4x-3(19-x)=6x-7(9-x);25.某初一学生做作业时,不慎打翻了墨水瓶,使一道作业题只能看到如下字样:“甲乙两地相距400 千米,摩托车速度为45 千米/时,运货车速度为35 千米/时”。

相关文档
最新文档